
Yale University
Department of Computer Science

Robustness of Class-Based Path-Vector Systems

Aaron D. Jaggard Vijay Ramachandran

YALEU/DCS/TR-1296
December 2004

This work was partially supported by the U.S. Department of Defense (DoD) University Research Initiative
(URI) program administered by the Office of Naval Research (ONR). A shortened form of this work has
been published as a conference paper [10].

Robustness of Class-Based Path-Vector Systems

Aaron D. Jaggard∗ Vijay Ramachandran†

Abstract

Griffin, Jaggard, and Ramachandran [5] introduced a
framework for studying design principles for path-vector
protocols, such as the Border Gateway Protocol (BGP)
used for inter-domain routing in the Internet. They out-
lined how their framework could describe Hierarchical-
BGP-like systems in which routing at a node is deter-
mined by the relationship with the next-hop node on a
path (e.g., an ISP-peering relationship) and some addi-
tional scoping rules (e.g., the use of backup routes). The
robustness of these class-based path-vector systems de-
pends on the presence of a global constraint on the sys-
tem, but an adequate constraint has not yet been given in
general. In this paper, we give the best-known sufficient
constraint that guarantees robust convergence. We show
how to generate this constraint from the design specifica-
tion of the path-vector system. We also give centralized
and distributed algorithms to enforce this constraint, dis-
cuss applications of these algorithms, and compare them
to algorithms given in previous work on path-vector pro-
tocol design.

This work was partially supported by the U.S. Department of De-
fense (DoD) University Research Initiative (URI) program administered
by the Office of Naval Research (ONR). A shortened form of this work
has been published as a conference paper [10].

∗Dept. of Mathematics, Tulane University, New Orleans, LA, USA.
E-mail: adj@math.tulane.edu. Partially supported by National
Science Foundation (NSF) Grant DMS–0239996 and by ONR Grant
N00014–01–1–0795.

†Dept. of Computer Science, Yale University, New Haven, CT, USA.
E-mail: vijayr@cs.yale.edu. Partially supported by a 2001–2004
DoD National Defense Science and Engineering Graduate (NDSEG)
Fellowship, by ONR Grant N00014–01–1–0795, and by NSF Grant
ITR–0219018.

1 Introduction

The standard Internet inter-domain routing protocol, the
Border Gateway Protocol (BGP), determines routes using
independently configured policies in autonomously ad-
ministered networks. Little global coordination of poli-
cies takes place between domains, or autonomous sys-
tems (ASes), because (1) ASes are reluctant to reveal de-
tails about internal routing configuration, and (2) BGP
contains no reliable mechanism to permanently attach in-
formation to a route as it is shared throughout the net-
work. However, without global coordination, interaction
of locally configured policies can lead to global routing
anomalies [1, 4, 7, 11, 13], e.g., route oscillation and
inconsistent recovery from link failures. Because the
techniques used to configure policies and the protocol’s
specification have evolved separately, there is an inherent
trade-off between, on one hand, maintaining rich semantic
expressiveness available with current vendor-developed
configuration languages and autonomy in policy config-
uration, and, on the other hand, guaranteeing that the
protocol will converge robustly, i.e., predictably, even in
the presence of link and node failures. Griffin, Jaggard,
and Ramachandran [5] showed that achieving all three of
these design goals requires a non-trivial global constraint
on the network, but they left open the question of how to
identify and enforce the constraint.

This paper answers this question in the context of class-
based path-vector systems. Path-vector systems, intro-
duced in [5], provide a formal model for design and analy-
sis of path-vector protocols and their policy-configuration
languages. Class-based systems focus on a generaliza-
tion of next-hop-preference routing, where routing policy
for an AS can be defined by the relationships (commer-
cial or otherwise) between it and its neighboring ASes.
The canonical example of such a system is a simplified
version of BGP that takes into account the economic re-

1

alities of today’s commercial Internet—that ASes parti-
tion their neighbors into customers, providers, and peers
and that there are preference guidelines used to decide be-
tween routes learned from neighbors of different classes.
The scope of class-based systems, however, goes beyond
this “Hierarchical BGP” system; the framework can also
be used to build and analyze systems with complete au-
tonomy and those that allow arbitrary next-hop prefer-
ence routing. Furthermore, any protocol specification that
can be described by a countable-weight, monotone path-
vector algebra [12] can also be described by a class-based
path-vector system [9].

In this paper, we provide the best known robustness
constraint for class-based systems. The constraint ensures
the robustness of networks that satisfy it; it is in fact the
best possible robustness guarantee because, in networks
that do not satisfy it, some set of nodes may write poli-
cies that cause route oscillations. (Our proof of this con-
structs such policies.) We give an algorithm to generate
the constraint given only the design specification of the
system. We then provide centralized and distributed al-
gorithms to check networks for violation of the constraint
and discuss their applications, including how to use our
results to check a network with arbitrary next-hop prefer-
ences for potential bad interactions. The distributed algo-
rithm reveals almost no private policy information, pro-
vides several options for correcting a constraint violation,
and has constant message complexity per link and limited
storage at each node. We compare and contrast our algo-
rithms with those in previous work.

Although it may be sufficient to provide a supplemen-
tary protocol enforcing some global conditions (and, in-
deed, the distributed algorithm in this paper, modified for
BGP, can be run alongside BGP to detect potentially bad
policy interactions), there are several benefits to this ap-
proach of analyzing robust protocol convergence from a
design-framework perspective. First, the algorithms in
our paper preclude all policy-based oscillations in ad-
vance; as long as the constraint is enforced, the protocol
can safely run on any network. Second, the approach is an
integral part of designing policy-configuration languages.
The design framework identifies provably sufficient local
and global conditions needed for a protocol to achieve
its design goals. Our paper precisely gives the trade-off
between the strength of local policy guidelines built into
the policy-configuration language and the strength of the

global assumption needed in the broad class-based con-
text. The designer can use these results to consider what
balance between local and global enforcement is desired
and can incorporate the guidelines generated by the re-
sults in this paper into the design of multiple high-level
policy languages—all before running the protocol on an
actual network.

1.1 Related Work

Several papers have presented policy-configuration guide-
lines or design principles to prevent global routing anoma-
lies in path-vector routing. Gao and Rexford [3] showed
that route preferences and scoping consistent with the
Hierarchical-BGP example mentioned above give stable
path-vector routing without global coordination. Griffin,
Shepherd, and Wilfong [6] defined an abstraction of path-
vector routing and identified a sufficient condition for lo-
cal policies that prevents policy-induced route oscillation;
Griffin and Wilfong [8] used those conditions to give a
simple path-vector routing algorithm that dynamically de-
tects policy-induced route oscillations. In addition, Gao,
Griffin, and Rexford [2] combined the results from these
papers to modify a simplified version of BGP to perform
stable back-up routing.

Building on this work, the papers by Griffin, Jaggard,
and Ramachandran [5] and Sobrinho [12] developed for-
mal models for path-vector routing so that properties of
path-vector protocols can be studied without involving de-
tails of protocol dynamics or of actual networks. Both
papers prove results about protocol convergence based
on the design specification of the protocol itself. They
present an application of their frameworks that general-
izes systems like Hierarchical BGP (mentioned above),
incorporating the policy guidelines from [2, 3, 6] into the
design of protocol systems. This paper completes the
analysis of this application: It answers the questions left
open in [5] and gives results that can be used in the general
design of protocols and policy-configuration languages.

2 The Class-Based Framework

Class-based systems, which generalize Hierarchical-
BGP-like systems, are a type of globally constrained
path-vector policy systems (PVPSes). A PVPS describes

2

a protocol that nodes use to exchange path descriptors (in-
stances of the protocol’s data structure describing routes
in the network). A PVPS specifies a ranking function ω
from the set R of all path descriptors into some totally or-
dered set; if r and r′ describe two different paths from a
node v to a network destination, v will prefer the one de-
scribed by r if ω(r) < ω(r′). The PVPS also defines al-
lowable import and export policy functions that nodes use
to modify path descriptors in order to affect their rank;
these are usually compiled from policies written by net-
work operators at each node in some high-level policy lan-
guage. We will recall other relevant definitions and PVPS
results as we proceed; for a fuller exposition of PVPSes
see [5].

In a class-based system, a path descriptor r is a quadru-
ple (d, g, l, P), where d is the forwarding destination of
the path and P is the path itself. The attributes g and l
(whose values in the descriptor r are denoted g(r) and
l(r)) are the level and local preference, respectively, of
the route; these take values in N. Level is shared between
nodes but local preference is not. The ranking function
depends on these attributes: ω(r) = (g(r),−l(r)), with
lexicographic ordering on the values of ω so that r will be
preferred over r′ if g(r) < g(r′) or if g(r) = g(r′) and
l(r) > l(r′). Policies in class-based systems may filter
routes, weakly increase the level attribute, and change the
local preference as desired, but nothing else.

Class-based systems incorporate global relative prefer-
ence and scoping rules using these two attributes; the for-
mer affect relative rank of paths imported from different
classes of neighbors, while the latter specify the classes to
which certain routes may be exported. In BGP, it is com-
mon practice today for a router to always prefer a route
learned from a customer router over a route (to the same
destination) learned from a peer router and for a router to
always export routes learned from its customer(s) to its
provider(s). The first is an example of a relative prefer-
ence rule, the second of a scoping rule.

A class-based PVPS is almost entirely described by a
class description CD = (C, X, W, M), which contains
a set of c classes and three c× cmatrices that describe the
relationship, preference, and scoping rules. The classes
in C = {C1, C2, . . . , Cc}, e.g. “customer” or “peer,”
are used to describe the relationship between one node
and another. In an instance of a class-based system, each
node v will assign a class Cv(u) to each of its neighbors

u; Cv(u) indicates how v views the relationship between
nodes u and v. The cross-class matrix X describes the
allowable ways that u may view v’s role in their relation-
ship given that v views u’s role as Cv(u). A necessary
condition for an instance to be legal is that for every two
adjacent nodes u and v in the network, if Cv(u) = Ci and
Cu(v) = Cj , thenXij = 1. Without loss of generality we
may view X as a symmetric matrix (X may be replaced
with the matrix (min(Xij ,Xji))ij without changing the
legality of any class-based instance). Note that if Cv(u)
always uniquely determines the value of Cu(v) allowed
by X , then X has at most one 1 in each row and column;
assuming no classes are superfluous, X is then a permu-
tation matrix.

Relative preference rules are described by the ma-
trix W , which has entries from the set (•) =
{<,≤,=, >,≥,�} of binary comparison operators,
where x�y for every x, y. (We will refer to a generic
operator in (•) with the symbol •.) If a node v has im-
ported path descriptors ri and rj from neighbors whom
v views as being in classes Ci and Cj , respectively, if
• = Wij , and if g(ri) = g(rj), then the local preference
values l(ri) and l(rj) must be set (via v’s import policy
functions) so that ω(ri) •ω(rj). We assume that the pref-
erence relations between classes specified by W are con-
sistent with a partial order on C; e.g., W should not be
such that W12 = W23 = W31 = ‘<’.

Therefore, W can be used to give a partial order-
ing on the classes describing which class of neighbor’s
routes should be preferred. For example, given the above-
mentioned practice of preferring customer routes to peer
routes, we would set Wij = ‘<’ where Ci is the class
“customer” and Cj is the class “peer.” Note that W is
an antisymmetric matrix of sorts (because the compar-
isons are antisymmetric relations, if Wij = ‘<’ then
Wji = ‘>’) and that the only viable setting on the di-
agonal is Wii = �.1

The scoping rules in a class-based system are described
by M , a c × c matrix with entries from (•) ∪ {⊥}. If
Mij = ⊥, then v may not export path descriptors learned
from a neighbor in class Ci to a neighbor in class Cj .

1The setting Wii = ‘=’ is also possible but not viable. In this case,
all descriptors with the same level imported from a neighbor of class
Ci would have to have equal rank, and then ties could not be broken by
changing the local preference based on, e.g., next-hop address or shortest
path length.

3

If Mij = • �= ⊥, then v may export a path descrip-
tor learned from a neighbor in class Ci to one in class
Cj ; however, if ri is the descriptor that v receives (after
applying the import policy function) from a neighbor in
class Ci, v’s export policy function F out

(v,u) for a neighbor

u in class Cj must satisfy g(ri) • g
(
F out

(v,u)(ri)
)

; e.g., if

Mij = ‘<’, Cv(u) = i, and Cv(w) = j, then v may
export routes learned from u to w, but the export policy
function F out

(v,w) must strictly increase the level attribute of
these descriptors.

In our analysis here, we are primarily interested in
whether or not the entries of W and M allow equality.
We thus define two {0, 1}-matrices Ŵ and M̂ as follows.

Definition 2.1 ({0, 1}-Description Matrices).

1. Let Ŵij be 0 if Wij permits equality (including �).
Let Ŵij = −1 if Wij = ‘<’ and let Ŵij = 1 if
Wij = ‘>’.

2. Let M̂ij be 1 if Mij permits equality, i.e., Mij =
‘=’, ‘≤’, etc., and let M̂ij be 0 otherwise.

Example 2.2 (Hierarchical BGP with Back-up
Routes). This is the canonical example of a class-based
system, motivated by the design guidelines in [2, 3]. It
uses three classes, corresponding to standard Internet
business relationships: C1 or “customer”—someone
to whom connectivity is sold; C2 or “peer”—someone
with whom an agreement is established to transit traffic,
usually to shortcut more expensive or long routes; and
C3 or “provider”—someone from whom connectivity
is purchased. The class consistency rules require that
Cv(u) = C2 implies Cu(v) = C2, and Cv(u) = C1 iff
Cu(v) = C3. The level attribute is used to mark routes
that are for backup use; this is done by increasing the
level on export. Because this is a shared, nondecreasing
attribute that has precedence in ranking, such a back-up
route will not be selected if there are routes with lower
level available. Following economically motivated prac-
tice, customer routes (i.e., routes learned from customers)
are preferred to peer routes when their level attributes
are equal; both are preferred to provider routes. The
scoping rules allow customer routes to be shared with all
neighbors (without requiring a level increase). Peer and
provider routes may be shared with customers without

a level increase; peer routes may be shared with peers
and providers if the level is increased, and provider
routes may be shared with peers if the level is increased.
Provider routes may not be shared with other providers
(as no node should carry transit traffic between two of
its providers). The class-description components for this
system are thus:

C = {C1, C2, C3}, X =

⎡
⎣

0 0 1
0 1 0
1 0 0

⎤
⎦ ,

W =

⎡
⎣

� < <
> � <
> > �

⎤
⎦ , M =

⎡
⎣

≤ ≤ ≤
≤ < <
≤ < ⊥

⎤
⎦ .

The corresponding {0, 1}-matrices are:

Ŵ =

⎡
⎣

0 −1 −1
1 0 −1
1 1 0

⎤
⎦ , M̂ =

⎡
⎣

1 1 1
1 0 0
1 0 0

⎤
⎦ .

Omitting the ability to mark routes for backup use (and
generally ignoring the level attribute) yields the simpler
system of Hierarchical-BGP; both of these systems are
discussed in [5].

Remark 2.3. A proof that this system robust (with the
additional global constraint that there are no customer-
provider cycles) can be found in [5]. We will return to
this example to show that our more general results regard-
ing robustness are consistent with what is already known
about these systems.

3 Robustness and Global
Constraints

Having reviewed the class-based framework, we now
present the contributions of this paper in detail. In this
section, we motivate and describe the constraint that guar-
antees robust convergence for protocols modeled by the
framework; we prove its correctness and show how to
generate it given only the class-based design specification
of a protocol. Then we show how to check this constraint
in two ways: by using a centralized algorithm (Sec. 4),
and by using a distributed algorithm (Sec. 5) that addi-
tionally fixes detected constraint violations.

4

3.1 Robustness and Dispute Wheels

The major goal of a routing system is the assurance that
every instance of a network and local policies will be
robust, i.e., that every legal instance of the system will
have a unique routing solution as will all sub-instances
(these might arise due to the failure of any set of links
and nodes). The additional design goals of autonomy,
transparency, and expressiveness were formally defined
for PVPSes (and thus class-based systems) in [5]. One of
the major results in that paper (Thm. 8, [5]) is that any
robust, reasonably autonomous, transparent, and moder-
ately expressive PVPS must have a global constraint—a
predicate defined on instances of the PVPS whose truth
value on an instance determines whether that instance is
“legal”—that is not identically true. Class-based systems,
by their definition, satisfy these design goals of PVPSes;
thus they must include a non-trivial global constraint if
they are to be robust. A sufficient global constraint for
the Hierarchical-BGP systems in Ex. 2.2 is that the sig-
naling graph does not contain any customer-provider cy-
cles (i.e., cycles in which each node views one of its
neighbors in the cycle as a customer and the other as a
provider) [3]. Our goal here is to find good global con-
straints for class-based systems in general. As a starting
point, we use the broadest-known condition for robust-
ness of path-vector systems, that of dispute-wheel free-
ness; this was presented in [6] and was then adopted into
the PVPS framework in [5]. We now turn to a simpli-
fied definition of this condition, including just the details
needed for class-based systems, after some notation.

Definition 3.1 (Descriptor for a Realizable Path). Let
Pn = vnvn−1 · · · v0 be a putative route in a path-vector
instance, such that vn has learned about Pn from its neigh-
bor vn−1, who learned about Pn−1 = vn−1vn−2 · · · v0
from its neighbor vn−2, etc. This process of route ex-
change began with node v0 originating a path descriptor
r0 and exporting it to v1. At each step along the way, a
subpath Pi of Pn was imported at node vi. We call this a
realizable path because it can be selected as a valid for-
warding route from vi.

Given an edge {u, v} in the network, we define the
arc-policy function for the signaling edge (u, v) to be
the application of u’s export policy function F out

(u,v) for
v followed by the application of v’s import policy func-
tion F in

(v,u) for u. Before the descriptor is imported at v,

the protocol updates the path attribute to reflect the added
edge (u, v), filters out any paths which contain loops, and
hides the local-preference value used by u.2 Formally, if
R is a set of path descriptors known to u, then the arc-
policy function for the signaling edge (u, v) applied to R
is

f(v,u)(R) = F in
(v,u)({(d, g, 0, vP)

| (d, g, l, P) ∈ F out
(u,v)(R), vP is a simple path});

this is the set of path descriptors that v receives along the
edge (u, v). Using arc-policy functions, we can itera-
tively define the path descriptor associated with path Pn
and its subpaths, assuming that it originated at v0 with
path descriptor r0. Let

r(P0) = r0,

and for i, 1 ≤ i ≤ n, let

r(Pi) = f(vi,vi−1)(r(Pi−1)).

Definition 3.2 (Dispute Wheel). An instance of a path-
vector system contains a dispute wheel (see Fig. 1) if there
is a set of nodes {v0, v1, . . . , vn} ⊂ V such that:

1. node v0 advertises a destination and nodes
v1, . . . , vn attempt to find routes to that desti-
nation;

2. there exists a signaling pathQi for each i, 1 ≤ i ≤ n,
from v0 to vi (theQi are not necessarily disjoint); let
Q0 = Qn;

3. there exists a signaling path Ri from each vi to vi+1

for all i, 1 ≤ i ≤ n (where vn+1 = v1; the Ri are
not necessarily disjoint); let R0 = Rn;

4. Qi and Ri−1Qi−1 are realizable paths from node vi
to v0 for all i, 1 ≤ i ≤ n; and

5. ω(r(Ri−1Qi−1)) < ω(r(Qi)) for all i, 1 ≤ i ≤ n;
i.e., every node vi prefers to reach v0 by using the
path Ri−1Qi−1 through vi−1 instead of the path Qi.

2In the general PVPS framework, policy application is explicitly de-
fined using policy application functions; for class-based systems, these
functions are responsible for the updating and filtering as well as apply-
ing the policies in the manner described.

5

The paths Qi are spokes of the dispute wheel, the paths
Ri constitute the rim of the wheel, and the nodes on the
rim of the wheel are its rim nodes.

The importance of dispute wheels is shown by the fol-
lowing theorem.

Theorem 3.3 (Sec. V, [6] and Thm. 5, [5]). Any dispute-
wheel-free PVPS instance is robust.

An instance of a PVPS is a network on which the PVPS
protocol will run, combined with nodes’ import and ex-
port policies that are permitted by the PVPS specification.
Dispute wheels in instances of class-based systems have
the following property, which we will use to detect and
avoid dispute-wheels in this work.

Proposition 3.4 (Lemma 8.5, extended version of [5]).
The level-attribute values of all the path descriptors r(Qi)
and r(RiQi) involved in a dispute wheel are equal.

The following notation and conventions make it easier
to discuss class assignments on a dispute wheel.

Definition 3.5 (Edge-Class Notation).

1. Given an undirected network edge {v, u}, we will
often refer to it as a directed edge contextually in
the direction of signaling, i.e., along e = (u, v), u
exports path descriptors to v. We write e′ = (v, u)
for the edge in the opposite direction (forwarding or
import).

2. The class of an edge e = (v, u) is c(e) = Cv(u).

3. Let x(Ci) = {Cj | Xij = 1}. Then for any edge e,
c(e′) ∈ x(c(e)).

4. Let m(Ci) = {Cj | M̂ij = 1} and let m−1(Ci) =
{Cj | M̂ji = 1}.

So, m(Ci) is the set of classes to which a path descrip-
tor learned from a neighbor of class Ci can be exported
without an increase in level, and m−1(Ci) is the set of
classes from which a path descriptor exported to a neigh-
bor of class Ci without an increase in level could have
been imported.

Definition 3.6 (Homogeneity and Heterogeneity). A
dispute wheel is homogeneous of type Ck iff for all edges
e along the rim, c(e) = Ck. A dispute wheel is hetero-
geneous of types Ck1 , Ck2 , . . . iff for all edges e along the
rim, c(e) ∈ {Ck1 , Ck2 , . . .}.

Dispute

v

xu

d

wCw(v) = η

Cv(w) = β

Cu(v) = ζ

Cv(u) = α
Cv(x) = γ

Wheel

Figure 1: Active node v of a dispute wheel.

3.2 Generating a Global Constraint

PVPS solvability, and thus checking robustness, is NP-
hard in general [6]; we will thus try to find an easy-to-
check global constraint in the class-based context which
rejects as few robust instances as possible. Prop. 3.4 and
the matrices in a class description together restrict the
edge types (and pairs of edge types) which may appear
on the rim of a dispute wheel. Because Thm. 3.3 tells us
that precluding dispute wheels guarantees robustness for
all instances, we can use those restrictions to produce a
sufficient global constraint.

Call the rim nodes at the ends of paths Ri in a dispute
wheel active nodes; these are the nodes at which route
preferences cause the dispute wheel. In Fig. 1, node v is
an active node with neighboring rim nodes u and x—these
may or may not be active nodes themselves. The neighbor
on the spoke is w; the dispute occurs because the route
through u is preferred over the direct route through w, but
the route from w is (or has been) exported to x. Note that
edges in Fig. 1 have arrows in the direction of signaling
or export.

Prop. 3.4 tells us that the level-attribute values of
dispute-wheel paths are the same at the rim, so the matrix
M must permit level equality for the class assignments on
a dispute-wheel rim. The matrix W must also permit the

6

preferences required by Def. 3.2(5) (a necessary condition
for a dispute wheel). In particular, any of the following
conditions at one active node would preclude the dispute
wheel in Fig. 1; they are written from the perspective of
active node v without loss of generality:

(C1) v could not import a descriptor from w and export
it to x without increasing level, i.e., M̂βγ = 0;

(C2) v must prefer routes from w over those from u, i.e.,
Ŵαβ = 1; or

(C3) u could not export a descriptor from a neighbor
and export it to v without increasing level, i.e.,
∀ψ∈C M̂ψζ = 0; etc.

The above conditions could be achieved by forcing the
class assignments α, β, γ, ψ, and ζ to specific values.
Note that in (C1) and (C3), a particular pair of class as-
signments (β and γ, or ψ and ζ) is troublesome because
of the associatedM -matrix entry. This idea of pairs of as-
signments will be used later to describe the general global
constraint.

We now prove a result based on the discussion above.
The following gives conditions that are necessary for an
edge to participate in a dispute-wheel rim (i.e., it general-
izes (C1) and (C3) above).

Proposition 3.7 (Rim Necessary Condition). Let edge e
be on the rim of a dispute wheel. If c(e) = Cα, then

1. ∃Cβ ∈ C : M̂βα = 1; i.e., m−1(Cα) �= ∅; and

2. ∃Cγ ∈ C, Cψ ∈ x(m−1(Cα)) : M̂γψ = 1.

Proof. (Sketch.) Condition 1 follows directly from
Prop. 3.4. Condition 2 follows directly from Lemma 8.6
in the extended version of [5].

If, for each class Cα, either one of these conditions does
not hold or, if both do hold, no edges of class Cα are al-
lowed, then all instances will be dispute-wheel free. This
was the constraint suggested in [5], but it is unreason-
ably strong because it precludes many robust instances;
in particular, the role of condition (C2) is ignored, and
that could break dispute wheels in some instances.

Relying on condition (C2)—tweaking preferences
locally—is not enough, however; e.g., if the class assign-
ment to both incoming edges is the same, no system-wide

rule can prevent the dispute. We now give four negative
results in this regard: each shows the existence of a sim-
ple instance containing a dispute wheel, given a certain
combination of entries for just one or two classes in the
matrices X and M . These are canonical instances that
can be generalized. All but one of the cases do not require
specific values in matrix W for the construction; this sug-
gests that while the constraint in [5] is too strong, some
constraint preventing pairs of class assignments will be
necessary.

First we introduce some notation: because matrix M
involves the scoping rule between an import and export,
the class assignments used to look up values in M are not
all in the same direction (that of signaling). We define
a matrix S incorporating the matrices M and X: entry
Sij = 1 if a descriptor can be exported along two sig-
naling edges, first of class Ci, then of class Cj , without
increasing the level attribute. Equivalently, we may de-
fine S in terms of X and M̂ as follows.

Definition 3.8. S = XM̂ (boolean), i.e., Sij =
min((XM̂)ij , 1) ∈ {0, 1}.

We now proceed to the negative results. The first neg-
ative result involves the existence of dispute wheels with
only one type of class assignment on the rim. One of the
cases requires certain values in W for the construction;
the other case does not.

Proposition 3.9 (Existence of Homogeneous Dispute
Wheels). Suppose Cα ∈ C. If either

1. Sαα = 1, or

2. there exists some Cβ ∈ m−1(Cα) such that Ŵβγ �=
−1 for some Cγ ∈ x(Cα),

then there exists an instance that contains a homogeneous
dispute wheel of type Cα.

Proof. For case 1, we can construct a simple dispute
wheel where all spokes and rim segments have length one,
and for any of these edges e, c(e) = Cα and c(e′) = Cβ
for the same class Cβ ∈ x(Cα). Then, regardless of Ŵ , it
is possible for every rim node to export a spoke descriptor
to its neighbor because Sαα = 1 and for every rim node
to prefer the neighbor’s path because the spoke and rim
neighbors are assigned the same class and we must have
Ŵββ �= −1.

7

For case 2, we can construct a similar dispute wheel,
but while c(eR) = Cα for rim edges eR, we have that
c(e′Q) = Cβ for the reverse spoke edges e′Q. Let c(e′R) =
Cγ for γ as defined in the proposition statement. Then, re-
gardless of Ŵ , it is possible for every rim node to export a
spoke descriptor to its neighbor because Cβ ∈ m−1(Cα)
and for every rim node to prefer the neighbor’s path be-
cause Ŵβγ �= −1.

Example 3.10 (Homogeneous Dispute Wheels in
HBGP). For the system in Ex. 2.2, we have

S =

⎡
⎣

1 0 0
1 0 0
1 1 1

⎤
⎦ ,

so homogeneous dispute wheels of type customer or
provider are possible. Thus, as shown in [3, 5, 6], in-
stances without customer-provider cycles are robust.

The next three results show how to construct dispute
wheels with two types of class assignments on the rim,
regardless of W . None of these results require particular
values in W for the existence of the dispute wheels.

Proposition 3.11 (Simple Heterogeneous Dispute
Wheel). If there exist Cα, Cβ ∈ C such that Sαβ =
Sβα = 1, then there exists an instance containing a het-
erogeneous dispute wheel of types Cα, Cβ .

Proof. We can create a dispute wheel with origin v0 and
two rim nodes v1, v2. Let Cv0(v1) = Cα, Cv0(v2) = Cβ ,
Cv1(v2) = Cβ , and Cv2(v1) = Cα. Then it is possible
for v1 to assign the same class in x(Cα) to v0 and v2 and
prefer the rim path over the spoke path; similarly for v2
with x(Cβ). The export from spoke to rim is possible
precisely because Sαβ = Sβα = 1, and no setting in Ŵ
can break this dispute wheel.

Proposition 3.12 (Non-permutation Heterogeneity).
Suppose X is not a permutation matrix. If there ex-
ist Cα, Cβ ∈ C such that Sαα = 1, Sββ = 1, and
x(Cα) ∩ x(Cβ) �= ∅, then there exists an instance con-
taining a heterogeneous dispute wheel of types Cα, Cβ .

Proof. We can create a dispute wheel with origin v0 and
two rim nodes v1, v2. Let Cv0(v1) = Cα, Cv0(v2) =
Cβ , Cv1(v2) = Cα, and Cv2(v1) = Cβ . Then because

x(Cα) ∩ x(Cβ) �= ∅, it is possible for v1 and v2 to assign
the same class Cγ ∈ x(Cα) ∩ x(Cβ) to v0 and the rim
neighbor. Because Ŵγγ �= −1, both can prefer the rim
path over the spoke path. The export from spoke to rim
is possible precisely because Sαα = Sββ = 1, and no
setting in Ŵ can break this dispute wheel.

Proposition 3.13 (Reverse Heterogeneity). If there exist
Cα, Cβ ∈ C such that ∃Cγ ∈ x(Cα) with M̂βγ = 1 and
∃Cψ ∈ x(Cβ) with M̂αψ = 1, then there exists an in-
stance containing a heterogeneous dispute wheel of types
Cγ , Cψ .

Proof. We can create a dispute wheel with origin v0 and
two rim nodes v1, v2. Let Cv1(v0) = Cα, Cv2(v0) = Cβ ,
Cv1(v2) = Cα, and Cv2(v1) = Cβ . These assignments
are in the reverse direction of export along the wheel.
But, given the statement of the proposition, we can set
Cv0(v1) = Cγ , Cv0(v2) = Cψ , Cv2(v1) = Cγ , and
Cv1(v2) = Cψ and obtain a heterogeneous dispute wheel
of types Cγ , Cψ similar to the dispute wheel constructed
in the proof of Prop. 3.11.

The constructions in the above proofs can be extended
to larger dispute wheels, possibly involving more class
types, as long as the X-, M -, and, in some cases, W -
matrix entries permit. We now construct a predicate
P on classes which generalizes conditions (C1)–(C3).
P(Ci, Cj) will be true exactly when nodes u, v, and w
may be part of a dispute wheel in which v is a rim node,
v imports from u and exports to w, and Cv(u) = Ci and
Cv(w) = Cj . Note that from the proofs above, we see
that just two permitted rim nodes are necessary for some
instance to contain a dispute wheel.

Definition 3.14 (Dispute Predicate). Let P be a predicate
on two classes

P(Cα, Cβ) ⇐⇒(
(Mαβ = 1) ∨

(
∃Cγ ∈ m−1(Cβ) : Ŵγα �= −1

))
.

The claim that P is the condition we want is supported
by the following theorem. It states that a cycle where P
holds pairwise along the edges could be a dispute wheel;
and, if all cycles where P holds pairwise along the edges
are prevented, no dispute wheel can exist.

8

Theorem 3.15 (Exact Condition for Dispute Wheel
Creation). For 1 ≤ i ≤ n, let ki, k′i ∈ {1, . . . , c} so that
Cki

, Cki
′ ∈ C; let kn+1 = k1. There exists an instance

containing a dispute wheel with rim cycle e1, e2, . . . , en,
where en is adjacent to e1, c(ei) = Cki

, and c(e′i) = Ck′i ,
iff ∀1≤i≤n, P(Ck′i , Cki+1) is true.

Proof. We first prove the forward “only-if” direction. As-
sume there exists an instance containing such a dispute
wheel. Let vi be the node incident to edges ei and ei+1;
its class assignments for the neighbor incident to ei and
ei+1 are then c(e′i) = Ck′i and c(ei+1) = Cki+1 , re-
spectively. Every rim node vi is either active (one with
a direct spoke path) or inactive (within a rim segment). If
it is inactive, then some path descriptor imported along
ei must be exported along ei+1 without an increase in
level (by Prop. 3.4); thus, Mk′iki+1 = 1, which implies
P(Ck′i , Cki+1). If it is active, then the imported spoke
path is exported along ei+1 without increasing level (by
Prop. 3.4); thus, it must assign the neighboring spoke
node w a class Cvi(w) = Cγ such that

Mγki+1 = 1. (1)

Furthermore, the descriptor imported along ei must be
preferred more than the spoke path; thus, it must be that

Ŵγki′ �= −1 (2)

so that the rim preference is allowed. (1) and (2) together
imply P(Ck′i , Cki+1). By considering every node vi in this
way, we see that P(Ck′i , Cki+1) must hold for all i.

In the other direction, we construct the specified dispute
wheel if P(Ck′i , Cki+1) holds for all i. Build a cycle of
edges e1, e2, . . . , en, with en adjacent to e1, and assign
c(ei) = Cki

, c(e′i) = Ck′i . Assume there is a destination
node d. As P(Ck′i , Cki+1) holds, either Mk′iki+1 = 1 or

∃Cγ ∈ m−1(Cki+1) : Ŵγk′i �= −1. (3)

First assume that Mk′iki+1 = 1; in this case, the node be-
tween ei and ei+1 can be left an inactive node. If (3) is
true, then the node vi between ei and ei+1 can be made
an active node; in this case, connect the destination node
d to vi and let Cvi(d) = Cγ such that Cγ satisfies (3).
Then let node vi prefer the route imported from the rim
along ei over the route from the spoke along (d, vi). This

is permitted because Ŵγk′i �= −1 by (3). We note that
we can choose at least two nodes vi to be active nodes—
the minimum required for a dispute wheel—because even
if Mk′iki+1 = 1, then we can set vi to be an active node
connected to d with c(vi, d) = c(e′i). If both descrip-
tors imported at vi are from neighbors of the same class,
then the rim path can be preferred over the spoke path,
which is enough to cause the dispute. Therefore, this cy-
cle of edges e1, e2, . . . , en with destination d and class
assignments set as indicated forms a dispute wheel that is
permitted by the class description.

Thm. 3.15 identifies our robustness constraint exactly:
to prevent dispute wheels in any network, we must check
against all cycles where P holds on all pairs of edges in
the cycle; if these cycles are permitted, they are potential
dispute wheels. Formally, we have the following.

Constraint 3.16 (Class-Based Robustness). For all cy-
cles of signaling edges e1, e2, . . . , en, there exists some
i, 1 ≤ i ≤ n such that P (c(e′i), c(ei+1)) does not hold
(assume that en+1 = e1).

By Thm. 3.3, instances obeying this constraint are robust.
Because the presence of a dispute wheel does not preclude
solvability, we cannot say that this constraint is tight.

Algorithm 3.17 (Generation of Robustness Con-
straint). Given a class description, we can find the “trou-
blesome” pairs of assignments satisfying P inO(c3) time,
where c is the number of classes, using the following
naı̈ve procedure:

1. For all 1 ≤ i, j ≤ c, examine Ŵij . If Ŵij �= −1,
create a list T ′ of classes in m(Ci). Add the pair
(j, t) for all t ∈ T ′ to the list T .

2. For all 1 ≤ i, j ≤ c, examine Mij . If Mij = 1 then
add the pair (i, j) to T .

Note that for any pair (t1, t2) ∈ T , P(Ct1 , Ct2) holds.

4 Centralized Dispute-Wheel
Prevention

Although we can now identify the constraint for a given
class description, we have not yet mentioned how to en-

9

force this condition. In this section, we describe a cen-
tralized algorithm that operates on an instance graph and
detects violations of Constraint 3.16.

4.1 Cycle-Detection Algorithm

Given an instance with undirected network G = (V,E)
and nodes’ class assignments, we want to identify all cy-
cles in which P holds on all consecutive pairs of edges
around the cycle. We do this as follows.

Algorithm 4.1 (Centralized Cycle Detection).

1. Construct a digraph GS = (V,ES) using the same
vertices as in the network G. For every edge in
{u, v} ∈ E, ES contains the directed edges (u, v)
and (v, u).

2. Construct a new digraph GL = (VL, EL) from GS
as follows. Let VL = ES . EL contains an edge from
(u, v) to (w, x) iff v = w and P(c(v, u), c(v, x))
holds.

3. Do a directed depth-first search of GL. Any directed
cycles found correspond to potential dispute wheels.

Proposition 4.2 (Correctness). Any cycle in GL found
by Alg. 4.1 corresponds to a potential dispute wheel in the
original network and every dispute wheel in the network
produces a directed cycle in GL.

Proof. Let e0, e1, . . . , ek be a directed cycle in GL, with
ei = ((ui, vi), (ui+1, vi+1)) for ui, vi ∈ V and vi = ui+1

for 0 ≤ i ≤ k (subscripts modulo k + 1). By construc-
tion of GL, P(c(vi, ui), c(vi, vi+1)) holds for every i, so
the cycle {u0, v0}, {u1, v1}, . . . , {uk, vk} violates Con-
straint 3.16 (i.e., it is a potential dispute wheel).

By Prop. 3.4, the rim {v0, v1}, {v1, v2}, . . . , {vk, v0}
of a dispute wheel in G is such that
P(c(vi, vi−1), c(vi, vi+1)) holds for all i. Thus EL
contains ((vi−1, vi), (vi, vi+1)) for every i, producing a
directed cycle in GL.

Proposition 4.3 (Running Time). Alg. 4.1 has running
time O(∆|E|) on a network G = (V,E) with maximum
vertex degree ∆.

Proof. Construction of GS takes O(|V |+ |E|) time, con-
struction of GL takes O(|VL| + |EL|) = O(|E| + ∆|E|)
time, and cycle checking GL by depth-first search takes
O(|VL| + |EL|) = O(|E| + ∆|E|) time. Therefore, the
total running time is O(∆|E|).

4.2 Checking Next-Hop Preferences

Suppose we have a network running a path-vector pro-
tocol for which each node v specifies a partial order �
on neighbors such that for two neighbors u and w, if
u�w, then routes imported from u must be ranked lower
(i.e., more preferred) than routes imported from w, and
if u = w, then no relative preference is forced between
routes imported from u and w. Furthermore, we allow
nodes to describe scoping rules for these neighbors (un-
der what conditions, if any, routes can be exported). These
policies are called next-hop preferences, because the rel-
ative preference and scoping rules for routes are deter-
mined by the next hop along the path, i.e., the neighbor
from which the path descriptor is imported.

Given a network and next-hop preferences, we can con-
struct a class-based system consistent with the nodes’ rel-
ative preference and scoping rules. Define a class descrip-
tion in which there is a class for every directed signal-
ing edge in the network, and assign every neighbor the
class corresponding to the edge between the node and that
neighbor. Then set the entries of W to be consistent with
the partial order for next-hop preferences, and set the en-
tries of M to be consistent with the scoping rules. Most
of the entries of W and M are irrelevant because not all
edges in the graph are adjacent, so comparisons will never
have to be made between all possible pairs of classes.
Essentially, each node’s next-hop preferences define sub-
matrices of W and M .

By creating this consistent class-based system, we can
use the robustness checks developed in this paper to see
whether this network with its next-hop preferences has
any potential dispute wheels. Because there is a class for
every directed edge in the signaling graph, there will be
c = 2|E| classes, and generation of the constraint pairs
satisfying P using Alg. 3.17 will take O(c3) = O(|E|3)
time. However, not all pairs of classes correspond to ad-
jacent edges; assuming that ∆ is the maximum degree of
any vertex in the graph, each node in V gives less than ∆2

pairs of directed signaling edges. For each pair we must

10

check one entry in M and at most ∆ in W , so P may
actually be generated in O(∆3|V |) time. Running the
centralized cycle-check (Alg. 4.1) takes O(∆|E|) time.
The total time is thus O(∆3|V | + ∆|E|), but because
|E| = O(∆|V |), the running time is simply O(∆3|V |).

Below we give the full algorithm that executes the
constraint-generating and centralized constraint-checking
procedures with the running time discussed above for a
network G = (V, E) with next-hop preferences (relative
preference and scoping rules at each node for all neigh-
bors of that node).

Algorithm 4.4 (Check for Next-Hop Preferences).

1. Construct a set T ⊂ V 3. For every node v ∈ G,
repeat the following for each neighbor x of v: For all
neighbors u �= x of v, if a descriptor at v imported
from u can be exported to x (without level increase),
then:

(a) add the triple (v, u, x) to the set T ; and

(b) for all neighbors w such that w � u, add the
triple (v, w, x) to the set T .

After iterating through all nodes v and pairs of neigh-
bors x and u, note that elements of the set T cor-
respond to pairs of class assignments satisfying the
predicate P in the next-hop-preferences sense.

2. Construct a new directed graph GL = (VL, EL).
The vertex set

VL = {(u, v) and (v, u) | {u, v} ∈ E} ;

i.e., there is one vertex for every directed signaling
edge. The edge set

EL = {((u, v), (v, x)) | (v, u, x) ∈ T} ;

i.e., there is a directed edge from (u, v) to (v, w)
iff these two signaling edges can be adjacent on a
dispute-wheel rim.

3. Cycle-check GL using directed depth-first search.
Any directed cycles found correspond to potential
dispute wheels.

Proposition 4.5 (Correctness of Next-Hop-Preferences
Check). Any cycle in GL found by Alg. 4.4 corresponds
to a potential dispute wheel in the original network and
every dispute wheel in the network produces a directed
cycle in GL.

Proof. The graph GL checked for cycles in Alg. 4.4 is
similar to the graph GL checked for cycles in Alg. 4.1;
the difference is that the edges are based on next-hop-
preference conditions instead of a predefined Ŵ and M̂ .
Therefore, this result follows from Prop. 4.2 if we show
that (v, u, x) ∈ T iff P(c(v, u), c(v, x)) would hold for
the Ŵ and M̂ created from the next-hop preferences.

However, this is simple to derive from the construc-
tion of T in step 1 of Alg. 4.4: (v, u, x) ∈ T iff
(1) either an import over (u, v) can be exported over
(v, x) without level increase, thus M̂c(v,u) c(v,x) = 1;
or (2) there exists some neighbor y of v such that u � y
and a descriptor learned from y can be exported to x
without a level increase; thus ∃ y ∈ m−1(c(v, x)) :
Ŵc(v,y) c(v,u) �= −1. These conditions are exactly equiv-
alent to P(c(v, u), c(v, x)).

4.3 Algorithms in Previous Work

Sobrinho [12] presents an algebraic formalism for path-
vector routing that is shown in [9] to be essentially
equivalent to PVPSes. Sec. 6.3 in [12] gives a check
for protocol convergence on a network given the ab-
stract design specification of the protocol—much like
our centralized algorithm given the constraint generated
from the class description. Translated to the class-based
framework, the class-aware constraint-generating algo-
rithm and convergence-checking algorithm from [12] take
time O(c3) and O(c · (|V | + |E|)), where c is the num-
ber of classes, assuming that matrix W is consistent with
a linear order on C. The performance of this algorithm
compared to Alg. 4.1 will depend on how the number
of classes c compares to the vertex degrees in a network
and how sparse the network is. Also note that the algo-
rithm from the algebra framework might give some false
positives: it identifies some cycles as troublesome that
are not actually potential dispute wheels (i.e., the con-
straint checked is stronger than necessary and stronger
than Constraint 3.16). We discuss this difference below
and show how to implement this stronger, but sometimes

11

faster, convergence check in our framework.
In the algebra framework, routing policy is captured by

the assignment of a label to each edge in the signaling
graph. Changes to the attributes of a path descriptor when
it is shared between neighboring nodes are modeled by
an operation that depends on (1) the label on the signal-
ing edge between the neighbors, and (2) the signature of
the path before it is shared—this corresponds to the orig-
inal path descriptor; the result is a new signature, or path
descriptor, that can be ranked at the importing node. Be-
cause the algebra framework does not separately model
import and export transformations, the label assigned to
the edge must capture the policy decisions made at both
import and export. In the class-based framework, policy
decisions depend on class assignments between neigh-
bors. Therefore, when using the algebra framework to
model a class-based system, the labels on signaling edges
must capture the class assignment in both directions—
both nodes’ view of the other node—in order to capture
the relative-preference and scoping rules that eventually
affect the rank or availability of path descriptors. Thus, if
c is the number of classes, there are c2 possible labels.

The robustness algorithm in [12] first generates a set of
labels with which to check cycles (this corresponds to the
generation of our constraint involving pairs of classes):
it identifies sets of labels Lw that come from pairs of la-
bels satisfying an equivalent notion of P. (The variable
w indexes these sets, ordering them based on the relative-
preference order of the labels falling into the sets.) The
algorithm then uses these sets to check the freeness con-
straint: it checks the graph for cycles formed by edges
whose labels all belong to one of these sets Lw (for some
value w). Because the sets Lw are missing information
that could be used to detect that some cycles would not
actually be dispute wheels, some instances are flagged as
problematic even though they are robust.

The following scenario causes the algorithm to pro-
duce a false positive. We will refer to labels with a pair
of classes indicating the class assignments in both direc-
tions along a signaling edge. Suppose that (Cα, Cα′) and
(Cβ , Cβ′) is the only pair of labels involving (Cβ , Cβ′)
that satisfies the equivalent notion of P (i.e., this pair of
edge types could be on a dispute-wheel rim). The algo-
rithm in [12] will add (Cβ , Cβ′) to the appropriate set
Lw. Suppose that the label (Cγ , Cγ′) also belongs to Lw
because it, too, is part of a pair of labels satisfying the

equivalent notion of P. The algorithm would then remove
all cycles in which all edge labels belong to Lw. Consider
such a cycle with two adjacent edges labeled (Cγ , Cγ′)
and (Cβ , Cβ′). It may be the case that Xγα′ �= 1, i.e.,
these edges could not actually participate in a dispute be-
cause doing so would violate class-consistency. The stor-
age of labels in Lw basically throws away one half of the
pair satisfying P, in this case, the label (Cα, Cα′). As a
result, cycles that could not have class consistency on the
overlapping edges and be dispute cycles at the same time
are still flagged.

Algorithm 4.6 (Algebraic Robustness Check, adapted
from [12]). Steps 1–3 generate the algebraic robustness
constraint, the sets Lw; steps 4–5 check that constraint.

1. By assumption, W is consistent with a linear order
<C on the classes C. To each class Ci assign a value
w(Ci) ∈ {1, . . . , c} such that w(Ci) < w(Cj) if
Ci <C Cj . Let w∗ = maxi w(Ci); thus w∗ = O(c).

2. Use Alg. 3.17 to generate pairs of classes on which
P holds. This takes O(c3) time.

3. For each w, 1 ≤ w ≤ w∗, construct the set of labels

Lw = {(Cβ , Cβ′) ∈ C × C | ∃Cα ∈ C :
P(Cα, Cβ) ∧Xββ′ = 1 ∧ w(Cβ′) = w}.

This takes O(c3) time because the sets can be built
by examining the O(c2) pairs (Cα, Cβ) satisfying P
and, for each, examining theO(c) classesCβ′ so that
if Xββ′ = 1, (Cβ , Cβ′) is added to the set Lw(Cβ′).

4. Given the network G = (V, E), construct the graph
GS = (V, ES) as in Alg. 4.1. Then for each w,
1 ≤ w ≤ w∗, construct the graph GS [w] = (V, Ew)
where e ∈ Ew iff c(e) = Cβ , c(e′) = Cβ′ such that
(Cβ , Cβ′) ∈ Lw. This takes O(c|E|) time, total.

5. Cycle-check eachGS [w]; any cycle is a potential dis-
pute wheel. This takes O(c · (|V | + |E|)) time by
depth-first search.

12

5 Distributed Dispute-Wheel
Prevention

Although the Internet graph and node relationships do not
change haphazardly, a centralized algorithm running on a
snapshot of the Internet graph is still somewhat infeasible:
A central source would need to collect information about
the network topology as well as, in a potentially harder
and/or privacy-invading task, information about node re-
lationships throughout the network. In this section, we
first present a distributed algorithm for detecting potential
dispute wheels and then contrast this algorithm with one
given in earlier work.

5.1 Distributed Cycle-Check

Our distributed algorithm (Alg. 5.1) detects potential dis-
pute wheels that include a specified edge on their rim.
The algorithm is administered by the two nodes connected
by the edge in question; it sends at most three messages
across each edge in the graph and does not require that the
graph, minus the edge in question, is dispute-wheel-free.
Furthermore, the algorithm reveals little about the rela-
tionships between nodes in the graph—a node may learn
possibilities for its neighbors’ relationships with other
nodes, but nothing about other relationships in the graph.

If the algorithm detects the edge as problematic, either
the edge can be removed from the signaling graph (i.e.,
the edge is not used to advertise routes) or some tweaks
to local policy can be applied to prevent a dispute wheel.
These tweaks are included in Alg. 5.1 and allow the edge
to exist as-is for the purpose of signaling routes that would
never cause a dispute. This algorithm could be run, e.g.,
by two nodes before adding a signaling link to the Inter-
net graph to see what policy tweaks must be enforced to
prevent route oscillations.

In summary, node u starts the algorithm by sending out
a forward token [N,F] to v. N is a nonce, which prevents
interference between parallel executions of the algorithm,
and F indicates that this is a (forward) token. Any node w
along the way, including v, that receives this token from
some node x passes a copy of the token along to a neigh-
bor y if P(c(w, x), c(w, y)) holds and w has not already
forwarded the token to y. In this way, the token traverses
all pairs of edges that could be part of a potential dispute

wheel. If a cycle of edges is traversed, i.e., u receives
its starting token [N,F] and would forward it to v, then
u knows that the edge (u, v) participates in a potential
dispute-wheel rim. Token-traversal paths end when there
are no neighbors y that should be forwarded the token;
in that case, a receipt, or “backwards” message, [N,B] is
sent to the neighbor from whom the token was received. If
a node w receives receipts from all neighbors to whom it
forwarded the token, w then sends a receipt to the neigh-
bor from whom it received the token. Note that only one
forward token needs to be sent along any edge; any dupli-
cate tokens sent along an edge will take the same route as
the original token, and this has no effect on cycle detec-
tion from u’s perspective. We thus know that all token-
traversal paths will terminate—in the worst case, after the
token has traversed every edge once. The algorithm essen-
tially ends when u receives a receipt from v, indicating
that all token traversals have ended. Node u then sends
out an all-clear message [N,C], which gets forwarded
along the token-traversal paths, so that other nodes can
delete any data structures used for that instance of the al-
gorithm. Once the algorithm has ended, if u detected a
problem, then u can either refuse to signal along (u, v) or
tweak policies so that a dispute wheel could never form
along the cycle.

Algorithm 5.1 (Distributed Edge Check). A node u
should start the following procedure to check the signal-
ing edge (u, v); when checking the network edge {u, v},
v should separately check the signaling edge (v, u) in the
opposite direction. Assume that nodes have a list LQ for
storing nonces from different, parallel executions of this
algorithm. Let the in-neighbors of v be denoted in(v) and
the out-neighbors be denoted out(v).

For node u:

1. Choose and store a nonce N . Create an empty list of
nodes LB .

2. If ∃w ∈ in(u) such that P(c(u,w), c(u, v)) holds,
then u sends the message [N,F] to v along (u, v).

3. Whenever u receives [N,F] from w ∈ in(u), send
the message [N,B] to w. If P(c(u,w), c(u, v))
holds, then add the node w to the list LB .

4. When u receives the message [N,B] from v, u
should send [N,C] to v. Node u may now start

13

routing along (u, v) after applying the appropriate
policy-tweak rules below to nodes in list LB .

5. Node u should ignore any [N,C] messages.

For all nodes w �= u:

1. If w receives the message [N,F] from x ∈ in(w):

(a) If N �∈ LQ, add N to list LQ and create an
array AN of lists of type (V × {0, 1}) indexed
by the elements of in(w).

(b) For each y ∈ out(w), if P(c(w, x), c(w, y))
and (y, 0), (y, 1) �∈ AN (z) for all z ∈ in(w),
then send [N,F] to y and add (y, 0) to AN (x).

(c) If no [N,F] messages were sent above in step
(b), then send [N,B] to x.

2. If w receives [N,C] and N ∈ LQ, then for each
z ∈ in(w), send [N,C] to each y such that (y, 1) ∈
AN (z). Delete AN and remove N from LQ.

3. If w receives [N,B] from y ∈ out(w), then replace
(y, 0) with (y, 1) in AN . If ((y, i) ∈ AN (x) ⇒ (i =
1)), i.e., if y is the last node in the list AN (x) from
which [N,B] was received for some x ∈ in(w), then
send [N,B] to x.

The following are the policy-tweak rules for u if, at the
end of the algorithm, LB is not empty. Let

Y u(w) = { y ∈ in(u) | Cu(y) ∈ m−1(Cu(v))
∧ ŴCu(y)Cu(w) �= −1 }.

Node u should depreference routes from w ∈ LB with
respect to all y ∈ Y u(w). This is only possible iff

�(w,w′) : (w′ ∈ Y u(w)) ∧ (w ∈ Y u(w′)) (4)

because two neighbors cannot both be depreferenced with
respect to each other. If (4) does not hold, then:

1. Pick some w ∈ LB : Y u(w) �= ∅. For all w′ �= w,
if Y u(w′) �= ∅, then increase the level attribute on
import from w′ and remove w′ from LB .

2. Depreference w with respect to all other y ∈ Y u(w).

3. For all w ∈ LB remaining, increase the level on
routes imported from w when exported to v.

The following propositions assert various properties of
the algorithm, including correctness.

Lemma 1 (Number of Tokens). In Alg. 5.1, at most one
[N,F] token is sent along each signaling edge.

Proof. For every node w �= u, an [N,F] message is only
sent to a neighbor if an [N,F] message is received, but
the [N,F] message is not sent if the neighbor has already
received an [N,F] message from w, regardless of how
many [N,F] messages are received at w. Because this
process starts with u sending one [N,F] message to v, it
is clear that at most one [N,F] message is sent between
every pair of nodes.

Proposition 5.2 (Termination). The algorithm termi-
nates, i.e., every node that sends to y or receives from
x a message [N,F] receives from y or sends to x, respec-
tively, a message [N,B].

Proof. We must show that if the [N,F] token is sent along
some edge (x, y), then an [N,B] receipt is sent back from
y to x. Consider a graph GT = (VT , ET) constructed
from the target network G = (V, E). The vertex set VT
is the set of directed signaling edges of G, and there is an
edge in ET from (x, y) to (y, z) if the receipt of a token
[N,F] at y from x causes y to send the token [N,F] to z.

Note that the connected component of GT is a tree
rooted at (u, v); this is because Lem. 1 tells us that an
[N,F] token is sent at most once along a signaling edge,
and we can see from the algorithm that an [N,F] token is
only sent by a node after receiving one itself. Therefore
every node in GT has either no ancestors (if the node is
(u, v) or [N,F] is never sent along the edge) or exactly
one ancestor.

First consider the leaf nodes of the tree; these are edges
(x, y) such that receipt of the [N,F] token at y does
not cause an [N,F] token to be sent. According to the
algorithm, this happens in two cases: (1) y = u; or
(2) there does not exist a neighbor z of y, for which
P(c(y, x), c(y, z)) holds, that has not already received
a token. In both of these cases, an [N,B] message is sent
back to x from y.

Next consider the ancestors of leaf nodes in the tree.
Given the argument above, we know that for such an edge
(x, y), node y receives an [N,B] message from all neigh-
bors z such that (y, z) is a descendant of (x, y). Accord-
ing to the algorithm, once this has happened, every entry

14

in the list AN (x) at y will be of the form (z, 1); thus y
will send an [N,B] receipt to x. This argument can be
repeated for the ancestors of these nodes, etc., so that all
tokens are eventually acknowledged with receipts.

The [N,C] messages terminating the algorithm follow
the path of the tree, so that every node that initially re-
ceived the token will destroy any data associated with the
nonce N .

Proposition 5.3 (Cycle Participation). At the end of the
algorithm, if LB �= ∅ at u, then (u, v) is part of a cycle
violating Constraint 3.16.

Proof. If LB �= ∅, then there exists some w ∈ LB such
that w sends u the message [N,F]. This means that
u originated the message [N,F], sending it to v, and
there is a set of nodes {v = x1, x2, . . . , xn = w}
such that every node xi sends [N,F] to xi+1 (assume
xn+1 = u). According to the algorithm, this only
happens if: (1) P(c(u,w), c(u, v)) holds; and (2) if
P(c(xi, xi−1), c(xi, xi+1)) holds for all 1 ≤ i ≤ n. We
then have a cycle of edges

(u, v), (v, x2), (x2, x3), . . . , (xn−1, w), (w, u)

where P holds pairwise along adjacent edges; this is a
potential dispute wheel containing (u, v).

Proposition 5.4 (Number of Messages). The algorithm
sends either 0 or 3 messages per signaling-graph link.

Proof. By Lem. 1, at most one [N,F] message is sent
along a link. If an [N,F] message is sent, it is clear from
the algorithm and the proof of Prop. 5.2 that one [N,B]
message and one [N,C] message are sent along the link,
and that no other messages are generated as a result of the
[N,F] message. Therefore, the total number of messages
sent along a given link is either 0 (no [N,F] is sent) or 3
([N,F], [N,B] and [N,C] are sent).

Depending on the structure of the graph, a token-
traversal path might include all the edges in a graph; but,
in this case, this will be the only token-traversal path (be-
cause tokens are only sent once per edge).

Alg. 5.1 preserves privacy in the following ways. As
the messages involved contain only a nonce and message
type, the edge being checked by a run of the algorithm

is not revealed to nodes other than u. Furthermore, be-
cause Prop. 5.2 tells us that every [N,F] message sent
is acknowledged with an [N,B]-message reply, nothing
in the algorithm tells any of the other nodes whether or
not a potential dispute wheel has been detected—only u
knows this. The only information learned is that if a node
w receives an [N,F] message from x, it knows that there
exists some neighbor z of x such that P(c(x, z), c(x,w))
holds. w might then narrow down the possibilities for the
assignments Cx(z) and Cx(w), although the latter is al-
ready restricted by Cw(x) and the matrix X . Node w
does not learn any other information about nodes’ class
assignments.

There is an inherent trade-off between the number of
messages sent by the algorithm and the state retained at
each node. Alg. 5.1 can be modified—without sacrificing
privacy—to delete the state for nonce N early, instead of
waiting for an [N,C] message. There are two possible
modifications:

1. The list AN (z) can be deleted once an [N,B] mes-
sage is sent to in-neighbor z; or

2. The array of lists AN can be deleted once [N,B]
messages are sent to all in-neighbors z such that
AN (z) is nonempty, i.e., once all tokens have been
acknowledged.

While these modifications eliminate the need for the
[N,C] message, they lose some benefit of aggregating
token-traversal paths. Consider a node w that has ac-
knowledged all tokens with receipts. Using either mod-
ification, w now retains no state for this run of the algo-
rithm. However, it could receive the forward token from a
neighbor that had not yet sent it a token (e.g., because of
network delays) or from a neighbor that previously sent
it a token (e.g., because it deleted state as well). As a re-
sult of either of these (and certainly in the latter case), w
might send a token to a neighbor it had previously sent a
token, thus duplicating a token-traversal path and increas-
ing the total number of messages used by the algorithm.
Given the first modification, this could happen even when
there are outstanding tokens that have not been acknowl-
edged. Therefore, these modifications may be appropriate
in certain networks where sending duplicate tokens is un-
likely and in networks where maintaining state or send-
ing the [N,C] message is expensive; however, in most

15

cases, these modifications will result in duplicating mes-
sages along token-traversal paths with little added benefit.

5.2 Algorithms in Previous Work

The algorithm SPVP3 in [8] is a distributed path-vector
routing algorithm that detects local-policy-based routing
oscillation while running. SPVP3 essentially adds a path-
history attribute to path descriptors: it stores the changes
in best-route choices that cause the descriptor to be adver-
tised. If there is a cycle in these changes, then the descrip-
tor being advertised is contributing to a route oscillation
due to local policies. These path-history cycles are shown
in [8] to correspond exactly to dispute wheels. Therefore,
in the process of routing, SPVP3 detects the actual policy
conflicts forming a dispute wheel.

The algorithms in this paper take a different
approach—they attempt to detect and/or prevent poten-
tial dispute wheels before a routing dispute ever occurs.
But more importantly, the idea of including a constraint as
part of the system specification allows us to prove proper-
ties about the system at design-time. The centralized and
distributed algorithms, then, essentially implement con-
straint enforcement rather than find modified solutions on-
the-fly. The class-based path-vector routing protocol will
work as expected as long as the system has been designed
to prevent bad policy interactions.

One final difference is that SPVP3 essentially removes
the rim paths on a dispute wheel from the choices that all
rim nodes have for paths to a destination. This is unnec-
essary, because the dispute wheel only needs to be “bro-
ken” at one active node by tweaking preferences. SPVP3

prevents multiple nodes (rather than one) from being as-
signed its more-preferred path, whereas our distributed al-
gorithm tweaks policies at one node to correct a potential
dispute wheel. It is also worth noting that SPVP3 re-
quires potentially large routing messages (the length of
the path history will be on the order of the size of the
dispute-wheel rim). Also, the entire detection process
might be repeated for the same cycle and slightly mod-
ified spoke paths (or a different destination), whereas the
cycle-detection algorithms will detect or fix a potential
dispute-wheel rim before it is used for routing, so that this
cycle does not cause oscillation for any destination or set
of spoke paths. The downside of this, however, is that
some policy tweaks or filtering might be used to fix the

potential dispute-wheel rim even if no route oscillation ac-
tually occurs, whereas SPVP3 deals with the oscillations
as they happen dynamically without affecting policies for
other routes.

6 Conclusion and Future Work

In this paper, we have extended previous work on path-
vector policy systems by focusing on class-based systems,
which generalize Hierarchical-BGP and related protocols.
In particular, we show how to use the specification of a
generic class-based system to generate a global constraint
which guarantees the robust convergence of any network
instance satisfying it. Our constraint is the best-known
such constraint for these systems, and we provide cen-
tralized and distributed algorithms to enforce it. How-
ever, our constraint is not likely to be the most general,
tractable constraint for all path-vector systems. To date,
class-based systems seem to be the only path-vector sys-
tems well-characterized enough that exact constraints for
them can be proven, but studying other characterizations
may yield constraints and enforcement mechanisms that
guarantee robustness for a larger set of path-vector proto-
cols. In addition, the question of how to efficiently run our
distributed algorithm in parallel remains open: in partic-
ular, token-traversal paths from separate instances of the
algorithm can probably be combined to find and fix all
potential dispute wheels at once.

Acknowledgements

We are grateful to Joan Feigenbaum, Dana Angluin, Stan-
ley Eisenstat, and Paul Hudak for helpful discussions and
to the ICNP’04 referees for their useful suggestions.

References

[1] Cisco Field Note. Endless BGP Convergence Prob-
lem in Cisco IOS Software Releases. Oct. 2001.
http://www.cisco.com/warp/public/770/fn12942.html

[2] L. Gao, T. G. Griffin, and J. Rexford. Inherently
Safe Backup Routing with BGP. In Proc. INFO-
COM 2001, pp. 547–556, Apr. 2001.

16

[3] L. Gao and J. Rexford. Stable Internet Routing
Without Global Coordination. ACM/IEEE Trans. on
Networking, 9(6): 681–692, Dec. 2001.

[4] R. Govindan, C. Alaettinoglu, G. Eddy, D. Kessens,
S. Kumar, and W. Lee. An Architecture for Stable,
Analyzable Internet Routing. IEEE Network Maga-
zine, Jan./Feb. 1999.

[5] T. G. Griffin, A. D. Jaggard, and V. Ramachandran.
Design Principles of Policy Languages for Path-
Vector Protocols. In Proc. ACM SIGCOMM’03, pp.
61–72, Aug. 2003. Extended version: Yale Univ.
Tech. Report YALEU/DCS/TR-1250, Apr. 2004.
ftp://ftp.cs.yale.edu/pub/TR/tr1250.pdf.

[6] T. G. Griffin, F. B. Shepherd, and G. Wilfong.
The Stable Paths Problem and Interdomain Routing.
ACM/IEEE Trans. on Networking, 10(2):232–243,
Apr. 2002.

[7] T. G. Griffin and G. Wilfong. An Analysis of
BGP Convergence Properties. In Proc. ACM SIG-
COMM’99, pp. 277–288, Sept. 1999.

[8] T. G. Griffin and G. Wilfong. A Safe Path-Vector
Protocol. In Proc. IEEE INFOCOM 2000, pp. 490–
499, Mar. 2000.

[9] A. D. Jaggard and V. Ramachandran. Relating Two
Formal Models of Path-Vector Routing. In Proc.
IEEE INFOCOM 2005, to appear Mar. 2005.

[10] A. D. Jaggard and V. Ramachandran. Robustness of
Class-Based Path-Vector Systems (conference ver-
sion). In Proc. ICNP’04, pp. 61–72, Aug. 2004.

[11] D. McPherson, V. Gill, D. Walton, and A. Retana.
BGP Persistent Route Oscillation Condition. new-
block RFC 3345, Aug. 2002.

[12] J. L. Sobrinho. Network Routing with Path Vector
Protocols: Theory and Applications. In Proc. ACM
SIGCOMM’03, pp. 49–60, Aug. 2003.

[13] K. Varadhan, R. Govindan, and D. Estrin. Persistent
Route Oscillations in Inter-domain Routing. Com-
puter Networks, 32(1):1–16, Jan. 2000.

17

