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DATA PARALLEL PROGRAMMING AND BASIC
LINEAR ALGEBRA SUBROUTINES 12

S. LENNART JOHNSSON3

Abstract. Data Parallel programming is conceptually simple and provides pow-
erful programming primitives as in shared memory models of computation. With
an appropriate underlying architecture, primitives requiring global memory access
do not require significantly longer execution times than primitives only requiring
local access. In the data parallel programming model primitives are also available
for expressing simple forms of local data interaction in relative coordinates, as for
instance required in relaxation on multidimensional lattices.

One particular data parallel computer is the Connection Machine. In this paper,
we describe some of the data parallel aspects of the programming languages pro-
vided on the Connection Machine. We comment on the implementation of level-1
and level-2 BLAS, and describe the implementation of one level-3 BLAS function.
Matrix multiplication is discussed in detail. For matrices of the size of the machine
or larger, only the kernel function is required. The matrix multiplication kernel
yields a performance of up to 5.2 Gflops in single precision on the CM-2 with the
floating-point option. For matrices considerably smaller than the machine, all three
nested loops in a Fortran 77 program can be made parallel, and expressed with few
instructions without any loop constructs.

Key words. Supercomputing, Parallel Computing, Basic Linear Algebra, and
Mathematical software.
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1 Introduction

High performance computation requires a high storage bandwidth. Supercomputers
with a performance of a few Gflops need an effective storage bandwidth of the order
of at least one Thit/sec. The memory width is 10° bits for 10 MHz memory chips.
In a register or cache architecture the width of the primary storage needs to be
substantial. We do not expect memory chips to become faster by more than a
small constant factor. Hence, future supercomputers will require storage with an
even greater width. For most designs in VLSI technology the processor speed is
comparable to, or a small constant factor higher than, the speed of a standard
memory chip. With a machine designed entirely in VLSI technology the number of
processors is a fraction of the number of memories in a system having a good balance
between processing capability and storage bandwidth. The fraction is essentially
determined by the width of the processor. A balanced design with supercomputer
performance in todays technology would require 100,000 1-bit processors, or 3,000
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32-bit processors. With bandwidths in the order of a few Tbits/sec, or higher, it
is increasingly difficult, and expensive, to have a bus for interconnecting memories
with the processors. Interconnection networks are becoming common in parallel
architectures. The Connection Machine described in some detail later has a total
storage bandwidth of approximately 50 Gbytes/sec and 64k processors.

Programming of a computer with a large number of processors cannot be made
in a way in which programmers concern themselves with every processor, and their
synchronization. Indeed, it is desirable that the programmer does not need to be
concerned with details of the architecture, neither for functionality, nor for perfor-
mance. Communication should largely be hidden from the programmer, as in se-
quential programming models, but clearly requires efficient implementations. With
a large number of processing elements and limited bandwidths at chip and board
boundaries, it is inevitable that the width of the communication channels be small.
With a bit-serial pipelined communication system the time for global communi-
cation is of the same order as the time for local communication. Implementing a
shared memory model of computation is a realistic proposition. Shared memory
models of computation provide powerful operators, such as concurrent read, and
concurrent write. This allows for the efficient implementation of parallel prefix
operations.

In a data parallel programming model the emphasis is on the data structures,
and the interaction between elements of the data structure. Language primitives
may be provided for particular data structures and simple interactions within these
structures. An example is multi-dimensional lattices, and nearest-neighbor com-
munication in such structures. Operators for subsets are also provided, such as
copying an element to every processor that needs that element, finding the maxi-
mum or minimum in a set, or the sum of all elements in a set. Global operators are
quite powerful programming primitives.

The data parallel programming model is particularly suitable for highly concur-
rent architectures with a communications system that allows fast access to any part
of the storage from any processor. Ideally there is one processor for every primary
object of the problem. In reality that is rarely the case. Multiple elements have
to be mapped to the same processor. The notion of wirtual processors is used to
allow the algorithm designer and the programmer to work with the data parallel
model and not concern themselves with the mapping of the abstract machine to the
real machine. Mapping of virtual processors to real processors is handled at compile
time, if possible. The maximum problem size that can be handled is determined by
the total amount of storage, not by the number of real processors, as in any realistic
programming model. Storage of a real processor is divided among virtual proces-
sors. The virtual processors assigned to a real processor time-share that processor.
The scheme for assigning virtual processors to real processors affects the need for
communication, and the real processor utilization. The most common assignment
scheme is consecutive and cyclic [9]. For the matrix multiplication described in
some detail later, either of these forms yield the same arithmetic and communi-
cation complexity, but a different control structure. Cyclic mapping is obtained
by simply letting the low order bits of an address be the real processor address.
In consecutive mapping the high order bits are used for real processor addresses.
Cyclic mapping yields a better load balance for LU-decomposition [9].

In the remainder of this paper, we elaborate on the data parallel programming




model. The Connection Machine architecture is described, and some of the unique
features of the programming languages are mentioned. We discuss implementation
of level-1 and level-2 BLAS briefly, and treat in some detail a kernel for matrix
multiplication, and the procedure for multiplying matrices of arbitrary shapes.

2 The Data Parallel programming model

In a data parallel programming model algorithms are devised and described, for
the purpose of computing the solution with the structure of the problem domain in
mind. Algorithms are expressed as a sequence of interactions between the elements
of the structure. The type of interaction is often the same for large sets of elements.
For instance, in solving partial differential equations a discretization of continuous
space is introduced by some approximation scheme, like finite differences, or finite
elements. Then, an algorithm is devised for the solution of the resulting systems
of equations. A solution can be expressed concisely as a sequence of interactions
between the nodal quantities in the discrete space. Nodal quantities may be vectors,
or single elements. Interactions may be local; they may cover a large domain; or
potentially they will cover the entire domain. If an iterative method is used for the
solution, then the interaction between elements of the data structure is described
by the stencil used for the approximation of the differential operators, or by the
type of elements used for finite element problems. If an elimination method is
used for the solution of the system of equations, then the first several steps in a
nested dissection procedure often only involve local interactions. However, as the
eliminations progress the interactions may extend over a larger domain. The more
balanced the elimination tree, the further apart are typically the data elements
involved in final elimination stages. For a regular lattice it is of the order of one
side of the lattice. In terms of the number of points involved, it is of the order of
VN for a two-dimensional problem and N for a three-dimensional problem.

Regardless of whether a direct or iterative technique is used for the solution
of the system of equations, the type of interaction in most cases is the same for
a very large set of nodes in the discrete space. For instance, the same stencil is
typically used in the entire domain, with the exception for the boundary. We have
also implemented some high resolution schemes for shocks in fluid flow calculations,
which use the same discretization over the entire domain. In adaptive techniques
for the solution of partial differential equations, the same approximation may still
be used in large regions of the domain. It may even be the case that only the
resolution differs. In direct solvers the pivot row (column) interacts with every
other row (column) for variables yet to be eliminated. Interaction is the same for
every element. If interaction is not identical for all elements, only a few types of
interaction occurs in algorithms we are aware of. An essential characteristic of data
parallel architectures is the ability to define classes of objects, and the operations
thereupon.
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Figure 1: The Connection Machine system

3 The Connection Machine

3.1 Architecture

One example of a data parallel architecture is the Connection Machine. It has a
total primary storage of 512 Mbytes using 256 kbit memory chips; and 2 Gbytes
using 1 Mbit memory chips. Bandwidth to storage is approximately 50 Gbytes/sec,
which is achieved at a modest 8M H z clock rate. Primary storage has 64k ports, and
a simple 1-bit processor for each port. The Connection Machine model CM-2 also
has facilities for adding hardware for floating-point arithmetic. With the floating-
point option a performance of 5.2 Gflops has been measured for matrix operations.
We describe the algorithm used to realize this performance. This routine is the
kernel for multiplying arbitrarily shaped matrices.

The Connection Machine requires a host. Currently, two families of host archi-
tectures are supported: the VAX family with the BI-bus, and the Symbolics 3600
series. The Connection Machine is mapped into the address space of the host. The
program code resides in the storage of the host. The host fetches the instructions,
does the complete decoding of scalar instructions, and executes them. Instructions
to be applied to variables in the Connection Machine are sent to a microcontroller,
which decodes and executes instructions for the Connection Machine. The archi-
tecture is depicted in Figure 1

The difference between the nominal peak performance, and actual performance
on the Connection Machine is largely due to the time spent in moving data between
processors. Other overhead is low. The interprocessor communication capability
depends on the communication pattern. For many linear algebra operations commu-
nication in a two-dimensional lattice is desirable. The lattice need not be a square
lattice. The effective interprocessor communication bandwidth for two-dimensional
lattice emulation is in the range 3 — 12 Gbytes/sec for 4-byte messages. Overhead



Algorithm Arithmetic op’s/ Arithmetic ops/
element Elem. comm.
Matrix-vector mpy 2 VM
Matrix-matrix mpy %\/]—V— vM
Relaxation 5-point stencil 1.6/iter. vM
Radix-2 FFT 1.25l0g,N 1.25logo(M[/2)
Sorting O(logaN) - O(logiN)

Table 1: Number of operations per data element for a few operations on N elements
in a machine with local storage M.

is approximately 15% for messages of this length. Communication time increases
linearly with the message size. For communication in arbitrary patterns the Con-
nection Machine is equipped with a router, which selects one of the shortest paths
between source and destination, unless all of these paths are occupied. The router
has several options for resolving contention for communication channels. The band-
width for random permutations is a factor of 6 - 7 below that of the two-dimensional
lattice emulation.

The degradation is due to bandwidth limitations at the chip boundaries. Per-
formance measured as arithmetic or logic operations per unit time, benefits from
increased granularity for many operations in that the arithmetic/logic operations
grow faster than the communication as a function of the number of local data ele-
ments, as shown in Table 1.

3.2 Programming languages

Connection Machine programming languages are currently *Lisp, and a parallel
version of C called C*. These languages are extensions of the familiar Lisp and
C languages. The most essential extensions are the existence of a parallel data
type, and the operations thereupon. Scans are among the operators included in the
extensions. Concurrent read and concurrent write instructions are also supported.
Members of a set of elements forming a parallel variable are operated upon concur-
rently by one instruction. No enumeration of the elements is required, and one or
several loop levels disappears from the code, compared to languages not supporting
array or set operations. The code becomes more compact, simpler, easier to debug,
and one source of errors has vanished. Given that the programming languages for
the Connection Machine are extensions of conventional languages the debugging
tools, and the debugging process is similar to that for conventional architectures.

3.2.1 *Lisp

*Lisp is an extension of Common Lisp. There is one additional data type: a parallel
variable, known as pvar . Parallel variables are defined through a (*defvar pvar pvar-
expression ) statement. In the current implementation a pvar is allocated across the



entire configuration of the Connection Machine. The same section of the storage
of every processor is assigned to a given pvar . The pvar-ezpression is optional. If
present, a value is computed for every element of the pvar . Any element of a pvar
can be referenced by the statement (pref pvar address ), which returns the element
specified by address of the pvar specified by pvar . Assigning elements to pvars can
be made through the function (*set pvar-1 pvar-2 ). The elements of pvar-1 is set
to the corresponding values of pvar-2 . Individual elements of a pvar can be set by
using the Lisp function setf : (setf (pref pvar address ) var)

*Lisp provides two global addressing schemes: conventional binary addresses,
known as cube-address , and addresses in multi-dimensional lattices, known as grid-
address . References on the grid addresses can be made with both absolute coordi-
nates, and relative addresses. The forms are

(pref pvar address )
(pref-grid pvar grid-address )
(pref-grid-relative pvar relative-grid-address )

and for concurrent access

(pref !! pvar-ezpression cube-address-pvar )
(pref-grid !! pvar-expression grid-address-pvars border-pvar )
(pref-grid-relative !! pvar-ezpression relative-grid-address-pvars border-pvar )

where grid-address is the address of a lattice point, relative-grid-address the
relative address of a lattice point. grid-address-pvars and relative-grid-address-
pvars must contain as many address pvars as there are dimensions in the lattice.
The border-pvar field is optional. If it is provided, then if a processor p references
a processor outside the defined lattice, then instead the value of the pvar border-
pvar in processor p is returned. Standard operators in Common Lisp are extended
to pvars by the suffix !!. The following example illustrates the implementation of
Jacobi iteration for the 5-point stencil

(*set new
Gl
(M0.25)
(+!
(pref-grid-relative !! old (1! -1) (!! 0))
(pref-grid-relative !! old (! 0) (! -1))
(pref-grid-relative !! old (! 0) (!! 1))
(pref-grid-relative !! old (1! 1) (!! 0))
rhs

The operation *set is a local memory movement in all selected processors. The
corresponding global operation is *pset , which like pref comes in three forms de-
pending on the addressing scheme.

(*pset combiner value-pvar destination-pvar cube-address )



(*pset-grid combiner value-pvar destination-pvar grid-address-pvars )
(*pset-grid-relative combiner value-pvar destination-pvar relative-grid-address-
pvars )

The content of value-pvar will be written into destination-pvar of the proces-
sor(s) specified by cube-address , grid-address-pvars , or relative-grid-address-pvars
, respectively. Depending upon the addresses that are specified, several processors
may be writing into the same memory location. The field combiner specifies the
type of combining that is desired in such a case. Examples of combiners are add,
max, and min.

In general, whether or not an operation shall be carried out is a function of the
state. Examples of conditionals in *Lisp are *all, *when, *if, and *cond.

*all body
*when pvar body
*if pvar-ezpression then-form else-form

*cond {(pvar {form}*)}*

In the *all statement the body is evaluated for the entire set of processors; *when
subselects the processors for which pvar is non-NIL from the currently selected set.
For the *if statement the subset of processors of the currently selected set for which
the pvar is non-NIL executes the then-form. The else-form is optional. The function
*cond evaluates all clauses. Subselection is based on the pvar-expression .

*Lisp also has some powerful global operators. Of particular interest for numeric
applications are *min , *max , and *sum , and scans. The *min , *max , and *sum
operators compute the minimum, maximum, and the sum of the values in a pvar in
the currently selected set of processors. Scans are specified by

(scan !! pvar function : direction segment-pvar :include-self)
(scan-grid !! pvar function :dimension : direction segment-pvar :include-self)

The segment-pvar divides the address space into non-overlapping segments. The
scan operation is concurrently applied to all segments for which the segment-pvar is
true. A scan is a parallel prefix operation, with the prefix specified by the function
field. If the function is plus, then every pvar location will contain the sum of
the pvar elements in processors with lower addresses in its segment, including its
own original pvar value, if include-self is true. The scanning can also be made for
decreasing addresses by specifying the direction to be backward. Note that for
non-associative operators such as floating-point addition, precision may be lost.

3.2.2 C*

C* is an extension of C with a strong influence from C++. Objects that are of
the same nature are in C* members of the same domain . Conceptually, a domain
is similar to a class in C++. In a data parallel model of computation a processor
is associated with every instance of a domain . Every member of a domain has
the same storage layout. Referencing a domain implies a selection of processors.
Only processors associated with an instance of the referenced domain remain active.



There are two new data types: mono and poly . Data of type poly are allocated
in the Connection Machine storage. Data belonging to any domain is by default of
type poly . Data that is not of type poly is of type mono , and resides in the storage
of the host machine.

There are only very few new operators in C*. Most C operators are extended
to C* by the distinction between mono and poly . Communication between the
host and the Connection Machine is implicit. Broadcasting from the host occurs
if a mono value is assigned to a poly variable. Reduction occurs if the combined
result of the elements of a poly variable is desired. The result of the reduction is a
mono value in the host. Interaction between the elements of a single or several poly
variables results in various communication patterns in the Connection Machine.
C* does not currently allow the programmer to specify particular communication
patterns, such as lattice communication.

3.2.3 *Fortran

The *Fortran language that is being planned for the Connection Machine is simi-
lar to the proposed Fortan 8X standard. This standard has-array constructs and
operations on such constructs. In particular, the maxval, minval, and sum functions
correspond to the *min , *max , and *sum functions already available in *Lisp, and
will be supported in *Fortran. Many of the same comments have been made for
*Lisp and C* applies to *Fortran.

4 The BLAS

Level-1 BLAS are operations on a vector, or pairs of vectors. Vectors are pvars or
poly variables in the data parallel model. Dot products are easily expressed in both
*Lisp and C*. For instance, the *Lisp expression is *sum (*!! x y). The BLAS-1
copy routine is simply a *set . The level-1 BLAS routines does not require any
loop constructs. Required data movement is implicit in the instructions, and the
efficiency of level-1 BLAS a consequence of being at the level of machine instructions.

The level-2 BLAS routines can be written with two nested loops in Fortran 77.
One of the operands is a matrix. With the machine configured as a two dimensional
array the assignment of matrix elements to processors is simple. The level-2 BLAS
routine has one or two vector operands. With the vectors aligned with one of the
axis, a transposition may be (but need not be) required. The vector transposition
is a single instruction. For matrix-vector multiplication one copy-scan-grid and one
plus-scan-grid will suffice in addition to a concurrent multiplication over all matrix
elements. For a rank-1 update, two copy-scan-grid instructions and the concurrent
multiplication suffice. For the solution of a triangular system of equations loops
can be avoided, if the inverse is represented instead of the triangular factors. The
forward or backsolve then become matrix-vector multiplications. Otherwise, one
loop is required.

Level-3 BLAS attempts to provide a standard interface for matrix-matrix oper-
ations. In the remainder of this paper we provide some insight into the techniques
and considerations in implementing matrix multiplication on a data parallel archi-



tecture.

5 Multiplying arbitrarily shaped matrices

The computation we consider for the remainder of this paper is A «— B x C + D,
where the matrix B is a P X @ matrix and C a Q X R matrix and A and D P X R
matrices. Particular issues we focus on are processor utilization for arbitrarily
shaped matrices, effective use of the communication capabilities of an architecture
such as the Connection Machine, and software engineering issues in terms of suitable
primitives, in the spirit of the BLAS.

A general matrix computation can take several standard forms, such as an inner-
product covered by the level-1 BLAS [16]; an outer product or rank-1 update cov-
ered by the level-2 BLAS (GER) [4]; an AXPY (level-1 BLAS) [16], or triad; or a
matrix-vector product (GEMV) [4]. These are degenerate cases of matrix-matrix
multiplication (MM), and level-3 BLAS [3]. Non-degenerate matrix-matrix multi-
plication can be expressed in terms of the inner-product operation or the AXPY.
The former is suitable for architectures with fast inner-product instructions, and
the latter for architectures with pipelined arithmetic units.

None of the BLAS versions directly address the issues in parallel computation.
However, block algorithms in part are the justification for introducing the level-3
BLAS work well on shared memory multiprocessors [8]. For distributed storage
architectures a variety of systolic algorithms have been proposed for dense and
banded matrices [1,2,15,17,10,12,11,6]. These algorithms define synchronization
between different data streams, and the alignment between those streams. Systolic
algorithms are typically presented for one element per processor, but are easily
generalized to a submatrix of each operand per processor [9,5]. For systolic type
algorithms constant storage suffice. A reduction in the communication time is pos-
sible in architectures with a high communication overhead, if data aggregation is
allowed [13]. For minimal communication time communication buffers and tempo-

rary storage of the order of O(1/5£2) (or O(1/EE), or O(4E)) is necessary. In a data

parallel architecture such as the Connection Machine [7], communication overhead
is very low, and constant storage algorithms are preferable. Performance related
issues are the utilization of processors and the communication bandwidth for arbi-
trarily shaped matrices. From a software engineering point of view, it is important
to find programming/algorithm primitives that are useful for a variety of matrix
shapes.

Matrix multiplication consists of three nested loops. In a data parallel architec-
ture there is the potential for performing all three concurrently. In such a case the
multiplication of a P X @ and a @ x R matrix can be performed in a time propor-
tional to log2@, if the number of processors N > PQR. Parallelizing the loop in the
Q direction is beneficial, if there are more than PR processing elements. Our ma-
trix multiplication algorithm for matrices of arbitrary shapes distinguishes between
several cases. The kernel function that we describe here is based on an algorithm
by Cannon [1]. This algorithm is devised for two-dimensional square lattices.



5.1 Data Allocation

For the kernel by Cannon the processor set is partitioned into a two-dimensional
array of N, x N, = |V/N] x LNWJ processors. For log, N even the processing array
is square, otherwise it is rectangular with one side twice the length of the other.
For matrices such that P,Q and R are all smaller than the lattice dimensions one
matrix element can be assigned to each processor. At the other extreme the number
of matrix elements in all dimensions may exceed the number of processors in that
dimension. Multiple elements have to be assigned to every processor, with a strategy
to minimize the maximum storage per processor. Two apparent schemes are cyclic
and consecutive assignment [9]. The two assignment schemes can be illustrated as
follows, assuming P = 27, Q = 29, and R = 2" for simplicity.

(Up—1Up—2 ... Un, Un,—1tn, 2 - %0 Vg—1Vg—2 - - - Un, Unc—1Un,—2 - - - vol)

N g N

vp TP vp TP

(yp_lup_g .+« Up—n, Up—n,—1Up—n,—2 - - - U0 Vg—1Vg—2 - - - Vgnc Vg—nc—1Vg—n—2 - - - vo)

TP up TP up

The real address field is made up of n, + n. = n address bits obtained by

concatenating the real processor row address field with the real processor column
address field.

In the consecutive assignment each processor is assigned a block matrix of size
2P~7r x 297" of matrix B, a block matrix of size 297" x 2"""¢ of matrix C, and a
block matrix of size 2°~™ x 2" of matrix A. Low order bits are used for virtual
processor addresses of both the row and the column address fields. In the cyclic
assignment the low order bits are instead used for real processor addresses, and high
order bits for virtual processors. Mixed assignment schemes can be used as well [14],
but will not be considered here. In the cyclic assignment the matrices are “tiled”
with tiles of size 2" x 2". Each such tile represents a slice of storage across all
processors [9].

5.2 A Kernel for Concurrent Matrix Multiplication

In the algorithm by Cannon the inner products defining the elements of A are
accumulated in-place. Denote the storage cells for A, B, C and D by E, F and G.
The algorithm has two phases. A set-up phase in which the operands are aligned,
and a multiplication phase. In the set-up phase the shifting yields: F(i,j) «
F(i,(i +j) (mod 2%)), G(3,5) « G((i +j) (mod 2¥),5), E « D for (3,5) €
{0,1,2,...,2F — 1} x {0,1,2,...,2F — 1}. Clearly F(¢,5) x G(4,7) is a valid product
for all : and j. In the multiplication phase the following operations are carried out:
E(iyj) « EG,j) + F(irj) x G(iyj), F(i,5) — F(i,(j +1) (mod 24), G(i,j)
G((+1) (mod 24),7), 1,7 = {0,1,2,.., 2% — 1}.

We distinguish between the following cases:

1. The operands covers the processor array exactly.



2. The number of elements in each of the two dimensions of the operands are
multiples of the number of processing elements in the corresponding dimen-
sion.

3. For each of the matrices the number of elements in at least one dimension is
less than the number of processors assigned to that dimension.

5.2.1 Matrices Perfectly Matching the Mesh Size

The first case corresponds to the kernel function for N, = N,.. If the number of
processors is an odd power of two then a mesh with aspect ratio two is the closest
to a square mesh. With square matrices each real processor has to simulate two
virtual processors. Note, that with the same storage scheme for all matrices and no
matrix dimension exceeding the processor mesh @ = min(N,, N;). Hence, either
P = maz(N,,N,) and R = min(N,,N,) or vice versa. The multiplication can be
performed by first replicating the matrix C in the row direction %ﬁ—% times
if P > R, else replicating B if R > P. The kernel algorithm is then applied

concurrently to the % meshes of size min(N,, N.) x min(N,,N,).

5.2.2 Virtual processors

In the second case each real processor has several virtual processors. In the consecu-
tive assignment each real processor has a block matrix that with matrix dimensions
being powers of two are of size 2°7"" x 297" for matrix B, of size 297" x 2""¢ for
matrix C, and of size 27" x 277" for matrix A. For the case of N, = N, = 7 each

real processor performs a block matrix operation requiring 2 - 2P+7+7- 3n operations.
Then, a rotation of the matrices B and C is performed blockwise, and the process
repeated 23" times. The time for arithmetic is -1101\,&, and the data transfer time
proportional to £P7+1—13,£. In the bit-serial pipelined communication system of the
Connection Machine the overhead in the communication is negligible. If N, # N,
then with N, > N, 2" "¢ rotations are performed in the direction of N, for every
rotation in the N, direction. For N, < N, the situation is the opposite. The arith-
metic time is the same as in the case of a square mesh, but the communication time
is (7 + 72)Q.

In the case of cyclic assignment, it is clear that every real processor has the
same number of virtual processors as with consecutive assignment. It can also be
shown that the amount of work for each communication is the same. In addition to
performing the work for each virtual processor, data for different virtual processors
are also in the correct location for a multiply-add operation. The control structure
is different from the consecutive assignment, however.

For local matrix multiplication, the issues with respect to performance are the
traditional ones, with block methods being preferable for cache based architectures,
and AXPY based algorithms preferable for pipelined, and register architectures.
The performance of our implementation of Cannon’s algorithm is extended to handle
virtual processors is 5.2 Gflops with 256 virtual processors per real processor (or 4k
x 4k matrices).
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Table 2: Number of block copy and addition for one product matrix.

Figure 2: Multiplying arbitrary matrices on a large array

5.2.3 Small Matrices in a Large Mesh

This case is relevant not only for matrices with fewer elements than the number
of processors, but also handles the case when P, @, or R are not multiples of the
number of processors in the respective direction. In the cyclic assignment there
are PmodN, rows in the last row of “tiles” of B with rows being allocated in the
direction of N,. Similarly, there are @QmodN, columns in the last columns of “tiles”
of B. In the consecutive partitioning some processors have one more matrix element
than others. Let PmodN, = P,,QmodN, = Q,,QmodN, = Q., and RmodN, = R,.
Assume N, = N,.. Since P,,Q,,R, < N, there are more processors than matrix
elements, and there is a possibility to parallelize the loop in the @ direction.

Operands are partitioned into squares of side S, = min(P,,Q,, R,). There is a
total of [gﬂ [%1 [—g] such squares. Each such processing square receives a S, X S,
block from B and C through a copy operation. The number of block copy and
additions are summarized in Table 2.

All multiplication on blocks of size S, x S, are performed concurrently. Each
block matrix multiplication uses the kernel routine and requires S, multiplication
steps. In general, a summation of corresponding elements in some of the blocks
are necessary to complete the computation. For instance, if P. = 1,R, = 1 and
Q. > 1, then the computation is an inner-product. The blocks are of size 1 x 1 and
a summation of the product of all blocks is required. Figure 2 illustrates the three
different situations summarized in Table 2.

The number of processors used in the block algorithms is ——9—— If the total
number of processors can be partioned into several such sets of subarrays say M,
then the loop on @, can be subdivided further at most that many times. The




loop on @, is parallelized in the algorithms above, except if S, = @Q,. This further
parallelization of the multiplication is obtained by creating multiple instances of the
algorithms just described by copying, and by rotating the different copies k%}—, k=
{1,2,..., M — 1} steps with respect to the “original”. This rotation can be done
while copying. Multiplication then proceeds in % steps, followed by block addition
of all copies.

If N, # N, then @, and Q. may not be the same. However, the number of
rotations required for the direction with the larger number of processors is higher.
For every rotation in the direction of min(N,, N,), % rotations are required
in the other direction. This in effect guarantees that after the phase where all
“complete” layers are treated for the direction with the maximum number of layers,

the remainder in the two directions are the same.

6 Summary

The Data Parallel programming model provides a simple conceptual framework for
programming highly concurrent architectures. The model also provides powerful
instructions. Indeed, several of the level-1 BLAS routines are single instructions.
None of the routines require loop constructs. Level-2 BLAS requires two or three
instructions; with the exception of the triangular system solvers, no loop constructs
are required. If the inverse of the triangular matrix is available instead of the
matrix, then the triangular solve can be accomplished in one or two instructions.
Otherwise, a single loop is required.

Level-3 BLAS requires three nested loops in Fortran 77. In a data parallel pro-
gramming model a single loop is required, in general. Indeed, matrix multiplication
can be performed without loops, if there is a sufficiently large number of proces-
sors. In this paper, we have used a simple mesh algorithm as the kernel. This
kernel requires a single loop, and the communication operation is single step ro-
tations, ignoring the initial data alignment. The kernel executes at a rate of 5.2
Gflops on the Connection Machine model CM-2. The loop is in the @ direction
for multiplying a P x @ and a @ X R matrix. This loop can be parallelized given
that there is a sufficient number of processors. Parallelizing this loop implies the
introduction of segmented copy-scans and plus-scans. Matrix multiplication can be
performed without loops in the data parallel model of computing for sufficiently
many processors.
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