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Abstract

Prior knowledge constraints are imposed upon a learning problem
in the form of distance measures. Prototypical 2-D point sets and
graphs are learned by clustering with point matching and graph
matching distance measures. The point matching distance mea-
sure is invariant under affine transformations - translation, rota-
tion, scale and shear - and permutations. It operates between noisy
images with missing and spurious points. The graph matching dis-
tance measure operates on weighted graphs and is invariant under
permutations. Learning is formulated as an optimization problem.
Large objectives so formulated (~ million variables) are efficiently
minimized using a combination of optimization techniques - alge-
braic transformations, projection methods, clocked objectives, and
deterministic annealing.

1 Introduction

While few biologists today would subscribe to Locke’s description of the mind as
a tabula rasa, the nature of the inherent constraints - Kant’s preknowledge - that
helps organize our perceptions remains much in doubt. Recently, the importance
of such preknowledge for learning has been convincingly argued from a statistical
framework [Geman et al, 1992]. Several researchers have proposed that our brains
may incorporate preknowledge in the form of distance measures [Shepard, 1987;




von der Malsburg, 1988; Bienenstock and Doursat, 1991). We have recently be-
gun to explore this idea [Gold, Mjolsness, Rangarajan, 1994]. In this work, by
enhancing both the scope and function of previously examined distance measures,
we significantly expand the problem domains where learning may take place.

We learn objects consisting of noisy 2-D point-sets or noisy weighted graphs by
clustering with point matching and graph matching distance measures. The point
matching measure is invariant under permutations and affine transformations (sep-
arately decomposed into translation, rotation, scale and shear) and operates on
point-sets with missing or spurious points. The graph matching measure is invari-
ant under permutations. These distance measures and others like them may be
constructed using Bayesian inference on a probabilistic model of the visual domain.
Such models introduce a carefully designed bias into our learning, which reduces its
generality outside the problem domain but increases its ability to generalize within
the problem domain. From a statistical viewpoint, outside the problem domain it
increases bias while within the problem domain it decreases variance. The resulting
distance measures are similar to some of those hypothesized for cognition.

The distance measures and learning problem (clustering) are formulated as objec-
tive functions. Fast minimization of these objectives is achieved by a combination
of optimization techniques - algebraic transformations, projection methods, clocked
objectives, and deterministic annealing. Combining these techniques significantly
increases the size of problems which may be solved with recurrent network archi-
tectures [Rangarajan, Gold, and Mjolsness, 1994]. Even on single-processor work-
stations, non-linear objectives with a million variables can routinely be minimized.
With these methods we learn prototypical examples of 2-D points set and graphs
from randomly generated experimental data.

2 Theory

2.1 An Affine Invariant Point Matching Distance Measure

The first distance measure quantifies the degree of dissimilarity between two unla-
beled 2-D point images, irrespective of bounded affine transformations, i.e. differ-
ences in position, orientation, scale and shear. The two images may have a different
number of points. The measure is calculated with an objective that can be used to
find correspondence and pose for unlabeled feature matching in vision. Given two
sets of points {X;} and {Y,}, one can minimize the following objective to find the
affine transformation and permutation which best maps Y onto X:
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A is decomposed into scale, rotation, vertical shear and oblique shear as follows:

A = 5(a)R(©)Shy (b)Sha(c) ,
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R(O) is the standard 2x2 rotation matrix. g(A) serves to regularize the affine trans-
formation by bounding the scale and shear components. m is a fuzzy correspondence
matrix which matches points in one image with corresponding points in the other
image. The constraints on m ensure that each point in each image corresponds to
at most one point in the other image. However, partial matches are allowed, in

which case the sum of these partial matches may add up to no more than one. The
inequality constraint on m permits a null match or multiple partial matches.

The o term biases the objective towards matches. The decomposition of A in the
above is not required, since A could by left as a 2x2 matrix and solved for directly
in the algorithm that follows. The decomposition just provides for more precise
regularization, i.e., specification of the likely kinds of transformations. Also Sha(c)
could be replaced by another rotation matrix.

Then given two sets of points {X;} and {Y;} the distance between them is defined
as:

D({X;},{Yx}) = mtir}‘(Epm(m,t,A) | constraints on m)
mt,

This measure is an example of a more general image distance measure derived in
[Mjolsness, 1992]:
d(z,y) = mind(z, T(y)) € [0, c0)

where T is a set of transformation parameters introduced by a visual grammar.

We transform our inequality constraints into equality constraints by introducing
slack variables, a standard technique from linear programming:
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and likewise for our column constraints. An extra row and column is added to the
permutation matrix m to hold our slack variables. These constraints are enforced by
applying the Potts glass mean field theory approximations [Peterson and Soderberg,
1989] and a Lagrange multiplier and then using an equivalent form of the resulting

objective, which employs Lagrange multipliers and an z log 2 barrier function [Yuille
and Kosowsky, 1994]:
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In this objective, we are looking for a saddle point. Equation (1) is minimized with
respect to m, ¢, and A which are the correspondence matrix, translation, and affine
transform, and is maximized with respect to u and v, the Lagrange multipliers
that enforce the row and column constraints for m. m is fuzzy, with the degree of
fuzziness dependent upon S.

The above defines a series of distance measures, since given the decomposition of A
it is trivial to construct measures which are invariant only under some subset of the
transformations (such as rotation and translation). The regularization and a terms
may also be individually adjusted in an appropriate fashion for a specific problem
domain.

2.2 Weighted Graph Matching Distance Measures

The following distance measure quantifies the degree of dissimilarity between two
unlabeled weighted graphs. Given two graphs, represented by adjacency matrices
Gji and gim, one can minimize the objective below to find the permutation which
best maps G onto g [Rangarajan and Mjolsness, 1994]:
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with constraints: Vj Zf=1 mjr =1, Vk E};] mjr = 1, Vjk mj; > 0. These
constraints are enforced in the same fashion as in (2) with an z log z barrier function
and Lagrange multipliers. The objective is simplified with a fixed point preserving
transformation of the form X? — 20X — 2. The additional variable (¢) introduced
in such a transformation, described as a reversed neuron in [Mjolsness and Garrett,
1990}, is similar to a Lagrange parameter. A self-amplification term is also added to
push the match variables towards 0 or 1. This term (with the 5 parameter below)
is similarly transformed with a reversed neuron. The resulting objective is:
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As in section 2.1, we look for a saddle point. Equation (2) is minimized with respect
to m and o which are the correspondence matrix and reversed neuron of the trans-
form, and is maximized with respect to «, A, and , the Lagrange multipliers that
enforce the row and column constraints for m and the reversed neuron parameter
enforcing the first fixed point transformation. m may be fuzzy, so a given vertex in




one graph may partially match several vertices in the other graph, with the degree
of fuzziness dependent upon B, however the self-amplification term dramatically
reduces the fuzziness at high 3.

A second, functionally equivalent, graph matching objective is also used in the
clustering problem (as explained in section 3.3):
J L K M
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with constraints: Vj Zfﬂ mir =1, Vk Z}"=1 mjr =1, Vjk mjr > 0.

2.3 The Clustering Objective

The learning problem is formulated as follows: Given a set of I objects, {X;} find
a set of A cluster centers {Y;} and match variables {M;,} defined as

M.. = 4 1 if Xiisin Yo’s cluster
71 0 otherwise,

such that each object is in only one cluster, and the total distance of all the objects
from their respective cluster centers is minimized. To find {Y,} and {M;,} minimize
the cost function,

I A
Eclustcr(yy M) = Z Z MiaD(Xiv Ya)
i=1la=1
with constraints: Vi Za Miqs =1, Via M;, > 0. D(X;,Y,), the distance function,
1s a measure of dissimilarity between two objects.

The constraints on M are enforced in a manner similar to that described for the
distance measure, except that now only the rows of the matrix M need to add to
one, instead of both the rows and the columns. The Potts glass mean field theory
method is applied and an equivalent form of the resulting objective is used:
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Here, the objects are point-sets or weighted graphs. If point-sets are used, the
distance measure D(X;,Y,) is replaced by (1), if graphs it is replaced by (2) or (3).
For example, after replacing the distance measure by (1), we obtain:
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A saddle point is required. The objective is minimized with respect to Y, M,
m, t, and A which are respectively the cluster centers, the cluster membership
matrix, the correspondence matrices, the translations and affine transformations.
It is maximized with respect to A, which enforces the row constraint for M, and
p# and v which enforce the column and row constraints for m. M is a cluster
membership matrix indicating for each object i, which cluster a it falls in, and
m;, is a permutation matrix which assigns to each point in cluster center Y, a
corresponding point in object X;. (Aig,tia) gives the affine transform between
object i and cluster center a. Both M and m are fuzzy, so a given object may
partially fall in several clusters, with the degree of fuzziness depending upon S,

and By .

Therefore, given a set of objects, X, we construct E.yster and upon finding the
appropriate saddle point of that objective, we will have Y, their cluster centers,
and M, their cluster memberships.

An objective similar to (5) may be constructed using the graph matching distance
measure in (2) or (3) instead.

3 The Algorithm

3.1 Overview - Clocked Objective Functions

The algorithm to minimize the clustering objectives consists of two loops - an inner
loop to minimize the distance measure objective (either (1) or (2)) and an outer
loop to minimize the clustering objective (4). Using coordinate descent in the outer
loop results in dynamics similar to the EM algorithm for clustering [Hathaway,
1986]. The EM algorithm has been similarly used in supervised learning [Jordan
and Jacobs, 1993]. All variables occurring in the distance measure objective are
held fixed during this phase. The inner loop uses coordinate ascent/descent which
results in repeated row and column normalizations for m. The minimization of m,
and the distance measure variables (either ¢, 4 of (1) or p, o of (2)), occurs in an
incremental fashion - that is their values are saved after each inner loop call from
within the outer loop and are then used as initial values for the next call to the
inner loop. This tracking of the values of the distance measure variables in the
inner loop is essential to the efficiency of the algorithm since it greatly speeds up
each inner loop optimization. Most coordinate ascent/descent phases are computed
analytically, further speeding up the algorithm. Poor local minima are avoided, by
deterministic annealing in both the outer and inner loops.

The resulting dynamics can be concisely expressed by formulating the objective as
a clocked objective function, which is optimized over distinct sets of variables in
phases, (letting {D} be the set of distance measure variables (e.g. {A,t} for (1))




excluding the match matrix),

Eciocked = Ecluster((((/la m)A) (V, m)A>Q), {D}>®, (’\’ M)Aa YA)@
with this special notation employed recursively:

E(z,y)e : coordinate descent on z, then y, iterated (if necessary)
z4 : use analytic solution for z phase

The algorithm can be expressed less concisely in English, as follows:

Initialize {D} to the equivalent of an identity transform, Y to random values
Begin Outer Loop
Begin Inner Loop
Initialize {D} with previous values
Find m, {D} for each ia pair :
Find m by softmax, normalizing across j, then k, iteratively
Find {D} by coordinate descent
End Inner Loop
If first time through outer loop 1 B, and repeat inner loop
Find MY using fixed values of m, {D}, determined in inner loop:
Find M by softmax, across i
Find Y by coordinate descent

T ﬂM’ ,Bm
End Outer Loop

When the distances are calculated for all the X - Y pairs the first time through the
outer loop, annealing is needed to minimize the objectives accurately. However on
each succeeding iteration, since good initial estimates are available for {D}, (the
values from the previous iteration of the outer loop) annealing is unnecessary and
the minimization is much faster.

The speed of the above algorithm is increased by not recalculating the X - Y distance
for a given ia pair when its M;, membership variable drops below a threshold.

3.2 Inner Loop

The inner loop proceeds in two phases. In phase one, while {D} are held fixed,
m is initialized with the softmax function and then iteratively projected across its
rows and columns until the procedure converges. In phase two {D} are updated
using coordinate descent. Then f,, is increased and the loop repeats. Let Egmuye
be the distance measure objective [(1) or (2)] without the terms that enforce the
constraints (i.e. the zlogz barrier function and the Lagrange parameters).

In phase one, m is updated with softmax:
exp(—Pm O amwe(Xi, Ya)/Omiaji)
f':ll eXp(—Lm OEamue(Xi, Ya)/amiajk')

Migjk =
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Using coordinate descent, the {D} are updated in phase two. If a member of { D}
cannot be computed analytically (such as the terms of A which are regularized),
Newton’s method is used to compute the root of the function. So if d,, is the nth
member of {D} then in phase two we update d;ay, such that:

aEdmwc(Xi ) Ya) -

adian 0

Finally B, is increased and the loop repeats.

By setting the partial derivatives of Eg, to zero and initializing the Lagrange
parameters to zero, the algorithm for phase one may be derived.

Beginning with a small 3,,, allows minimization over a fuzzy correspondence matrix
m, for which a global minimum is easier to find. Raising 3, drives the m’s closer
to 0 or 1, as the algorithm approaches a saddle point.

3.3 Outer Loop

The outer loop proceeds in three phases: (1) distances are calculated by calling the
inner loop, (2) M is projected across a using the softmax function, (3) coordinate
descent is used to update Y.

Therefore, using softmax, M is updated in phase two:
exp(=Bm D(Xi,Ya))
o =1 exp(=Pa D(X;, Y1)

Y, in phase three is calculated using coordinate descent. Let y,, be the nth member
of {Y}. y, is updated such that:

aEcluster
OYan

M;, = (6)

=0 (7)

Then By is increased and the loop repeats.

When learning prototypical point-sets, yap, in (6) will be either the z or y coordinate
of a point in the prototype (cluster center). If weighted graphs are being learned
then yan will be a link in the cluster center graph. When clustering graphs, (2) is
used for the distance in (6) while (3) is used to calculate y,, in (7). This results in
a faster calculation of (6), but for (7) results in an easy analytic solution.

When analytic solutions are computed for (7) the outer loop takes a form similar to
fuzzy ISODATA clustering [Duda and Hart, 1973], with annealing on the fuzziness
parameter.

4 Methods and Experimental Results

Five series of experiments were run to evaluate the learning algorithms. Point sets
were clustered in four experiments and weighted graphs were clustered in the fifth.
In each experiment, a set of object models were used. In one experiment handwrit-
ten character data were used for the object models, in the other four experiments




the object models were randomly generated. From each object model, a set of object
instances were created by transforming the object model according to the problem
domain assumed for that experiment. For example, an object represented by points
in two dimensional space was translated, rotated, scaled, sheared, and permuted
to form a new point set. A object represented by a weighted graph was permuted.
Noise was added to further distort the object. Parts of the object were deleted and
spurious features (points) were added. In this manner, from a set of object models,
a larger number of object instances were created. Then, with no knowledge of the
original objects models or cluster memberships, we clustered the object instances
using the algorithms described above.

The bulk of our experimental trials were on randomly generated patterns. However,
in order to clearly demonstrate our methods and visually display our results, we
will first report the results of the experiment where we used handwritten character
models.

4.1 Handwritten Character Models

An X-windows tool was used to draw handwritten characters with a mouse on a
writing pad. The contours of the images were discretized and expressed as a set
of points in the plane. Twenty-five points for each character were used. The four
characters used as models are displayed in row 1 of Figure 1. Each character model
was transformed in the manner described above to create 32 character instances
(128 characters for all four). Specifically (in units normalized approximately to the
height of ‘b’ in Figure 1): N(0,.02) of Gaussian noise was added to each point.
Each point had a 10% probability of being deleted and a 5% probability of gener-
ating a spurious point. The components of the affine transformation were selected
from a uniform distribution within the following bounds; translation: =+.5, rotation:
+27°, log(scale): +log(.7). log(vertical shear): +log(.7), and log(oblique shear):
+log(.7). In rows 2-5 of Figure 1, 16 out of the 128 characters generated are dis-
played. The clustering algorithm using the affine distance measure of section 2.1
was run with the 128 characters as input and no knowledge of the cluster member-
ships. Figure 2 shows the results after 0, 4, 16, 64, 128 and 257 iterations of the
algorithm. Note that the initial cluster center configurations (row 1 of Figure 2)
were selected at random from a uniform distribution over a unit square.

4.2 Randomly Generated Models

In the next four experiments, the object models (corresponding to the models in
Row 1 of Figure 1) were generated at random. The results were evaluated by
comparing the object prototypes (cluster centers) formed by each experimental run
to the object models used to generate the object instances for that experiment.
The distance measures used in the clustering were used for this comparison, i.e. to
calculate the distance between the learned prototype and the original object. This
distance measure also incorporates the transformations used to create the object
instances. The mean and standard deviations of these distances were plotted (Figure
3) over hundreds of trials, varying the object instance generation noise. The straight
line appearing on each graph displays the effect of the Gaussian noise only. It is
the expected object model-object prototype distance if no transformations were




applied, no features were deleted or added, and the cluster memberships of the
object instances were known. It serves as an absolute lower bound on our learning
algorithm. The noise was increased in each series of trials until the curve flattened -
that is the object instances became so distorted by noise that no information about
the orginal objects could be recovered by the algorithm.

In the first experiment (Figure 3a), point set objects were translated, rotated, scaled,
and permuted. Initial object models were created by selecting points with a uniform
distribution within a unit square. The transformations to create the object instance
were selected with a uniform distribution within the following bounds; translation:
+.5, rotation: £27°, log(scale): +log(.5). For example, within these bounds the
largest object instances that are generated may be four times the size of the smallest.
100 object instances were generated from 10 object models. All objects contained
20 points.The standard deviation of the Gaussian noise was varied from .02 to .16
in steps of .02. At each noise level, there were 15 trials. The data point at each
error bar represents 150 distances (15 trials times 10 model-prototype distances for
each trial). :

In the second and third experiments (Figures 3b and 3c), point set objects were
translated, rotated, scaled, sheared (obliquely and vertically), and permuted. Each
object point had a 10% probability of being deleted and a 5% probability of gen-
erating a spurious point. Object points and transformations were randomly gen-
erated as in the first experiment, except for these bounds; log(scale): =+ log(.7),
log(vertical shear): +1log(.7), and log(oblique shear): +log(.7). In experiment 2,
64 object instances and 4 object models of 15 points each were used. In experiment
3, 256 object instances and 8 object models of 20 points each were used. Noise levels
as in experiment 1 were used. 20 trials were run at each noise level in experiment
2 and 10 trials run at each noise level in experiment 3.

In the fourth experiment (Figure 3d), object models were represented by fully con-
nected weighted graphs. The link weights in the initial object models were selected
with a uniform distribution between 0 and 1. The objects were then randomly
permuted to form the object instance and uniform noise was added to the link
weights. 64 object instances were generated from 4 object models consisting of 10
node graphs with 100 links. The standard deviation of the noise was varied from
.01 to .12 in steps of .01. There were 30 trials at each noise level.

In most experiments, at low noise levels (< .06 for point sets, < .03 for graphs), the
object prototypes learned were very similar to the object models. As an example of
what the plotted distances mean in terms of visual similarity - the average model-
prototype distance in the handwritten character example (Row 1 of Figure 1 and
Row 6 of Figure 2) was .5. Even at higher noise levels, object prototypes similar
to the object models are formed, though less consistently. Results from about 700
experiments are plotted, which took several thousand hours of SGI R4400 worksta-
tion processor time. The objective for experiment 3 contained close to one million
variables and converged in about 4 hours. The convergence times of the objectives
of experiments 1,2, and 4 were 120, 40 and 10 minutes respectively. Each point set
trial was a best of four run, in which the object models and object instances were
the same for each run, but the initial randomly selected starting cluster centers
(Row 1 of Figure 2) were varied and the run with the lowest ending energy was
choosen.




5 Conclusions

It has long been argued by many, that learning in complex domains typically as-
sociated with human intelligence requires some type of prior structure or knowl-
edge. We have begun to develop a set of tools that will allow the incorporation of
prior structure within learning. Our models incorporate many features needed in
complex domains like vision - noise, missing and spurious features, non-rigid trans-
formations. They can learn objects with inherent structure, like graphs. Many
experiments have been run on experimentally generated data sets. Several direc-
tions for future research hold promise. One might be the learning of OCR data.
Secondly, a supervised learning stage could be added to our algorithms. Finally the
power of the distance measures can be enhanced to operate on graphs with deleted
or missing nodes, attributed nodes and multi-level (part-whole) structures.
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Figure 1: Row (1): Handwritten character models used to generate character in-
stances. These models were not part of the input to the clustering algorithm. Rows
(2-5): 16 character instances which (with 112 other characters) were clustered.






