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Abstract

We construct fast algorithms for decomposing into and reconstructing from linear
combinations of functions which satisfy recurrence relations (such decompositions and
reconstructions are also known as analysis and synthesis of series of special functions).
The algorithms are efficient in the sense that there exists a positive real number C
such that, for any positive integer n and positive real number ε, the algorithms require
at most C n (lnn) ln(1/ε) operations and memory storage elements to evaluate at n
appropriately chosen points any specified linear combination of n special functions, to
a precision of approximately ε.

1 Introduction

Over the past several decades, the Fast Fourier Transform (FFT) and its variants (see, for
example, [8]) have had an enormous impact across the sciences. The FFT is an efficient
algorithm for computing, for any even positive integer n and complex numbers β1, β2, . . . ,
βn−1, βn, the complex numbers α1, α2, . . . , αn−1, αn defined by

αj =
n∑

k=1

βk fk(xj) (1)

for j = 1, 2, . . . , n− 1, n, where f1, f2, . . . , fn−1, fn are the functions defined on [−1, 1] by

fk(x) = exp

(
π i (2k − n) x

2

)
(2)

for k = 1, 2, . . . , n− 1, n, and x1, x2, . . . , xn−1, xn are the real numbers defined by

xk =
2k − n

n
(3)

for k = 1, 2, . . . , n − 1, n. The FFT is efficient in the sense that there exists a reasonably
small positive real number C such that, for any positive integer n, the FFT requires at most
C n ln n operations and memory storage elements to compute α1, α2, . . . , αn−1, αn in (1)
from β1, β2, . . . , βn−1, βn. In contrast, evaluating the sum in (1) separately for every j = 1, 2,
. . . , n− 1, n costs at least n2 operations in total.
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The present paper introduces similarly efficient algorithms for computing α1, α2, . . . ,
αn−1, αn in (1) from β1, β2, . . . , βn−1, βn, and (when appropriate) for the inverse procedure
of computing β1, β2, . . . , βn−1, βn from α1, α2, . . . , αn−1, αn, for more general collections of
functions f1, f2, . . . , fn−1, fn and points x1, x2, . . . , xn−1, xn than those defined in (2) and (3).
Specifically, the present paper constructs algorithms for classes of functions which satisfy
recurrence relations. The present paper describes in detail a few representative examples of
such classes of functions, namely weighted orthonormal polynomials and Bessel functions of
varying orders. These collections of functions satisfy recurrence relations of the form

g(x) fk(x) = ck−1 fk−1(x) + dk fk(x) + ck fk+1(x) (4)

for all x in the domain, where ck−1, ck, and dk are real numbers and either g(x) = x or
g(x) = 1

x
; ck, dk, and g vary with the collection of functions under consideration.

The fast algorithms all rely on the following two observations:

1. The solutions to the recurrence relation in (4) are the eigenvectors corresponding to
eigenvalues g(x) of certain tridiagonal real self-adjoint matrices. The tridiagonal real
self-adjoint matrices required are usually infinite-dimensional, but turn out to be finite-
dimensional for special values of x in (4).

2. There exist fast algorithms for determining and applying matrices whose columns are
normalized eigenvectors of a tridiagonal real self-adjoint matrix, and for applying the
adjoints of these matrices of eigenvectors.

The first observation has been well known to numerical analysts at least since the seminal [4]
appeared; the second observation has been reasonably well known to numerical analysts since
the seminal [6] appeared. However, the combination seems to be new.

The methods described in the present paper should lead to fairly efficient codes for
computing a variety of what are known as pseudospectral transforms. In particular, we
outline in Remark 34 how to use the methods to construct fast algorithms for decomposing
into and reconstructing from linear combinations of spherical harmonics.

We refer to [10] and its compilation of references for prior work on related fast algorithms,
as well as to [7] for an alternative approach suitable for some applications. The present paper
simply introduces techniques that are substantially more efficient than the very similar ones
described in [10]. We intend to report separately carefully optimized implementations of the
theory described in the present paper.

The present paper has the following structure: Subsection 2.1 summarizes the proper-
ties of fast algorithms for spectral representations of tridiagonal real self-adjoint matrices,
Subsection 2.2 reiterates facts having to do with recurrence relations for orthonormal poly-
nomials, Subsection 2.3 reiterates facts having to do with recurrence relations for Bessel
functions, and Section 3 employs the subsections of Section 2 to construct fast algorithms
for various purposes.

2 Preliminaries

This section summarizes widely known facts from numerical and mathematical analysis in
the corresponding subsections. Section 3 uses the results of the present section to construct
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fast algorithms.

2.1 Divide-and-conquer spectral methods

This subsection summarizes in Remark 1 the properties of fast algorithms introduced in [5]
and [6] for spectral representations of tridiagonal real self-adjoint matrices.

Remark 1 As first introduced in [6], there exist a real number C and well-conditioned
algorithms A1, A2, A3, A4, and A5 such that, for any positive real number ε, positive integer
n, tridiagonal real self-adjoint n×n matrix T with n distinct eigenvalues, real unitary matrix
U whose columns are n normalized eigenvectors of T , and real n× 1 column vector v,

1. A1 computes to precision ‖T‖ ε the n eigenvalues of T , using at most C n (ln n) ln(1/ε)
operations and memory storage elements,

2. A2 computes to precision (
√

n ‖T‖ ε)/δ the n entries of the matrix-vector product U v,
using at most C n (ln n) ln(1/ε) operations and storage elements,

3. A3 computes to precision (
√

n ‖T‖ ε)/δ the n entries of the matrix-vector product UT v,
using at most C n (ln n) ln(1/ε) operations and storage elements, and,

4. after A4 performs some precomputations which are particular to T at a cost of at
most C n (ln n) ln(1/ε) operations and storage elements, A5 computes to precision
(
√

n ‖T‖ ε)/δ the k n entries of any k eigenvectors of T , using at most C k n ln(1/ε)
operations and storage elements, for any positive integer k,

where ‖T‖ is the absolute value of the largest eigenvalue of T , and δ is the minimum value
of the distance |λ− µ| between any two distinct eigenvalues λ and µ of T (λ 6= µ).

Remark 2 There exist algorithms with properties very similar to those mentioned in Re-
mark 1 when the eigenvalues of T are not all distinct.

2.2 Orthonormal polynomials

This subsection discusses rather classical facts concerning orthonormal polynomials. All of
these facts follow trivially from results contained, for example, in [11]. The well-known [4]
utilizes an entirely similar collection of facts to construct algorithms related to those de-
scribed in the present paper in Subsection 3.1.

Subsections 3.1 and 3.3 employ Lemmas 7, 8, and 9, which formulate certain simple con-
sequences of Theorems 3 and 6. Lemmas 5 and 16 provide the results of some calculations
for what are known as normalized Jacobi polynomials, a classical example of a family of or-
thonormal polynomials; the results of analogous calculations for some other classical families
of polynomials appear to exhibit similar behaviors. The remaining lemmas in the present
subsection, Lemmas 11 and 14, deal with certain conditioning issues surrounding the algo-
rithms in Subsections 3.1 and 3.3 (see Remark 15). The remaining theorem in the present
subsection, Theorem 13, describes what are known as Gauss-Jacobi quadrature formulae.

In the present subsection, we index vectors and matrices starting at entry 0.
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We say that a is an extended real number to mean that a is a real number, a = +∞,
or a = −∞. For any real number a, we define the intervals [a,∞] = [a,∞) and [−∞, a] =
(−∞, a]; we define [−∞,∞] = (−∞,∞).

For any extended real numbers a and b with a < b and nonnegative integer n, we say
that p0, p1, . . . , pn−1, pn are orthonormal polynomials on [a, b] for a weight w to mean that
w is a real-valued nonnegative integrable function on [a, b], pk is a polynomial of degree k,
the coefficients of x0, x1, . . . , xk−1, xk in pk(x) are real, and the coefficient of xk in pk(x) is
positive for k = 0, 1, . . . , n− 1, n, and∫ b

a
dx w(x) pj(x) pk(x) =

{
1, j = k
0, j 6= k

(5)

for j, k = 0, 1, . . . , n− 1, n.
The following theorem states that a system of orthonormal polynomials satisfy a certain

three-term recurrence relation.

Theorem 3 Suppose that a and b are extended real numbers with a < b, n is a positive
integer, and p0, p1, . . . , pn−1, pn are orthonormal polynomials on [a, b].

Then, there exist real numbers c0, c1, . . . , cn−2, cn−1 and d0, d1, . . . , dn−2, dn−1 such
that

x p0(x) = d0 p0(x) + c0 p1(x) (6)

for any x ∈ [a, b], and

x pk(x) = ck−1 pk−1(x) + dk pk(x) + ck pk+1(x) (7)

for any x ∈ [a, b] and k = 1, 2, . . . , n− 2, n− 1.

Proof. Theorem 3.2.1 in [11] provides an equivalent formulation of the present theorem. 2

Remark 4 In fact, ck > 0 for k = 0, 1, . . . , n− 2, n− 1, in (6) and (7).

The following lemma provides expressions for c0, c1, . . . , cn−2, cn−1 and d0, d1, . . . ,
dn−2, dn−1 from (6) and (7) for what are known as normalized Jacobi polynomials.

Lemma 5 Suppose that a = −1, b = 1, α and β are real numbers with α > −1 and β > −1,
n is a positive integer, and p0, p1, . . . , pn−1, pn are the orthonormal polynomials on [a, b]
for the weight w defined by

w(x) = (1− x)α (1 + x)β. (8)

Then,

ck =

√√√√ 4(k + 1)(k + α + 1)(k + β + 1)(k + α + β + 1)

(2k + α + β + 1) (2k + α + β + 2)2 (2k + α + β + 3)
(9)

and

dk =
β2 − α2

(2k + α + β)(2k + α + β + 2)
(10)

for k = 0, 1, . . . , n− 2, n− 1, where c0, c1, . . . , cn−2, cn−1 and d0, d1, . . . , dn−2, dn−1 are
from (6) and (7).

4



Proof. Formulae 4.5.1 and 4.3.4 in [11] together provide an equivalent formulation of the
present lemma. 2

The following theorem states that the polynomial of degree n in a system of orthonormal
polynomials on [a, b] has n distinct zeros in [a, b].

Theorem 6 Suppose that a and b are extended real numbers with a < b, n is a positive
integer, and p0, p1, . . . , pn−1, pn are orthonormal polynomials on [a, b].

Then, there exist distinct real numbers x0, x1, . . . , xn−2, xn−1 such that xk ∈ [a, b] and

pn(xk) = 0 (11)

for k = 0, 1, . . . , n− 2, n− 1, and
xj 6= xk (12)

when j 6= k for j, k = 0, 1, . . . , n− 2, n− 1.

Proof. Theorem 3.3.4 in [11] provides a slightly more general formulation of the present
theorem. 2

Suppose that a and b are extended real numbers with a < b, n is a positive integer, and
p0, p1, . . . , pn−1, pn are orthonormal polynomials on [a, b] for a weight w. We define T to be
the tridiagonal real self-adjoint n× n matrix with the entry

Tj,k =


cj−1, k = j − 1
dj, k = j
cj, k = j + 1
0, otherwise (when k < j − 1 or k > j + 1)

(13)

for j, k = 0, 1, . . . , n− 2, n− 1, where c0, c1, . . . , cn−2, cn−1 and d0, d1, . . . , dn−2, dn−1 are
from (6) and (7). For k = 0, 1, . . . , n− 1, n, we define the function qk on [a, b] by

qk(x) =
√

w(x) pk(x). (14)

We define U to be the real n× n matrix with the entry

Uj,k =
qj(xk)√∑n−1

m=0 (qm(xk))
2

(15)

for j, k = 0, 1, . . . , n− 2, n− 1, where q0, q1, . . . , qn−2, qn−1 are defined in (14), and x0, x1,
. . . , xn−2, xn−1 are from (11). We define Λ to be the diagonal real n × n matrix with the
entry

Λj,k =

{
xj, k = j
0, k 6= j

(16)

for j, k = 0, 1, . . . , n− 2, n− 1, where x0, x1, . . . , xn−2, xn−1 are from (11). We define S to
be the diagonal real n× n matrix with the entry

Sj,k =

{ √∑n−1
m=0 (qm(xj))

2, k = j
0, k 6= j

(17)
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for j, k = 0, 1, . . . , n− 2, n− 1, where q0, q1, . . . , qn−2, qn−1 are defined in (14), and x0, x1,
. . . , xn−2, xn−1 are from (11). We define e to be the real n× 1 column vector with the entry

ek =

{
1, k = 0
0, k 6= 0

(18)

for k = 0, 1, . . . , n− 2, n− 1.
The following lemma states that U is a matrix of normalized eigenvectors of the tridiag-

onal real self-adjoint matrix T and that Λ is a diagonal matrix whose diagonal entries are
the eigenvalues of T (which, according to (12), are distinct).

Lemma 7 Suppose that a and b are extended real numbers with a < b, n is a positive integer,
and p0, p1, . . . , pn−1, pn are orthonormal polynomials on [a, b] for a weight w.

Then,
UT T U = Λ, (19)

where T is defined in (13), U is defined in (15), and Λ is defined in (16). Moreover, U is
real and unitary.

Proof. Combining (6), (7), and (11) yields that

T U = U Λ. (20)

Combining (20), (15), (16), and (12) yields that U is a real matrix of normalized eigenvectors
of T , with distinct corresponding eigenvalues. Therefore, since eigenvectors corresponding to
distinct eigenvalues of a real self-adjoint matrix are orthogonal, U is orthogonal. Applying
UT from the left to both sides of (20) yields (19). 2

The following lemma expresses in matrix notation the decompositions into and recon-
structions from linear combinations of weighted orthonormal polynomials for which Subsec-
tion 3.3 describes fast algorithms.

Lemma 8 Suppose that a and b are extended real numbers with a < b, n is a positive integer,
p0, p1, . . . , pn−1, pn are orthonormal polynomials on [a, b] for a weight w, and α and β are
real n× 1 column vectors such that α has the entry

αj =
n−1∑
k=0

βk qk(xj) (21)

for j = 0, 1, . . . , n− 2, n− 1, where q0, q1, . . . , qn−2, qn−1 are defined in (14), and x0, x1,
. . . , xn−2, xn−1 are from (11).

Then,
α = S UTβ (22)

and
β = U S−1 α, (23)

where U is defined in (15) and S is defined in (17).
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Proof. Combining (15) and (17) yields (22). According to Lemma 7, U is real and unitary.
Therefore, applying U S−1 from the left to both sides of (22) yields (23). 2

The following two lemmas provide alternative expressions for the entries of S defined
in (17).

Lemma 9 Suppose that a and b are extended real numbers with a < b, n is a positive integer,
and p0, p1, . . . , pn−1, pn are orthonormal polynomials on [a, b] for a weight w.

Then,

Sk,k =

√
w(xk)

(UT e)k

√∫ b
a dx w(x)

(24)

for k = 0, 1, . . . , n− 2, n− 1, where S is defined in (17), U is defined in (15), e is defined
in (18), (UT e)0, (UT e)1, . . . , (UT e)n−2, (UT e)n−1 are the entries of the matrix-vector
product UT e, and x0, x1, . . . , xn−2, xn−1 are from (11).

Proof. Combining (15) and (18) yields that

(UT e)k =
q0(xk)√∑n−1

m=0 (qm(xk))
2

(25)

for k = 0, 1, . . . , n− 2, n− 1. Since the polynomial p0 has degree 0, combining (5) and (14)
yields that

q0(x) =

√
w(x)√∫ b

a dy w(y)
(26)

for any x ∈ [a, b]. Combining (17), (25), and (26) yields (24). 2

Remark 10 Formula 2.6 in [4] motivated us to employ the equivalent (24).

Lemma 11 Suppose that a and b are extended real numbers with a < b, n is a positive
integer, p0, p1, . . . , pn−1, pn are orthonormal polynomials on [a, b] for a weight w, and k is
a nonnegative integer such that ln w is differentiable at the point xk from (11).

Then,

(Sk,k)
2 = cn−1 qn−1(xk)

d

dx
qn(xk), (27)

where Sk,k is defined in (17), cn−1 is from (7), qn−1 and qn are defined in (14), and xk is
from (11).

Proof. Formula 3.2.4 in [11] provides a slightly more general formulation of the present
lemma. 2

Remark 12 There exist similar formulations of Lemma 11 when it is not the case that ln w
is differentiable at xk.
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The following theorem describes what are known as Gauss-Jacobi quadrature formulae
for orthonormal polynomials.

Theorem 13 Suppose that a and b are extended real numbers with a < b, n is a positive
integer, and p0, p1, . . . , pn−1, pn are orthonormal polynomials on [a, b] for a weight w.

Then, there exist positive real numbers w0, w1, . . . , wn−2, wn−1, called the Christoffel
numbers for x0, x1, . . . , xn−2, xn−1, such that

∫ b

a
dx w(x) p(x) =

n−1∑
k=0

wk p(xk) (28)

for any polynomial p of degree at most 2n− 1, where x0, x1, . . . , xn−2, xn−1 are from (11).

Proof. Theorems 3.4.1 and 3.4.2 in [11] together provide a slightly more general formulation
of the present theorem. 2

The following lemma provides alternative expressions for the entries of S defined in (17).

Lemma 14 Suppose that a and b are extended real numbers with a < b, n is a positive
integer, and p0, p1, . . . , pn−1, pn are orthonormal polynomials on [a, b] for a weight w.

Then,

(Sk,k)
2 =

w(xk)

wk

(29)

for k = 0, 1, . . . , n − 2, n − 1, where S is defined in (17), and w0, w1, . . . , wn−2, wn−1

are the Christoffel numbers from (28) for the corresponding points x0, x1, . . . , xn−2, xn−1

from (11). Moreover, there exist extended real numbers y0, y1, . . . , yn−1, yn such that
a = y0 < y1 < . . . < yn−1 < yn = b and

wk =
∫ yk+1

yk

dx w(x) (30)

for k = 0, 1, . . . , n− 2, n− 1.

Proof. Formula 3.4.8 in [11] provides an equivalent formulation of (29). Formula 3.41.1
in [11] provides a slightly more a general formulation of (30). 2

Remark 15 The formulae (17), (27), (29), and (30) give some insight into the condition
number of S. Due to (17), the entries of S are usually not too large. Due to (29) and (30),
for each k = 0, 1, . . . , n− 2, n− 1, if the ratio

w(xk)∫ b
a dx w(x)

(31)

is exceedingly large, then Sk,k is exceedingly large.

The following lemma provides an alternative expression for the entries of S defined in (17)
for what are known as normalized Jacobi polynomials.
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Lemma 16 Suppose that a = −1, b = 1, α and β are real numbers with α > −1 and
β > −1, n is a positive integer, and p0, p1, . . . , pn−1, pn are the orthonormal polynomials
on [a, b] for the weight w defined by

w(x) = (1− x)α (1 + x)β. (32)

Then,

Sk,k =

√√√√ 1− x2
k

2n + α + β + 1

∣∣∣∣∣ d

dx
qn(xk)

∣∣∣∣∣ (33)

for k = 0, 1, . . . , n − 2, n − 1, where S is defined in (17), x0, x1, . . . , xn−2, xn−1 are
from (11), and qn is defined in (14).

Proof. Together with (29), Formulae 15.3.1 and 4.3.4 in [11] provide an equivalent formu-
lation of the present lemma. 2

2.3 Bessel functions

This subsection discusses well-known facts concerning Bessel functions. All of these facts
follow trivially from results contained, for example, in [12] and [3].

Subsections 3.2 and 3.4 employ Lemmas 24, 25, 26, and 27, which formulate certain
simple consequences of Theorems 18 and 21 and Corollary 22, by way of Lemmas 19 and 23.
The remaining lemmas in the present subsection, Lemmas 31 and 32, provide closed-form
results of some calculations for what are known as spherical Bessel functions, a family of
Bessel functions frequently encountered in applications.

In the present subsection, we index vectors and matrices starting at entry 1.
Suppose that ν is a nonnegative real number. For any nonnegative integer k, we define

the function fk on (0,∞) by

fk(x) =
2ν Γ(ν + 1)

√
ν + k

xν
Jν+k(x), (34)

where Γ is the gamma (factorial) function and Jν+k is the Bessel function of the first kind
of order ν + k (see, for example, [12]).

Remark 17 Formula 8 of Section 3.1 in [12] provides a slightly more general formulation
of the fact that

lim
x→0+

2ν Γ(ν + 1)

xν
Jν(x) = 1, (35)

which motivated our choice of normalization in (34).

The following theorem states that f1, f2, f3, . . . defined in (34) satisfy a certain three-
term recurrence relation.
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Theorem 18 Suppose that ν is a nonnegative real number.
Then,

1

x
f1(x) =

1

2
√

(ν + 1)

2ν Γ(ν + 1)

xν
Jν(x) +

1

2
√

(ν + 1)(ν + 2)
f2(x) (36)

for any positive real number x, and

1

x
fk(x) =

1

2
√

(ν + k − 1)(ν + k)
fk−1(x) +

1

2
√

(ν + k)(ν + k + 1)
fk+1(x) (37)

for any positive real number x and k = 2, 3, 4, . . . , where f1, f2, f3, . . . are defined in (34),
Γ is the gamma (factorial) function, and Jν is the Bessel function of the first kind of order
ν (see, for example, [12]).

Proof. Formula 1 of Section 3.2 in [12] provides a somewhat more general formulation of
the present theorem. 2

Suppose that ν is a nonnegative real number and n is a positive integer. We define T to
be the tridiagonal real self-adjoint n× n matrix with the entry

Tj,k =


1

2
√

(ν+j−1)(ν+j)
, k = j − 1

1

2
√

(ν+j)(ν+j+1)
, k = j + 1

0, otherwise (when k < j − 1, k = j, or k > j + 1)

(38)

for j, k = 1, 2, . . . , n − 1, n. For any positive real number x, we define v = v(x) to be the
real n× 1 column vector with the entry

vk =
fk(x)√∑n

m=1 (fm(x))2
(39)

for k = 1, 2, . . . , n − 1, n, where f1, f2, . . . , fn−1, fn are defined in (34). For any positive
real number x, we define δ = δ(x) to be the real number

δ =
1

2
√

(ν + n)(ν + n + 1)

|fn+1(x)|√∑n
m=1 (fm(x))2

, (40)

where f1, f2, . . . , fn, fn+1 are defined in (34).
The following lemma states that v is nearly an eigenvector of the tridiagonal real self-

adjoint matrix T corresponding to an approximate eigenvalue of 1
x

for any positive real
number x such that Jν(x) = 0 and δ is small.

Lemma 19 Suppose that ν is a nonnegative real number and n is a positive integer.
Then, ∣∣∣∣(T v)n −

1

x
vn

∣∣∣∣ ≤ δ (41)
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and

(T v)k =
1

x
vk (42)

for k = 1, 2, . . . , n− 2, n− 1 and any positive real number x with

Jν(x) = 0, (43)

where T is defined in (38), v = v(x) is defined in (39), (T v)1, (T v)2, . . . , (T v)n−1, (T v)n

are the entries of the matrix-vector product T v, δ = δ(x) is defined in (40), and Jν is the
Bessel function of the first kind of order ν (see, for example, [12]).

Proof. Combining (37), (36), and (43) yields (41) and (42). 2

Remark 20 It is well known that, for any positive real number x, Jν+n+1(x) and thence
δ defined in (40) decays extremely rapidly as n increases past a band around n = x of
width proportional to x1/3; see, for example, Lemma 2.5 in [9], Chapters 9 and 10 in [1], or
Chapter 8 in [12]. Therefore, δ is often small for x such that x < n and Jν(x) = 0.

The following theorem states a simple Sturm sequence property of the eigenvalues of
tridiagonal matrices whose entries on the sub- and super-diagonals are positive.

Theorem 21 Suppose that n is a positive integer and T is a tridiagonal real n × n matrix
such that all entries on the sub- and super-diagonals of T are positive.

Then, every eigenvalue of T is simple/non-degenerate.

Proof. Theorem 1 in Section 1 of Chapter II in [2] provides a slightly more general formu-
lation of the present theorem. 2

The following corollary states a simple Sturm sequence property of the eigenvalues of T
defined in (38).

Corollary 22 Suppose that ν is a nonnegative real number and n is a positive integer.
Then, every eigenvalue of T defined in (38) is simple/non-degenerate.

Proof. Theorem 21 yields the present corollary. 2

The following lemma bounds the distance between an approximate eigenvalue and the
actual eigenvalue nearest to the approximation.

Lemma 23 Suppose that λ and µ are real numbers, n is a positive integer, T is a real self-
adjoint n× n matrix, and v is a real n× 1 column vector such that λ is the eigenvalue of T
nearest to µ, and

n∑
k=1

(vk)
2 = 1. (44)

Then,

|µ− λ| ≤
√

2

√√√√ n∑
k=1

(
(T v)k − µ vk

)2
, (45)

where (T v)1, (T v)2, . . . , (T v)n−1, (T v)n are the entries of the matrix-vector product T v.
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Proof. Theorem 8.1.13 in [3] provides a somewhat more general formulation of the present
lemma. 2

The following lemma bounds the changes in the eigenvalues and eigenvectors induced
by using the truncated matrix T defined in (38) (which is only n × n rather than infinite-
dimensional).

Lemma 24 Suppose that λ, µ, ν, and x are real numbers, n is a positive integer, and u is a
real n× 1 column vector such that ν ≥ 0, x > 0, (43) holds, λ is the eigenvalue of T nearest
to 1

x
, µ is the eigenvalue of T nearest but not equal to λ,

T u = λ u, (46)

and
n∑

k=1

(uk)
2 = 1, (47)

where T is defined in (38).
Then, ∣∣∣∣1x − λ

∣∣∣∣ ≤ √2 δ, (48)

and either (or both)

|vk − uk| ≤
4
√

n δ

|µ− λ|
(49)

for k = 1, 2, . . . , n− 1, n, or

|−vk − uk| ≤
4
√

n δ

|µ− λ|
(50)

for k = 1, 2, . . . , n− 1, n, where v = v(x) is defined in (39) and δ = δ(x) is defined in (40).

Proof. Combining (45), (41), and (42) yields (48).
For any real n× 1 column vector a, we define

‖a‖ =

√√√√ n∑
k=1

(ak)2. (51)

Due to (47),
‖u‖ = 1, (52)

and, due to (39),
‖v‖ = 1. (53)

Defining

c =
n∑

k=1

uk vk (54)

and
w = v − c u, (55)

12



we observe that c u is the component of v along u and that w is the projection of v onto the
orthogonal complement of the space spanned by u, so that u and w are orthogonal, that is,

n∑
k=1

uk wk = 0 (56)

(we can also obtain (56) by substituting (55) into the left hand side of (56) and using (52)
and (54) to simplify the result). Combining (55), (56), (52), and (53) yields that

1 = ‖v‖2 = c2 + ‖w‖2 (57)

and
‖ sgn(c) v − u‖2 = (|c| − 1)2 + ‖w‖2, (58)

where

sgn(c) =


1, c > 0
−1, c < 0
0, c = 0.

(59)

Combining (57) and (58) yields that

‖ sgn(c) v − u‖2 = 2 (1− |c|). (60)

Due to (57),

1− |c| = ‖w‖2

1 + |c|
. (61)

Combining (60) and (61) yields that

‖ sgn(c) v − u‖2 ≤ 2 ‖w‖2. (62)

Moreover,
‖w‖ ≤ ‖(T − λ1)−1‖ ‖(T − λ1) w‖, (63)

where 1 is the diagonal n× n identity matrix with the entry

1j,k =

{
1, j = k
0, j 6= k

(64)

for j, k = 1, 2, . . . , n− 1, n, and

‖(T − λ1)−1‖ = sup
a∈Rn:‖a‖6=0

‖(T − λ1)−1 a‖
‖a‖

. (65)

Combining (55) and (46) yields that

(T − λ1) w = (T − λ1) v. (66)

Furthermore,

‖(T − λ1) v‖ ≤
∥∥∥∥T v − 1

x
v
∥∥∥∥+

∥∥∥∥(1

x
− λ

)
v
∥∥∥∥. (67)

13



Due to (41) and (42), ∥∥∥∥T v − 1

x
v

∥∥∥∥ ≤ δ. (68)

Combining (48) and (53) yields that∥∥∥∥(1

x
− λ

)
v

∥∥∥∥ ≤ √2 δ. (69)

Combining (63), (66), (67), (68), and (69) yields that

‖w‖ ≤ (1 +
√

2) δ ‖(T − λ1)−1‖. (70)

Since T is self-adjoint, all eigenvalues of T are real; therefore, keeping in mind Corol-
lary 22,

‖(T − λ1)−1‖ =
1

|µ− λ|
. (71)

Combining (62), (70), and (71) yields that (49) holds for k = 1, 2, . . . , n− 1, n, or that (50)
holds for k = 1, 2, . . . , n− 1, n. 2

Suppose that ν is a nonnegative real number and n is a positive integer. We define
x1, x2, x3, . . . to be all of the positive real numbers such that

Jν(xk) = 0 (72)

for any positive integer k, ordered so that

0 < x1 < x2 < x3 < . . . , (73)

where Jν is the Bessel function of the first kind of order ν (see, for example, [12]). We define
S to be the diagonal real n× n matrix with the entry

Sj,k =

{ √∑n
m=1 (fm(xj))

2, j = k
0, j 6= k

(74)

for j, k = 1, 2, . . . , n− 1, n, where f1, f2, . . . , fn−1, fn are defined in (34), and x1, x2, . . . ,
xn−1, xn are defined in (72) and (73). We define e to be the real n × 1 column vector with
the entry

ek =

{
1, k = 1
0, k 6= 1

(75)

for k = 1, 2, . . . , n− 1, n.
The following lemma expresses in matrix notation the evaluations of linear combinations

of Bessel functions for which Subsection 3.4 describes fast algorithms.

Lemma 25 Suppose that ν is a nonnegative real number, n is a positive integer, and α and
β are real n× 1 column vectors such that α has the entry

αj =
n∑

k=1

βk fk(xj) (76)
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for j = 1, 2, . . . , n− 1, n, where f1, f2, . . . , fn−1, fn are defined in (34), and x1, x2, . . . ,
xn−1, xn are defined in (72) and (73).

Then,

|αk − (S UTβ)k| ≤
4 Sk,k

√
n δ(xk)

|µk − λk|
(77)

for any k = 1, 2, . . . , n− 1, n such that

4 Sk,k

√
n δ(xk)

|µk − λk|
< |f1(xk)|, (78)

where λk is the eigenvalue of T defined in (38) nearest to 1
xk

, µk is the eigenvalue of T

nearest but not equal to λk, δ = δ(xk) is defined in (40), U is a real n × n matrix whose
kth column is the normalized eigenvector of T corresponding to the eigenvalue λk whose first
entry has the same sign as f1(xk), S is defined in (74), and (S UTβ)k is the kth entry of the
matrix-matrix-vector product S UTβ.

Proof. Combining (49), (39), and (74) yields (77); (78) simply guarantees that (49) holds
rather than (50). 2

The following two lemmas provide alternative expressions for the entries of S defined
in (74).

Lemma 26 Suppose that ν is a nonnegative real number and n is a positive integer.
Then, ∣∣∣∣∣Sk,k −

f1(xk)

(UT e)k

∣∣∣∣∣ ≤ 4 Sk,k

√
n δ(xk)

|µk − λk| |(UT e)k|
(79)

for any k = 1, 2, . . . , n− 1, n such that (78) holds, where S is defined in (74), f1 is defined
in (34), x1, x2, . . . , xn−1, xn are defined in (72) and (73), λk is the eigenvalue of T defined
in (38) nearest to 1

xk
, µk is the eigenvalue of T nearest but not equal to λk, δ = δ(xk) is

defined in (40), U is a real n×n matrix whose kth column is the normalized eigenvector of T
corresponding to the eigenvalue λk whose first entry has the same sign as f1(xk), e is defined
in (75), and (UT e)k is the kth entry of the matrix-vector product UT e.

Proof. Combining (49), (39), and (75) yields that∣∣∣∣∣∣(UT e)k −
f1(xk)√∑n

m=1 (fm(xk))
2

∣∣∣∣∣∣ ≤ 4
√

n δ(xk)

|µk − λk|
(80)

for any k = 1, 2, . . . , n− 1, n such that (78) holds; as in the proof of (77), (78) guarantees
that (49) holds rather than (50). Combining (74) and (80) yields (79). 2

Lemma 27 Suppose that ν is a nonnegative real number and n is a positive integer.
Then,

f1(xk) = −2ν Γ(ν + 1)
√

ν + 1

(xk)ν

d

dx
Jν(xk) (81)
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for k = 1, 2, . . . , n − 1, n, where f1 is defined in (34), x1, x2, . . . , xn−1, xn are defined
in (72) and (73), Γ is the gamma (factorial) function, and Jν is the Bessel function of the
first kind of order ν (see, for example, [12]).

Proof. Formula 4 of Section 3.2 in [12] provides a somewhat more general formulation
of (81). 2

Remark 28 The right hand side of (79) involves the potentially troublesome quantity

1

|(UT e)k|
. (82)

However, due to (49), (39), and (74), if the quantity

4
√

n δ(xk)

|µk − λk|
(83)

is small, then (82) is accordingly close to the quantity

Sk,k

|f1(xk)|
, (84)

which should not be unreasonably large.

Remark 29 Numerical experiments indicate that the quantity |µk − λk| in (77) and (79)
is never exceedingly small for practical ranges of n; this is probably fairly easy to prove,
perhaps using the properties of Sturm sequences. The following remark might help.

Remark 30 Suppose that ν = 0 and n is a positive integer. For any positive real number
x, we define ṽ = ṽ(x) to be the real n× 1 column vector with the entry

ṽk = (−1)k vk (85)

for k = 1, 2, . . . , n− 1, n, where v = v(x) is defined in (39). Then, Formula 1 of Section 3.2
in [12] and Formula 2 of Section 2.1 in [12] lead to∣∣∣∣(T ṽ)n +

1

x
ṽn

∣∣∣∣ ≤ δ (86)

in place of (41),

(T ṽ)k = −1

x
ṽk (87)

for k = 1, 2, . . . , n− 2, n− 1 in place of (42), etc.

The following lemma states a special case of the Gegenbauer addition formula for Bessel
functions.
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Lemma 31 Suppose that ν = 1
2
.

Then,
∞∑

m=0

(fm(x))2 =
1

2
(88)

for any positive real number x, where f0, f1, f2, . . . are defined in (34).

Proof. Formula 3 of Section 11.4 in [12] provides a somewhat more general formulation
of (88). 2

The following lemma provides alternative expressions for the entries of S defined in (74)
for what are known as spherical Bessel functions of the first kind.

Lemma 32 Suppose that ν = 1
2
, ε is a positive real number, and k and n are positive integers

such that ∞∑
m=n+1

(fm(xk))
2 ≤ ε, (89)

where fn+1, fn+2, fn+3, . . . are defined in (34), and xk is defined in (72) and (73).
Then, ∣∣∣∣(Sk,k)

2 − 1

2

∣∣∣∣ ≤ ε, (90)

where Sk,k is defined in (74).

Proof. Combining (74), (88), (89), and (72) yields (90). 2

Remark 33 As in Remark 20, it is often possible to have ε in (89) and (90) be small for k
such that xk < n.

3 Fast algorithms

Each subsection in the present section relies on both Subsection 2.1 and either Subsection 2.2
or Subsection 2.3. We describe the algorithms in Subsections 3.1 and 3.2 solely to illustrate
the generality of the techniques discussed in the present paper; we would expect specialized
schemes to outperform the algorithms described in Subsections 3.1 and 3.2 in most, if not
all, practical circumstances.

3.1 Quadrature nodes and Christoffel numbers associated with
orthonormal polynomials

The entries of Λ in (19) are the nodes x0, x1, . . . , xn−2, xn−1 in (28). We can compute rapidly
the entries of Λ in (19) using algorithm A1 from Remark 1, due to (19), since T in (19) is
tridiagonal, real, and self-adjoint, U in (19) is real and unitary, and Λ in (19) is diagonal,
with diagonal entries that according to (12) are distinct. For the same reason, we can apply
rapidly the matrix UT to the vector e in (24) using algorithm A3 from Remark 1. We can
then compute the Christoffel numbers w0, w1, . . . , wn−2, wn−1 in (28) using (29) and (24).
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3.2 Zeros of Bessel functions

We can compute rapidly the zeros x1, x2, . . . , xn−1, xn defined in (72) and (73) for which
δ defined in (40) is sufficiently small, using (48) and algorithm A1 from Remark 1, since T
defined in (38) is tridiagonal, real, and self-adjoint, and (according to Corollary 22) has n
distinct eigenvalues.

3.3 Decompositions into and reconstructions from linear combi-
nations of weighted orthonormal polynomials

We can apply rapidly the matrices U and UT in (23) and (22) using algorithms A2 and A3

from Remark 1, due to (19), since T in (19) is tridiagonal, real, and self-adjoint, U in (19)
is real and unitary, and Λ in (19) is diagonal, with diagonal entries that according to (12)
are distinct. Furthermore, we can apply rapidly the remaining matrices S and S−1 in (22)
and (23), since S and S−1 in (22) and (23) are diagonal, once we use (29) and the algorithms
from Subsection 3.1 to compute the entries of S and S−1.

Remark 34 We can construct fast algorithms for decomposing into and reconstructing
from linear combinations of associated Legendre functions using the algorithms described
in the present subsection. For any nonnegative integers l and m, the normalized associated
Legendre function of order m and degree l (often denoted by P

m
l ) is equal to the function

ql−m defined in (14) for the orthonormal polynomials on [−1, 1] for the weight w defined by

w(x) = (1− x)m (1 + x)m. (91)

Hence, we could utilize the algorithms discussed in the present subsection exactly as de-
scribed. However, to take advantage of the symmetries of associated Legendre functions, we
would want to diagonalize the square T 2 of the matrix T in (19) rather than T itself, mod-
ifying the algorithms from Remark 1 appropriately, for increased efficiency. We might also
want to compute interpolations to and from values at the zeros of various polynomials, using
the Christoffel-Darboux formula, as first introduced in [7] and [13], and subsequently opti-
mized. For details on the connections between associated Legendre functions and spherical
harmonics, see, for example, [10].

3.4 Evaluations of linear combinations of Bessel functions

We can apply rapidly the matrix UT in (77) using algorithm A3 from Remark 1, since T
defined in (38) is tridiagonal, real, and self-adjoint, and (according to Corollary 22) has n
distinct eigenvalues, and hence U in (77) can be chosen to be real and unitary. Furthermore,
we can apply rapidly the remaining matrix S in (77), since S in (77) is diagonal, once we
use (79), algorithm A3 from Remark 1, and the algorithm from Subsection 3.2 to compute
the entries of S.
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