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Abstract

Constant depth unbounded fan-in Boolean circuits have been the success
story in our never ending quest for lower bounds in complexity theory. Ex-
ponential lower bounds were obtained by Yao, that established the first oracle
separating the Polynomial time hierarchy and PSPACE. Recently the algebraic
approach by Razborov, and subsequently by Smolensky, has stripped away much
of the convoluted combinatorial argument in favor of its inherent structural clar-
ity. Meanwhile there is a renewed interest in various complexity classes of re-
stricted number of queries. We consider the problem of how many extra bits of
“help” does a constant depth circuit need in order to compute m sets of par-
ity functions. We prove an exponential lower bound in the presence of m — 1
help bits. The proof is carried out using the algebraic machinery of Razborov
and Smolensky. A by-product of the proof is that the same bound holds for
circuits with Mod, gates for a fixed prime p > 2. We will also discuss some

tight approximation results in the associated algebra and its relationship to the
Hadamard matrix.

1 Introduction

Computational complexity theory is the study of minimal resources required for computa-
tional problems. The theory originated in the work of Hartmanis, Lewis and Stearns [HLS]
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concerning time and space bounded Turing machine computations, which culminated in the
famous conjecture NP # P [Co][Ka].

Perhaps the most “promising” approach to this conjecture today is the Boolean circuit
model; a super-polynomial lower bound on the circuit size for any NP language will settle
NP # P. However, for the complexity of general Boolean circuits, little is known concerning
any natural function beyond linear lower bound.

On the other hand, the class of constant depth unbounded fan-in Boolean circuits has
been a success story in our quest for lower bounds in complexity theory. The famous
Russian theoretician Lupanov [Lu] observed a 2(2"~1) lower bound for depth 2 Boolean

circuits computing the parity function @, where
®(z1,72,...,2,) = 1 4ff the number of 1’s in z; is odd.

More substantial lower bounds followed for circuits of depth k > 2. Furst, Saxe and
Sipser [FSS], and independently Ajtai [Aj], obtained super-polynomial lower bound on the
circuit size for any constant depth unbounded fan-in Boolean circuit computing the parity
function @. The original motivation of Furst, Saxe and Sipser, from a complexity theory
point of view, was to construct oracles that separate the Meyer-Stockmeyer polynomial time
hierarchy PH and PSPACE, which was a long standing open problem [St]. Their dream was
fulfilled with the breakthrough of Yao, who established exponential lower bounds on the
size, which in turn produced the first oracle separating PH and PSPACE [Ya]. A sequence
of improvements followed quickly. Cai showed that with the same exponential bounds as
the one Yao established on the size, the constant depth circuits fail to compute the parity
function @ on asymptotically 50% of the inputs [Ca]. His result implies that a random
oracle separates PH from PSPACE with probability one. Babai gave a remarkably short
proof to the probability one separation result [Ba]. Hastad improved Yao’s lower bound to
almost optimal [Ha).

All these proofs mentioned are based on certain probabilistic counting argument. Re-
cently an algebraic approach developed by Razborov, and subsequently by Smolensky, has
stripped away much of the combinatorics in favor of its inherent structural clarity [Ra)] [Sm].
In their approach, a certain commutative algebra was used as the representation of the ring
of Boolean functions. The isomorphism is highly suggestive of a coordinate ring from the
viewpoint of algebraic geometry.

In the field of structural complexity, meanwhile, there is a renewed interest in vari-
ous complexity classes defined by restricted queries. For instance, Kadin showed that the
Boolean Hierarchy BH is proper if PH does not collapse [Cai et al.][Kad]. Much work (and
heat) was generated over concepts such as terseness.

In this paper, we consider a similar problem in the low-level complexity setting. We ask



how many extra bits of “help”—arbitrary Boolean functions—does a constant depth circuit
need in order to compute m sets of parity functions. We prove an exponential lower bound
on the size of the circuits in the presence of m — 1 help bits; m — 1 is certainly tight. Unlike
similar results involving terseness at the polynomial time level, the result here is absolute,
i.e. it does not depend on any unproven hypothesis. The proof is easily carried out using
the algebraic machinery of Razborov and Smolensky. A by-product of the proof is that
the same bound holds for circuits with Mod, gates for a fixed prime p > 2. We will also
discuss some tight approximation results in the associated algebra and its relationship to
the Hadamard matrix.

2 Definitions and Preliminaries

Consider a multi-output Boolean circuit C' of unbounded fan-in and constant depth k.
Assume C has input variables XU B, and m outputs {f1,..., fm}, where X = {z1,...,2y}
is a set of Boolean variables, and B = {by,...,bm—1} will be used as “help bits”. The size
of the circuit |C| is the number of gates in C.
We recast briefly the Razborov-Smolensky algebraic set-up [Ra][Sm]. For indeterminates
X U B, define
R=1Z3[X]/(2?-z;|1<i<N)

and
REB =1Z3(XUB]/ (2 —2;,b2=b; |1<i<N,1<j<m-1).

Lemma 2.1 R s a commutative algebra of dimension 2V,
R has the following basis.
= {Me,(1+ ) |wC{1,...,N} }, (parity basis)

x; ifiew

A={Te.,4 |wC{l,...,N}, and %; = { }» (assignment basis).

1— z; otherwise

We have the following basis transformation
HII = (-1)VA,

where the matrix H is the Nth Hadamard matrix defined inductively by Ho = 1, and

Hn - (Hn—l Hn—l ) )
Hn-—l —dlp-1

We note that for any variable v € X U B, v? = v in RB. Next we define degp, for




p € R, to be min{ degp | p € Z3[X] and p mod (2? — z;) = p }. The degree for pB € RB is
similarly defined. We have deg(f - g) < deg f + degg.

Let 7 be the class of Boolean functions on X, we have an injection ¢ from 7 to R
satisfying:

0°=0,1* = 1,2¢ = x;,
=f)? = 1-f%
(fva)? = fP+50-f-¢°,
(fAg)? = f?-g°%
Lemma 2.2 An ideal of R is generated by a subset of A.

Proof Let R' be an ideal of R, let A’ = AN R'. We claim R' = (A). Let p € R/,
P =2 s.eA My Since R'is an ideal, if A, # 0, then a, = A lay,p€ R. QED

Lemma 2.3 For f,g € 7, f* = g® mod K for some ideal K of dimension d iff f = g for
2V — d assignments as Boolean functions.

3 m —1 bits are not enough for m parities

The following approximation lemma is an easy consequence of a result of Barrington [Bar]
(stated as Lemma 1 in [Sm)]).

Lemma 3.1 Given any ¢(N) and d(N), any Boolean circuit C of unbounded fan-in and
constant depth k, and size |C| < Ex(N), where Ex(N) = e(N)\/§d(N)1/k. Let hi(X),1 <7 <
m —1, be any Boolean functions, and f;(X),1 < i < m, be the outputs of C, when substitut-
ing hi(X) for b;, 1 <4 < m— 1. Then there exist an ideal K in R of dim K < e(N)2N, and
polynomials p;(X, B) € RE of degree < d(N), such that fi(X) = pi(X, h1(X), ..., hm—1(X))
in R/K,1<1<m.

We note that the approximation is on the variables X and not on X U B, although our
degree measure is taken in RB.

Now suppose N = mn, and write X = { ;; | 1 <¢ < m,1 < j < n}. We consider
m parity functions @©(z;1,...,%n). In the algebra R they assume the form —1 — II;, where
Iy = [1;(1 + zij). We prove an exponential lower bound on |C| with the help of arbitary
m — 1 Boolean functions, if it computes all II;,1 < 7 < m.

Theorem 3.2 Lete > 0 and m < N1/5-¢, Suppose a Boolean circuit C of unbounded fan-
in and constant depth k computes all parity functions ®(z;1,. .. s Zin } with the help of some
m — 1 Boolean functions h;(X),1 <i¢ < m — 1. Then 3\ = Ao, such that |C| = Q(2V").




Proof Let d(N) = N®. Suppose |C| < e(N)\/ﬁNr, where ¢(V) is to be determined.
We have p;(X, B) € RE of degree < N¢, and an ideal K of dimension < e(N)2¥, such that

I = p(X,(X),...,hn-1(X))

Hm = pm(X, hl(X), ey hm_l(X))
in R/K.
We observe that each h; is {0,1}-valued, thus h? = h;, for all <. Hence there is a
canonical representation for each p;,
pi = Z sz(X) ’ H hj(X)a
AC{1,..m-1} JEA
where deg fA < N°.
Consider the parity basis IT of R. Let w C X and
[H+2)= II G+ I @+am),
TEW Z1;€EW) Tomj EWm
where w = wy U+ Uwp, and w; C {@i1,...,Tin}.
If |w;i| > n/2, following Smolensky, we replace IL,, (1 + ;) by
[Ma+z) m= Y X [[hX)
wf AC{1,..,m-1} JEA
in R/K.
We note that each g has degree < n/2 + N¢. But more can be said: g{-‘ has degree
<n/2+4 N°¢in {z,...,%in}, and < N° for all other z’s.

Thus we get
[Ha+a)= > wx)-IIr®,
TEW AC{1,..m-1} JEA
where each p/(X) has degree < n/2+ mN*® in each group of variables {z;1, ..., Tin }

Note that the number of monomials in X satisfying the restriction is bounded by

e
=0 g ,
which can be estimated by 2¥=™(1—0(1)). Since there are at most 2™~1 such terms pA(X)
in [T,¢,(1+ «), we have shown that
dim R/K < (1/2 — o(1))2".

Now let €(N) = o(1) we get a contradiction. QED
By setting €(N) more carefully, we have



Corollary 3.3 The same bound holds for circuits approzimating m sets of parity functions
to within any fraction o > 1/2 of all assignments, with the help of arbitrary m — 1 Boolean

functions.

A by-product is that Modgs gates can be assumed for free, and the same bound holds.
A similar bound holds for any Mod, gate for fixed prime p > 2.

Corollary 3.4 For any fized prime p > 2, circuits with Mod,, gates approzimating m sets
of parity functions to within any fraction o > 1/2 of all assignments, with the help of
arbitrary m — 1 Boolean functions, must have size |C| = 2V o,

4 A probability one separation

As in [Ca], the lower bound translates to a probability one separation. Here we consider
how much extra information does the Polynomial time hierarchy need to subsume PSPACE.
Surely sufficiently dense oracles would suffice.

Theorem 4.1 For anye > 0,
VA,3B,|BS"| < 2™ ,PSPACEA C pA®B,
(here @ denotes disjoint sum, as it is customary in structural compleity.)

The proof is, of course, to encode the PSPACE computation relative to A in the oracle
set B, sufficiently far away, and yet accessible in polynomial time.

More interestingly, we claim that the above density bound is tight:
Theorem 4.2

Pr( A|VB,|BS"| = 2" PSPACEA ¢ PHA®B ) =1,

For a proof sketch, we note that it suffices to show for the parity language L4 =
{ = | the number of zy € A, |y| = 6|z|, is odd. } € PSPACEA,

Je > 0,Vi,Pr.( A | VB,|BS"| = 2"°() [A ¢ PHA®B ) > ¢

where M; is an enumeration of all alternating Turing machines [BG].

Using the reduction in [FSS|, we get a family of constant depth exponential poly-
logarithmic size exp(log(NV )0(1)) circuits with unbounded fan-in, computing various parity
functions. The input to the circuits are oracle memberships of A and B of strings upto the
appropriate length. If we combine circuits for all computations z €’ L4 at the same length
|z| = n, we get a circuit still of exponential poly-logarithmic size exp(log(N )0(1)), where
N = 257 and computing 2" = N1/6 sets of parity. However, if N is large, the number of
help bits from B (<« N/6) is nowhere nearly sufficient.



5 A tight approximation in R

The result by Razborov and Smolensky that the parity function M, (1 + ;) can not
be approximated by small degree polynomials can be re-phrased in terms of Hadamard

matrices as follows. Recall that the nth Hadamard matrix H, is the Kronecker product
1 1

1 -1
Hamming weight of ¢, the number of 1’s in 4;...7,. Let a; = a,(-”) be the ith row vector of
H,,0<i1<2" - 1.

) ® Hp—1. Let ¢ = 13...1, be the binary representation of ¢, and w(:) be the

Theorem 5.1 (Smolensky) The number of non-zeros in

agn-1 + Z Aiai, A € Zs,
ies

13 QU(2"), for any S consisting of 1 with w(i) < O(y/n). Here the arithmetic is over Zs.

A natural approach to Theorem 3.2 is to try to “solve” and “eliminate” the m — 1
unknowns h; one-by-one, via the m equations. In such an approach, as well as in other
circumstances, one is faced with a similar sum as above Y ies Aiai, where not all A\; = 0 and
1 €S = w(i) <wor w(i) >n— w, for some w.

Let Sy(n) ={4|0< ¢ < 2" w(i) <w }. We have the following tight bound:

Theorem 5.2 Over any field F of char.F # 2, the number of non-zeros in ZiESw(n) Aia;,
where \; € F' and not all \; = 0, is bounded below by 2"~¥.
The situation with w(i) > n — w s dual.

Proof Let N(n,w) be the least number of nonzeros in a nontrivial sum 2 i€ S (n) Nili-
If w = 0 then clearly N(n,0) = 2". Also, if w = n, then N(n,w) = 1, since H, is
nonsingular, and 2.2:5 ! a; has but one nonzero. Suppose 0 < w < n, inductively let Sy
be an optimal set, such that N(n — 1,w — 1) = 2""* is achieved by Y e, ai"_l) in Hy_1.
Then the sum Eiesa,(-"), where S = { i |i=14d1...ip & j =13...i, € So }, shows that
N(n,w) < 2",

Now, suppose a sum };eg Aia; achieves N(n,w), where @ # S C S,,(n), and all ); # 0.
Let So={j|j=32...n & 0j2...Jn €S }. Similarly we define S;. Then Sy C Sw(n —1)
and Sy C Sy-1(n —1). Clearly if either S or S; = @, the Theorem is proved. Let T be the
nonzero columns in } e, )\,-a,(-”—l), £=0,1. Assume neither Sy nor S; = @, by induction,
|To| 2 N(n - 1,w) > 2”71 and |Ty| > N(n — 1,w — 1) > 2", Now there are exactly
two nonzeros resulting from every k € ToATy, and exactly one for every k € Ty N Ty, in set
of nonzeros of } ;5 A;a;. Here we take into account the defintion of H,, and char.F # 2.

Hence N(n,w) = 2|ToATi| + [To N Ty| > max{ |To|,|T1| } > 2"~*. QED
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