Modeling natural and artificial systems has a key role in various applica-
tions, and has long been a task that drew enormous efforts. In this work,
instead of exploring predefined models, we aim at implicitly identifying the
system degrees of freedom. This approach circumvents the dependency of
a specific predefined model for a specific task or system, and enables a
generic data-driven method to characterize a system based solely on its
output observations. We claim that each system can be viewed as a black
box controlled by several independent parameters. Moreover, we assume
that the perceptual characterization of the system output is determined
by these independent parameters. Consequently, by recovering the inde-
pendent controlling parameters, we find in fact a generic modeling for the
system. In this work, we propose a supervised algorithm to recover the
controlling parameters of natural and artificial linear systems. The pro-
posed algorithm relies on nonlinear independent component analysis using
diffusion kernels and spectral analysis. Employment of the proposed algo-
rithm on both synthetic and real examples has shown accurate recovery of
parameters.
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. INTRODUCTION

Modeling natural and artificial systems has a key role inawgiapplications, and has long been a task
that drew enormous efforts. Usually, a predefined model \&ldped for every type of task or system.
Then, the parameters of that model are estimated based ervatisns of the system output. In this work,
we take a different approach. Instead of exploring preddfmedels, we aim at implicitly identifying the
system degrees of freedom or modes of variability. This @ggh enables capturing the intrinsic geometric
structure of the system. Moreover, it circumvents the ddpany of a specific predefined model for a
specific task or system, and provides a generic data-drivethad to characterize a system based solely
on its output observations. We claim that each system canelned as elack boxcontrolled by several
independent parameters. Moreover, we assume that theppgateharacterization of the system output
is determined by these independent parameters. Consggumntecovering the independent controlling
parameters, we find in fact a generic modeling for the sysfigms, in this work, we aim at recovering
the controlling parameters of natural and artificial contioh systems.

Musical instruments are examples of such systems, as eagilbahimstrument is controlled by several
independent parameters. For example, a flute is controjlezbbering its holes. Formally, the parameter
space can be written asdadimensional binary spacf, 1}¢, assuming the flute has holes and each
hole can be either open or covered. An important observigitmat the output signal of the flute depends
on the blow of air (the input signal) and the covering of théekoHowever, the audible music, or the
music tones, depends only on the covering of the holes. leratiords, the played music depends solely
on a finite set of the instrument’s controlling parametensother example worth mentioning, is a violin.
The violin music is determined by the length of the stringe. Mdte that unlike the controlling parameters
of the flute, the parameter space of the violin is continuaums can be written af), /]¢, assumingd
strings of lengtt’. In both examples, by recovering the independent comigliarameters of the musical
instrument, we may naturally characterize the music anditifyethe played tones.

Recently, Singer and Coifman [1] have proposed a nonlimedepgendent component analysis (ICA)
method based on diffusion kernels [2], [3]. They assumetti@abbservable data is a nonlinear mapping
of few independent parameters. Moreover, the parameterassumed to realize a specific variability
scheme, described by an Itd process. Based on estimatithre dbcal distortions of the observations, an
intrinsic metric is computed. This metric is invariant tethonlinear mapping, and conveys the distance
between the parameters. Using this intrinsic metric, a dddmetween the observations is computed, and

a spectral ICA [4] is employed. The obtained spectral deamsition is used to build an inverse mapping



of the observable data into the parametric space.

The spectral embedding proposed in [1] is computed for angset of observations. However, in
practice, and specifically in supervised learning tasks,aflothe data is available. Therefore, various
extension methods for the spectral decomposition have &egaored [5], [6], [7], [8], [9]. Unfortunately,
none of these methods can be naturally employed in [1], stheemetric used in the kernel relies
on estimates of the local distortions of the parameters énabservable space, which are unavailable.
Kushnir et al. [10] extend [1], and propose an efficient egtdiie spectral ICA algorithm. The authors
propose a different intrinsic metric between the obseowati which depends only on estimates of the
local distortions of just a few reference points. The apild extend the embedding enables an efficient
recovering of the independent parameters of observatidnshvare not available in advance.

In this work, we exploit the nonlinear ICA method to recoviee independent parameters of systems.
The main difference and challenge in this work compared }p[lD] is that the output of a system is
not solely determined by the controlling parameters. Fat teason, we restrict the scope of this work
and consider onlgonvolutionsystems, and propose a spectral algorithm, based on [1], til@ecover
the independent parameters of a convolution system. Theopea algorithm is data-driven, nonlinear,
and not specifically-tailored for a certain task. Theseaative features can make it useful in the design,
control and calibration of a variety of systems. We emplog fhoposed algorithm on both synthetic
and real examples. First, we show that the proposed methodairately recover the poles of an auto-
regressive (AR) process. Second, we utilize the propoggatitiim to retrieve the controlling parameters
of acoustic channels in practical setups. It is worthwhitging that acoustic channels are known to be
highly difficult to model and acquire, and play a key role irveleping audio processing applications,
e.g., [11], [12], [13], [14], [15], [16], [17], [18].

This paper is organized as follows. In Section 1l we formeilde problem. In Section I, we present the
computation of a diffusion kernel. In Section IV, the propdsalgorithm for recovering the independent
parameters is presented, including a synthetic examphellii the application to acoustic channels and

experimental results are shown in Section V.

[I. PROBLEM FORMULATION

Throughout this paper, vectors are denoted by bold smadirietand matrices by bold capital letters.
In addition, accessing elements in vectors and matricesiitew with a superscript index in parentheses,
e.g., theith element of a vectoa is expressed as®).

Let @ € R? denote a vector of parameters that control a particularalu artificial system of interest.



We follow Singer and Coifman [1], and Singer et al. [19], arsdwane that the controlling parameters
evolve in time according to two evolution regimes: (1) a dnflalctuations regime, representing fast
natural changes of the system; (2) perceptual slow systeiatieas. In the violin example mentioned in
the Introduction, a perceptual system variation corredpdn setting different lengths of violin strings.
On the other hand, small fluctuations may correspond tordifitefinger placements on the strings, aiming
to produce the same tone.

We restrict the scope of the work and consider only lineatesgs. Letz be a real-valued input signal,
heg be a real-valued impulse response of a linear system, whaciessin time as a result of the time
varying controlling paramete?, andy be the corresponding observable output signal. We assuate th
the input signal: is a zero-mean, wide-sense stationary (WSS) process. ttiggawe only require that
the input signal is a quasi-stationary process (i.e., W8qss in short time intervals), which is a much
weaker assumption that holds for many natural signals sa@paech and music.

We observe the output signal in short-term intervals of tenly. We assume the interval length
is sufficiently short, such that in each interval, the linsgstem can be considered time-invariant.
Consequently, the controlling parameter of the system theaterval is assumed to be constant. In
the flute example, each time interval may correspond to reiffeflute tone, which is configured by a
different cover of the flute’s holes. According to our asstiom the finger placement on the flute does
not vary during the entire short-term interval. We note thatdiscard intervals with varying parameters
as it exceeds the scope of this paper, and intend to addresfuiire work.

Let M be the number of time intervals, and 1t = {6;}}, c R? be the set of the controlling
parameters, such thé is the parameter vector controlling the system in dtieinterval. Letx; andy;
denote the corresponding input and output signals in tinerval <. Thus, the relation betweery and
y; IS expressed using linear convolution as

yi(t) = he,(t) xzi(t) = > ha,(s)ai(t — s)

S§=—00

wheret ands are discrete time indices.

We assumen short-term intervals are available beforehand. Betenote a subset af: training
parameters corresponding to the available intervals. Eagting parametef; € © is measured. times.
Unfortunately, in practice we cannot repeat the measuremvéh exactly the same parameter. Thus,
for each training parameté?;, we have a set of additiondl intervals of the measured signal, with
corresponding paramete{$;; ]Lzl.

With respect to the proposed temporal evolution model of ¢batrolling parameters, a pair of



parametersd; and @;, in time intervalsi and j, convey perceptually different system configuration,
e.g. different cover of the flute holes producing differemmdas. On the other hand, for each training
interval 4, the parameterg®; } in the additional intervals are seen as small perturbatng;, e.g.
different finger placements producing the same tone. Seeerdgip | for mathematical details of the
temporal evolution of the parameters, where we represensittw and rapid variation regimes as drift
and noise coefficients of a stochastic differential equmatio

Our goal in this work is to recover the inaccessible set oftrmding parameter® given the output
signal observations. In practice, we would only recover pheameters up to scaling. In addition, we
assumen training observations and their corresponding parametergiiven beforehand. These training

samples are utilized for calibration and training of thegm®ed recovering algorithm.

IIl. DIFFUSION KERNEL

In this section we construct an anisotropic diffusion ké&rn&e utilize an approximation of the
Euclidean distance in the parametric space (i.e., the adint parameters domain) [1], [10], and build

a kernel between the given observations of the output sigihtide linear system of interest.

A. The observations and covariance matrices

Let ¢,(7) denote the covariance function of the output sigy@), which is defined as [20]

¢y(T) = Ely()y(t + )] = ho(7) * ho(=T) * ca(7), (1)

wherec, (1) is the covariance of the input signa{t). Sincez is a WSS process, (7) is time invariant,
and therefore (1) implies that the time variations:gfr) depend solely on the evolution of the controlling
parameter® of the linear system. Thus, we obtain a representation obtiservable output signal
as a function of the (dynamics of the) controlling paranseterlt is worthwhile noting, that the same
result could be obtained by observing the short-term powectsal density (PSD) of the output signal.
For simplicity, we preferred to observe the second ordetistitzs of the signal directly, conveyed by
the covariance of the observable signal in the time domaither than using the predefined Fourier
transform.

Let ¢ : R — RP denote the (nonlinear) mapping of the parameter vedoes R¢ to the first D

covariance function elements of the output signal, given by

c=c(8) (2)



wherec € R” is a vector of lengthD consisting of the covariance function elements, i.e.
V) = ¢, (j) = E[y(0)y(t + )]

In the remainder of this paper, we view the covariance fomcglements of the linear system output
asobservationsMoreover, these observations are interpreted as (n@m)imeappings of the controlling
parameters via the functian In practice, the covariance elements are not available:gder, they can be
estimated given the output signal as an empiric averageeotithss-multiplication of the output signal
in each time interval separately. In each interialve calculate according to (2 elements of the
corresponding covariance functien = c(6,) based on the output signgl. LetT = {c;}}, denote the
set of observations, and I&t= {¢;}", denote the subset of observations corresponding to thertgai
parameters if9. See Appendix Il for demonstration of the setting by obsenan auto-regressive (AR)
process of ordet.

Let 3(c) denote the covariance matrix of siZex D of the observatior, defined by
»0UF)(¢) = Cov (c(j),c(k)> . (3)

It can be shown (see Appendix | for the derivation and mathieadadetails) that the covariance matrix
can be expressed as
¥(c) =J(c)I(c) 4)

whereJ is the Jacobian matrix of the functian whose elements are given By/) = ¢/, wherec! are
first-order partial derivatives of thgth coordinate of the mapping with respect to the parametéf?.
The Jacobian of the functionis of a key importance to the proposed algorithm as desciitbé&kction
IV, but unfortunately is unavailable. However, (4) enablesrepresentI(c)J” (c) via the accessible
covariance matrix of the observations.
We are able to compute the covariance matrices of only tl@ngaobservations. Given measurements

of the output signal corresponding to the perturbationshefttaining sample$é; }, we compute their
corresponding observatiorg;, }. Now, based on the “cloud” of. observationgc;, }, we estimate the

local covariance matrix:(c;) for each training observation empirically via
1L
S(e) =7 D e (5)
j=1

using the fact that the input signalis zero mean.



B. Computation of the anisotropic kernel

The proposed parametrization method is based on the cotigoutd an anisotropic diffusion kernel.
In order to obtain recovery of the independent parameteescémputed kernel is based on the Euclidean
distance between the parameters. Unfortunately, the pdeasnare available only via the nonlinear
observations. In [1], Singer and Coifman showed that thelie®mn distance between two samples in
the parametric space can be approximated by the obsersatiothis work, we adopt a similar strategy
to approximate the Euclidean distance between the paranete proposed by Kushnir et al. in [10],
which also enables a natural extension.

Letd,, 8, be two parameter samples, i.e., two system configuratiotheiparametric space. According
to previous notation, we observe their nonlinear mappirgyvi: R¢ — RP. Let ¢; = ¢(0;) and
c, = c(6;) be the mapping ob; and 8, into the observable space. It is shown in [10] that a second-
order approximation of the squared Euclidean distancedrpirametric space is given by (see Appendix

1)
HG]- — GkHz = 2(Cj — Ck)T [(JJT) (Cj) + (JJT) (Ck)] ! (Cj — Ck) + ) (ch — Ck||4) . (6)

We compute anV/ x m affinity matrix A between the observations Inand the observations iR.

The affinity is based on a Gaussian kernel with scale paramagtnd given by

A(kJ) = exp {_ HJil(éJ) (é] — ck) H2 } ) (7)

e

We observe the followingn x m matrix
W =8 1/2ATAS /2 (8)

whereS is a diagonal matrix containing the sum dfalong columns, i.eS = diag{AT1}. It is shown
[10] that W(¥7) corresponds to

— i exp {_ (€& — )" [397 (@) + 337 (§ — ) }
) (€))

~ /det((37J e ®)

for €;,¢, € ' and¢ = (¢; + €)/2. Based on Lemma 3.3 in [LOMW is a Gaussian kernel based on
approximation of the Euclidean distance between the trgisamples in the parametric space. Moreover,
(8) implies that the affinity between the training sample3Vhis conveyed via the affinity between just
the training samples and all the other sampledinin other words, two training samples are similar if
they are “seen” the same way by the rest of the samples. Thpefdy enables the possibility of naturally

extending the kernel to new samples as shown in Section IV.



Substituting (4) and (5) into (9) yields
- . -1

W)= T e K c)? |S(@) +2(©)| (€ —c)
det(%(3))

Thus, the desired affinity kernel based on the Euclidearaist between the underlying parameters is

€

given by the observations and their covariance matrices.

IV. FROM THE OBSERVABLE DATA TO THE LINEAR SYSTEM PARAMETERS

In this section we propose a supervised algorithm for reupetrization of linear systems. The recovery
of the controlling parameters of the system relies on theaddecomputed in Section Ill. Based on the
kernel eigen-decomposition, the observation are mappedamew domain, which correspond to the

parametric domain up to scaling.

A. Inverse mapping

Let L be the normalized graph-Laplacian [21] defined as
L=D'W-1,

where D is a diagonal matrix withD(#) = 2?:1 W), It can be shown thal. converges to the

backward Fokker-Planck operatgron theparametric manifold22], [23]
Lg=Aq—VU - Vq,

whereU is the density potentiall = —2log pg. Assuming uniform sampling (i.e., constant potential)
yields VU = 0 and convergence of the graph-Laplacian to the Laplacedeitoperatol. — A.

There exist eigenfunction§p; } of £ that are monotonic functions of the paramet@ras guarantied
by the Strum-Liouville theory. These eigenfunction can besen as suggested in [4]. Thus, they can
be used to represent the data in terms of its independentotiorg parameters. Leb, : ' — R? be a

map from the observations to the space spanned eigenfunctions ofZ, given by

(I’d 1C; — [(pl((_:l‘), - ,(pd((_:l‘)]T . (10)

Ideally, the mapb, can be seen as the inverse map of the nonlinear functigp to scaling. Unfortunately,

in practice we have the eigenvectorslafwhich only approximate the eigenfunctiofig;} of L.
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Fig. 1. A diagram of the parametric and observable space.|lrate the set of samples and the mappings.

B. Restriction and extension operators

Let A be a normalized affinity matriA = AS~1/2, and let{p,}7 and{zpj}j]‘i1 be the left and right
singular vectors of thé/ xm matrix A. In addition, the vectoryp; 170, € R™ and{y; jj‘il € RM form
an orthonormal basis AR andR™ respectively. Accordingly, we have thép, } are the eigenvectors
of W = ATA. It implies that{¢;} establish re-parametrization of the training observationT.
Accordingly, let ®; be an embedding of the training observations into the sppeaned by thel

eigenvectors, given by
Bq:¢ > [@1(€),. .. (@) (11)

Clearly, (11) can be considered as an approximation of the (h@).

On the other hand{y;} are the eigenvectors A AT, which is anM x M affinity matrix between
observations inC". As shown in [10],{«,} provide re-parametrization of the observations. Moreover
{4,} are extensions of¢;} outside the sef'. Let ¥; be an embedding of the observations onto the

eigenvectors oW, given by
Wyic = [hy(ci), ... (e (12)

Consequently, the mayr; recovers the independent parameters of the convolutidersysorresponding
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to the observations, up to scaling. See illustration of tteping in Fig. 1.

In order to obtain an estimate of the parameters, we intatpahe training samples according to
distances in the embedded space. Metconsist of thek-nearest training embedded samp{a®;(c;)}
of ¥,(c;) with the Euclidean metric, and Idty; } be interpolation coefficients betwe¢® ,(c;)} € N
and ¥,(c;), given by
exp (—[[®alei) — Pa(E;)|?/0y,)

> exp (= ®a(ci) — ®a(Cr)l?/0y,)’
W, (S )EN;

v(e:) =

whereo.,, is set to the minimal distance betwedn(c;) and its nearest neighbor. Thus, an estimate of
the parameters is given by the following weighted sum of tA@ing parameters
9i = Z yj(ci)éj. (13)
7O 4(C)EN;

Accordingly, let erg:m denote the re-parametrization error, defined by
erom (c;) = ||0; — 6;]|°. (14)

We note that in case that the parameters of merely few tis@mples are available, we can re-scale the
embedded samplgsl,(¢;)}. For that matter, we repladg; with the re-scaledp,(c;) in the estimation
(13).

C. Setting the algorithm parameters

We define an inverse mappin@g1 from the parameter space to the observable space, which

approximates the mapping as follows
®,'0)= > B0 (15)

where By is a set of the neighbors @&, and; are interpolation coefficients which are given as
exp (=110 — BilP/o5.)
> exp (=0 —6]%/05,)

j:ngBe

Bi(0) = (16)
whereog, is set to the minimal distance betweén and its nearest neighbor in the parametric space.
In case the parameters of the training samples are unalgilale can use the mappin®,(c;) as
approximation off; in (16).

Let errq(c;) denote the followingvalidation error

eral(T:) = [[& — @51 (8:)]* = [lc(8:) — @, (8:)]%, (17)
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Algorithm 1 Re-parametrization algorithm

Training stage:

1)

2)

3)

4)
5)

6)

7)
8)

Obtainm intervals of the system output corresponding to (knowriiing samples of the controlling
parameterg9;}.

CalculateD elements of the covariance function of the measurementshvdonstituterm training
observationgc; }.

Given clouds of additional observations correspondingerturbations of the training parameters,
estimate the local covariance matricgs(c;)} of the m training observations.

Compute the affinity matridW according to (9), for an arbitrary kernel scale

Employ eigenvalue decomposition 8 and obtain the eigenvalugs\;} and the eigenvectors
{e;}.

Construct the ma@, according to (11) to obtain re-parametrization of the iretefent controlling
parameters of the training observations.

Construct the inverse m&p;l according to (15).

Find the optimal kernel scalethat minimizes (17), by repeating 4—7 for different scales.

Testing stage:

1)

2)

3)

4)

Given a set of new observatiods;} corresponding to new controlling parameters, compute the

normalized affinity matrixA according to (7).

Calculatey; as a weighted combination gf; via
1 -
P, = ——Ap;
J )\] J

Construct the maf@; according to (12) to obtain re-parametrization of the iretegent controlling
parameters of the new observations.

Recover the independent parameters according to (13camgpute the mean re-parametrization
error (14).

which conveys the accuracy @gl in estimatinge. We assume it provides a notion of the accuracy of

&, estimating the inverse map .

The mean error of (17) is computed for all training sampldsert, the algorithm parameters are set

to minimize this error. A particular parameter of interesttiie kernel scale. As discussed in [24],

[25], setting the scale conveys a tradeoff between integraif large number of samples (large scale),
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and locality (small scale). We note that this tradeoff iseied emerged in our empirical testing. In [10],
the authors define a more general map for every sample. Howiaveractice we use this mapping for

setting the parameters in a training stage, where only #iritig observations are available. Therefore,
for this particular use, (15) is sufficient.

The complete description of the proposed method is sumetiiz Algorithm 1.

D. Example: autoregressive model

In this section, we recover the parameters of an auto-reigee$AR) system. Consider the following

AR process of orded

d
y(t) =ax(t) =Y alyt 1) (18)
=1

wherez(t) is a zero-mean white noise with variangg, anda are the AR coefficients. Such AR process
is commonly used in many signal processing applicationgalnicular, it is widely spread in modeling
the human vocal tract in speech recognition tasks [26].

An AR process can be viewed as a white noise going througtearlisystem, where the corresponding

transfer functionHg(w) is given by

1
1— Z a(l)efjlw
=1
Alternatively, we can expresHy(w) in a canonical form as
1
Hy(w) = . (20)

d .
ll;[l (1 - H(Z)e_ﬂw)

whered ") are the system poles. Consequently, according to (20)ysters is controlled byl independent
parameter® € R,

Let P,(w) be the PSD of the AR process, which is given by

d
Py(w) = a2 H ‘1 — e (21)
=1

We observe in (21), that the PSD depends only on the comtggilarametef. Consequently, the variations
of the controlling parameters are conveyed by the PSD. N f(21), we can express the covariance
function of the output signal as

ey(r) = F {Py(w)}, (22)
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where F~! denotes the inverse Fourier transform. For simplicity, weitahe explicit expression of
the covariance function. In (22) we represent the covaeasfcthe observable signal as a (nonlinearly)
function of the controlling parametét. We assume that the poles satisfy< \0(1)\ < 1 to maintain
system stability.

Next, we examine the ability of the proposed algorithm toowees the parameters of an AR system
of orderd = 2. For training, we randomly generate = 1000 uniformly distributed training samples in
a rectangulag; ~ U[—0.8,—0.2] x U[0.2,0.8]. Each realization represents a pair of AR poles, i.e. the
controlling parameters of an AR system of ordet 2. Let © denote the set of training parameters. For
each realizatio®; of the 2-poles in©, we create200 low variance Gaussian perturbatiofis to create

a local “cloud” in the vicinity of;, such that
Hz‘j = 9_1 + \/&dw

with dt = 0.001, anddw is 2-D zero-mean unit-variance Gaussian noise.

The training parameters and their clouds are mapped to aenaide space as follows. For each
systemhg , we generate a white Gaussian excitation sigaabf length N = 16384, and measure
the corresponding output signgt. It is worthwhile noting that this experiment was repeatethva
uniformly distributed excitation signal, and similar réisuwere obtained. Based on the measured output,
estimates ofD = 8 elements of the covariance functien are computed. Lef' = {¢;}"; denote the
set of observations corresponding to the training paransieite addition, based on the observatidig }
corresponding to the cloud of points arouflg the covariance matrix of each training observation is
computed a&i(c;) via (5). In summary, we have a setftraining parameters in 2D parametric space,
and a corresponding set of observations in 8-D observable space. The observations are obtained via
a nonlinear mapping : R? — R® of the controlling parameters, i.e; = c(éi).

We follow steps 1-8 in Algorithm 1. Accordingly, we consttwec2-D embedding ofl* via

B, : T — [p1(€), pa(@)]”

Next, we determine the proper kernel scalingrigure 2 shows the mean validation error (17) obtained
by averaging over all the training samples as a function efkérnel scale. Accordingly, we choose
the scales = 0.008, which minimizes the mean error. In addition, the tradebsfween a small scale
for better locality and a large scale for better sample imtéégn is clearly emerged in the curve.

Figure 3 shows a scatter plot of the embedded training sampl&? via ®,, where the color coding

corresponds to the values of the parameters. We observartlagiproximate rectangular shape is retrieved,
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Fig. 3. Scatter plot of the embedded training samples. (#r@wding according to the values of the first péle’. (b) Color

coding according to the values of the second pife.

and that the coloring of the points is parallel to the axesiddeit implies that the embedding comprises
the independent controlling parameters of the AR systenrebicer, ¢, (¢;) and ¢, (c;) can indeed be
interpreted as a re-parametrization of the pair of pﬂZ@% and 052)

Additional 1000 samples are generated from the same distribution, and rddpke observable space
as described above. LétandI’ denote the sets of all = 2000 samples in the parameter and observable
spaces, respectively. We construct the ma&ijpwhich measures the affinity between the training samples
and the additional samples. The extended eigenve¢tps$ are calculated, which correspond to the right

singular vectors ofA. We construct a map using the extended eigenvectors as

Ty e — [Py(c;), Pa(c)]”

In Fig. 4, we illustrate the embedding of the extended sampéhough the shape of the scatter plot

is slightly deformed, the general rectangular shape is tai@ied. Moreover, the coloring of the samples



15

0.06 : : : : : : : 0.06 : —
0.04 0.04 o ”Mﬁm
0.02 0.02f
0 of
£l-002 £l -0.02f
-0.04 -0.04f
-0.06 -0.06/
-0.08 -0.08/
“%06 004 002 0 002 004 006 008 0.1 %06 004 002 0 002 004 006 008 01

(1 (01
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according to the values of the second p6Ié.
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Fig. 5. The mean validation error obtained for all trainirggnples as a function of the kernel scale

implies that the embedding of the extended samples congptiise independent controlling parameters
of the AR system as well. To demonstrate the ability to recdlkie parameters from the obtained re-
parametrization, we compute the parametrization erroj. (The obtained mean error of the extended
samples is eprm = 0.0376.

We further illustrate the ability to recover thiedependentontrolling parameters of the system. We
extend the AR model by adding a pair of polés)0® and -8V, Thus, we obtain that theth
order AR system is still controlled by just two independeatgmeters (the additional two poles are
determined by and6®). We note that model-based algorithms, such as the widsdyglevinson-
Durbin algorithm [20], provide estimates of tHeAR coefficients, but cannot detect the actual degrees
of freedom.

In Fig. 5 we show the mean validation error (17) as a functibthe kernel scale. Accordingly,

the kernel scale for this experiment is setste= 0.13. We note that a much larger scale is used in this
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Fig. 6. Scatter plot of the embedded training samples. (#r@wding according to the values of the first péle’. (b) Color

coding according to the values of the second pife.
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Fig. 7. Scatter plot of the embedded samples. (a) Color godtording to the values of the first pa@#é"). (b) Color coding

according to the values of the second p6Ié.

experiment compared to the previous one, which resultstegmation of more samples. In addition, the
mean error values in this experiment are higher than the ragan values obtained in Fig. 2.
Figures 6 and 7 show the same trends as Fig. 3 and 4. We obsergaagular shape, and color lines

parallel to the axes. Consequently, we obtain that the @aaptures the actual degrees of freedom,

i.e., the two independent poles of the system. In this casmvering the parameters yields mean error

(14) erpm = 0.0392. We note that the recovering error value is slightly higheaittthe mean error
achieved in the previous experiment, where the dependehtiyecobservations in the parameters was

less complicated.
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V. AcousTIiC CHANNELS

In this section we demonstrate the recovering of indepernukrameters of acoustic channels. We first
describe the simulation model and lay out theoretic baakgio Then we present some experimental

results.

A. The image model

The propagation of a sound wave within an enclosure can bsidened linear in case the medium is
homogeneous and at rest. In this case, the propagation errggv by the wave equation. Accordingly,
the acoustic channel from a source to a microphone is olitdigiesolving the wave equation. However,
this solution can hardly ever be expressed analyticallg, therefore, must be approximated. The most
common method for approximating the solution is theage Methodpresented by Allen and Berkley
[27]. This method efficiently computes a finite impulse rasm (FIR) that approximates the acoustic
channel between a source and a sensor in a rectangular rabmmodel an ideal impulse response
from a source to a sensor, all possible sound reflection (sithsld be resolved. These paths propagate
through the room and are reflected after every collision g room walls. The energy of the sound
in each such propagation path decreases as a consequeheesoiund absorption of the air and of the
walls. To circumvent the calculations of all the reflecti@ml collisions, the image method is based on
simulating virtual sources, called images, which are leddieyond the room boundaries, such that the
direct propagation path between the virtual source and ticeophone, approximates the reflected path.

Consider a rectangular room with length, width and heigimoted byL,, L, and L.. Let the sound
source be at a locatian, = [z, ys, 25], and let the microphone be at a locatioe- [z, y, z]. Both vectors
are with respect to the origin, which is located at one of thmers of the room. The relative positions
of the images measured with respect to the microphone po4giising the walls at = 0, y = 0 and

z = 0 can be written as
rp, = [(1 - 2pm)x5 — T (1 - 2py)ys - Y (1 - 2pz)zs - Z]

wherep = (p,,py,p-) is a triplet consisting of binary elements,p,,p. € {0,1} representing the
different reflection directions. In order to consider alleiges, letr,,, = [2m,L,,2m,L,,2m.L.|, where
my, my, andm, are integer values betweenP and P, where P represents the maximal order of

reflection taken into account. Accordingly, et denote the position of an image

rp=r+T1r,+ Tp.



18

The corresponding distance between each image and theghae is given byl = ||r;—r|| = ||rp+1,, |,
and time delay of arrival of the reflected sound is expressed & d/v = ||r, + ry,||/v.
The finite impulse response can now be written as a supeigosif all attenuated and delayed

reflections, given by

heralt) = 3 37 el gl gl gl gl Hgl s 202D (23)

pEP meM dmd
whereP = {(pz, Dy, P2) Pz, Py Pz € {0,1}}, M = {(mgy, my,m,)| — P < mgy,my,m, < P}, andg =
(Bzy» Baas Byrs Bys» B2, B=,) are the reflection coefficients of the six walls. In discréteet simulations,
the delays do not always fall at the sampling instants. Hewefor simplicity, we assume that the
sampling frequencyf, is sufficiently high, such thajfs7 is an integer for each delay. Finally, in
order to simulate the signal picked up by the microphone sth&ce signal can be convolved with the
corresponding impulse response. For more details regaatinustic channels modeling and simulating,
we refer the readers to [28], and the references therein.

In order to approximate channels in typical rooms, we ugua#ied to take into account delayed
reflections ranging betweein1 and 2 seconds. For example, for sampling frequerfey= 16 kHz it
corresponds to impulse responses of length ranging betwé@h and 32000. Consequently, typical
impulse responses consist of thousands of taps. In othatsyeach impulse response can be expressed
as a vectonh, ,_ g in a high dimensional space. However, the presentationeofittite impulse response
in (23) implies that the acoustic channel between a sourdeaanicrophone inside a rectangular room is
controlled by a set off = 12 parameters: (1) the six reflection coefficients of the wall$2) the location
of the sourcer,; and (3) the location of the microphome It is worthwhile noting, that the dependency
between the impulse response of an acoustic channel anont®iting parameters, as conveyed in (23),
is highly nonlinear. Therefore, the task of recovering thatmlling parameters from measurements of
the signal picked up in the microphone, is challenging.

Particular parameters of interest are the source coomtindbcating the source is a problem that has
drawn enormous research efforts in the last few decades [29], [31]. Usually, a beamformer based
on microphone array measurements is implemented [32], [338], [35]. In this work, we show how to

recover the source location based on measurements frongle sicrophone relying on training.

B. Experimental results

In this section, we examine the ability of the proposed mettworecover the controlling parameters

of acoustic channels, simulated using the image methodessriled in Section V-A.
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In the first experiment, we recover threflection coefficient®f two walls. We start by generating
m = 300 training channels. We equally distribug®0 reflection coefficients of two wall$,,, 5., in
the rangef0.15, 0.55], creating a2-dimensional grid. All othert coefficients are set t6.15. Then, we
simulate a room of size¢.,,L,, L.] = [6,6,3]. We place a microphone at= [3,1,1], and a source
at[1.9, 3.8, 1], distant3m from the microphone, in the same altitude, and with azinautple57 /8. Let
0 = [B.,, Bz,] denote the2 controlling parameters of the acoustic channel of order 2, and let®
denote the set of parameters on the grid. For each parafetee createl, = 20 low variance Gaussian
perturbations®);, to create a local “cloud” in the vicinity o;. Now, using the image method, we simulate
m - L = 300 - 20 acoustic channels, each chanh@! corresponds td;.

The training channels and their clouds are mapped to anvdiserspace as follows. For each parameter
vector §;, we generate a white Gaussian excitation siggabf length N = 24000, and measure the
output signaly;, of x; going through the corresponding acoustic chargl Based on the measured
output, the firstD = 24 elementsc; of the covariance function are calculated. [et= {¢;}", denote
the set of observations corresponding to the training perars. In addition, based on the observations
{c;,} corresponding to the cloud of parameters arofincthe covariance matrif(c;) of each training
sample is computed.

Now, additional325 pairs of reflection coefficients are generated in the samgeraand mapped to
the observable space as described abovecLandI" denote the sets of all/f = 625 samples in the
parameter and observable spaces, respectively.

In summary, we have a set dff = 625 parameter vectors of a-D reflection coefficients space,
and a corresponding set @ff observations ir24-D observable space. The observations are obtained
via a nonlinear mapping : R? — R?* of the reflection coefficients, i.&; = c(8;). In this case, the
nonlinearity conveys the relation between the reflectioaffcdents and the acoustic channel, combined
with the relation between the acoustic channel and the vhten.

According to Algorithm 1, and similarly to the constructionSection IV-D, we obtain @-D embedding
of T via

By : T = [1(Ci), pa(@)]”
usinge = 0.007. This kernel scale was chosen such that it brings the vaadrror to a minimum.
Figure 8 shows a scatter plot of the embedded training sanpleere the color coding corresponds to
the values of the parametefls, and 3,,. We observe that the samples are organized on a rectangular

grid. In addition, the coloring of the samples is parallethe axes. Hence, the embedding represents the
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By constructing the matri, the extended eigenvectays are calculated. Thus, we obtain embedding

of the entire observation set via

Wy = [(c;), ha(ci)]

In Fig. 9, we scatter plot the embedded samples. From theigglof the samples, we conclude that

the extended embedding captures the independent comgrpllirameters. The recovering of the reflection

coefficients based on interpolating the training samplesmling to the distance in the embedded space

(13) yields a mean error of gr = 0.0067.
In the second experiment, we test the ability of the proposethod to recover th#cation of the

source. We simulate the same room dimensions and locatitireahicrophone. We uniformly distribute



21

0.1

0.17
3 AN el : . teen
005t I 0.05¢
g o § o
-0.05¢ .. ’ -0.05¢ :°
;.;'-.:.' s ;‘;: [y s .c : :-: '.::':;i
b1 0.05 0 0.05 01 031 Z0.05 0 0.05 01
P1 ©1
Fig. 10. Scatter plot ofp,. (a) The color coding according to the azimuth angle. (b) Thalr coding according to the

elevation angle.

0.17 0.1
2 WIS IT Ly
£ P e ik
0.05r e oo 0.05¢
S, .
.o
o °°
% e e
S S0
soee e
P
-0.05) 3 —0.05F  wltere s L oLclL ol
a5 R crrli rae Lt riiigng
LS Biiain vy nb iy Lok
—0.6 . . . ] -0. . . . .
0.1 -0.05 0.05 0.1 =0. -0. } .
9/]1 b1 0.05 %1 0.05 0.1
Fig. 11. Scatter plot ofp,. (a) The color coding according to the azimuth angle. (b) Thalr coding according to the

elevation angle.

m = 300 source locations on a sector of a sphere around the micrepfAdme sphere radius &m, the
sector azimuth and elevation angles range betWeery 16]. Therefore, we have approximately a source
per 1° in both look directions. In this experiment, the independmmtrolling paramete# is a pair of
azimuth and elevation angles. The rest of the experimeneiiopned similarly to the first experiment.
Figure 10 shows a scatter plot of the embedded training snphere the color coding corresponds
to the parameter§d;}. It implies that both the azimuth and elevation angles acaiiately recovered. The
scatter plot takes the shape of a rectangular grid, wheo®rading to the coloring, each axis represents
either the azimuth or the elevation angle.
In Fig. 11, we present the embedding of the additional poiRtem the coloring of the points, we

conclude that the extended embedding captures the indepeadntrolling parameters, as the coloring
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scheme is maintained. In this case, recovering the origia@meters yields a mean erroryggr= 0.0155.
This result is of particular interest, as we accurately vecdhe direction of arrival of a random source

in a room based on observations fronsiagle microphone, and training.

VI. CONCLUSIONS

We proposed a general algorithm for re-parametrizationinefar systems using diffusion kernels. The
proposed algorithm is based on recent developments ofrapectd nonlinear independent component
analysis techniques, anisotropic kernels, and classesalts from statistical signal processing and Fourier
analysis. We claim that each system can be viewed as a blaclcditrolled by several independent
parameters. By recovering these parameters, we reveatthal @egrees of freedom of the system and
obtain its intrinsic modeling. These attractive features extremely useful for system design, control
and calibration. We employed the proposed algorithm on kgtithetic and real examples. We showed
that the proposed method can accurately recover the polas afito-regressive process and retrieve the
controlling parameters of acoustic channels. Acoustimnkés are a fundamental component in frontend
speech processing applications, such as speech deret@rbesource localization, and echo cancellation.
Therefore, the parametrization of acoustic channels islyignportant, especially since acoustic channels
are known to be challenging to model and acquire.

The characterization of an auto-regressive process isritpkr interest, since it opens the door for
intrinsic modeling of audio signals. As described in thegrapie can view any audio signal as a product
of artificial or natural (e.g. human vocal tract) musicaltinments. Thus, by capturing the instrument’s
intrinsic geometric structure, we are able to provide peteal analysis. For future work, we aim at
exploring this new lead in order to obtain characterizatirfor example, different music tones, various
instruments, speech phonemes, or different speakers. fBatlres may enable us to naturally cluster,
classify, or even filter music genres, speakers, phonemesother similar tasks which are challenging

to perform using existing tools.

APPENDIX |

TEMPORAL EVOLUTION MODEL OF THECONTROLLING PARAMETERS

Following Singer and Coifman [1], we assume that the coliiglparameters evolve according to a
stochastic differential equation. Specifically, the pagters are described as independent It processes
[36], [37], given by

d0W = a®D (@M dt + b (ONdw i =1,....d (24)
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wherea € R? andb € R? are unknown drift and noise coefficients, add are independent white
noises w are Brownian motions). As described in Section I, this iplthat the controlling parameters
evolve according to two regimes: (1) small fluctuations megjiconveyed by the Brownian motion and
the noise coefficientb; (2) slow system variations dependent on the drift coeflilsia.

From (2), we have that the controlling parameters are obsevia the nonlinear map: R? — RP.

The observed element$’) satisfy the stochastic dynamics given by the 1td lemma,[g8]]

. d N2 . o d
dc =3 @ (69)"e, +a<z>cg> g+ bOddw j=1,....D (25)
i=1

wherec and¢/; are first and second-order partial derivatives of ttiecoordinate of the mappingwith
respect tod?.

From (3), using (25), we obtain
d

%0 (c) = (b)2df. (26)
=1
In matrix form, we can express (26) by the Jacobian makrof the functionc as

(c) = J(c)B%3T(c)
whereB is a diagonal matrix witfB(#) = b(®), The matrixB can be assumed to be the identity matrix
B =1, by applying change of variables on (24) such that
40" = 3@t + 1aw? i =1,...,d
where1l is a vector of ones of length. In this case, using the 1td lemma we obtain

(c) = J(c)J¥(c).

APPENDIX I

AUTO-REGRESSIVEPROCESSEXAMPLE

We illustrate the settings from Section Il by observing thkofving auto-regressive (AR) process of

order1
y(t) = z(t) — Oy(t — 1) (27)

wherez(t) is zero mean white noise with? variance, and) < |0| < 1 is the AR coefficient. Clearly
in this example, the system is controlled by a single paranteE RR. However, observing the output
signaly(t) in the time domain, heavily depends on the random white nioiget =(n). Consequently,

the evolution of the controlling parametémay be weakly emerged in(¢), and hence hard to recover.
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Fortunately, we are able to represent the AR process usingotidion. By employing the Fourier

transform, (27) can be written in the Fourier transform dionweith frequency indexv as
Y(w) = X(w)He(w)

where X (w) andY (w) are the Fourier transforms ef(t) andy(t), and Hg(w) is the AR system transfer

function, given by
1

He(w) = 15—

(28)

Equation (28) can be seen as a sum of a geometric seriesingielde infinite AR system impulse
response

he(t) = 0", t=0,1,.... (29)

This impulse response demonstrates a nonlinear dependateygen the system and the controlling
parameter. From (1), using (29) the corresponding covariance functibthe AR process is given by

) oIl

cy(T) =0

In (30) we represent the covariance function of the obsdevaignal as a (nonlinear) function of the
controlling parametef. We note that) should satisfy0 < || < 1 in order to get a stable impulse
response.

In this work, given the output signal measurements, we edgéintheir covariance function elements.
These elements are viewed as observations of the nonlinagping (30). Thus, the goal in this work

is to recover the controlling parametgéfrom such observations.

APPENDIX Il

EUCLIDEAN DISTANCES ON THE PARAMETRIC MANIFOLD

We briefly review the derivation of the approximation of thecikdean distance in the parametric space
from [10]. Let 8,9 € R? be two parameter vectors (i.e., two system configurationthénparametric
space). According to previous notation, we observe theimeat mapping: : R — R”. Let ¢ = ¢()
and~ = c(¥) be the mapping o® and+ into the observable space. Defipe R? — R¢ to be the
inverse map of: : R — R”. We have by the definition of the norm that

2 2 , @) 1 96\ 2
:H@_MH zz<ﬁ<z>_%> . (31)

v -0
2 2
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Then, each coordinate af at 9 = g(+) can be approximated by a Taylor series at the middle point
(60+19)/2:

(32)

whereg! andgj, are the first and second order derivativeg;6f with respect tocl?). Similarly to (31)

and (32), we approximate at & = g(c) and obtain

60— 9| 6+ 9| o 0090\’
R s S
and
i (1) 9 i ; j
00 = B4 1 (1) (e~ 70
L e (34)
50 (759 (&9~ 40 (e = 30) + O (I el
Combining (31) and (33) yields
—0112 _ 2
I -6l =222 +2] %2 (35)
i ) 19® \ 2 i ) 19® \ 2
:22@()_%) +22(9()_%>
and by substituting (32) and (34) into (35), we get
—1 +c
1691 = (=" | (037) (1) | e =m + O Iy = ). (36)

It is shown in [10] that

AN <’YT+C> —2[(337) () + (3TT) (V)] "+ O (Ily —cllY) - (37)

Now, substituting (37) into (36) yields a second-order appnation of the squared Euclidean distance

in the parametric space
10 =917 = 2(c = 3)" [(337) () + (3IT) ()] " (e =)+ O (Ily —e|) .
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