
Evaluation of the eigenvectors of symmetric tridiagonal matrices is one of the most basic
tasks in numerical linear algebra. It is a widely known fact that, in the case of well separated
eigenvalues, the eigenvectors can be evaluated with high relative accuracy. Nevertheless, in
general, each coordinate of the eigenvector is evaluated with only high absolute accuracy.
In particular, those coordinates whose magnitude is below the machine precision are not
expected to be evaluated to any correct digit at all.
In this paper, we address the problem of evaluating small (e.g. 10−50) coordinates of
the eigenvectors of certain symmetric tridiagonal matrices with high relative accuracy. We
propose a numerical algorithm to solve this problem, and carry out error analysis. While our
algorithm can be viewed as a modification of already existing (and well known) algorithms,
such error analysis appears to be new. Also, we discuss some applications in which this
task is necessary. Our results are illustrated via several numerical examples.
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1 Introduction

The evaluation of eigenvectors of symmetric tridiagonal matrices is one of the most basic
tasks in numerical linear algebra (see, for example, such classical texts as [3], [4], [5], [6],
[8], [9], [19], [21], [22]). Several algorithms to perform this task have been developed; these
include Power and Inverse Power methods, Jacobi Rotations, QR and QL algorithms, to
mention just a few. Many of these algorithms have become standard and widely known
tools.

2



In the case when the eigenvalues of the matrix in question are well separated, most of
these algorithms will evaluate the corresponding eigenvectors to a high relative accuracy.
More specifically, suppose that n > 0 is an integer, that v ∈ R

n is the vector to be evaluated,
and v̂ ∈ R

n is its numerical approximation, produced by one of the standard algorithms.
Then,

‖v − v̂‖
‖v‖ ≈ ε, (1)

where ‖ · ‖ denotes the Euclidean norm, and ε is the machine precision (e.g. ε ≈ 10−16 for
double precision calculations).

However, a closer look at (1) reveals that it only guarantees that the coordinates of v
be evaluated to high absolute accuracy. This is due to the following trivial observation.
Suppose that we add ε · ‖v‖ to the first coordinate v̂1 of v̂. Then, the perturbed v̂ will not
violate (1). On the other hand, the relative accuracy of v̂1 can be as large as

|v1 + ε · ‖v‖ − v1|
|v1|

= ε · ‖v‖|v1|
. (2)

In particular, if, say, ‖v‖ = 1 and |v1| < ε, then v̂1 is not guaranteed to approximate v1 to
any correct digit at all!

Sometimes the poor relative accuracy of ”small” coordinates is of no concern; for ex-
ample, this is usually the case when v is only used to project other vectors onto it. Nev-
ertheless, in several prominent problems, small coordinates of the eigenvector are required
to be evaluated to high relative accuracy. These problems include the evaluation of Bessel
functions (see Sections 3.2, 3.4.2, 6.1), the evaluation of some quantities associated with
prolate spheroidal wave functions (see Sections 3.3, 6.2, and also [18]), and the evaluation
of singular values of the truncated Laplace transform (see [11]), among others.

In this paper, we propose an algorithm for the evaluation of the coordinates of eigenvec-
tors of certain symmetric tridiagonal matrices, to high relative accuracy. More specifically,
we consider the matrices whose non-zero off-diagonal elements are constant, and whose
diagonal elements constitute a monotonically increasing sequence (see, however, Remark 2
below). The connection of such matrices to Bessel functions and prolate spheroidal wave
functions is discussed in Sections 3.4.2, 6.2, respectively. Also, we carry out detailed error
analysis of our algorithm (see Sections 4.2, 4.3). While our algorithm can be viewed as a
modification of already existing (and well known) algorithms, such error analysis, perhaps
surprisingly, appears to be new. In addition, we conduct several numerical experiments,
to both illustrate the performance of our algorithm, and to compare it to some classical
algorithms (see Section 7).

The following is one of the principal analytical results of this paper (see Theorem 22 in
Section 4.3 for a more precise statement, and Theorems 16, 17, 18, Corollary 6 in Section 4.2
below for the treatment of a more general case).

Theorem 1. Suppose that a ≥ 1 is a real number, and that, for any real c ≥ 1, n = n(c) > c
is an integer, the real numbers A1(c), . . . , An(c) are defined via the formula

Aj(c) = 2 + 2 ·
(

j

c

)a

, (3)
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for every j = 1, . . . , n, and that the n by n symmetric tridiagonal matrix A = A(c) is defined
via the formula

A(c) =



















A1 1
1 A2 1

1 A3 1
. . .

. . .
. . .

1 An−1 1
1 An



















. (4)

Suppose furthermore that, for any real c > 1, λ(c) is an eigenvalue of A(c), that 1 < k(c) <
n(c) is an integer, that

2 +Ak(c) < λ(c) ≤ 2 +Ak(c)+1. (5)

and that X(c) = (X1, . . . , Xn) ∈ R
n is the unit-length λ(c)−eigenvector of A(c). Suppose,

in addition, that ε > 0, and that the entries of A(c) are defined to relative precision ε, for
any c > 1. Then, the first k(c) coordinates X1, . . . , Xk of X(c) are defined to the relative
precision R(c, a), where

R(c, a) ≤ ε ·O (− log(X1)) ·O
(

c4·a/(a+2)
)

, c→ ∞. (6)

Remark 1. We observe that, according to (6), the relative precision of X1, . . . , Xk de-
pends only logarithmically on their order of magnitude. In other words, even if, say, X1 is
significantly smaller than ε, it is still defined to fairly high relative precision.

Remark 2. The definition of the entries of the matrix A in Theorem 1 is motivated by par-
ticular applications (see Section 6). On the other hand, Theorem 1 and Remark 1 generalize
to a much wider class of matrices; these include, for example, perturbations of A, defined
via (4); matrices whose diagonal entries are of a more general form than (3); banded (not
necessarily tridiagonal) matrices, etc. While such generalizations are straightforward (and
are based, in part, on the results of Section 4.1), the analysis is somewhat involved, and will
be published at a later date (see, however, Theorems 16, 17 and Corollary 6 in Section 4.2
below for one such generalization).

The proof of Theorem 1 is constructive and somewhat technical (see Sections 4.2, 4.3).
The resulting numerical algorithms for the evaluation of the eigenvector X are described in
Section 5.

In practice, the upper bound in (6) above seems to be overly pessimistic. In fact, the
following conjecture has been verified by extensive numerical experiments (see Section 7).

Conjecture 1. Suppose that, in addition to the hypothesis of Theorem 1 above, we evaluate
the eigenvector X(c) by the algorithm from Section 5.3. Then, for any real c > 1 and any
integer 1 ≤ j ≤ k(c),

rel(Xj(c)) ≤ 100 · c2·a/(a+2) · ε. (7)

In particular, rel(X1) does not depend on the magnitude of X1, for any c > 1.
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We observe that the power of c in (7) is half the power of c in (6). In other words,
Theorem 1 appears to overestimate the number of lost digits in the evaluation of the first
k elements of X by roughly a factor of two.

The paper is organized as follows. Section 2 contains a brief informal overview of some
principal ideas behind the algorithms of this paper and their error analysis. In Section 3,
we summarize a number of well known mathematical and numerical facts to be used in
the rest of this paper. In Section 4, we develop the necessary analytical apparatus and
perform error analysis of the algorithm, described in Section 5 (and we also describe a
number of related algorithms). In Section 6, we discuss some applications of our algorithm
to other computational problems. In Section 7, we illustrate the numerical stability of our
algorithm and corresponding theoretical results via several numerical examples, and provide
comparison to some related classical algorithms.

2 Overview

This section contains an informal discussion of several properties of eigenvectors of certain
symmetric tridiagonal matrices.

Suppose that A is a symmetric tridiagonal matrix, whose non-zero off-diagonal elements
are constant (and equal to one), and the diagonal elements constitute a monotonically
increasing sequence A1 < A2 < . . . . Then, the coordinates x1, . . . , xn of any eigenvector x
of A corresponding to the eigenvalue λ satisfy the three-term linear recurrence relation (43)
(see Theorem 5 in Section 4.1 below).

It turns out that the qualitative properties of the recurrence relation (43) depend on
whether λ−Ak is greater than 2, less than −2, or between −2 and 2. Both our algorithm and
the subsequent error analysis are based on the following three fairly obvious observations.

Observation 1 (”growth”). Suppose that B > 2 and x1, x2, x3 are real numbers, and
that

x3 −B · x2 + x1 = 0. (8)

If 0 < x1 < x2, then the evaluation of x3 from x1, x2 via (8) is stable (accurate); moreover,
x3 > x2. On the other hand, the evaluation of x1 from x2, x3 via (8) is unstable (inaccurate),
since, loosely speaking, we attempt to evaluate a ”small” number as a difference of two bigger
positive numbers.

Remark 3. This intuition is generalized and rigorously developed in Theorems 6, 13, 16
in Section 4.2 and Corollary 1 in Section 4.1 (see also Observation 1 in Section 5.4).

Observation 2 (”decay”). Suppose now that B < −2 and y1, y2, y3 are real numbers,
and that

y3 −B · y2 + y1 = 0. (9)

If y3 and y2 have opposite signs, and |y2| > |y3|, then the evaluation of y1 from y2, y3 via (9)
is stable (accurate); moreover, y1 and y2 have opposite signs, and |y1| > |y2|. On the other
hand, the evaluation of y3 from y1, y2 (9) is unstable (inaccurate), since, loosely speaking,
we attempt to obtain a small number as a sum of two numbers of opposite signs of larger
magnitude.
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Remark 4. This intuition is generalized and rigorously developed in Theorem 7 in Sec-
tion 4.1 (see also Observation 2 in Section 5.4).

Observation 3 (”oscillations”). We consider the following example. Suppose that
θ > 0 is a real number, and that the real numbers x0, x1, x2, . . . , are defined via the formula

xk = cos(k · θ), (10)

for every k = 0, 1, . . . ,. We recall the trigonometric identity

cos ((k + 1) · θ) + cos ((k − 1) · θ) = 2 · cos(θ) · cos (k · θ) , (11)

that holds for all real θ, k, and substitute (10) into (11) to conclude that

xk+1 = 2 · cos(θ) · xk − xk−1, (12)

for every k = 1, 2, . . . . Obviously, the sequence x0, x1, . . . contains elements of order one as
well as relatively small elements - the latter ones are obtained as a difference of two larger
elements, potentially resulting in a loss of accuracy, and complicating the error analysis of
the recurrence relation (12).

This examples serves as a model for the relation between xk−1, xk, xk+1 in (43) when
−2 < λ−Ak < 2. In fact, in this case (43) admits the form (12) if we allow θ to vary with
k, e.g.

xk+1 = 2 · cos(θk−1) · xk − xk−1. (13)

We say that sequences defined by the recurrence relation of the form (13) exhibit ”oscillatory
behavior”, and analyze such sequences in Theorems 8, 10, 11, 15, 16, 17 and Corollaries 3,
4 in Sections 4.1, 4.2 (see also Observation 3 in Section 5.4).

3 Mathematical and Numerical Preliminaries

In this section, we introduce notation and summarize several facts to be used in the rest of
the paper.

3.1 Real Symmetric Matrices

In the following theorem, we summarize several well known facts about certain symmetric
tridiagonal matrices.

Theorem 2. Suppose that n > 1 is an integer, that 2 < A1 < · · · < An is an increasing
sequence of positive real numbers, and that the symmetric tridiagonal n by n matrix A
defined via the formula

A =



















A1 1
1 A2 1

1 A3 1
. . .

. . .
. . .

1 An−1 1
1 An



















. (14)
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Suppose also that

λ1 < λ2 < · · · < λn (15)

are the eigenvalues of A. Then,

Ak − 2 < λk ≤ Ak + 2, (16)

for every k = 1, . . . , n. In particular, A is positive definite. In addition,

λ1 < A1, (17)

and

λn > An. (18)

3.2 Bessel Functions

In this section, we describe some well known properties of Bessel functions. All of these
properties can be found, for example, in [1], [7].

Suppose that n ≥ 0 is a non-negative integer. The Bessel function of the first kind
Jn : C → C is defined via the formula

Jn(z) =
∞
∑

m=0

(−1)m

m! · (m+ n)!
·
(z

2

)2m+n
, (19)

for all complex z. Also, the function J−n : C → C is defined via the formula

J−n(z) = (−1)n · Jn(z), (20)

for all complex z.
The Bessel functions J0, J±1, J±2, . . . satisfy the three-term recurrence relation

z · Jn−1(z) + z · Jn+1(z) = 2n · Jn(z), (21)

for any complex z and every integer n. In addition,

∞
∑

n=−∞

J2
n(x) = 1, (22)

for all real x. In the following theorem, we rewrite (21), (22) in the matrix form.

Theorem 3. Suppose that x > 0 is a real number, and that the entries of the infinite
tridiagonal symmetric matrix A(x) are defined via the formulae

An,n−1(x) = An,n+1(x) = 1, (23)
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for all integer n, and

An,n(x) = −2n

x
, (24)

for every integer n. Suppose also that the coordinates of the infinite vector v(x) are defined
via the formula

vn(x) = Jn(x), (25)

for every integer n. Then, v is a unit vector (in the l2−sense), and, moreover,

A(x) · v(x) = 0, (26)

where 0 stands for the infinite dimensional zero vector.

3.3 Prolate Spheroidal Wave Functions

In this section, we summarize several well known facts about prolate spheroidal wave func-
tions. Unless stated otherwise, all these facts can be found in [23], [12], [20], [10], [15].

Suppose that c > 0 is a real number, and that the integral operator Fc : L2[−1, 1] →
[−1, 1] is defined via the formula

Fc[ϕ](x) =

∫ 1

−1
ϕ(t) · eicxt dt. (27)

Suppose also that the complex numbers λ0(c), λ1(c), . . . are the eigenvalues of Fc (ordered
such that |λ0(c)| > |λ1(c)| > . . . ). The prolate spheroidal wave functions (PSWFs) corre-

sponding to the band limit c are the unit-norm eigenfunctions ψ
(c)
0 , ψ

(c)
1 , . . . of Fc.

Several popular numerical algorithm for the evaluation of PSWFs (see e.g. [23], [18])
are based on the following theorem (that goes back at least to [20]).

Theorem 4. Suppose that c > 0 is a real number, and that n ≥ 0 is an even inte-
ger. Suppose also that P0, P1, . . . are the Legendre polynomials, and that the real numbers

β
(n,c)
0 , β

(n,c)
2 , . . . are defined via the formula

β
(n,c)
k =

∫ 1

−1
ψc
n(x) · Pk(x) ·

√

k + 1/2 dx, (28)

for every k = 0, 2, 4, . . . . Suppose, in addition, that the non-zero entries of the infinite
symmetric tridiagonal matrix Ac,even are defined via the formulae

A
(c)
k,k = k(k + 1) +

2k(k + 1)− 1

(2k + 3)(2k − 1)
· c2,

A
(c)
k,k+2 = A

(c)
k+2,k =

(k + 2)(k + 1)

(2k + 3)
√

(2k + 1)(2k + 5)
· c2, (29)

for every k = 0, 2, 4, . . . , that χ0(c) < χ2(c) < . . . are the eigenvalues of Ac,even, and that
the infinite dimensional vector β(n,c) is defined via the formula

β(n,c) =
(

β
(n,c)
0 , β

(n,c)
2 , . . .

)T
. (30)
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Then, β(n,c) is the unit-norm (in the l2-sense) eigenvector of Ac,even corresponding to the
eigenvalues χn(c), and, moreover,

ψc
n(x) =

∞
∑

j=0

β
(n,c)
2·j · P2·j(x) ·

√

2 · j + 1/2, (31)

for all −1 ≤ x ≤ 1. In addition,

λn(c) =
β
(n,c)
0 ·

√
2

ψc
n(0)

. (32)

Remark 5. A similar theorem for odd values of n is almost identical to Theorem 4 above
and can be found, for example, in [20], [15].

Remark 6. While to obtain ψc
n(x) via (31) it suffices to evaluate the coordinates of β(n,c)

in (30) to high absolute accuracy, to obtain λn(c) via (32) one needs to evaluate β
(n,c)
0 to

high relative accuracy, regardless of the size of β
(n,c)
0 .

3.4 Numerical Tools

In this subsection, we summarize several numerical techniques to be used in this paper.

3.4.1 Shifted Inverse Power Method

Suppose that n ≥ 0 is an integer, and that A is an n by n real symmetric matrix. Suppose
also that σ1 < σ2 < · · · < σn are the eigenvalues of A. The Shifted Inverse Power Method
iteratively finds the eigenvalue σk and the corresponding eigenvector vk ∈ R

n, provided that
an approximation λ to σk is given, and that

|λ− σk| < max {|λ− σj | : j 6= k} . (33)

Each Shifted Inverse Power iteration solves the linear system

(A− λjI) · x = wj (34)

in the unknown x ∈ R
n, where λj and wj ∈ R

n are the approximations to σk and vk, respec-
tively, after j iterations; the number λj is usually referred to as ”shift”. The approximations
λj+1 and wj+1 ∈ R

n (to σk and vk, respectively) are evaluated from x via the formulae

wj+1 =
x

‖x‖ , λj+1 = wT
j+1 ·A · wj+1 (35)

(see, for example, [3], [22] for more details).

Remark 7. For symmetric matrices, the Shifted Inverse Power Method converges cubically
in the vicinity of the solution. In particular, if the matrix A is tridiagonal, and the initial
approximation λ is sufficiently close to σk, the Shifted Inverse Power Method evaluates σk
and vk essentially to machine precision ε in O (log(− log ε)) iterations, and each iteration
requires O(n) operations (see e.g [22], [3]).
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3.4.2 Evaluation of Bessel Functions

The following numerical algorithm for the evaluation of Bessel functions (see Section 6.1)
is based on Theorem 3 in Section 3.2 (see e.g [1], [13]).

Suppose that x > 0 is a real number, and that m > 0 is an integer.
Algorithm: evaluation of J0(x), J1(x), . . . , Jm(x).

• select integer N > max {m,x} (see Remark 8 below).

• set J̃N = 1 and J̃N+1 = 0.

• evaluate J̃N−1, J̃N−2, . . . , J̃1 iteratively via the recurrence relation (21), in the direc-
tion of decreasing indices. In other words, evaluate J̃k−1 via

J̃k−1 =
2k

x
· J̃k(x)− J̃k+1(x), (36)

for every k = N, . . . , 2.

• evaluate J̃−1 from J̃1 via (20).

• evaluate J̃0 from J̃1, J̃−1 via (21).

• evaluate the real number d via the formula

d =

√

√

√

√J̃2
0 + 2 ·

N
∑

k=1

J̃2
k . (37)

• return J̃0/d, J̃1/d, . . . , J̃m/d.

Remark 8. In this paper, we always select sufficiently large N so that the algorithm de-
scribed above, when carried out in extended precision, evaluates J0(x), . . . , Jm(x) to at least
17 decimal digits. Further discussion of the matter is beyond the scope of this paper (see
e.g. [1] for more details).

In the following remark, we state that the algorithm described above essentially evaluates
an eigenvector of a certain tridiagonal symmetric matrix (as in (14)).

Remark 9. Suppose that x > 0 is a real number, that 0 < m < N are integers, and that the
real numbers J̃0, . . . , J̃N and d are defined, respectively, via (36), (37) above. Suppose also
that A is the symmetric tridiagonal (2N+1)×(2N+1) matrix, whose non-zero off-diagonal
entries are defined via the formula

Aj,j+1 = Aj+1,j = 1, (38)

for every j = 1, . . . , 2N , and whose diagonal entries are defined via the formula

Aj,j = Aj = 2 +
2j

x
, (39)
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for every j = 1, . . . , 2N, 2N +1. Suppose, in addition, that the real number λ is defined via
the formula

λ = 2 +
2 · (N + 1)

x
, (40)

and that the vector X ∈ R
2N+1 is defined via the formula

X =
1

d
·
(

J̃N , . . . , J̃1, J̃0,−J̃1, . . . , (−1)N · J̃N
)

. (41)

Then, λ is an eigenvalue of A, and X is the unit-length eigenvector of A corresponding to
λ.

4 Analytical Apparatus

The purpose of this section is to provide the analytical apparatus to be used in the rest of
the paper.

4.1 Local Properties of Eigenvectors of Certain Tridiagonal Matrices

In this subsection, we develop several analytical results pertaining to the eigenvectors of
certain tridiagonal symmetric matrices.

In the following theorem, we describe some obvious properties of the eigenvectors of
certain tridiagonal symmetric matrices.

Theorem 5. Suppose that n > 1 is an integer, that 2 < A1 < A2 < . . . is an increasing
sequence of positive real numbers, and that the symmetric tridiagonal n by n matrix A
is defined via (14). Suppose also that the real number λ is an eigenvalue of A, and that
x = (x1, . . . , xn) ∈ R

n is an eigenvector corresponding to λ. Then,

x2 = (λ−A1) · x1. (42)

Also,

xj+1 = (λ−Aj) · xj − xj−1, (43)

for every j = 2, . . . , n− 1. Finally,

xn−1 = (λ−An) · xn. (44)

In particular, both x1 and xn differ from zero, and λ is simple.

Proof. The identities (42), (43), (44) follow immediately from (14) and the fact that

A · x = λ · x. (45)

We observe that the coordinates x2, . . . , xn are completely determined by x1 and λ via (42),
(43), and hence the eigenvalue λ is simple. Obviously, neither x1 nor xn can be equal to
zero, for otherwise x would be the zero vector. �
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In the following theorem, we assert that, under certain conditions, the first element of
the eigenvectors of the matrix A from Theorem 5 must be ”small”.

Theorem 6. Suppose that the n by n symmetric tridiagonal matrix A is defined via (14)
in Section 3.1. Suppose also that λ is an eigenvalue of A, and that x = (x1, . . . , xn) ∈ R

n

is a corresponding eigenvector whose first coordinate is positive, i.e. x1 > 0. Suppose, in
addition, that 1 ≤ k ≤ n is an integer, and that

λ ≥ Ak + 2. (46)

Then,

0 < x1 < x2 < · · · < xk < xk+1. (47)

Also,

xj
xj−1

>
λ−Aj

2
+

√

(

λ−Aj

2

)2

− 1, (48)

for every j = 2, . . . , k. In addition,

1 <
xk
xk−1

< · · · < x3
x2

<
x2
x1
. (49)

Proof. It follows from (46) that

λk −A1 > λk −A2 > · · · > λk −Ak ≥ 2. (50)

We combine (42), (43) in Theorem 5 with (50) to obtain (47) by induction. Suppose now
that the real numbers r1, . . . , rk are defined via the formula

rj =
xj+1

xj
, (51)

for every j = 1, . . . , k, and that the real numbers σ1, . . . , σk are defined via the formula

σj =
λ−Aj

2
+

√

(

λ−Aj

2

)2

− 1, (52)

for every j = 1, . . . , k. In other words, σj is the largest root of the quadratic equation

x2 − (λ−Aj) · x+ 1 = 0. (53)

We observe that

σ1 > · · · > σk ≥ 1, (54)

due to (50) and (52). Also,

r1 > σ1 > σ2 > 1, (55)
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due to the combination of (52) and (42). Suppose now, by induction, that

rj−1 > σj > 1. (56)

for some 2 ≤ j ≤ k − 1. We observe that the roots of the quadratic equation (53) are
1/σj < 1 < σj , and combine this observation with (56) to obtain

r2j−1 − (λ−Aj) · rj−1 + 1 > 0. (57)

We combine (57) with (51) and (43) to obtain

rj =
xj+1

xj
=

(λ−Aj) · xj − xj−1

xj
= λ−Aj −

1

rj−1
< rj−1. (58)

Also, we combine (52), (56), (58) to obtain

rj = λ−Aj −
1

rj−1
> λ−Aj −

1

σj
=

(λ−Aj) · σj − 1

σj
= σj > σj+1. (59)

In other words, (56) implies (59), and we combine this observation with (55) to obtain

r1 > σ2, r2 > σ3, . . . , rk−1 > σk. (60)

Also, due to (58),

r1 > r2 > · · · > rk−1. (61)

We combine (51), (52), (60), (61) to obtain (48), (49). �

Corollary 1. Under the assumptions of Theorem 6,

xk
x1

>
k
∏

j=2





λ−Aj

2
+

√

(

λ−Aj

2

)2

− 1



 . (62)

Remark 10. In [17], the derivation of an upper bound on the first coordinate of an eigen-
vector of a certain matrix is based on a generalization of Theorem 6.

In the following theorem, we study the behavior of several last elements of an eigenvector
of the matrix A from Theorem 5 above.

Theorem 7. Suppose that the n by n symmetric tridiagonal matrix A is defined via (14)
in Section 3.1. Suppose also that λ is an eigenvalue of A, and that x = (x1, . . . , xn) ∈ R

n

is a corresponding eigenvector whose last coordinate is positive, i.e. xn > 0. Suppose, in
addition, that 1 ≤ k ≤ n is an integer, and that

λ ≤ Ak − 2. (63)

Then,

0 < |xn| < |xn−1| < · · · < |xk| < |xk−1|. (64)
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Also,

− xj
xj+1

>
Aj − λ

2
+

√

(

λ−Aj

2

)2

− 1, (65)

for every j = k, . . . , n− 1. In addition,

−1 >
xk
xk+1

> · · · > xn−2

xn−1
>
xn−1

xn
. (66)

Proof. The proof is essentially identical to that of Theorem 6 above and will be omitted. �

In the rest of this subsection, we investigate the behavior of the ”middle” elements of
an eigenvector of the matrix A from Theorems 5, 6, 7 above. We start with the following
theorem.

Theorem 8. Suppose that k,m > 0 are integers, that xk, . . . , xk+m+2 are real numbers,
that Bk+1, . . . , Bk+m+1 are real numbers, that

2 > Bk+1 > · · · > Bk+m+1 ≥ 0, (67)

and that

xj+1 = Bj · xj − xj−1, (68)

for every j = k+1, . . . , k+m+1. Suppose also that, for any real number 0 < θ ≤ π/2, the
real 2× 2 matrix A(θ) is defined via the formula

A(θ) =

(

0 1
−1 2 · cos(θ)

)

. (69)

Then,

(

xj+1

xj+2

)

= A

(

arccos

(

Bj+1

2

))

·
(

xj
xj+1

)

, (70)

for every j = k, . . . , k +m.

Proof. The identity (70) follows from the combination of (68) and (69). �

Theorem 9. Suppose that k > 0 and l > 0 are integers, and that

0 < θk < θk+1 < · · · < θk+l−1 ≤
π

4
· 1

l + 3/2
(71)

are real numbers. Suppose also that ε > 0, and that the sequence xk, . . . , xk+l+2 is defined
via the formulae

xk = 1, xk+1 = 1 + ε, (72)
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and
(

xj+1

xj+2

)

=

(

0 1
−1 2 cos(θj)

)(

xj
xj+1

)

, (73)

for every j = k, . . . , k + l − 1. Then,

xk, xk+1, . . . , xk+l, xk+l+1 > 0. (74)

In addition,

m+ 1

m
>
xk+m+1

xk+m
>

cos ((m+ 1/2) · θk+l−1)

cos ((m− 1/2) · θk+l−1)
, (75)

for every integer m = 1, 2, . . . , l; in particular,

1 +
1

l
>
xk+l+1

xk+l
> 1− 1

l + 3/2
. (76)

Proof. We observe that

xk+m+1

xk+m
= 2 · cos(θk+m−1)−

xk+m−1

xk+m
, (77)

for every m = 1, . . . , l. We use (77) to prove (75) by induction on m. For m = 1,

xk+2

xk+1
= 2 · cos(θk)−

1

1 + ε
< 2, (78)

and also

cos(3 · θk+l−1/2)

cos(θk+l−1/2)
= 4 · cos(θk+l−1/2)− 3 = 2 · cos(θk+l−1)− 1

< 2 · cos(θk)− 1 <
xk+2

xk+1
. (79)

By induction, for 2 ≤ m ≤ l,

xk+m+1

xk+m
< 2 · cos(θk+m−1)−

m− 1

m
< 2− m− 1

m
=
m+ 1

m
, (80)

which proves the left-hand side of (75), and also

xk+m+1

xk+m
> 2 · cos(θk+m−1)−

cos(θk+l−1 · (m− 3/2))

cos(θk+l−1 · (m− 1/2))
. (81)

However, for any real θ,

cos(θ · (m− 3/2))

cos(θ · (m− 1/2))
+

cos(θ · (m+ 1/2))

cos(θ · (m− 1/2))
= 2 · cos(θ), (82)
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and we combine (81), (82) to conclude the right-hand side of (75). The inequality (75)
implies (74). Next, we observe that

cos(x)− sin(x) ≥ 1− 4x

π
, (83)

for all real 0 ≤ x ≤ π/4, and combine (83) with (71) to obtain

cos ((l + 1/2) · θk+l−1)

cos ((l − 1/2) · θk+l−1)
= cos (θk+l−1)− sin (θk+l−1) · tan (θk+l−1 · (l − 1/2))

> cos (θk+l−1)− sin (θk+l−1)

> 1− 4

π
· π
4
· 1

l + 3/2
. (84)

Finally, we combine (84) with (75) to obtain (76). �

Corollary 2. If, in addition to (71),

(

m+
3

2

)

· θk+m−1 <
π

4
(85)

for every m = 1, . . . , l, then

1 +
1

m
>
xk+m+1

xk+m
> 1− 1

m+ 3/2
, (86)

for every m = 1, . . . , l.

Remark 11. One can prove (along the lines of Theorem 9) that xj+1 > xj for every
j = k, . . . , k + l, provided that l < k and that ε > k−1.

Theorem 10. Suppose that m > 0 is an integer, and θ1, . . . , θm are real numbers such that

0 < θ1 < · · · < θm ≤ π

2
. (87)

Suppose also that, for any real number 0 < θ ≤ π/2, the real 2×2 matrix A(θ) is defined via
(69), and the complex 2× 2 matrices D(θ),Λ(θ) are defined, respectively, via the formulae

D(θ) =

(

eiθ 0
0 e−iθ

)

, (88)

Λ(θ) =

(

−2 · i · sin(θ/2) 0
0 2 cos(θ/2)

)

. (89)

Suppose furthermore that, for any real numbers 0 < η1, η2 ≤ π/2, the complex 2× 2 matrix
D(η1, η2) is defined via the formula

D(η1, η2) =

(

sin(η1/2)/ sin(η2/2) 0
0 cos(η1/2)/ cos(η2/2)

)

, (90)

16



and that the unitary complex 2× 2 matrix V is defined via the formula

V =
1√
2
·
(

−1 1
1 1

)

. (91)

Then,

A(θm) · · · · ·A(θ1) =
V · Λ(θm) · V ·
D(θm) · V ·D(θm−1, θm) · V ·
D(θm−1) · V ·D(θm−2, θm−1) · V ·
. . .

D(θ2) · V ·D(θ1, θ2) · V ·
D(θ1) · V · Λ−1(θ1) · V. (92)

Proof. Suppose that, for any real number 0 < θ ≤ π/2, the complex 2 × 2 matrix U(θ) is
defined via the formula

U(θ) =

(

1 eiθ

eiθ 1

)

. (93)

Obviously, U(θ) admits the decomposition

U(θ) = ei·θ/2 · V · Λ(θ) · V. (94)

Due to (94), the inverse of U(θ) admits the decomposition

U(θ)−1 = e−i·θ/2 · V · Λ−1(θ) · V. (95)

Due to the combination of (94), (95),

U(θ2)
−1 · U(θ1) = ei(θ1−θ2)/2 · V · Λ−1(θ2) · Λ(θ1) · V

= ei(θ1−θ2)/2 · V ·D(θ1, θ2) · V. (96)

We observe that, for any 0 < θ < π,

i

2 sin(θ)
·
(

e−iθ −1
−1 e−iθ

)(

0 1
−1 2 cos(θ)

)(

1 eiθ

eiθ 1

)

=

(

eiθ 0
0 e−iθ

)

, (97)

and combine (97) with (94), (88), (69) to conclude that

A(θ) = U(θ) ·D(θ) · U−1(θ). (98)

Subsequently, due to the combination of (94), (95), (96), (98),

A(θ2) ·A(θ1) = U(θ2) ·D(θ2) · U−1(θ2) · U(θ1) ·D(θ1) · U−1(θ1)

= V · Λ(θ2) · V ·D(θ2) · V ·D(θ1, θ2) · V ·D(θ1) · V · Λ−1(θ1) · V. (99)

Now (92) follows from (99). �
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Corollary 3. Suppose that, for any complex square matrix A, we denote by σmin(A) and
σmax(A), respectively, the minimal and maximal singular values of A. Then, under the
assumptions of Theorem 10 above,

σmin(A(θm) · · · · ·A(θ1) · V · Λ(θ1)) ≥ 2 · sin
(

θ1
2

)

, (100)

σmax(A(θm) · · · · ·A(θ1) · V · Λ(θ1)) ≤ 2 · cos
(

θ1
2

)

, (101)

and also

σmin(A(θm) · · · · ·A(θ1)) ≥ tan

(

θ1
2

)

, (102)

σmax(A(θm) · · · · ·A(θ1)) ≤ cot

(

θ1
2

)

. (103)

Theorem 11. Suppose, in addition to the hypothesis of Theorem 10, that δ > 0 is a real
number, and that the vector x ∈ R

2 is defined via the formula

x =

(

1
1 + δ

)

. (104)

Then,

min {|A(θj) · · · · ·A(θ1) · x| : 1 ≤ j ≤ m}
max {|A(θj) · · · · ·A(θ1) · x| : 1 ≤ j ≤ m} ≥ θ1

2
, (105)

and also,

|A(θm) · · · · ·A(θ1) · x|
|x| ≤ 1 +

1

2
· (4/θ

2
1 − 1) · δ2

(2 + δ)2 + δ2
. (106)

Proof. Due to the combination of (89), (91) and (104),

Λ−1(θ1) · V · x =
1

2
√
2
·
(

i · δ/ sin(θ1/2)
(2 + δ)/ cos(θ1/2)

)

. (107)

We combine (107) with (92) and (101) to conclude that

|A(θm) · · · · ·A(θ1) · x| ≤
1√
2

∣

∣

∣

∣

(

δ · cot(θ1/2)
2 + δ

)∣

∣

∣

∣

≤ 1√
2

∣

∣

∣

∣

(

2 · δ/θ1
2 + δ

)∣

∣

∣

∣

. (108)

and

|A(θm) · · · · ·A(θ1) · x| ≥
1√
2

∣

∣

∣

∣

(

δ
(2 + δ) · tan(θ1/2)

)∣

∣

∣

∣

≥ 1√
2

∣

∣

∣

∣

(

δ
(2 + δ) · θ1/2

)∣

∣

∣

∣

. (109)
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It follows from (108) that

|A(θm) · · · · ·A(θ1) · x|2 ≤
1

2
·
(

(2 + δ)2 +

(

2 · δ
θ1

)2
)

. (110)

Also, it follows from (109) that

|A(θm) · · · · ·A(θ1) · x|2 ≥
1

2
·
(

(2 + δ)2 +

(

2 · δ
θ1

)2
)

· θ
2
1

4
. (111)

Now (105) follows from the combination of (110) and (111). Next we observe that, due to
(104),

|x|2 = (1 + δ)2 + 1 =
1

2
·
(

(2 + δ)2 + δ2
)

. (112)

We combine (110) with (112) to conclude that

|A(θm) · · · · ·A(θ1) · x|
|x| ≤

√

1 +
(4/θ21 − 1) · δ2
(2 + δ)2 + δ2

, (113)

which implies (106). �

Corollary 4. Suppose, in addition to the hypotheses of Theorem 11, that l ≥ 1 is an integer,
that

θ1 ·
(

l +
5

2

)

≥ π

4
(114)

(compare to (71)), and that

− 1

l + 3/2
< δ <

1

l
(115)

(see (76)). Then,

|x|
9 · l < |A(θm) · · · · ·A(θ1) · x| < 4 · |x|. (116)

Proof. The right inequality in (116) follows from the combination of (106), (114), (115).
The left inequality in (116) follows from the combination of (114) and (105). �

4.2 Error Analysis

In Section 4.1 above, we investigated various analytical properties of eigenvectors of certain
tridiagonal symmetric matrices. This section deals with stability issues pertaining to the
numerical evaluation of such eigenvectors.

The following theorem is closely related to Theorem 6 in Section 4.1.
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Theorem 12. Suppose that k > 2 is an integer, and that

B1 > B2 > · · · > Bk ≥ 2 (117)

are real numbers. Suppose also that x1, . . . , xk+1 are real numbers defined via the recurrence
relation

x1 = 1,

x2 = B1,

xj+1 = Bj · xj − xj−1, (118)

for j ≥ 2, and that the real numbers r1, . . . , rk are defined via the formula

rj =
xj+1

xj
, (119)

for every j = 1, . . . , k. Then,

rj = Bj −
1

rj−1
, (120)

for every j = 2, . . . , k.

Proof. The recurrence relation (120) follows from the combination of (118), (119). �

Theorem 13. Suppose that k > 2 is an integer, and that the real numbers B1, . . . , Bk,
x1, . . . , xk+1, r1, . . . , rk are those of Theorem 12 above. Suppose also that ε > 0 is the
machine precision, that B1, . . . , Bk are defined to machine precision, and that x1, . . . , xk+1,
r1, . . . , rk are calculated, respectively, via (118), (120). Then,

rel(rj) ≤ (2 · j − 1) · ε, (121)

for every j = 1, . . . , k,

rel(xj+1) ≤ ε · j2, (122)

for every j = 1, . . . , k, and also

rel(x21 + x22 + · · ·+ x2k + x2k+1) ≤ ε · 2 · k2. (123)

Proof. First, suppose that ε1, . . . , εk and δ1, . . . , δk are real numbers, that

|δj−1| ≤ ε, (124)

for every j = 2, . . . , k, that

r̂j−1 = rj−1 · (1 + εj−1), (125)
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for every j = 2, . . . , k, that

B̂j−1 = Bj−1 · (1 + δj−1), (126)

for every j = 2, . . . , k, and that

r̂j = B̂j −
1

r̂j−1
, (127)

for every j = 2, . . . , k. Then, due to the combination of (125), (127), (120),

r̂j = B̂j −
1

rj−1
+

1

rj−1
− 1

r̂j−1

= rj ·
(

1 +
εj−1

rj−1 · rj · (1 + εj−1)
+
Bj · δj
rj

)

. (128)

Also, due to Theorem 6 in Section 4.1,

B1 = r1 > r2 > · · · > rk > 1, (129)

and, moreover, for every j = 1, . . . , k,

Bj

rj
< 2. (130)

We combine (124), (128), (129), (130) to conclude (121). Next, due to (119),

xj+1 = r1 · r2 · r3 · · · · · rj , (131)

and we combine (131) with (121) to obtain

rel(xj+1) ≤ ε · (1 + 3 + · · ·+ 2j − 1) , (132)

for every j = 1, . . . , k − 1, which implies (122). Finally, due to (122),

rel(x21 + · · ·+ x2k+1) ≤
∑k

j=1 x
2
j+1 · (1 + ε · j2)2 − (x21 + · · ·+ x2k+1)

x21 + · · ·+ x2k+1

= ε ·
∑k

j=1 x
2
j+1 · (2 · j2 + ε · j4)

x21 + · · ·+ x2k+1

, (133)

which implies (123). �

Theorem 14. Suppose that k > 0 and l > 0 are integers, that

0 < θk < θk+1 < · · · < θk+l−1 <
π

4
· 1

l + 3/2
(134)

are real numbers, and that the real numbers Bk+1, . . . , Bk+l are defined via the formula

Bj+1 = 2 · cos(θj), (135)
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for every j = k, . . . , k + l − 1. Suppose also that ε > 0, that the real numbers xk, xk+1 are
those of Theorem 12 above, that the sequence xk+2, . . . , xk+l+1 is defined via the formula

xj+2 = Bj+1 · xj+1 − xj , (136)

for every j = k, . . . , k + l − 1, and that the real numbers rk, . . . , rk+l are defined via (119)
for every j = k, . . . , k + l. Suppose furthermore that ε > 0 is the machine precision, that
Bk+1, . . . , Bk+l are defined to precision ε, and that the precision of rk, xk, xk+1 is described
in (121), (122) of Theorem 13 above. Then,

rel(xk+m+1) < ε · (k + 2 ·m)2, (137)

for every m = 1, . . . , l. Also,

rel(x2k+2 + · · ·+ x2k+l + x2k+l+1) < 2 · ε · (k + 2 · l)2. (138)

In addition,

rel(rk+l) < 4 · (k + l) · ε. (139)

Proof. Suppose that the real numbers C1, . . . , Cl are defined via the formula

Cj =
cos ((j − 1/2) · θk+l−1)

cos ((j + 1/2) · θk+l−1)
, (140)

for every j = 1, . . . , l. Then, due to (75),

1

rk+j
=

xk+j

xk+j+1
< Cj , (141)

for every j = 1, . . . , l. It follows from (141) that

1

rk+1 · · · · · rk+m−1
<

1

cos ((m− 1/2) · θk+l−1)
, (142)

for every m = 2, . . . , l. Therefore,

1

rk · r2k+1 · · · · · r2k+m−1 · rk+m
<

Cm

cos2 ((m− 1/2) · θk+l−1)

<
1

cos2 ((m+ 1/2) · θk+l−1)
, (143)

for every m = 2, . . . , l. We observe that, similar to (120),

Bk+m

rk+m
= 1 +

1

rk+m · rk+m−1
, (144)
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for every m = 1, . . . , l. Suppose that for every j = k, k + 1, . . . , k + l the relative errors of
rj , Bj are denoted, respectively, by εj , δj (similar to (125), (126)). Due to the combination
of (47), (120), (144),

r̂k+m = rk+m · (1 +
εk+m−1

rk+m−1 · rk+m · (1 + εk+m−1)

+ δk+m ·
(

1 +
1

rk+m−1 · rk+m

))

, (145)

for every m = 1, . . . , l. In particular, using (141),

εk+1 ≤ εk · C1 + ε · (1 + C1) ≤ (εk + 2ε) · C1, (146)

and, more generally,

εk+m < (εk + 2 ·m · ε) · C2
1 · C2

2 · . . . C2
k+m−1 · Ck+m, (147)

for every m = 1, . . . , l. Next, we combine (147) with (143) and Theorem 6 in Section 4.1 to
conclude that

εk+m < (εk + 2 ·m · ε) · cos−2 ((m+ 1/2) · θk+l−1), (148)

for every m = 1, . . . , l. We substitute (134) into (148) to obtain the inequality

εk+m < (εk + 2 ·m · ε) · cos−2

(

π

4
· 2m+ 1

2l + 3

)

< 2 · (εk + 2 ·m · ε), (149)

for every m = 1, . . . , l. In particular, for m = l,

εk+l < 2 · (εk + 2 · l · ε). (150)

It follows from (149) that

εk+1 + · · ·+ εk+m < 2 ·m · εk + 2 ·m · (m+ 1) · ε, (151)

for every integer m = 1, . . . , l. We observe that

xk+m+1 = xk+1 · rk+1 · · · · · rk+m, (152)

for every m > 1, and hence (ignoring the O(ε2) terms)

rel(xk+m+1) < rel(xk+1) + 2 ·m · εk + 2 ·m · (m+ 1) · ε, (153)

for every m = 1, 2, . . . , l. We combine (153) with Theorem 13 above to obtain (137), (138),
and combine Theorem 13 with (150) to obtain (139). �

Theorem 15. Suppose that k > 0 and 0 < l < m are integers, that θk+l, . . . , θk+m are real
numbers such that

0 <
π

2 · (2 · l + 5)
≤ θk+l < · · · < θk+m ≤ π

2
, (154)
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that xk+l, . . . , xk+m+2 are real numbers, that xk+l, xk+l+1 satisfy (76), and that vk+l, . . . , vk+m+1

are vectors in R
2 defined via the formula

vj =

(

xj
xj+1

)

(155)

for every j = k+l, . . . , k+m+1. Suppose also that the real 2×2 matrices A(θk+l), . . . , A(θk+m+1)
are defined via (69), and that

vj+1 = A(θj) · vj (156)

for every j = k+l, . . . , k+m. Suppose, in addition, that ε > 0 is the machine precision, that
cos(θk+j) are defined to relative precision ε for every j = l, . . . ,m, and that vk+l+1, . . . , vk+m

are evaluated recursively via (156). Then,

rel(vj) ≤ 9 · l · rel(vk+l) ·
‖vk+l‖
‖vj‖

, (157)

for every j = k + l + 1, . . . , k +m+ 1. Also,

rel(vj) ≤ 81 · l2 · rel(vk+l), (158)

for every j = k + l + 1, . . . , k +m+ 1. Finally,

rel
(

x2k+l + 2 ·
(

x2k+l+1 + · · ·+ x2k+m+1

)

+ x2k+m+2

)

≤ 162 · l2 · rel(vk+l). (159)

Proof. Due to the combination of (154), (156) with (103) and (76),

rel(vj) · ‖vj‖ ≤ cot

(

θk+l

2

)

· ‖vk+l‖ · rel(vk+l) ≤
2

θk+l
· ‖vk+l‖ · rel(vk+l)

≤ 9 · l · ‖vk+l‖ · rel(vk+l), (160)

for every j = k + l + 1, . . . , k +m+ 1, which implies (157). The combination of (157) and
(116) implies (158).

Thus, ignoring the O(ε2) terms,

rel(‖vj‖2) = rel(vj · vj) ≤ 2 · rel(vj) ≤ 18 · l · rel(vk+l) ·
‖vk+l‖
‖vj‖

, (161)

for every j = k + l + 1, . . . , k +m+ 1. Therefore,

rel(‖vk+l‖2 + · · ·+ ‖vk+m+1‖2) ≤

18 · l · rel(vk+l) · ‖vk+l‖ ·
‖vk+l‖+ · · ·+ ‖vk+m+1‖
‖vk+l‖2 + · · ·+ ‖vk+m+1‖2

. (162)

We substitute (116) into (162) to obtain

rel(‖vk+l‖2 + · · ·+ ‖vk+m+1‖2) ≤ 18 · 9 · l2 · rel(vk+l) · ‖vk+l‖, (163)

and substitute (155) into (163) to obtain (159). �
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Corollary 5. Suppose, in addition to the hypothesis of Theorem 15, that the relative accu-
racy of xk+l satisfies (137) in Theorem 14. Then,

rel
(

x2k+l + · · ·+ x2k+m+2

)

≤ 162 · l2 · (k + 2 · l)2 · ε. (164)

Proof. We observe that

rel(x2k+m+1 + 2 · x2k+m+2) ≤ 2 · rel
(

(xk+m+1, xk+m+2)
T
)

, (165)

and combine this observation with (137), (159) to obtain (164). �

In the following two theorems, we summarize Theorems 12, 13, 14, 15 and Corollary 5
above.

Theorem 16. Suppose that k > 0, l > 0 and r > k + l are integers, that B1, . . . , Br is a
sequence of real numbers, that

B1 > B2 > · · · > Bk ≥ 2 > Bk+1 > · · · > Bk+l > 2 · cos
(

π

4
· 1

l + 3/2

)

(166)

and that

2 · cos
(

π

4
· 1

l + 5/2

)

≥ Bk+l+1 > · · · > Br ≥ 0. (167)

Suppose also that ε > 0 is the machine precision, that B1, . . . , Br are defined to precision ε,
and that the real numbers x1, x2, . . . , xr+1 are evaluated from B1, . . . , Br via the recurrence
relation (118). Then,

rel(xj) ≤ (j − 1)2 · ε, (168)

for every j = 1, . . . , k + 1. Also,

rel(xk+1+j) ≤ (k + 2 · j)2 · ε, (169)

for every j = 1, . . . , l. In addition,

rel

(

xj−1

xj

)

≤ 81 · l2 · (k + 2 · l)2 · ε, (170)

rel(xj) ≤ 18 · l · (k + 2 · l)2 ·
∣

∣

∣

∣

xk+l

xj

∣

∣

∣

∣

· ε (171)

for every j = k + l + 1, . . . , r + 1. Finally,

rel
(

x21 + · · ·+ x2r + x2r+1

)

≤ 162 · l2 · (k + 2 · l)2 · ε. (172)

Proof. The combination of Theorems 13, 14, 15 and Corollary 5 above. �

25



Theorem 17. Suppose that n > 0 and r, p, q > 0 are integers, that

r + p+ q + 1 ≤ n, (173)

that Br+1, . . . , Bn is a sequence of real numbers, that

Bn < · · · < Bn+1−q ≤ −2 < Bn−q < · · · < Bn+1−p−q < −2 · cos
(

π

4
· 1

p+ 3/2

)

(174)

and that

−2 · cos
(

π

4
· 1

p+ 5/2

)

≤ Bn−q−p < · · · < Br+1 < 0. (175)

Suppose also that ε > 0 is the machine precision, that Br+1, . . . , Bn are defined to precision
ε, and that the real numbers yn, yn−1, . . . , yr+1, yr are evaluated from Br+1, . . . , Bn via the
recurrence relation

yn = 1,

yn−1 = Bn,

yj−1 = Bj · yj − yj+1, (176)

for j < n (similar to (118), but the direction is reversed). Then,

rel(yn−j) ≤ j2 · ε, (177)

for every j = 1, . . . , q. Also,

rel(yn−q−j) ≤ (q + 2 · j)2 · ε, (178)

for every j = 1, . . . , p. In addition,

rel

(

yj+1

yj

)

≤ 81 · p2 · (q + 2 · p)2 · ε, (179)

rel(yj) ≤ 18 · l · (k + 2 · l)2 ·
∣

∣

∣

∣

yn−p−q

yj

∣

∣

∣

∣

· ε, (180)

for every j = r, . . . , n− q − p− 1. Finally,

rel
(

y2n + · · ·+ y2r+2

)

≤ 162 · p2 · (q + 2 · p)2 · ε. (181)

Proof. We define B̃1, . . . and x̃1, . . . via the formula

B̃j = −Bn+1−j (182)

and

x̃j = (−1)j+1 · yn+1−j , (183)
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for j ≥ 1. Then, due to the combination of (182), (183) with (176),

˜xj+1 = (−1)j · yn−j

= (−1)j ·
(

Bn−(j−1) · yn−(j−1) − yn−(j−2)

)

= (−1)(j + 1) ·
(

B̃j · x̃j · (−1)j+1 + x̃j−1 · (−1)j
)

= B̃j · x̃j − x̃j−1, (184)

for j ≥ 2. We conclude by combining (184) with (173), (174) and Theorem 16 above. �

Theorem 18. Suppose, in addition to hypotheses of Theorems 16, 17, that the n×n matrix
B, defined via the formula

B =



















B1 1
1 B2 1

1 B3 1
. . .

. . .
. . .

1 Bn−1 1
1 Bn



















, (185)

is singular, that x1, . . . , xr, xr+1 are those of Theorem 16, that yr, yr+1, . . . , yn are those of
Theorem 17, that the real number s is defined via the formula

s =
xr · yr + xr+1 · yr+1

|xr · yr + xr+1 · yr+1|
·
√

x2r + x2r+1

y2r + y2r+1

, (186)

and that the vector z = (z1, . . . , zn)
T in R

n is defined via the formula

z = (x1, . . . , xr, xr+1, s · yr+2, . . . , s · yn)T . (187)

Then, z is an eigenvector of B corresponding to the zero eigenvalue. Moreover,

rel(s) ≤ 81 ·
(

(q + 2 · p)2 · p2 + (k + 2 · l)2 · l2
)

· ε, (188)

and

rel(z21 + · · ·+ z2n) ≤ 243 ·
(

p2 · (q + 2 · p)2 + (k + 2 · l)2 · l2
)

· ε. (189)

Proof. Due to Theorem 5 in Section 4.1, x1, . . . , xr+1 are the first r + 1 coordinates of an
eigenvector of B corresponding to the zero eigenvalue; also, yr, . . . , yn are the last n+1− r
coordinates of an eigenvector of B in the same eigenspace. We combine this observation
with Theorem 5 and (186) to conclude that z is the eigenvector in the null-space of B whose
first coordinate is equal to 1. The inequality (188) follows from the combination of (170)
and (179) (in particular, s in (186) is well defined). We combine (188) with (181) to obtain

rel
(

s2 ·
(

y2n + · · ·+ y2r+2

))

≤
(

3 · 81 · p2 · (q + 2 · p)2 + 81 · (k + 2 · l)2 · l2
)

· ε. (190)

Finally, we combine (190) with (172) to obtain (189). �
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Corollary 6. Suppose that, in addition to the hypothesis of Theorem 18, the vector X ∈ R
n

is evaluated from z in (187) via the formula

X = (X1, . . . , Xn)
T =

z

‖z‖ . (191)

Then,

rel(X1) ≤ 243 ·
(

p2 · (q + 2 · p)2 + (k + 2 · l)2 · l2
)

· ε, (192)

where k, l, p, q, r are those of Theorems 16, 17. More generally,

rel(Xj) ≤ rel(X1) + rel(xj), (193)

for every 2 ≤ j ≤ r + 1, and

rel(Xj) ≤ rel(X1) + rel(yj) + rel(s), (194)

for every j = r + 2, . . . , n, where the sequences {xj}, {yj} and the real number s are those
from Theorems 16, 17, 18.

4.3 Asymptotic Error Analysis of a Special Case

The analysis of Section 4.2 (e.g. Theorems 16, 17, 18 and Corollary 6) is carried out for
a fairly general class of sequences {Bj} (and related matrices B defined via (185)). The
resulting upper bounds on relative errors of coordinates of the null-space eigenvector of B
depend on the parameters k, l, p, q determined from {Bj} via (166), (167), (174), (175) (see
e.g. the bounds in (189), (192)).

Despite the fact that these bounds are explicitly defined by B, the relation between
the relative error of, say, the first coordinate X1 of an eigenvector of unit norm and the
magnitude of X1 is not immediately obvious (see (192)). In this section, this relation is
investigated in some detail for a special, but still fairly broad class of matrices B (that also
appear in various applications; see e.g. Section 6). First, we need a technical theorem.

Theorem 19. Suppose that a ≥ 1 is a real number, that δ > 1 is a real number, that the
real number Da is defined via the formula

Da =
√
2 ·
∫ π/2

0
(sin(θ))1+2/a dθ, (195)

and that the real number α(a, δ) is the solution of the equation

α2 · ((1 + α)a − 1) · δ2 = π2

32
(196)

in the unknown α. Then,

2 ·
√
2

3
≤ Da =

√

π

2
· Γ(1 + 1/a)

Γ(3/2 + 1/a)
,≤

√
2, (197)

where Γ is the standard Gamma function, and also

α(a, δ) ≤
(

π2

32 · a · δ2
)1/3

. (198)
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Proof. The proof is straightforward, elementary, and will be omitted. �

The rest of this section is dedicated to asymptotic error analysis pertaining to a certain
class of symmetric tridiagonal matrices.

Theorem 20. Suppose that a ≥ 1 is a real number, that δ > 1 is a real number, that the
real numbers Da, α(a, δ) are those of Theorem 19 above. Suppose also that, for any real
number c ≥ 1, the real number κ(c) is defined via the formula

κ(c) = δ2/(a+2) · ca/(a+2), (199)

and the sequence B1(c), B2(c), . . . is defined via the formula

Bj(c) = 2 + 2 ·
(

κ(c)

c

)a

− 2 ·
(

j

c

)a

, (200)

for every j = 1, 2, . . . . Suppose also that, for any real number c ≥ 1, the sequence
x1(c), x2(c), . . . is defined from {Bj(c)} via (118), and the integers k = k(c), l = l(c) are
defined from {Bj(c)} via (166), (167). Then,

k = k(c) = κ(c) · (1 + o(c)), c→ ∞, (201)

l = l(c) = α(a, δ) · κ(c) · (1 + o(c)), c→ ∞, (202)

and also

x1(c) ≤ xk(c) · exp (−Da · δ · (1 + o(1))) , c→ ∞. (203)

Proof. In this proof, we omit the dependence of various parameters on c whenever it causes
no confusion. First, (201) follows from the combination of (200), (199) and (166). We
substitute (200), (201) into (62) to obtain

xk
x1

≥
k
∏

j=2



1 +
(κ

c

)a
−
(

j

c

)a

+

√

(

1 +
(κ

c

)a
−
(

j

c

)a)2

− 1





=
k
∏

j=2

(

1 +

√

2 ·
((

k

c

)a

−
(

j

c

)a)
)

· (1 + o(1)), c→ ∞. (204)

We define the real-valued function g via the formula

g(x) = 1 +

√

2 ·
((

k

c

)a

−
(x

c

)a
)

, (205)

for real 0 ≤ x ≤ k, and combine (200), (199), (204), (205) to obtain

k
∏

j=2





Bj

2
+

√

(

Bj

2

)2

− 1



 = exp

(

(1 + o(1)) ·
∫ k

0
log(g(x)) dx

)

, c→ ∞. (206)
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Since log(g(k)) = 0 due to (205),
∫ k

0
log(g(x)) = −

∫ k

0
x · d

dx
log(g(x)) dx = −

∫ k

0

x · g′(x)
g(x)

dx. (207)

We combine (205) and (207) to obtain
∫ k

0
log(g(x)) =

a√
2

∫ k

0

xa dx√
2 · (ka − xa) +

√
ca ·

√
ka − x2

. (208)

We perform the changes of variable

xa = ka · sin2(θ), (209)

and substitute (209) into (208) to obtain
∫ k

0
log(g(x)) = k ·

∫ π/2

0

(sin(θ))1+2/a dθ

cos(θ) +
√

ca/(2 · ka)
. (210)

Due to the combination of (210) and (195), (199), (201),

∫ k

0
log(g(x)) = Da ·

√

ka+2

ca
· (1 + o(1)), c→ ∞, (211)

and we substitute (211) into (206) to obtain

k
∏

j=2





Bj

2
+

√

(

Bj

2

)2

− 1



 = exp

(

Da ·
√

ka+2

ca
· (1 + o(1))

)

, c→ ∞. (212)

We combine (212) with (199), (201) to obtain (203). Next, we combine (166), (167), (199),
(200) to obtain

(k + l)a − ka

ca
=

π2

32 · l2 · (1 + o(1)), c→ ∞. (213)

If

k(c) ≪ l(c), c→ ∞, (214)

then due to (213)

la+2 = ca · π
2

32
· (1 + o(1)), c→ ∞, (215)

in contradiction to the combination of (214) and (166), (167). If, on the other hand,

l ≪ k, c→ ∞, (216)

then due to (213), (201)

l3 =
ca

ka−1
· (1 + o(c)) = O

(

ca−(a−1)·a/(a+2)
)

= O
(

c3a/(a+2)
)

, c→ ∞, (217)

in contradiction to the combination of (216) and (166), (167). Therefore,

l(c) = O(k(c)), c→ ∞, (218)

and we combine (218) with (199), (201), (213) to obtain (202). �
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The following theorem compliments Theorem 20 above.

Theorem 21. Suppose that a ≥ 1 and ε > 0 are real numbers. Suppose also that, for any
real number c ≥ 1, the real numbers µ(c), ν(c), ρ(c) are defined via the formulae

µ(c) =

(

21/a · c
a

)1/3

·
(

−3

4
· log(ε)

)2/3

, (219)

ν(c) = 21/a · c+ µ(c), (220)

ρ(c) =

(

π2 · 21/a
64 · a

)1/3

· c1/3, (221)

and that the integer n(c) is defined via the formula

n(c) = floor(ν(c)) + 1. (222)

Suppose furthermore that, for any real c ≥ 1, the sequence B1(c), B2(c), . . . , is defined via
(200), that the integers q = q(c) and p = p(c) are defined from {Bj(c)} via (174), (175),
and that the sequence y1(c), . . . , yn(c) is defined via (176). Then,

q(c) = µ(c) · (1 + o(1)), c→ ∞, (223)

p(c) = ρ(c) · (1 + o(1)), c→ ∞, (224)

and also

|yn(c)(c)| ≤ ε · |yn(c)+1−q(c)(c)| · (1 + o(1)), c→ ∞. (225)

Proof. We observe that, due to (199), (174),

2 + 2 ·
(

κ(c)

c

)a

− 2 ·
(

n(c)− q(c)

c

)a

= −2 + o(1), c→ ∞, (226)

and combine (226), (199), (201), (219), (220), (222) to obtain (223). We combine (221),
(222), (223), (174), (175) to obtain

(n− q)a − (n− q − p)a

ca
= 2

(

1−
(

1− p

c · 21/a
)a)

· (1 + o(1))

=
π2

32 · p2 · (1 + o(1)), c→ ∞. (227)

We combine (227) with (221) to obtain (224). Next, for j = 1, . . . , q(c),

Bn−q+j = −2 ·
(

1 +

(

n(c)− q(c)

c

)a

·
((

1 +
j

n(c)− q(c)

)a

− 1

))

= −2 ·
(

1 +
2 · a · j
21/a · c

)

· (1 + o(1)), c→ ∞, (228)
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and hence, similar to (206),

q
∏

j=1





Bn−q+j

2
+

√

(

Bn−q+j

2

)2

− 1



 =

exp

(

(1 + o(1)) ·
∫ q

0
log

(

1 +

√

4 · a · x
21/a · c

)

dx

)

, c→ ∞. (229)

We observe that
∫ 1

0
log(1 + Z ·

√
s) ds =

2 · Z
3

· (1 + o(1)), Z → 0, (230)

and combine (229), (229) and Theorem 7 in Section 4.1 to obtain

|yn| ≤ |yn−q+1| · exp
(

−4

3
·
√

a · q3
21/a · c · (1 + o(1))

)

, c→ ∞, (231)

and combine (219), (223), (231) to obtain (225). �

The following theorem is a consequence of Theorems 20, 21 above.

Theorem 22. Suppose that ε > 0 is the machine precision, and that a ≥ 1 and 1 ≤ δ̃ < δ
are real numbers. Suppose also that, for any real c ≥ 1, we define µ(c) via (219), that n(c)
is an integer, that

21/a · c < n(c) < 21/a · c+ µ(c) + 1, (232)

that the sequence A1(c), . . . , An(c)(c) is defined via the formula

Aj(c) = 2 + 2 ·
(

j

c

)a

, (233)

for every j = 1, . . . , n(c), and the n(c)× n(c) matrix A(c) is defined from {Aj(c)} via (14).
Suppose also that, for any c ≥ 1, the real number λ(c) is an eigenvalue of A(c), that δ(c) is
a real number, that

1 < δ̃ < δ(c) < δ, (234)

that

λ(c) = 4 + 2 ·
(

δ(c)

c

)2a/(a+2)

, (235)

and that X(c) = (X1(c), . . . , Xn(c))
T is the unit-norm λ(c)-eigenvector of A(c). Suppose

furthermore that, for any c ≥ 1, the quantities Aj(c) − λ(c) are defined to precision ε, for
any c ≥ 1 and every j = 1, . . . , n(c). Then,

|X1(c)| < exp
(

−δ̃ ·Da

)

· (1 + o(1)), c→ ∞, (236)
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where Da is defined via (195). Also, if a > 1, then

rel(X1(c)) ≤ 620 · δ(16−4a)/(3a+6) · c4a/(a+2) · ε · (1 + o(1)), c→ ∞. (237)

If a = 1, then

rel(X1(c)) ≤ 960 ·
(

δ4/3

4
+ (− log ε)4/3 + 1

)

· c4/3 · ε · (1 + o(1)), c→ ∞. (238)

Proof. Suppose that c ≥ 1, and that k, l, p, q are defined from A(c) via (166), (167), (174),
(175), respectively. If a > 1, we combine (232), (233), (234), (235) with Theorems 20, 21
above to obtain

243 · l2 · (k + 2 · l)2 =
243 · k4 · α2 · (1 + 2 · α)2 <

243 ·
(

π2

32 · a

)2/3

·
(

1 + 2 ·
(

π2

32 · a

))

· δ8/(a+2)−4/3 · c4a/(a+2) <

620 · δ(4/3)·(4−a)/(a+2) · c4a/(a+2). (239)

and combine (239) with Corollary 6 in Section 4.2 to obtain (237). If a = 1, then we
combine (232), (233), (234), (235) with Theorems 20, 21 above to obtain

243 ·
(

l2 · (k + 2 · l)2 + p2 · (q + 2 · p)2
)

≤

243 · c4/3 ·
(

π2

32

)2/3

·





(

δ2/3 + 2 ·
(

π2

32

)1/3
)2

+

(

(−3 · log ε)2/3 + 2 ·
(

π2

32

)1/3
)2




960 · c4/3 ·
(

δ4/3

4
+ (− log ε)4/3 + 1

)

, (240)

and combine (240) with Corollary 6 in Section 4.2 to obtain (238). For any a ≥ 1, the
inequality (236) follows now from (203). �

Remark 12. The conclusions of Theorem 22 above hold even under a milder assumption
that each of Aj(c) and λ(c) separately is defined to relative precision ε for every j (and not
necessarily their difference). The related analysis (beyond the scope of this paper) is based
on Theorems 16, 17 in Section 4.2, and on the observation that when λ(c) ≈ Aj(c) what
matters is the absolute (and not relative) accuracy of λ(c)−Aj(c).

5 Numerical Algorithms

In this section, we describe several numerical algorithms for the evaluation of the eigenvec-
tors of certain symmetric tridiagonal matrices.
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5.1 Problem Settings

Suppose that n > 0 is an integer, that 2 < A1 < A2 < . . . is a sequence of positive real
numbers, that the n by n symmetric tridiagonal matrix A is defined via (14), and that the
real number λ is an eigenvalue of A.

Task. Evaluate the unit-length eigenvector

X = (X1, . . . , Xn) ∈ R
n (241)

of A corresponding to λ.
Observation. Due to Theorem 5 in Section 4.1, this problem is equivalent to evaluating

the solution to the three-terms recurrence relation (42), (43), (44).
Desired accuracy of the solution. We want the coordinates Xj of X to be evaluated

to high relative accuracy (as opposed to absolute accuracy; see also Section 1).
Observation. This task is potentially difficult if |Xj | is small compared to ‖X‖ = 1.

For example, if |X1| < ε, where ε is the machine precision (e.g. ε ≈ 10−16 for double-
precision calculations), it is not obvious why X1 should be evaluated to any correct digit at
all (see also Section 1).

Relation between Xj−1, Xj and Xj+1. For every j = 2, . . . , n−1, the relation between
three consecutive coordinates Xj−1, Xj and Xj+1 of the vector X is expressed via (43) of
Theorem 5; more specifically,

Xj−1 + (Aj − λ) ·Xj +Xj+1 = 0, (242)

for every j = 2, . . . , n− 1. It turns out that the qualitative behavior of Xj−1, Xj and Xj+1

relative to each other depends on λ − Aj in the following way. If λ − Aj ≥ 2, then all
the three coordinates have the same sign, and |Xj−1| < |Xj | < |Xj+1| (see Theorem 6 in
Section 4.1). If λ − Aj ≤ −2, then the signs of Xj−1, Xj+1 are opposite to the sign of Xj ,
and |Xj−1| > |Xj | > |Xj+1| (see Theorem 7 in Section 4.1). Finally, if −2 < λ − Aj < 2,
then the relation is somewhat more complicated (see, for example, Theorems 9, 10, 11 in
Section 4.1).

Assumption on λ. In the view of the latter observation, we will consider the case in
which the coordinates of X exhibit all the behaviors described above (that is, in this sense,
the most general case). This is achieved by assuming (166), (167), (174), (175).

Observation. We combine (166), (174) with (14) to conclude that

2 +A1 < λ < An − 2. (243)

While the obvious simplification of the algorithm described below will handle any eigenvalue
λ of A, in the rest of this section we will assume (243) for the sake of clarity of presentation.

5.2 Informal Description of the Algorithm

This section contains an informal description of an algorithm for the evaluation of X =
(X1, . . . , Xn) ∈ R

n (see (241)). On the other hand, Section 5.3 below contains a complete
outline of the steps of the algorithm.
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Suppose that 1 < r < n is an integer, and that

Ar ≤ λ < Ar+1 (244)

(see (167), (175)). For any λ−eigenvector x = (x1, . . . , xn) ∈ R
n of A and every j =

2, . . . , n− 1, the three consecutive coordinates xj−1, xj , xj+1 satisfy the recurrence relation
(43) of Theorem 5 (see also (242) above).

We set x1 = 1 and use (43) to iteratively evaluate x2, . . . , xr+1 (e.g. ”going forward”).
Obviously, we have evaluated the first r + 1 coordinates of X up to a scaling constant.
Next, we set yn = 1 and use (43) to iteratively evaluate yn−1, yn−2, . . . , yr (e.g. ”going
backward”). Again, this gives the last n− r + 1 coordinates of X up to a different scaling
constant. The accuracy of both evaluations is investigated in detail in Section 4.2.

The indices of the two sequences overlap at j = r, r+1. In exact arithmetic, the planar
vectors (xr, xr+1) and (yr, yr+1) are linearly dependent (see Theorem 18 in Section 4.2).
We ”glue the two sequences together” by multiplying yr, . . . , yn through by the correct
scaling factor s; in particular, xj = s · yj for j = r, r + 1. The resulting vector z in R

n is a
λ−eigenvector of A (see Theorem 18). We then normalize it to obtain X.

5.3 Short Description of the Algorithm

Suppose that n > 0 is an integer, that the n by n matrix A is that from Section 5.1, that
λ is an eigenvalue of A, and that the integer 1 < r < n is defined via (244) above.

Step A: evaluation of the left coordinates of X (see (241)).

1. Set x1 = 1.
2. Compute x2 via (42) of Theorem 5.
3. Compute x3, . . . , xr, xr+1 iteratively via (43) of Theorem 5.

Step B: evaluation of the right coordinates of X.

1. Set yn = 1.
2. Compute yn−1 via (44) of Theorem 5.
3. Compute yn−2, . . . , yr+1, yr iteratively via (43) of Theorem 5.

Step C: glue them together.

1. Compute the real number s via (186) in Theorem 18.
2. Compute the vector z = (z1, . . . , zn) via (187) in Theorem 18.
3. Compute the vector X = (X1, . . . , Xn) from z via (191) in Corollary 6.

Observation. The vector X ∈ R
n is the unit-norm λ−eigenvector of A whose first

coordinate is positive (see Corollary 6 in Section 4.2).
Running time. Obviously, the running time of this algorithm is O(n) operations,

where n is the dimensionality of the matrix.
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5.4 Accuracy

In Sections 5.2, 5.3, we described an algorithm for the evaluation of the unit length λ−eigenvector
X = (X1, . . . , Xn) of A, whose first coordinate is positive. The accuracy of this procedure
is investigated in some detail in Section 4.2 for a general tridiagonal matrix with constant
off-diagonal elements and monotone diagonal. More specifically, the relative accuracy of
various coordinates is described in Theorems 16, 17, 18 and Corollary 6 in Section 4.2.
For example, (192) provides a bound on rel(X1) in terms of the integers 1 < k, l, p, q < n
(defined via (166), (167), (174), (175)) and the relative accuracy ε of λ−Aj for j = 1, . . . , n
(see also Remark 12 in Section 4.3). We summarize the results of Section 4.2 qualitatively
in the following observations (see also Section 7 for related numerical experiments).

Observation 1. For all j such that λ − Aj ≥ 2 (e.g. for 1 ≤ j ≤ k in the notation of
Theorem 16 in Section 4.2), the coordinates Xj are evaluated to roughly the same relative
accuracy, independent of how small they are (see e.g. Theorem 13 in Section 4.2 and (168) in
Theorem 16). These coordinates form a monotonically increasing sequence (see Theorem 6
in Section 4.1 for an estimate on its growth).

Observation 2. For all j such that λ − Aj ≤ −2 (e.g. for n − q ≤ j ≤ n in the
notation of Theorem 17 in Section 4.2), the coordinatesXj are evaluated to roughly the same
relative accuracy, independent of how small they are (see e.g. (177) in Theorem 17). These
coordinates form an alternating sequence, and their absolute values form a monotonically
decreasing sequence (see Theorem 7 in Section 4.1 for an estimate on its decay).

Observation 3. For all j such that λ− 2 ≤ Aj ≤ λ+ 2 (e.g. for k < j < n− q in the
notation of Theorems 16, 17) in Section 4.2, the coordinates Xj are evaluated to roughly the
same absolute accuracy (see e.g. (157) in Theorem 15, (170), (171) in Theorem 16, (179),
(180) in Theorem 17). These coordinates vary in magnitude in a fairly moderate way and
exhibit an oscillatory behavior (see e.g. Theorems 10, 11 and Corollaries 3, 4 in Section 4.1,
and also Section 7).

Remark 13. Extensive numerical experiments seem to indicate that the estimates from
Section 4.2 are somewhat pessimistic. In other words, in practice the relative error tends
to be smaller than our estimates suggest (see also Section 7).

Remark 14. It is somewhat surprising that, according to (193) in Corollary 6, the relative
error of, say, X1 seems to be independent of the order of magnitude of X1. In particular,
while X1 can be fairly small (see e.g. Theorem 6 and Corollary 1 in Section 4.1), it still
will be evaluated to reasonable relative precision.

Remark 15. When the coordinates of the eigenvector are evaluated via the three-terms
recurrence (43), the choice of direction plays a crucial role. Roughly speaking, this recurrence
is unstable in the backward direction in the region of growth, and is unstable in the forward
direction in the region of decay (see also Section 4.2). As expected, the use of this recurrence
relation in a ”wrong” direction leads to a disastrous loss of accuracy.

5.5 Related Algorithms

In Section 5.2, 5.3, we presented an algorithm for accurate evaluation of the coordinates of
the eigenvector X (see (241) in Section 5.1). In this section, we briefly discuss the accuracy
of several classical algorithms for the solution of the same problem.
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5.5.1 Inverse Power

The unit-length λ−eigenvector X of A can be obtained via Inverse Power Method with
Shifts (see Section 3.4.1 for more details). This method is iterative, and, on each iteration,
the approximation x(k+1) of X is obtained from x(k) via solving the linear system

(λ · I −A) · x(k+1) = x(k), (245)

and normalizing the solution. We observe that this method also evaluates λ (even though
in Section 5.1 we assume that λ has already been evaluated). On each iteration, we solve
the linear system (245) by Gaussian elimination (since A is tridiagonal, each iteration costs
O(n) operations; moreover, O(1) iterations are required: see Remark 7 in Section 3.4.1).

The following conjecture about the accuracy of Inverse Power Method is substantiated
by extensive numerical experiments (see Section 7).

Conjecture 2. Suppose that ε > 0 is the machine precision (e.g. ε ≈ 10−16 for double-
precision calculations), and that the eigenvalue λ of A is defined to accuracy ε. Suppose
also that λ−A1 > 2. Suppose furthermore that K > 0 is an integer, and that

K >
log (|X1|)
log(ε)

+ 1, (246)

where X = (X1, . . . , Xn) ∈ R
n is the unit-length λ−eigenvector of A. Then, after K itera-

tions of Inverse Power Method, X1 is evaluated to high relative accuracy. More specifically,
this relative accuracy is roughly of the same order of magnitude as for the algorithm de-
scribed in Sections 5.2, 5.3 (see also (256), (262) below).

Remark 16. The inequality (246) reflects on the fact that each iteration of Inverse Power
Method can reduce the coordinates of the approximation x(k) by a factor of at most ε−1. In

other words, if X1 ≈ 10−50, and, in the initial approximation, x
(1)
1 = O(1), then x

(4)
1 will

already be of the same order of magnitude as X1, and x
(5) will approximate X1 to a high

relative precision.

5.5.2 Jacobi Rotations

In the view of Section 5.5.1, one might suspect that virtually any standard algorithm would
accurately solve the problem introduced in Section 5.1. In other words, one might suspect
that the small coordinates of X in the region of growth and the region of decay will be
evaluated to high relative precision by any reasonable algorithm that computes eigenvectors.

Unfortunately, this is emphatically not the case, and the accuracy of the result strongly
depends on the choice of the algorithm. Consider, for example, the popular Jacobi Rotations
algorithm for the evaluation of the eigenvalues and eigenvectors of A (see, for example, [3],
[6], [21], [22]). This algorithm is known for its simplicity and stability, and, indeed, it
typically evaluates all the eigenvalues of A fairly accurately. Moreover, the corresponding
eigenvectors are evaluated to high relative accuracy, in the sense that

‖X − X̂‖
‖X‖ = ‖X − X̂‖ ≈ ε, (247)
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where X is the unit-length eigenvector (see (241)), X̂ is its numerical approximation pro-
duced by Jacobi Rotations, and ε is the machine precision. However, the coordinates of X
are typically evaluated only to high absolute accuracy, e.g.

|X1 − X̂1| ≈ ε. (248)

On the other hands, the relative accuracy of small coordinates will typically be poor. In
particular, if, for example, X1 ≈ 10−50, its numerical approximation, produced by Jacobi
Rotations, will typically have no correct digits at all (the latest statement is supported by
extensive numerical evidence).

5.5.3 Gaussian Elimination

Another possible method to evaluate X would be to solve the linear system

(λ · I −A) ·X = 0, (249)

by means of Gaussian Elimination (see, for example, [3], [6], [21], [22]). Unfortunately, this
method, in general, fails to evaluate the small coordinates of X with high relative accuracy
(see, however, Section 5.5.1, where Gaussian Elimination is used several times, as a step of
Inverse Power Method).

6 Applications

In this section, we describe some applications of the algorithm from Section 5 to other
computational problems.

6.1 Bessel Functions

The Bessel functions of the first kind J0, J±1, J±2, . . . , are defined via (19), (20) in Sec-
tion 3.2. A numerical algorithm for the evaluation of J0(x), . . . , Jm(x) for a given real
number x > 0 and a given integer m > 0 is described in Section 3.4.2. In particular, accord-
ing to Remark 9 in Section 3.4.2, the values J0(x), . . . Jm(x) can be obtained as coordinates
of the unit length λ−eigenvector of a certain symmetric tridiagonal matrix A(x) (see (38),
(39), (40), (41)).

The matrix A(x) belongs to the class of matrices defined via (14). More specifically, the
diagonal entries of A(x) are those of the matrix A of Theorem 22 in Section 4.3, with a = 1
and c = x (see (233)).

In other words, the principal algorithm of this paper (see Sections 5.2, 5.3) can be used
to evaluate the Bessel functions J0, . . . , Jn at a given point. Even more so, the accuracy of
this evaluation is analyzed in Theorems 20, 21 in Section 4.3. Obviously, in this case, the
algorithm of Sections 5.2, 5.3 is essentially identical to the well-known algorithm described
in Section 3.4.2; on the other hand, the analysis of Section 4.2, 4.3 appears to be new (see
(238) in Theorem 22 in Section 4.3 and Conjecture 1 in Section 1, as well as Section 7.3 for
the related numerical experiments).
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6.2 Prolate Spheroidal Wave Functions

For any real number c > 0, the prolate spheroidal wave functions (PSWFs) of band limit
c are defined in Section 3.3. A popular numerical algorithm for the evaluation of PSWFs
and some associated quantities is based on computing unit-length eigenvectors of certain
symmetric tridiagonal matrices (see e.g. Theorem 4, Remark 6 in Section 3.3 and [15]).

Strictly speaking, the matrices from Theorem 4 (as well as their truncated versions)
do not belong to the class of matrices described via (14), since their non-zero off-diagonal
entries are not equal to one (see (29)). Nevertheless, in the notation of (29),

A
(c)
k,k+2 = A

(c)
k+2,k =

c2

4
·
(

1 +O

(

1

k2

))

, (250)

for every k = 0, 1, 2, . . . , and

A
(c)
k,k =

c2

4
·
(

2 +

(

2k

c

)2

·
(

1 +O

(

1

k
,
c2

k4

))

)

, (251)

for every k = 0, 1, 2, . . . . In other words, the matrix Ac,even from Theorem 4 in Section 3.3
can be viewed as a small perturbation of the symmetric tridiagonal matrix A, defined via
the formula

A =
c2

4
·











A0 1
1 A1 1

1 A2 1
. . .

. . .
. . .











, (252)

where A0, A1, . . . are defined via the formula

Aj = 2 +

(

4j

c

)2

, (253)

for every j = 0, 1, . . . (compare to (233) in Theorem 22).
In particular, the algorithm of Sections 5.2, 5.3, with obvious minor modifications, is

applicable to the task of evaluating eigenvectors of Ac,even numerically. Moreover, the error
analysis of such evaluation, in a somewhat more general form, has been carried out in
Theorems 20, 21, 22 in Section 4.3 (see also Corollary 6 in Section 4.2).

In Section 7, we present several numerical examples involving matrices similar to (252).
For the results of additional numerical experiments, where slightly modified versions of the
algorithms of this paper (see Section 5) are used to evaluate PSWFs, see, for example, [18].

7 Numerical Results

In this section, we illustrate the analysis of Section 4 via several numerical experiments. All
the calculations were implemented in FORTRAN (the Lahey 95 LINUX version), and were
carried out in double precision. In addition, extended precision calculations were used to
estimate the accuracy of double precision calculations.
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7.1 Experiment 1.

In this experiment, we illustrate the performance of the algorithm on certain matrices.
Description. We first choose, more or less arbitrarily, the real numbers a, δ ≥ 0. Then,

for each choice of five different values c = 102, 103, 104, 105, 106, we proceed as follows.
We define the integer n = n(c) via (222) in Theorem 21, define A1, . . . , An via (233) in
Theorem 22, and then define the symmetric tridiagonal n × n matrix A = A(c) via (14).
Then, we define the real number λ̃ via the formula

λ̃ = 4 + 2 ·
(

δ

c

)2a/(a+2)

, (254)

(see (235) in Theorem 22), and find the closest eigenvalue λ(c) of A(c) by Shifted Inverse
Power method, using λ̃ as the initial approximation to λ(c) (see Section 3.4.1). We then
compute δ(c) from λ(c) via (235). We also compute the real number R via the formula

R = exp (−Da · δ) , (255)

where Da is defined via (195) in Theorem 19.
Next, we obtain the unit-length λ(c)-eigenvector of A by four different methods:
1. Y = (Y1, . . . , Yn) via 30 iterations of Shifted Inverse Power, in double precision.
2. X = (X1, . . . , Xn) via the algorithm from Section 5.3, in double precision.
3. Ŷ = (Ŷ1, . . . , Ŷn) via 30 iterations of Shifted Inverse Power, in extended precision

(we also recompute the eigenvalue λ̂(c) in extended precision).
4. X̂ = (X̂1, . . . , X̂n) via the algorithm from Section 5.3, in extended precision.
We verify that each of X̂ and Ŷ satisfies the definition of an eigenvector coordinate-

wise to at least 17 decimal digits, and also that X̂ = Ŷ to at least 17 decimal digits. In
other words, each of X̂, Ŷ is the unit-length λ(c)−eigenvector of A defined to full double
precision. We use this observation to evaluate the relative and absolute errors of Xj , Yj , for
every j = 1, . . . , n.

Tables and Figures. The results of the experiment are displayed in Tables 1–6. Each
of these tables corresponds to a particular choice of a and δ, and has the following structure.
Each of five columns corresponds to a different value of c, between 102 and 106. The first
three rows contain c, the matrix size n, and the index k (such that Ak ≈ λ(c) − 2: see
(166) in Theorem 16 for the precise definition). The next four rows contain the eigenvalue
λ(c), its accuracy, its cardinal number 1 ≤ i ≤ n, and δ(c) (see (254)). The next four rows
contain the coordinates X1 and Xk, their ratio, and an asymptotic estimate R of this ratio
(see (255)). The next two rows contain the relative accuracy of X1 and Y1. The last two
rows contain the maximal absolute accuracy among all coordinates of X,Y , respectively.

Also, in Figures 1(a), 1(b) we plot the relative errors of X1, Y1, respectively, on a loga-
rithmic scale as functions of log10(c). More specifically, each of Figures 1(a), 1(b) contains
five plots of such errors, corresponding to a = 1, 2, 3, 4, 6, respectively. Each point on such
plot is the geometric mean of ten relative errors (corresponding to ten different values of δ
between 50 and 200). For example, to generate plots corresponding to a = 2 in Figure 1(a),
we use the data from Tables 1–3 (as well as the data corresponding to seven other values
of δ).
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c 102 103 104 105 106

n 180 1,497 14,320 141,803 1,415,035
k 71 226 706 2,244 7,109

λ 0.50164E+01 0.41021E+01 0.40099E+01 0.40010E+01 0.40000E+01
rel(λ) 0.35409E-15 0.00000E+00 -.22149E-15 0.00000E+00 0.00000E+00
i 119 943 9,058 90,100 900,398

δ(c) 0.50826E+02 0.51086E+02 0.49906E+02 0.50379E+02 0.50551E+02

X1 0.19744E-24 0.46025E-26 0.21813E-26 0.20152E-27 0.26903E-28
Xk 0.12621E+00 0.60020E-01 0.28690E-01 0.14439E-01 0.73972E-02

X1/Xk 0.15642E-23 0.76683E-25 0.76030E-25 0.13957E-25 0.36368E-26
R 0.30331E-24 0.22762E-24 0.84367E-24 0.49922E-24 0.41222E-24

rel(X1) 0.19302E-13 0.26421E-12 0.43114E-11 0.13247E-10 0.11171E-09
rel(Y1) 0.55816E-14 0.24161E-13 0.55651E-12 0.68590E-11 0.30212E-10

max
j

|Xj − X̂j | 0.17885E-14 0.10874E-13 0.81497E-13 0.11156E-12 0.48541E-12

max
j

|Yj − Ŷj | 0.47183E-15 0.62991E-15 0.86371E-14 0.56234E-13 0.13395E-12

Table 1: Experiment 1. Parameters: a = 2, δ = 50.

c 102 103 104 105 106

n 180 1,497 14,320 141,803 1,415,035
k 101 315 1,004 3,180 9,992

λ 0.60503E+01 0.41993E+01 0.40201E+01 0.40019E+01 0.40002E+01
rel(λ) 0.00000E+00 0.21150E-15 0.00000E+00 0.22193E-15 0.00000E+00
i 140 976 9,106 90,161 900,470

δ(c) 0.10251E+03 0.99703E+02 0.10087E+03 0.10118E+03 0.99842E+02

X1 0.29706E-47 0.33654E-49 0.73691E-51 0.77717E-52 0.54741E-52
Xk 0.13199E+00 0.56585E-01 0.28214E-01 0.14026E-01 0.71872E-02

X1/Xk 0.22505E-46 0.59474E-48 0.26118E-49 0.55410E-50 0.76165E-50
R 0.35338E-49 0.80393E-48 0.21716E-48 0.15569E-48 0.68891E-48

rel(X1) 0.14729E-13 0.20625E-12 0.14676E-11 0.40918E-10 0.46459E-10
rel(Y1) 0.47051E-14 0.39500E-13 0.57239E-12 0.68254E-11 0.32697E-10

max
j

|Xj − X̂j | 0.11519E-14 0.79096E-14 0.21711E-13 0.30486E-12 0.17340E-12

max
j

|Yj − Ŷj | 0.78063E-15 0.75123E-15 0.77475E-14 0.52657E-13 0.12385E-12

Table 2: Experiment 1. Parameters: a = 2, δ = 100.
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c 102 103 104 105 106

n 180 1,497 14,320 141,803 1,415,035
k 123 389 1,227 3,875 12,296

λ 0.70491E+01 0.43029E+01 0.40301E+01 0.40030E+01 0.40003E+01
rel(λ) 0.00000E+00 0.20641E-15 0.00000E+00 -.22187E-15 0.00000E+00
i 156 1,008 9,150 90,217 900,542

δ(c) 0.15244E+03 0.15146E+03 0.15076E+03 0.15021E+03 0.15121E+03

X1 0.24360E-68 0.10108E-73 0.79506E-75 0.19809E-75 0.10325E-76
Xk 0.14129E+00 0.59531E-01 0.27646E-01 0.13861E-01 0.70498E-02

X1/Xk 0.17240E-67 0.16979E-72 0.28757E-73 0.14290E-73 0.14647E-74
R 0.28826E-73 0.86951E-73 0.18921E-72 0.34954E-72 0.11510E-72

rel(X1) 0.57053E-14 0.39666E-12 0.31336E-13 0.28896E-10 0.16840E-09
rel(Y1) 0.29582E-14 0.44484E-13 0.58518E-12 0.69078E-11 0.32768E-10

max
j

|Xj − X̂j | 0.64401E-15 0.14322E-13 0.88880E-14 0.19695E-12 0.58894E-12

max
j

|Yj − Ŷj | 0.30530E-15 0.81206E-15 0.75181E-14 0.50491E-13 0.11008E-12

Table 3: Experiment 1. Parameters: a = 2, δ = 150.

c 102 103 104 105 106

n 148 1,251 12,025 119,207 1,189,823
k 80 371 1,725 8,052 37,584

λ 0.48307E+01 0.40378E+01 0.40018E+01 0.40000E+01 0.40000E+01
rel(λ) 0.00000E+00 0.21996E-15 0.00000E+00 0.00000E+00 0.00000E+00
i 105 925 9,090 90,728 907,100

δ(c) 0.51745E+02 0.51066E+02 0.51375E+02 0.52214E+02 0.53092E+02

X1 0.15657E-27 0.56925E-29 0.34307E-30 0.11988E-31 0.40486E-33
Xk 0.16156E+00 0.70686E-01 0.31217E-01 0.14289E-01 0.65824E-02

X1/Xk 0.96908E-27 0.80532E-28 0.10990E-28 0.83895E-30 0.61506E-31
R 0.16701E-27 0.38677E-27 0.26394E-27 0.93576E-28 0.31612E-28

rel(X1) 0.24916E-13 0.17710E-12 0.82978E-11 0.45445E-09 0.39497E-08
rel(Y1) 0.50118E-14 0.40247E-13 0.15850E-11 0.24346E-10 0.10033E-09

max
j

|Xj − X̂j | 0.14710E-14 0.50368E-14 0.85255E-13 0.21667E-11 0.85706E-11

max
j

|Yj − Ŷj | 0.53949E-15 0.14180E-14 0.15365E-13 0.11264E-12 0.27496E-12

Table 4: Experiment 1. Parameters: a = 4, δ = 50.
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c 102 103 104 105 106

n 149 1,251 12,025 119,207 1,189,823
k 99 468 2,160 10,074 46,353

λ 0.59504E+01 0.40964E+01 0.40044E+01 0.40002E+01 0.40000E+01
rel(λ) 0.14926E-15 0.00000E+00 0.00000E+00 -.44406E-15 0.22204E-15
i 117 942 9,108 90,747 907,118

δ(c) 0.98136E+02 0.10293E+03 0.10085E+03 0.10226E+03 0.99596E+02

X1 0.65592E-50 0.16890E-56 0.13441E-56 0.22928E-58 0.60367E-58
Xk 0.16663E+00 0.69229E-01 0.31413E-01 0.14323E-01 0.65935E-02

X1/Xk 0.39364E-49 0.24397E-55 0.42789E-55 0.16007E-56 0.91554E-56
R 0.20868E-52 0.55400E-55 0.71969E-54 0.12721E-54 0.34337E-53

rel(X1) 0.36733E-13 0.11611E-12 0.64777E-11 0.56745E-10 0.58871E-08
rel(Y1) 0.17734E-13 0.71711E-13 0.15602E-11 0.24704E-10 0.12500E-09

max
j

|Xj − X̂j | 0.20053E-14 0.38650E-14 0.58993E-13 0.24506E-12 0.11594E-10

max
j

|Yj − Ŷj | 0.88124E-15 0.11261E-14 0.14018E-13 0.10435E-12 0.30450E-12

Table 5: Experiment 1. Parameters: a = 4, δ = 100.

c 102 103 104 105 106

n 148 1,251 12,025 119,207 1,189,823
k 115 535 2,472 11,446 53,300

λ 0.75092E+01 0.41649E+01 0.40075E+01 0.40003E+01 0.40000E+01
rel(λ) 0.11827E-15 0.00000E+00 0.00000E+00 0.22202E-15 0.00000E+00
i 128 958 9,126 90,765 907,138

δ(c) 0.15244E+03 0.15386E+03 0.15112E+03 0.14999E+03 0.15141E+03

X1 0.28839E-74 0.19053E-83 0.17930E-83 0.66661E-84 0.11235E-85
Xk 0.19676E+00 0.68972E-01 0.31725E-01 0.14354E-01 0.66008E-02

X1/Xk 0.14657E-73 0.27623E-82 0.56519E-82 0.46442E-82 0.17022E-83
R 0.14492E-81 0.25640E-82 0.75552E-81 0.30408E-80 0.51747E-81

rel(X1) 0.76598E-14 0.18105E-12 0.89870E-11 0.47429E-09 0.44710E-08
rel(Y1) 0.76598E-14 0.67667E-13 0.13524E-11 0.23468E-10 0.14141E-09

max
j

|Xj − X̂j | 0.25396E-14 0.53898E-14 0.80525E-13 0.19056E-11 0.81957E-11

max
j

|Yj − Ŷj | 0.24146E-14 0.10780E-14 0.12499E-13 0.99000E-13 0.22676E-12

Table 6: Experiment 1. Parameters: a = 4, δ = 150.

43



a 1 2 3 4 6

βY (a) 0.791E+00 0.104E+01 0.103E+01 0.109E+01 0.110E+01

βX(a) 0.586E+00 0.101E+01 0.115E+01 0.131E+01 0.146E+01
β(a) 0.666E+00 0.100E+01 0.119E+01 0.133E+01 0.150E+01

4a/(a+ 2) 0.133E+01 0.200E+01 0.239E+01 0.266E+01 0.300E+01

Table 7: Experiment 1. Best fit slopes of log10(rel(Y1)), log10(rel(X1)) as functions of
log10(c).

c 102 103 104 105 106

m 162 1,135 10,292 100,629 1,001,357
N 192 1,175 10,392 100,829 1,001,757

Jm(c) 0.13298E-20 0.11471E-21 0.32071E-22 0.14301E-22 0.59576E-23
Jc(c) 0.96366E-01 0.44730E-01 0.20762E-01 0.96369E-02 0.44730E-02

Jm(c)/Jc(c) 0.13800E-19 0.25644E-20 0.15447E-20 0.14840E-20 0.13319E-20
R 0.33515E-20 0.29104E-20 0.29127E-20 0.33515E-20 0.32303E-20

|1−Xm/Jm(c)| 0.33801E-13 0.15085E-12 0.24630E-12 0.22284E-11 0.77524E-11
|1− Ym/Jm(c)| 0.36770E-14 0.22545E-13 0.14788E-12 0.98237E-12 0.24681E-11

Table 8: Experiment 3. Parameters: δ = 50.

c 102 103 104 105 106

m 200 1,215 10,464 101,000 1,002,154
N 230 1,255 10,564 101,200 1,002,554

Jm(c) 0.20593E-40 0.61117E-42 0.10612E-42 0.39770E-43 0.18323E-43
Jc(c) 0.96366E-01 0.44730E-01 0.20762E-01 0.96369E-02 0.44730E-02

Jm(c)/Jc(c) 0.21370E-39 0.13663E-40 0.51112E-41 0.41268E-41 0.40965E-41
R 0.27453E-41 0.78625E-41 0.87694E-41 0.98375E-41 0.10920E-40

|1−Xm/Jm(c)| 0.38368E-14 0.13658E-12 0.20091E-11 0.10091E-11 0.56160E-11
|1− Ym/Jm(c)| 0.28466E-14 0.93836E-14 0.14805E-12 0.11176E-11 0.29720E-11

Table 9: Experiment 3. Parameters: δ = 100.

c 102 103 104 105 106

m 231 1,282 10,608 101,310 1,002,823
N 261 1,322 10,708 101,510 1,003,223

Jm(c) 0.25898E-59 0.45624E-62 0.42252E-63 0.13902E-63 0.57054E-64
Jc(c) 0.96366E-01 0.44730E-01 0.20762E-01 0.96369E-02 0.44730E-02

Jm(c)/Jc(c) 0.26875E-58 0.10199E-60 0.20350E-61 0.14425E-61 0.12754E-61
R 0.80027E-62 0.22722E-61 0.29062E-61 0.34453E-61 0.35676E-61

|1−Xm/Jm(c)| 0.72561E-14 0.28169E-12 0.13717E-12 0.72506E-12 0.25122E-10
|1− Ym/Jm(c)| 0.64024E-15 0.28275E-13 0.12375E-12 0.13185E-11 0.38545E-11

Table 10: Experiment 3. Parameters: δ = 150.
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To each plot in Figures 1(a), 1(b), one can fit a line (in the least square sense). The
slopes of such lines are displayed in Table 7. This table has the following structure. Each
column corresponds to a different value of a. Second row contains the slopes corresponding
to rel(Y1) (see Figure 1(b)). Third row contains the slopes corresponding to rel(X1) (see
Figure 1(a)). Fourth row contains β(a), where β(a) is defined via (257) below (the values
in third and fourth rows would be identical if rel(X1) were proportional to cβ(a)). Last row
contains the number 4 · a/(a+ 2) (the power of c in (237) of Theorem 22).

Observations. Several observations can be made from Tables 1–6, Figure 1, Table 7,
and some additional numerical experiments by the author.

Observation 1. For every choice of parameters in Experiment 1, the coordinate X1 is
fairly small compared to Xk, as predicted by Theorem 6 and Corollary 1 in Section 4.1. In
addition, Xk = O(c−1/3), and the ratio X1/Xk is roughly of the same order of magnitude
as the estimate R defined via (255) above. More specifically, log(R) never deviates from
log(X1) − log(Xk) by more than 10%, and also R > X1/Xk for large c, as expected from
(203) in Theorem 20.

Observation 2. Despite the fact that X1/Xk is much smaller than machine zero in all
experiments (for all c, X1/Xk ≈ 10−25, 10−50, 10−75 for δ = 50, 100, 150, respectively), both
X1 and Y1 are still evaluated to fairly high relative accuracy, in all cases.

Observation 3. For any c and a, the relative accuracy of both X1 and Y1 seems to
be essentially independent of their magnitude. For example, for a = 4 and c = 106, the
relative accuracy of X1 is 0.4E-8, 0.6E-8, 0.4E-8 for δ = 50, 100, 150, respectively (despite
the fact that X1 itself is equal to 0.4E-33, 0.6E-58, 0.1E-85, respectively). In other words,
the δ-dependent factor in (237) of Theorem 22 seems to be an artifact of the analysis.

Observation 4. On the other hand, the relative accuracy of both X1 and Y1 does
depend on c (as Theorem 22 suggests). In particular, for any fixed a, the relative error of
Y1 seems to be roughly proportional to c, e.g.

rel(Y1) = O(c) · ε, (256)

where ε is the machine precision (see second row in Table 7).
Observation 5. For any fixed a, the relative error of X1 seems to be roughly propor-

tional to cβ, where β = β(a) defined via the formula

β(a) =
2 · a
a+ 2

(257)

(see third and fourth rows in Table 7, and also Conjecture 1). On the other hand, in
Theorem 22 in Section 4.3 we derived a certain upper bound on the relative error of X1

(see (237) and last row in Table 7); this bound is proportional to c4a/(a+2). In other words,
numerical experiments seem to indicate that Theorem 22 overestimates the number of lost
digits roughly by a factor of two. For example, for a = 4, δ = 150 and c = 106 (see last
column in Table 6) we lose almost β(a) ·6 = 8 decimal digits, while the pessimistic estimate
from Theorem 22 suggest that we will lose 16 decimal digits. In other words, the estimate
from Theorem 22 is overly cautious.
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7.2 Experiment 2.

In Experiment 1, we took a rather detailed look at relative errors to which the first coor-
dinate of an eigenvector of certain tridiagonal matrices is evaluated. The purpose of this
section is to illustrate the analysis of Section 4 in a more qualitative way.

To that end, we carry out the experiment described in Section 7.1 with the following
parameters: a = 2, c = 1000, n = 1497, δ = 50. We obtain the four unit-length vectors
X,Y, X̂, Ŷ in R

n, as described in Section 7.1.
Figures. We display the results of this experiment in Figures 2(a)–2(c). In each figure,

the abscissa corresponds to the indices of the eigenvector, i.e. 1 ≤ j ≤ n; thus, we plot
certain functions of the indices of the eigenvector.

In Figure 2(a), we plot the coordinates Xj of X, on the linear scale (left) and on the
logarithmic scale (right).

In Figure 2(b), we plot the relative (left) and absolute (right) errors of Xj on the
logarithmic scale.

In Figure 2(c), we plot the relative (left) and absolute (right) errors of Yj on the loga-
rithmic scale.

Observations. Several observations can be made from Figures 2(a)–2(c).
The following three observations pertain to the behavior of the coordinates of X (see

Figure 2(a)).
Observation 1. In the beginning, the coordinates of X grow rapidly from ≈ 10−26 to

≈ 10−1 up to the index k such that λ ≈ Ak+2 (in agreement with Theorem 6 in Section 4.1).
We refer to the corresponding indices as the ”region of growth”.

Observation 2. At the other end, they decay rapidly (while changing signs) from
≈ 0.05 to ≈ 10−14, starting from the index n−q such that λ ≈ An−q−2 (in agreement with
Theorem 7 in Section 4.1). We refer to the corresponding indices as the ”region of decay”.

Observation 3. In the middle (i.e. for indices j such that λ − 2 ≤ Aj ≤ λ + 2),
the coordinates behave in an ”oscillatory way”, in the sense of Section 2. Such behavior
is expected from Theorems 10, 11 and Corollaries 3, 4 in Section 4.1. We refer to the
corresponding indices as the ”oscillatory region” (see also [16] for an alternative approach
to the evaluation of Xj in the oscillatory region that, inter alia, further justifies this term).

The following observations pertain to the behavior of relative and absolute errors to
which the coordinates of the eigenvector are evaluated, by either Inverse Power or the
algorithm from Section 5.3.

Observation 4. Qualitatively, the behavior of relative errors of Xj is similar to that
of Yj and depends of whether j is in the region of growth, in the region of decay, or in the
oscillatory region.

Observation 5. In the region of growth, the relative errors of Xj change monotoni-
cally with j and always stays ”small” (below 10−12), in agreement with Theorems 13, 16,
Corollary 6 in Section 4.2 and Theorem 22 in Section 4.3. In the region of decay, the rela-
tive errors of Xj display a similar behavior, in agreement with Theorem 17, Corrolary 6 in
Section 4.2, and Theorem 22 in Section 4.3. In particular, both in the regions of growth and
in the region of decay the relative errors of Xj essentially do not depend on the magnitude
of Xj .

Observation 6. In the oscillatory region, the relative errors of Xj oscillate between
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10−16 and 10−10. On the other hand, the absolute errors of Xj always stay below roughly
10−14. In other words, the relative errors of Xj in the oscillatory region depend on the
magnitude of Xj , in agreement with Theorems 15, 16 in Section 4.2.

7.3 Experiment 3.

In this experiment, we illustrate the numerical algorithms of Section 5 via evaluation of
Bessel functions (see Sections 3.2, 3.4.2, 6.1).

Description. We first choose, more or less arbitrarily, the real number δ ≥ 0. Then,
for each choice of five different values c = 102, 103, 104, 105, 106, we do the following. We
define the integer m = m(δ, c) via the formula

m = c+ δ2/3 · c1/3 (258)

(see (199) in Theorem 20 and (222) in Theorem 21), select the integer N > m (according
to Remark 8 in Section 3.4.2), define the integer n via the formula

n = 2 ·N + 1, (259)

define A1, . . . , An via (233) with a = 1 in Theorem 22 (see also (39)), and then define the
symmetric tridiagonal n × n matrix A = A(c) via (14). Then, we define the real number
λ(c) via the formula

λ(c) = 2 +
n+ 1

c
. (260)

(We observe that λ(c) is an eigenvalue of A, according to (40) in Section 3.4.2.) We also
compute the real number R via the formula

R = exp

(

−δ ·
√

8

9

)

(261)

(see (255) above and (195) in Theorem 19).
Next, we obtain the unit-length λ(c)-eigenvector of A by four different methods:
1. Y = (YN , . . . , Y0, . . . , Y−N ) via 30 iterations of Shifted Inverse Power, in double

precision (observe that the indices vary between N and −N , as in (41)).
2. X = (XN , . . . , X0, . . . X−N ) via the algorithm from Section 5.3, in double precision.
3. Ŷ = (ŶN , . . . , Ŷ0, . . . , Ŷ−N ) via 30 iterations of Shifted Inverse Power, in extended

precision.
4. X̂ = (X̂N , . . . , X̂0, . . . , X̂−N ) via the algorithm from Section 5.3, in extended preci-

sion.
The experiment is conducted for each pair of values δ, c, where δ = 50, 100, 150 and

c = 102, 103, 104, 105, 106. In each case, we verify that each of X̂ and Ŷ satisfies the definition
of an eigenvector coordinate-wise to at least 17 decimal digits, and also that X̂ = Ŷ to at
least 17 decimal digits. In other words, each of X̂, Ŷ is the unit-length λ(c)−eigenvector of
A defined to full double precision. Also, we verify that the middle 2 ·m+ 1 coordinates of
both X̂ and Ŷ are equal to Jm(c), . . . , J0(c), . . . , J−m(c) to at least 17 decimal digits (see
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Remarks 8, 9 in Section 3.4.2). We use these observations to compute the accuracy to which
the coordinates Xm, . . . , X0 of X and Ym, . . . , Y0 of Y approximate Jm(c), . . . , J0(c).

The results of the experiment are displayed in Tables 8–10. Each of these tables cor-
responds to a particular choice δ in (258), and has the following structure. Each of five
columns corresponds to a different value of c, between 102 and 106. The first three rows
contain c, the integer m defined via (258), and the integer N > m (see Remark 8 in Sec-
tion 3.4.2). The next four rows contain Jm(c) and Jc(c), their ratio, and the asymptotic
estimate R of this ratio (see (261)). The last two rows contain the relative accuracy to
which Xm and Ym, respectively, approximate Jm(c).

Observations. Several observations can be made from Tables 8–10.
Observation 1. For every choice of parameters in Experiment 3, Jm(c) is fairly small

compared to Jc(c), as predicted by Theorem 6 and Corollary 1 in Section 4.1. In addition,
for all c ≥ 103, the ratio Jm(c)/Jc(c) is within a factor of three from the estimate R defined
via (261) above (see (203) in Theorem 20).

Remark 17. Observation 1 above is obviously related to the well known Debye’s expansions
of Bessel functions (see e.g. [14]).

Observation 2. Despite the fact that Jm(c) is much smaller than machine zero in all
experiments (for all c, Jc(c) ≤ 10−20, 10−40, 10−59 for δ = 50, 100, 150, respectively), both
Xm and Ym approximate Jm(c) to a fairly high relative accuracy, in all cases. Moreover, for
any c, this accuracy seems to be independent of the magnitude of Jm(c) (compare to (237)
of Theorem 22; see also Conjecture 1).

Observation 4. On the other hand, the relative accuracy of both X1 and Y1 does
depend on c (as Theorem 22 in Section 4.3 suggests). In particular, for any fixed a, the
relative error of Y1 seems to be roughly proportional to c0.8, e.g.

rel(Y1) = O(c0.8) · ε, (262)

where ε is the machine precision (see second column in Table 7). Also, the relative error of
X1 seems to be roughly proportional to c2/3 (see Table 7), in agreement with Conjecture 1
above (compare to (237) of Theorem 22).
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Figure 1: Relative errors of X1, Y1, on a logarithmic scale, as a function of log10(c), for
a = 1, 2, 3, 4, 6. Corresponds to Experiment 1.
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Figure 2: The coordinates of X (principal algorithm) and Y (30 iterations of Inverse
Power). Parameters: c = 1000, n = 1500, λ = 0.41022E+01, k = 226, q = 65. Corresponds
to Experiment 2.
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