Yale University
Department of Computer Science

The Robot, the Grid, and the Algorithm

Chinda Wongngamnit Dana Angluin

YALE/DCS/TR-1188
October 1999

This research was supported by the National Science Foundation, grant CCR-9610295

The Robot, the Grid, and the Algorithm

Chinda Wongngamnit Dana Angluin®
Yale University Yale University
Abstract

We consider the problem of localizing a mobile robot in a bounded grid environment con-
taining unknown obstructions. The robot is initially given the height and width of the grid, and
is started in an unknown cell of the grid. We present a new algorithm, the Homing Robot, that
successfully localizes using O(logn) bits of memory and no more than 4n moves, where n is the
number of unobstructed cells in the grid.

1 Robot Localization in Grids

Imagine that a mobile robot has been placed somewhere on a two-dimensional surface (perhaps
a floor) that is comprised of a finite number of obstacles (walls, poles, or furniture), as well as
unobstructed space over which it can move (hallways and rooms). This clear space is enclosed all
around by walls, so that the area that the robot can visit is bounded. The robot can locally sense
obstructions and move through any unobstructed space it chooses to visit. The robot also has the
ability to determine how far and in what direction it has traveled from its initial position; in other
words, the robot has odometry. Finally, suppose that the robot has a map or other information
about the space, but is unaware of its initial location for some reason. The robot’s task is to orient
itself, that is, to “figure out” as quickly as possible where on the map it is. This is the robot
localization problem.

We study the robot localization problem in the particular case that the robot’s environment is
usefully represented by an occupancy grid. The grid partitions the space into square cells, each
of which is either obstructed or unobstructed. The robot can occupy any unobstructed cell and
can sense the obstructed/unobstructed status of each of the neighboring cells that share at least a
corner with the current cell. The robot can move into any unobstructed cell that shares an edge
with the current cell, making it the new current cell. We assume that the grid is enclosed by
obstructed cells. An example of a grid is shown in Figure 1.

In this setting, we assume that a robot is placed in an unknown, unobstructed cell of a grid,
and given some global information about the grid. The robot then makes observations and moves
around the grid until it has determined which grid square it currently occupies, at which point it
halts. The resources we consider are the number of moves made by the robot before it halts and
the number of bits of memory required by the robot’s computations. We seek worst-case bounds
on these quantities as a function of n, the number of unobstructed cells in the grid. We propose a

*Supported by NSF grant CCR-9610295.

Figure 1: A grid with height 10, width 12, and five normal obstacles.

localization algorithm, the Homing Robot, that uses no more than 4n moves and O(logn) bits of
memory in the worst case.

The robot localization problem is important in the practical design of mobile robots, and a
variety of approaches have been proposed. The grids we consider are a deterministic version of
probabilistic occupancy grids, which are one important approach to representing the environment
of a mobile robot for localization and other navigation tasks. As one example, the museum-
guide robot RHINO designed by Fox et al. used a localization algorithm based on a Markov-chain
representation of a fine-grained grid covering the area of the museum travelled by the robot [4].

Blum and Kozen [2] considered mazes, which are equivalent to our grids, and addressed the
theoretical question of how much computational power a robot needs in order to search a maze. The
problem of searching a maze requires a robot to start in an unknown cell of an unknown maze and
move in such a way that it eventually visits every unobstructed cell in the maze. It was already
known that a robot with a finite-state controller and no additional memory cannot successfully
search every maze. Blum and Kozen gave a method for a robot with a finite-state controller and
one counter (or two pebbles) to search every maze. Their method uses O(n %) moves and O(logn)
bits of memory.

The problem of robot localization has also been considered in the setting of a polygonal environ-
ment, assuming that the robot is equipped with vision, and using a competitive ratio as the figure
of merit. Dudek et al. give a localization algorithm for this setting that has a competitive ratio
of ¢, where ¢ is the number of places in the polygonal environment that have the same visibility

polygon as the initial point [3].

The problem of robot localization in a grid is also related to the problem of finding an adaptive
homing sequence for a finite state automaton. This connection is discussed in Section 8.

2 Definitions

Consider a grid. The number of unobstructed cells in the grid is denoted by n.

If we specify one cell as the origin of the grid, there is a natural coordinate system associated
with the grid cells. The pair of integers (H, V) specifies the cell that is H cells east and V cells north
of the origin cell. The westernmost unobstructed cells are those unobstructed cells for which the
H coordinate is minimum, and the easternmost unobstructed cells are those unobstructed cells for
which the H coordinate is maximum. The width of a grid is one more than the difference between
the H coordinates of the easternmost and westernmost unobstructed cells. The southernmaest and
northernmost unobstructed cells and the height of a grid are defined analogously in terms of the V'
coordinates of the cells. The grid in Figure 1 has width 12 and height 10.

We define obstacles and their boundaries in a grid as follows. Two cells are edge-adjacent if
they share an edge, and corner-adjacent if they share at least a corner. The neighbors of a cell are
the cells that are corner-adjacent to it; a cell has at most eight neighbors. The neighborhood of a
cell consists of the cell and its neighbors. The neighbors of a cell are designated by their compass
directions from the cell: N, NW, W, SW, S, SE, E, and NE.

A set T of cells is edge-connected if for every pair of cells in 7', there is a path of edge-adjacent
cells in T joining them, and similarly for corner-connected. We assume that the set of all unob-
structed cells in the grid is edge-connected, in other words, all unobstructed cells are accessible to
the robot.

An obstacle is a maximal corner-connected set of obstructed cells in the grid. A cell is on the
boundary of an obstacle if it is unobstructed and corner-adjacent to some cell of the obstacle. Note
that a cell may be on the boundary of up to four obstacles.

An obstacle is normal if its boundary cells enclose the cells of the obstacle. There is one
obstacle, the border, in each grid that is not normal - its boundary cells are interior to it in the
plane. The outer boundary consists of the boundary cells of the border. Note that the westernmost,
easternmost, southernmost, and northernmost unobstructed cells in a grid must be part of its outer
boundary. The grid in Figure 1 contains six obstacles: five normal obstacles and the border.

The robot is initially placed in some unobstructed cell of a grid, and is given the height and
width of the grid. We do not assume that the robot has access to a map of the grid. The robot must
determine its position in the grid by figuring out its horizontal displacement from the westernmost
unobstructed cells and its vertical displacement from the southernmost unobstructed cells in the
grid. Note that each of these quantities can be represented by O(logn) bits.

We assume that the robot has local sensors capable of determining whether each of the eight
neighbors of the current cell is obstructed or unobstructed. We do not assume a capability (such
as vision) for sensing distant obstacles. The robot may move to one of the unobstructed cells edge-
adjacent to the current cell, making it the new current cell. In effect, the robot has a compass, and
its moves may be described as taking one step N, W, S, or E. We assume that the sensations and
actions of the robot are error-free. Relaxing this assumption is an interesting direction for future
work.

3 A Framework for Localization in a Grid

How can the robot find out where it is in the grid? We describe a specific framework for algorithms
to localize a robot in a grid under the assumptions we have made. This framework requires no map
and O(logn) bits of memory to implement.

Initialize H, V, Hpazy, Hminy, Vimaz, Vnin to 0. v
While ((Hpmoz — Hpmin + 1 < w) or (Vinag — Viin + 1 < h))
Choose a direction to move: N, S, E, or W.

If N then

V &« V +1; Vinar = max(V, Vinaz)
If S then

V &« V =15 Vipin = min(V, Viin)
If E then

H «+ H+1; Hpor = max(H, Hpoz)
If W then

H + H - 1; Hpipn = min(H, Hpin)

Endwhile

Localization achieved.

Figure 2: A framework for localization algorithms.

The inputs to the robot when it is started are the height, A, and width, w, of the grid. The
robot treats its initial position as the origin of the coordinate system described in the preceding
section, and uses two registers, H and V, to keep track of its horizontal and vertical displacement
in cells from its initial position.

Initially, H and V are set to 0, and if the robot moves to the cell to the north of its current
position, it increments V' by 1. For a move to the south, it decrements V' by 1, and similarly for
east (increment H) and west (decrement H).

In four other registers, the robot tracks the minimum and maximum values of V and H for cells
that it has visited: Vinazy Vinin, Hmaz, and Hp,in. If, at some point, the robot observes that

Vmax - Vmin +1= h)

then it knows the vertical displacement of its current cell from the southernmost unobstructed cells,
namely V — V,,;,. If the robot observes that

Hmaa: - Hmin +1= w,

then it knows the horizontal displacement of its current cell from the westernmost unobstructed
cells, namely H — H,,;,. When both conditions are satisfied, the robot has localized itself in the

grid, and halts.

In this framework, our basic localization strategy is for the robot to move around the grid,
updating the the values of the six registers until both of these conditions are satisfied, and then to
declare success. A concise description of this framework for localization is given in Figure 2. Clearly,
the two conditions will be satisfied when the robot has visited a northernmost, a southernmost, a
westernmost, and an easternmost unobstructed cell, in any order. The framework uses O(logn) bits
of memory, to store the two input values and the six variables it uses; each value must be an integer
in the range [—n,n]. We now describe four localization algorithms that share this framework but
differ in how moves are chosen.

4 Three Methods Based on Searching

4.1 The Random Robot

A very simple localization algorithm, the Random Robot, can be implemented if the robot has a
random number generator. At each step, the Random Robot chooses randomly one of the unob-
structed edge-adjacent neighbors of the current cell, and moves there. To analyze this algorithm,
we consider an undirected graph related to the grid. The grid graph is an undirected graph with n
vertices, one corresponding to each unobstructed cell of the grid, and an edge between two vertices
if and only if they represent edge-adjacent cells in the grid. Then the moves of the Random Robot
are equivalent to a random walk on the grid graph. By a result of Aleliunas et al. [1], the expected
number of moves until every vertex is visited is O(n?). Hence the Random Robot is a randomized
~ localization algorithm that uses O(logn) bits of memory and O(n?) expected moves.

4.2 The BK Robot

A deterministic localization algorithm with the same resource bounds as the Random Robot may
be obtained from the maze searching algorithm of Blum and Kozen [2]. In particular, if Blum and
Kozen’s seaching algorithm is used to choose the moves of the robot, then we are guaranteed that
the robot will visit every unobstructed cell within O(n?) moves. This method, which we term the
BK Robot, successfully localizes with O(n?) moves and O(logn) bits of memory.

5 The Depth-first Robot

The Random Robot and the BK Robot use very little memory and eventually visit every unob-
structed cell. By contrast, the Depth-first Robot visits every unobstructed cell quickly by doing a
depth-first search, but it uses much more memory. The moves of the Depth-first Robot on the grid
correspond to a depth-first search of the grid graph, defined in section 4.1.

_ The Depth-first Robot maintains a current map of the part of the grid that it has explored,
relative to the start cell. At each cell, the robot proceeds depth-first, moving to the first (in some
ordering, say, N, W, S, and then E) unobstructed edge-adjacent neighbor that it has not yet visited,
adding an entry for the cell in the current map, and continuing. A cell is recognized as previously
visited by checking for an entry for it in the current map. When there are no more unvisited
unobstructed cells edge-adjacent to the current one, the robot backtracks (using information stored
in the current map) to the cell explored before this one, and so on, until the robot backtracks to
the initial cell and finds no more cells left to explore.

An upper bound for the number of moves used by the Depth-first Robot is 2n — 2, because each
of the n — 1 edges in a depth-first search tree for the grid graph corresponds to two moves of the
robot, one in each direction. The auxiliary storage space used by the Depth-first Robot to store
the current partial map in a straightforward fashion is O(nlogn) bits; a reduction to O(n) bits is
possible at the expense of additional computation. This is considerably more than the O(logn)
bits used by the Random Robot and the BK Robot. (Note that the Depth-first Robot does much
more than localize; it constructs a complete map of the environment from scratch.)

6 The Homing Robot

The Homing Robot is a method that achieves almost the memory efficiency of the Random Robot
and the BK Robot, and almost the move efficiency of the Depth- first Robot. It uses O(logn) bits
of memory and localizes the robot in at most 4n moves.

The basic idea of the Homing Robot is to head as directly as possible for the outer boundary of
the grid and then move around the outer boundary, guaranteeing visits to the northermost, east-
ernmost, southernmost, and westernmost unobstructed cells. As shown in Section 3, this ensures
the localization of the robot. In particular, the Homing Robot does not attempt to visit every
unobstructed cell.

The problem with moving directly to the outer boundary is that the robot does not know where
it is; there may be obstacles when it tries to follow a direct path. Our method for dealing with
obstacles is based on Lumelsky and Stepanov’s Bug algorithm for point-to-point navigation of a
robot in an unknown environment [6]. It consists of circumnavigating the obstacle in order to find
a good cell on its boundary from which to leave, that is, a cell that guarantees the robot will not
encounter the obstacle again.

We pick a target direction — north, east, south, or west — in which the robot attempts to move
towards the outer boundary. We assume for our exposition that the direction chosen is west. We
also choose a direction — right or left — that the robot will turn to begin its circumnavigation of an
obstacle. We arbitrarily choose left; this means that the robot will keep the edge of the obstacle to
its right.

There are two different behaviors that the robot engages in: go-west, and go-around; its initial
behavior is go-west. In the go-west behavior, the robot looks at the five neighboring cells that are
at least as far west as the current cell, namely, the N, NW, W, SW, and S neighbors of the current
cell. If none of these cells is obstructed, the robot makes a move west and then repeats the go-west
behavior. :

Otherwise, at least one of the five cells is obstructed. The robot then chooses one of the ob-
structed cells and begins the go-around behavior, which will cause it to circumnavigate the obstacle
containing the chosen cell. During circumnavigation, the robot determines the H coordinate of the
westernmost cell(s) on the boundary of the obstacle. When the robot detects that it is about to
complete the circumnavigation, it returns to a westernmost cell on the boundary of the obstacle
and resumes the go-west behavior.

Figure 3 shows the path of the Homing Robot in the grid of Figure 1 when started in the cell
labelled A.

6.1 More on the go-around behavior

We now specify the go-around behavior of the robot in more detail. The main part of the procedure
is the circumnavigation of an obstacle. The circumnavigation of an obstacle can revisit a boundary
cell more than once, which means that more than the robot’s position is required to keep track
of its progress in the circumnavigation. In addition, the robot maintains its current heading in a
variable D indicating which direction (N, W, S, or E) the robot is currently facing.

The robot begins its go-around behavior when at least one of the five cells N, NW, W, SW, or S

Figure 3: When started at A, the Homing Robot follows the path shown and localizes at B after 61 moves.

of the current cell is obstructed. It chooses one of these obstructed cells (arbitrarily); the obstacle
containing the chosen cell will be circumnavigated. The current cell at the start of circumnavigation
is designated as the hit cell for this instance of the go-around behavior.

Within the nine-cell square consisting of the current cell and its eight neighbors, the robot
determines the connected component containing the chosen obstructed neighbor cell. There is a
unique path P of moves through the square that keeps the edge of this connected component to its
right. The initial heading D is chosen to be the direction of the move that would bring the robot
to the current cell in the path P.

The robot saves the initial values of H, V, and D in Hy, Vo and Dg. In addition to these three
initial values, the robot keeps track of Sy, the number of moves it has made on the boundary, Hs,
the minimum H value among all the boundary cells it has visited so far, and Sy, the number of
moves made since the robot last visited a boundary cell with H value equal to Hp.

For each step of the circumnavigation, the robot first turns as far left as necessary to face an
unobstructed cell, updating D accordingly. It then checks to see if moving in the direction of D
would bring it back to its original position and heading (stored in Hy, Vo, and Dp.) If not, it makes
a move in the direction of its current heading, D, and updates the values of H, V', Sy, Hp, and Sm.-
When the robot’s next move would return it to its original position and heading, it has completed
a circumnavigation of the obstacle boundary and, therefore, has visited every boundary cell of the
obstacle.

The robot now follows the boundary of this obstacle back to a boundary cell with H value
equal to Hj, in other words, to a westernmost cell on the boundary of this obstacle. To ensure
that the number of moves used is at most half the number required to circumnavigate the obstacle,
the robot compares Sy, to half of Sy. If S,, is smaller, then the robot reverses direction, following
boundary cells while keeping the edge of the obstacle to its left; otherwise, it continues in the same
direction as the circumnavigation.

When the robot next reaches a boundary cell with H value equal to Hp, it resumes its go-west
behavior. The cell at which it does this is designated as the leave cell for this instance of the
go-around behavior.

The behaviors go-west and go-around alternate until localization is achieved. Recall that in the
framework described in Section 3, the robot constantly updates the minimum and maximum H
and V values for cells it has visited, and checks whether localization has been achieved.

6.2 Localization succeeds

The following theorem says the Homing Robot successfully localizes in any grid.

Theorem 1 If the Homing Robot is started on any unobstructed cell of any grid of height h and
width w, it will localize itself after a finite number of moves.

Proof. If the robot ever begins its go-around behavior on the obstacle that is the border, then
it traverses the outer boundary of the grid and successfully localizes by the time it completes the
traversal, because the northernmost, easternmost, southernmost, and westernmost unobstructed
cells are all part of the outer boundary.

Consider what happens when the robot begins its go-around behavior for a normal obstacle.
Because a normal obstacle is interior to its boundary, there must be some boundary cell of the
obstacle farther west than the hit cell. Thus, the leave cell will be strictly to the west of the hit
cell for this instance of go-around behavior. Because the go-west behavior can only move the robot
west, the hit cell for the next instance of go-around behavior (if any) must be at least as far west as
the leave cell for this instance. By induction, the sequence of H coordinates of hit cells and leave
cells in the order encountered by the robot must be nonincreasing, and strictly decreasing from a
hit cell to a leave cell, as long as the robot continues to hit normal obstacles. This implies that
the robot can hit a normal obstacle at most once, because after it leaves the normal obstacle for
the first time, every subsequent hit cell is strictly west of every cell in the obstacle, and therefore
cannot be a hit cell for this obstacle again.

Thus, the robot can engage in its go-around behavior for each normal obstacle at most once,
and is guaranteed to localize if it engages in its go-around behavior for the border obstacle. During
its go-west behavior, the robot cannot travel more than w — 1 moves west in total, because w is
the width of the grid. Thus, the robot must localize after a finite number of moves. O

6.3 Bounding the number of moves and the storage used

Now our goal is to show an upper bound of 4n on the number of moves made by the Homing Robot
before it localizes. This is accomplished in a series of lemmas.

The first lemma gives a bound in terms of the number of nonboundary cells and the number of
moves to circumnavigate every obstacle in the grid. Let b denote the number of cells that are on
the boundary of one or more obstacles; then (n —b) is the number of unobstructed cells not on the
boundary of any obstacles. Let the obstacles in the grid be numbered from 1 to &, and for each 1,
let ¢; be the number of moves for a robot to circumnavigate obstacle 7. In other words, ¢; is the
number of moves used by a robot that moves around the boundary of the obstacle visiting every
boundary cell and stopping when it returns to the initial cell.

Note that c¢; may be larger than the number of boundary cells of obstacle i because some
boundary cells may be visited more than once in a circumnavigation of the obstacle. For example,

for the four-cell obstacle in Figure 3 the number of boundary cells is 18, but the value of ¢; is 20.

Lemma 1 Let M denote the total number of moves made by the Homing Robot before it localizes.
Then

3
Mg(n——b)+§(c1+c2+...+ck).

Proof. The moves of the robot take it to cells of two types: (1) cells that are not obstacle
boundary cells and (2) cells on the boundaries of obstacles.

The only time that the robot can move to a cell that is not on the boundary of an obstacle
is during its go-west behavior. This can occur only when the robot is between the initial cell and
the first hit cell or between a leave cell and the next hit cell on a subsequent obstacle. Because
of the monotonicity of the H coordinate of the hit and leave cells, every cell moved to during the
go-west behavior must have a different H coordinate. Therefore, every cell not on the boundary
of an obstacle can be visited at most once by the robot. Thus, there are at most (n — b) moves to
cells of type (1).

We are now concerned with finding the total number of moves to boundary cells. Every move
to a boundary cell either initiates or is part of the go-around behavior of the robot. The robot
engages in the go-around behavior at most once for each obstacle. The number of moves made if
the robot engages in the go-around behavior for obstacle i is bounded above by %ci, because there
are at most ¢; moves to initiate the behavior and circumnavigate the obstacle (stopping before the
last move), and at most %ci more moves made in returning to the leave cell. Considering all &
obstacles, an upper bound on the number of moves to cells of type (2) is at most

3
-2—(cl+(:2+...+ck).

The total number of moves made by the robot before it localizes is bounded by the sum of these
two quantities, which shows

3
Mg(n—b)+§(c1+c2+...+ck).

This establishes the lemma. O
A Labelling

In the interests of bounding ¢; + ¢3 + ...+ ¢k, we introduce a particular labelling of the unob-
structed cells of the grid. Each unobstructed cell in the grid gets a label from the set {0, 1, 2, 3,4}
based on the pattern of obstruction of its eight neighbors. In particular, if within the square of
nine cells consisting of the center and the eight neighbors, the obstructed cells form s connected
components, then the label of the center cell is s. Figure 4 shows the labels of the cells in the grid
from Figure 1. Note that the labelling depends only on the eight neighbors of the cell; for example,
the cell labelled 4 is actually adjacent to only 3 different obstacles, but that is not apparent without
looking beyond its eight neighbors.

Now for each s = 1,2, 3,4, let m; be the number of cells that receive label s. From Figure 4,
we see that mg = 10, m; = 47, my = 32, m3 = 5, and my = 1 for the grid in Figure 1. Clearly,

2121211]1f1 12131212
2 1{f1)11]1 2 2
21 111 2214123
11 11212]13]2 1 2
ryj2)1212(1 2 1 112
11 1]1 21121111
111]1 110]0]0}j0]1
Ljof2)123f{2f(2f1]jt1jojof]1
101 2 1{fofjof1
Lyryp212(3j2|1 L1 1f1

Figure 4: Labelling of the grid from Figure 1.

every boundary cell receives exactly one of the labels 1, 2, 3, or 4, so

my + mg + m3 + my = b. (1)
The next lemma gives the relationship between this labelling and the quantity ¢; 4¢3 +. . .+ ck.
Lemma 2 ¢; + o+ -+ -+ ¢ = my + 2mg + 3ms + dmy.

Proof. The key observation is that if we consider the moves made in circumnavigating all k
obstacles, the number of moves made into a cell with label s is precisely s. This is easy to see for
nonboundary cells; they receive label 0 and are not visited in the course of circumnavigating all &
obstacles. Generally, if we look just at the square of nine cells with a given cell labelled s at the
center, there will be s parts of circumnavigating paths entering and leaving the square, and each
part of a path will move into the center cell once. Thus, each cell counted in m;, contributes a
total of s moves to the total number of moves to circumnavigate all k obstacles, which proves the
lemma. O

The next lemma indicates a relationship between a bound on the quantity m;+2mq+3ms+4my
in terms of m; 4+ my + m3 + my4 and the total number of moves used by the Homing Robot. Our
goal becomes to find such a bound for as small a value of R as possible.

Lemma 3 Suppose that R > 1 is such that
my + 2mg + 3m3 + 4my < R(my + mg + ma + my).
Then the total number of moves used by the Homing Robot to localize in a grid of n unobstructed

cells is at most %Rn.

Proof. Note that Using Lemma 1, if M is the number of moves used by the Homing Robot in
a grid with n unobstructed cells, then

3
MS(n—b)+-2-(c1+c2+...+ck).

10

Using equation (1) and Lemma 2, the assumption that m;+2mse+3mz+4my < R(my+mo+mz+my)
implies that
c1+cea+...+ ¢ < Rb.

Thus : 3 3
M < (n—b)+§Rb=n+(§R— 1)b.

By definition, b < n, and by assumption, R > 1, which implies that (%R —1)>0 and

M§n+(%R—1)n§ E;—Rn,

as claimed. O

For R = 4, it is immediate that
my + 2mg + 3msz + 4myg < 4(my + me + m3z + my)

because every coefficient on the lefthand side is at most 4. Lemma 3 then yields a bound of 6n
on the total number of moves used by the Homing Robot. Our next lemma shows the inequality
holds for R = 3, which yields the improved bound of 4.5n on the total number of moves used by
the Homing Robot.

Lemma 4 In any grid, if m; is the number of cells labelled i, then

my + 2mg + 3ma + 4my < 3(my + ma + m3 + my).

Proof. Consider any grid, and let m; denote the number of cells labelled ¢ for : = 0,1, 2, 3, 4.
We show that the number of cells labelled 4 is bounded by half the number of cells labelled 1 or 2,
or, in other words,

my < =(my + ma). (2)

N =

We note that an unobstructed cell whose N and S neighbors are obstructed must be labelled 1 or
2. This is because there cannot be more than two connected components formed by the obstructed
neighbors of the cell, no matter which other neighbors of the cell are obstructed. This also holds
for an unobstructed cell whose W and E neighbors are obstructed.

A cell can be labelled 4 only if the cell itself and its N, W, S, and E neighbors are unobstructed,
and its NW, SW, SE, and NE neighbors are obstructed. By the preceding observation, this means
that the cell’s N, W, S, and E neighbors must each be labelled 1 or 2. We can define a one-to-two
correspondence between any cell labelled 4 and its N and W neighbors. Notice that these two cells
can be neither N nor W of any other cell labelled 4, which proves that there are at least twice as
many cells labelled 1 or 2 as cells labelled 4, that is, inequality (2) is true. See Figure 5 for an
illustration of the one-to-two correspondence.

To conclude the proof of the lemma, note that inequality (2) implies that

' 1
my + 2mg + 3mz + 4my < my + 2mo + 3maz + 3my + §(m1 + my).
Thus,
my + 2mg + 3m3z + 4my < g‘ml + gmz + 3m3z + 3my,

11

Figure 5: Illustration of the one-to-two correspondence between cells labelled 4 and their N and W neighbors,
which are labelled 1 or 2.

which proves the lemma. O

Our final lemma of this subsection improves upon Lemma 4 to give R = 8/3 and a bound of
4n on the total number of moves of the Homing Robot. Lemma 8 in the Appendix shows that the
constant 8/3 cannot be further reduced.

Lemma 5 In any grid, if m; is the number of cells labelled i, then

8
my + 2mg + 3msz + 4my < g(ml + my + m3 + my).

Proof. Consider any grid, and let m; be the number of cells labelled %, for i = 0, 1,2, 3,4. We
subdivide the sets of cells labelled 1 and 2 as follows. For i = 1,2, let m; be the number of cells
labelled 7 that are N or W neighbors of a cell labelled 4, let m” be the number of cells labelled i
that are N or W neighbors of a cell labelled 3, and let m!” be the number of cells labelled 4 that
are not N or W neighbors of a cell labelled 3 or 4. Note that the N neighbor of a cell labelled 4 is
the W neighbor of an obstructed cell, and the W neighbor of a cell labelled 4 is the N neighbor of
an obstructed cell, so the set of cells N or W of a cell labelled 4 is disjoint from the set of cells N
or W of a cell labelled 3. Hence we have

mi = m{ 4 ml 4 ml”
fori=1,2.

Because the one-to-two correspondence constructed in the preceding lemma involved all and only
the cells labelled 1 or 2 that are N or W neighbors of cells labelled 4, the proof of the preceding
lemma actually showed that

ma = o (m +). NG
The following inequality is proved in the Appendix, Lemma 7.
m3 < 2(m} + m}). (4)
Combining (3) and (4),
%m:-; + §m4 < -?;(m’{+m'2'+ my +my),
so because m; = m + m/ + m! fori =1,2,

3m3 3m4__3 1T 3.

12

This implies that

5 - 8 8 8
m1+2m2+3m3+4m4 S §m1+-§m2+§m3+_3_m4,

which proves the lemma. O

We bound the storage used by the Homing Robot as follows.

Lemma 6 If the Homing Robot is started on any unobstructed cell of a grid with n unobstructed
cells, it uses O(logn) bits of storage to localize itself.

Proof. The auxiliary storage used by the Homing Robot consists of thirteen registers storing
integers in the interval [—4n, 4n], for which O(logn) bits suffice. O

We prove our main theorem for the Homing Robot.

Theorem 2 For every integer n > 1 and for every grid with n unobstructed cells, if the Homing
Robot is started on any unobstructed cell of the grid, it localizes itself using O (logn) bits of auziliary
storage and at most 4n moves.

Proof. By Lemma 3 and Lemma 5, if M is the total number of moves made by the Homing
Robot on a grid with n unobstructed cells then
3

M§§-§n=4n.

Lemma 6 shows that O(logn) bits of storage suffice. O

6.4 A lower bound for the Homing Robot

Although we have shown an upper bound of 4n on the number of moves used by the Homing Robot
in a grid with n unobstructed cells, we have been unable to construct a class of grids for which the
Homing Robot uses more than 3n moves. Consider the class of grids exemplified in Figure 6. Let
k and m be positive integers. In the grid Gk, there are m chevron-shaped normal obstacles, each
consisting of 2k + 1 obstructed cells. Figure 6 shows G45. The number of unobstructed cells is
n = 4km + 8m + 4k + 4.

We assume the Homing Robot is started in the cell labelled A. The robot follows the dotted
path shown in Figure 6 until it reaches the cell labelled B. This path consists of 12k +7 moves. The
robot then repeats this path around each of the other normal obstacles, for a total of m(12k + 7)
of moves until it begins to move around the outer boundary. As k and m increase without bound,
we see that the average number of moves per unobstructed cell approaches 3.

The gap between 3n and 4n leads us to ask what the true worst-case number of moves is for the
Homing Robot. Our conjecture is that the upper bound can be reduced. Lemma 8 in the Appendix
suggests that a different proof technique would be required to show this.

13

Figure 7: An infinitely long corridor of white cells.

7 A general lower bound for deterministic localization

Allowing any deterministic localization algorithm, what is the worst-case number of moves required
to localize a robot in any grid with n unobstructed cells? The Depth-first Robot shows that this
number is at most 2n — 2. We show that at least n — 3 moves are required for any deterministic
localization algorithm. Note that this bound does not apply to randomized algorithms like the
Random Robot.

Theorem 3 For any integer n > 3, there exists a grid with n unobstructed cells such that any
deterministic localization algorithm requires that a robot make at least n — 3 moves from some
initial position.

Proof. Construct a grid consisting of an infinitely long horizontal row of unobstructed cells,
bordered to the north and south by obstructed cells (see Figure 7). Place a robot on any of the
unobstructed cells in this corridor; it may move in only two directions, east and west. Let it run
for n — 4 moves using any deterministic algorithm. At this point, the robot will have visited at
most n — 3 cells, including the one in which it started. Now truncate the corridor at both ends so
that it no longer includes cells that the robot did not visit. The grid now consists of at most n — 3
unobstructed cells in a row, surrounded on all four sides by the border. Replace the two obstructed
cells at the eastern and western ends of the corridor with unobstructed cells. Let p denote the
number of unobstructed cells in this grid; we know that p <n — 1.

14

Figure 8: Light gray cells represent those visited by the robot. 1) The robot begins in the leftmost light
gray cell and makes one move to the east. 2) White cells are added at both ends of truncated corridor.
3) The two possible grids that result from adding a white cell to either end. We see that the robot cannot
determine whether it has halted in the third cell or the fourth cell.

We now consider the two different grids of size n constructed by (1) adding one unobstructed
cell at the western end, and n — 1 — p at the eastern end, or (2) adding one unobstructed cell at
the eastern end and n — 1 — p at the western end.

Figure 8 illustrates the moves involved in this construction for the case when n =5 and p = 4.
We can think of these two grids as representing two possible grids that the robot could have started
out in; another way of thinking about these grids is of representing the robot’s two possible current
positions in a single grid. Therefore, after n — 4 moves, the robot cannot distinguish between two
possible positions. O

8 Grids and Finite State Machines

A grid can be transformed into a finite state machine that also represents the environment of the
robot. A finite state machine obtainable in this way is a grid machine.

Given a grid, the grid machine obtained from it has one state corresponding to each unobstructed
cell in the grid. The output of the grid machine at a given state represents the pattern of obstructed
and unobstructed cells among the neighbors of the cell represented by the state. The output
is a vector of eight bits, corresponding to the eight neighbors of the cell, with 1 representing
unobstructed, and 0 representing obstructed. A fixed ordering is chosen for the neighbors, for
example, N, NW, W, SW, S, SE, E, NE. The inputs to the grid machine are N, W, S, and E,
representing possible moves of the robot. If the neighboring cell to the north is unobstructed, then
the input N takes the machine to the corresponding state, otherwise, the input N keeps the machine
in its current state, and similarly for E, S, and W.

Because of the complementary nature of the finite state machine representing the robot’s en-
vironment, the robot’s inputs (sensations) are the environment’s outputs and the robot’s outputs
(actions) are the environment’s inputs. See Figure 9 for a small grid and its corresponding grid
machine, where the inputs that are self-loops have been omitted for clarity.

The problem of robot localization in a known grid is equivalent to the problem of finding
an adaptive homing sequence for the corresponding grid machine. For unrestricted finite state
machines, Hibbard [5] shows that for every integer n there exists a finite state machine M of n
states such that any adaptive homing sequence for M must have length at least n(n — 1)/2.

15

Figure 9: A grid and the corresponding grid machine. The output at a state is determined by the obstructed
(0) or unobstructed (1) status of the eight neighbors. The output at S; is 00011000, at S5 is 00000110, and

SO on.

However, in the case of grid machines, we discover that odometry (the ability of the robot to
determine relative geometric positions in its environment) helps. The bound for the Depth-first
Robot shows that every grid machine with n states has an adaptive homing sequence of length
at most 2n — 2. The lower bound in Section 7 shows that there are grid machines for which a
shortest adaptive homing sequence must have length at least n — 3. The gap between these bounds
suggests the following open question. What is the worst-case minimum length of an adaptive
homing sequence for a grid machine with n states?

9 Conclusion

The Homing Robot is a simple localization algorithm for a robot in a grid environment. It uses
very little storage, O(logn) bits, and does not require a map of its environment, only the values
of its height and width. This property could be useful in a situation where there are many very
simple robots in a common environment communicating with a more complex central controller.
The worst-case number of moves used by the Homing Robot is bounded above by 47, which is not
much worse than the Depth-first Robot’s 2n — 2.

- If the robot (or its central controller) is permitted enough storage to represent a map, there is
a simple optimization that allows possible early termination of any localization method. This is to
keep track of the set P of cells on the map that are consistent with all the observations made by
the robot. P is initialized to the set of cells in the map that have the same pattern of obstruction
of neighbors as the robot observes from its initial cell. After a move, say to the W, P is updated
as follows. Let the set P’ be initially empty. For each cell in P, include its western neighbor in
P if it has the same pattern of obstruction of neighbors as observed from the current cell. After
all the cells in P have been considered, set P to P’. When P contains just one cell, the robot has
localized.

If this optimization is included, then typically the robot will localize long before it has visited
northernmost, westernmost, southernmost, and easternmost boundary cells. However, the “bad”
environment in Figure 6 still causes the Homing Robot to use nearly 3n moves, since it may have
to circumnavigate all but two of the normal obstacles to localize, even with the early termination
criterion. It is an interesting question to find robust and practical algorithms for this variant of the
problem.

16

The following questions may be promising areas for progress.

e Determine the worst-case number of moves of the Homing Algorithm more accurately. We
have shown it is between 3n and 4n.

e Find a localization algorithm that uses O(logn) bits of memory and substantially fewer than
4n moves.

e Find more accurate bounds on the worst-case length of adaptive homing sequences for grid
machines of n states. We have shown it is between n — 3 and 2n — 2. '

e (From [2]) Find an algorithm to search (visit every cell of) a grid that uses O(logn) bits of
memory and substantially less than O(n?) moves.

e Generalize this model in an interesting way to incorporate errors in the robot’s sensations
and actions.

10 Acknowledgments

Most of the results in this paper were presented by the first author in her Senior Thesis in Applied
Mathematics at Yale University in May, 1998. We would like to thank David Eisenstat for his
suggestion and proof of the localization criterion in Section 3 and other helpful discussions.

References

[1] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovész, and C. Rackoff. Random walks, universal
traversal sequences, and the complexity of maze problems. In Proceedings of the 20th IEEE
Symposium on Foundations of Computer Science, pages 218-223. IEEE, 1979.

[2] Manuel Blum and Dexter Kozen. On the power of the compass (or, why mazes are easier to
- search than graphs). In Proceedings of the 18th IEEE Symposium on Foundations of Computer
Science, pages 132-142. IEEE, 1977.

[3] G. Dudek, K. Romanik, and S. Whitesides. Localizing a robot with minimum travel. In
Proceedings of the 6th ACM-SIAM Symposium on Discrete Algorithms, pages 437-446. ACM,
1995.

[4] D. Fox, W. Burgard, S. Thrun, and A. Cremers. Position estimation for mobile robots in
dynamic environments. In Proceedings AAAI pages 983-988, 1998.

[5] Thomas N. Hibbard. Least upper bounds on minimal terminal state experiments for two classes
of sequential machines. Journal of the Association of Computing Machinery, 8:601-612, 1961.

[6] Vladimir J. Lumelsky and Alexander A. Stepanov. Dynamic path planning for a mobile automa-
ton with limited information on the environment. IEEFE Transactions on Automatic Control,
AC-31:1058-1062, 1986.

17

o

Figure 10: Every cell labelled 3 has one of these four neighborhoods, up to rotation and reflection.

Figure 11: A type I cell can have a neighbor labelled 3 in one of two possible ways.
Appendix

We provide a proof of inequality (4) from Section 6. We also show that the constant of 8/3 in
Lemma 5 cannot be reduced.

Lemma 7 Consider any grid. Let mg be the number of cells labelled 3. Fori=1,2, let m" be the
number of cells labelled 1 or 2 that are N or W neighbors of cells labelled 3. Then

m3 < 2(my + mY).

Proof. We first consider cells labelled 3 in more detail. For any cell labelled 3, its neighborhood
can be rotated and reflected as necessary to obtain one of the four neighborhoods shown in Figure 10.

A cell labelled 3 is of type I if none of its edge-adjacent neighbors is obstructed. The first
neighborhood shown in Figure 10 centers on a cell of type I. A cell labelled 3 is of type ITif exactly
one of its edge-adjacent neighbors is obstructed. The other three neighborhoods shown in Figure 10
center on cells of type II. We subdivide the type II cells into II-N, II-W, II-S, and II-E, depending
on which edge-adjacent neighbor (N, W, S, or E) of the cell is obstructed.

Now we consider how two cells of type 3 can be neighbors. A type I cell can be adjacent to
at most one other cell labelled 3, and that cell must be of type I and be corner-adjacent but not
edge-adjacent. The only two possibilities are shown in Figure 11.

Type II cells can only be neighbors of type‘ IT cells. If they are edge-adjacent vertically, they
must be of types II-W and II-E, and if they are edge-adjacent horizontally, they must be of types
II-N and II-S. These possibilities are shown in Figure 12.

In addition, there are four possible ways for type II cells to be corner-adjacent diagonally. These
are shown in Figure 13. Note in particular that a type II-N cell cannot have a SW neighbor labelled
3, and a type II-W cell cannot have a NE neighbor labelled 3.

18

Figure 12: Type II cells can be edge-adjacent vertically or horizontally. The labels N, W, S, and E indicate
types II-N, II-W, II-S, and II-E. Cells labelled with ? may be obstructed or unobstructed.

Figure 13: Type II cells can be corner-adjacent diagonally in four possible ways. The labels N, W, S, and
E indicate types II-N, II-W, II-S, and II-E. Cells labelled with ? may be obstructed or unobstructed.

19

To prove Lemma 7, we divide all the cells labelled 3 in the grid into four kinds of disjoint sets
as follows.

(1) Type I singletons, cells of type I that have no neighbors labelled 3.
(2) Type I pairs, pairs of cells of type I that are adjacent diagonally.
(3) Maximal sets of horizontally adjacent cells of type II.

(4) Maximal sets of vertically adjacent cells of type II.

For each such set S; of cells labelled 3, we associate another set T of cells labelled 1 or 2 that
are N or W neighbors of cells in S;. We show that the sets T; are pairwise disjoint, and that

|S:| < 2|T3.

If we add up these inequalities over all 7, the lefthand side is just the total number of cells labelled
3, namely mg3, and the right-hand side is at most 2(m/ + m%), which proves the lemma.

We now specify how 7; is determined from S;, and prove that it has the required properties.

(1) Suppose S; is a singleton type I cell, {C}. There are four unobstructed edge-adjacent
neighbors of C labelled 1 or 2. Thus at least one of them, say C’ is a N or W neighbor of C. In
this case, let T; = {C'}. The cell C’ cannot also be a N or W neighbor of any other cell labelled -
3, for that would require that C have a neighbor labelled 3, which would violate the definition of
a singleton type I cell. We have |S;| < 2|T;].

(2) Suppose S; consists of a type I pair. There is at least one cell, say C’, that is labelled 1
and is a N or W neighbor of at least one cell of the pair. (Refer to Figure 11.) In this case, let
T; = {C'}. The cell C' is not a N or W neighbor of any cell labelled 3 outside the pair. We have
1Si| < 2|T3.

(3) Suppose S; is a maximal set of horizontally adjacent cells of type II. Then S; must consist
of an alternating row of type II-N and type II-S cells. First we put all the N neighbors of the type
II-S cells from S; into T;; these cells are labelled 1 or 2. Then, if the leftmost cell in the row is
of type II-N, we put its W neighbor into T}; this cell is also labelled 1 or 2. Clearly, all the N
neighbors of type II-S cells from S; are not W of any cell labelled 3. If the leftmost cell in the row
is of type II-N, then its W neighbor cannot be N of any cell labelled 3, for otherwise, a type II-N
cell would have a SW neighbor labelled 3, which is impossible, as indicated in Figure 13. Thus, in
either case, the cells in 7; cannot be N or W neighbors of cells labelled 3 that are not in S;. To see
that |S;| < 2|T;|, we note that if the leftmost cell in the row is of type II-S, then there are at least
as many type II-S cells in the row as type II-N cells. If the leftmost cell in the row is of type II-N,
then there is at most one fewer type II-S cells in the row than type II-N cells, and we add the W
neighbor of the leftmost cell to Tj.

(4) Suppose that S; is a maximal set of vertically adjacent cells of type II. This case is analogous
to (3). S; must consist of an alternating column of type II-W and type II-E cells. To construct T}
we first take all the W neighbors of the type II-E cells in the column. Then, if the topmost cell
in the column is of type II-W, we add its N neighbor to the set 7};. Note that if we add this cell
to T}, then it is not W of any cell labelled 3, because a type II-W cell cannot have a NE neighbor
labelled 3, as indicated in Figure 13. We argue as in the preceding case that |S;| < 2|T;| and that

20

Figure 14: G3, an example of a class of grids for which the ratio of ¢ to b approaches 8/3.

the cells in T; are labelled 1 or 2 and are not N or W neighbors of cells labelled 3 that are not in
S;. This concludes the proof of Lemma 7. O

Finally, we give a construction to show that the constant of 8/3 in Lemma 5 cannot be reduced.

Lemma 8 There is a class of grids G}, such that if m; is the number of cells labelled i in G}, then
as k goes to infinity the ratio of

c=my + 2mq+ 3ms +4my

to
b=my + my+ m3+my

approaches 8/3.

Proof. Consider a class of square grids of height and width 2k + 1 with k% normal obstacles,
each consisting of one cell, and a square outer boundary of 8k cells. G is shown in Figure 14.

In Gi there are k? normal obstacles, and each of them takes 8 moves to circumnavigate. Also,
it takes 8k moves to circumnavigate the border. Applying Lemma 2,

c = 8k® + 8k.
Every unobstructed cell in the grid is a boundary cell, and there are
b= (2k+1)? — k* =3k + 4k + 1

unobstructed cells in Gi. Clearly, the ratio ¢/b approaches 8/3 as k increases without bound. O

21

