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ABSTRACT. The quantum mechanical description of nature as a duality between an univi-
sualizable dynamics and a visualizable concretization, the latter corresponding to reduction
of the state vector when a measurement is made is shown to have a correspondence in
computation. Namely, a conceptual structure called the field (of real numbers, say) and
its operations, and the concretization of that structure by means of a measuring appara-
tus called a (digital) computer. The probabilistic, computable state reduction operator of
quantum mechanics is replaced by a deterministic noncomputable operation, an extension
of rounding. States, wavefunction, dynamics, observation, uncertainty and nonlocality
are shown to have their counterparts in the new model, an example of a new physics as
forecast by Penrose (upon which to base a study of mind). The algorithmic counterpart of
the double slit experiment to validate the existence of interference in the new framework
is defined and performed. A notion of spin in computation is introduced. ’

1. INTRODUCTION

Roger Penrose projects the need for a new understanding in physics to explain how
the physical brain gives rise to the mind [15,16,17]. He points out that mind (conscious-
ness) and understanding have (at least) a logical connection. Appealing to mathematical
understanding, which, according to the Gddel-Turing theorem, is not computable, he
infers that noncomputability in some aspects of consciousness strongly suggests that it
should be a feature of all consciousness. Continuing, he speculates that the new physics,
should also be noncomputable. Penrose suggests that the new physical ideas might well
arise as a deterministic replacement (called OR, for ‘objective reduction’) of the proba-
bilistic measurement process (called R for ‘reduction of the state-vector’ or ‘collapse of
the wave function’) which accompanies conventional quantum mechanics when effects
in the latter are ‘magnified up to the classical level’ for the purpose of observation.
Indeed the probabilistic quality of R comes from the interaction of the macroscopic
environment with the quantum level behavior which accompanies observation.

R is where nonlocality enters into our present physics, and Penrose expects that
aspect of R to persist when it is replaced by OR. He goes on to argue that OR is likely
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to be a gravitational phenomenon, and that the isolation from the environment needed
for the subtle quantum effects is provided by the microtubules which are found in almost
all eukariotic cells along with the tubular dimers which comprise the microtubule walls.
(See also Hameroff {10].)

Great controversy attends these ideas. It is hardly universally accepted that the
Gédel incompleteness theorem implies the inability to simulate human intelligence in
a computer. See Putnam [18]. Many dispute the possibility that quantum effects are
either of the correct scale or have the appropriate isolated environment in the astro-
nomically complex warm and wet arena of a human brain.

We claim that these issues may be left aside, for we shall show that interference
and nonlocal quantum effects are characteristics of the computation process itself. A
device that computes may exhibit them, the subtle hardware needs of quantum physics
notwithstanding. (This claim will have an impact on strong Al as well as other of the
philosophical issues of the mind/brain problem.)

Quantum mechanics attributes a dual aspect to nature. This consists of an unvisu-
alizable dynamics when the system is not observed and a visualizable concretization of
the system (corresponding to the collapse of the wave function) when it is measured.
The interplay between these aspects causes the anomalies which prompted the invention
of quantum mechanics in the first part of this century [4], and continues to motivate
studies of the meaning of the subject [1,6].

There is a dualism in computation which echoes that of nature (mechanics). Namely,
a conceptual structure called the field (of the real or complex numbers, say) and its
operations, and the concretization of that structure by means of a measuring appara-
tus called a (digital) computer. Anomalies between the conceptual and the concrete
aspects of computation have long been observed. Among them are the errors in digital
computation caused by the finite precision of the digital computer itself. An example of
one of the difficulties which arise from this is the loss of the associative law of addition.
Since these errors are usually given the:characterization, “cancellations and rounding
errors”, they have thus far failed to stimulate the development of a quantum theory of
numbers and computation. There are interference effects in computation; they are in
the information and its processing.

The reduction operation between constituents of this computational duality is an
appropriate extension of rounding (denoted operationally by O) and (unlike R of tra-
ditional physics but) like OR of the projected new physics, O is noncomputable and
deterministic. (In a manner of speaking, ‘computation is noncomputable’.) We shall
also see nonlocality (interference) in this picture.

Quantum effects and computation are already studied in quite different contexts than
what is developed here. One branch of this work deals with the exploitation of quantum
effects as a way to encode and process binary information [8,9,13]. Another branch deals
with using the states and the dynamics of quantum theory as the states and the process
of computation [2,3,19,20].

In Section 2, we introduce our notions and discuss noncomputability. States, wave-
functions, dynamics, observation, uncertainty and nonlocality are also discussed. In




Section 3, we define the algorithmic equivalent of the double slit experiment and give
the results of performing it. In Section 4, we show how spin may be accommodated in
this framework. An appendix contains some comments and some details.

2. NOTIONS

In this section, we introduce the notions and constructs of a quantum theory of
numbers and computation. These include screens, roundings, noncomputability, states,
wavefunctions, dynamics, observation, uncertainty and nonlocality.

Floating-point screen and operations: We introduce a floating-point screen S of
numbers ¢ with base b [12].

@ = pb®(= psb),

where the mantissa p has length £ and the exponent e € [emin, €max]. Let m,(2) be the
midpoint of a floating-point number « and its predecessor floating-point nuraber (that
is, the largest floating-point number less than z), and let m,(z) be the midpoint of z
and its successor. For the convenience, we shall consider the rounding to nearest, so
that for z € S,

z =0z, Vz € Rlm,(z) < z < m,(x).

The rounding operator O is defined componentwise on vectors.
Arithmetic operations in S, denoted @, o € {4, —, X, +}, are defined in terms of
their counterparts in R by semimorphism [12], viz

aldb = O(a o b)

for all a,b € S.

Noncomputability of O: A real number is specified by the class of sequences of
rationals which converge to it. If such a sequence {a; }$2,, converging to a, say, is given
by one closed form means or another, each screen number Oa; could be computed, but
it is not clear that Oa could be determined by computation. Certainly if the sequence
{a;} is delivered one term at a time from a block box, we could never determine by
computation or another means what Oa is.

Consider the special case where the screen S = 8 consists of the integers, and
consider the rational sequences {a;} converging to 1/2. The corresponding sequences
{Oa;} are in 1 — 1 correspondence with all the real numbers (encoded in binary) in
(0,1]. Thus except for the enumerable subset of the sequences {Oa; } which have a finite
number at zeros or a finite number of ones, the limit of {Ta;} is not determinable. For
example, the sequence (in binary) .11,.101,.1001, ... converges to .1 (to 1/2 in decimal)
whose round in Sj is zero, but Oa; =1 for every j. v

Let us consider an example depending on the twin primes. Let

aj_l = jth prime — (j — 1)st prime.
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Since the asymptotic distribution of the primes is jlogj, this sequence has an accu-
mulation point at zero. If there are infinitely many twin primes, this sequence has an
accumulation point at % as well. In fact the existence of a limit of this sequence, hence
the determination of Oa is at present unknown by computational or other means.
Wave function: The wave function or state corresponding to the vector z = (24,...,
z,), ¢ €8S, is

P(z) = Bre'k.
k=1

By is a step function of z with support on the interval (m,(2x), m,(zx)]. It has the
value By = (m,(zi) — m,(2%))~ /% = 5b(1=¢=2)/2 on that interval. :
Observation: An observation corresponds to a Hermitian operator S and has the value
(¥, S¥) = [°o $(S¥)*dz, where the asterisk denotes the complex conjugate. [14].

The state corresponding to # € S is a single term in the sum here. To observe
the “ocation’ of this state we define the operator L (corresponding to location) as
multiplication by z. We claim that the location of the state Bie® is 2y = 0Oz, z €
(my(z), ms(z)]. Indeed a calculation shows that

(lb;Lil’) = /_oo d!ng*dz = /-Oo szdz — 7711,(:)}1) ;‘ Tn’g(ml).

Collapse of the wave function: Thus we may define the reduction operation as
rounding by formally extending rounding from intervals of reals to wave functions, viz

= 0z = OyY(z) = (¥(2), z¢(2)).

Note that the O here (since it operates on states) is different than the original 00 which
operates on intervals. (For convenience, we use the same symbol for both operations.)
The original [0 operates on step functions, the characteristic functions of intervals while
the new [J operates on the wave function, in the present case a carrier wave superposed
on the step function. ,

Summation: The summation operator is given by

su) =h [ croc
Using the ¥(z), a calculation (see the Appendix, Al) gives
1 n
s=(4,SY) = 5;@ +O(h),

where
or = mg(zk) + mp(z).




That is, this observation S yields the sum of the components of 2 with an error which

is O(h). (See the Appendix, A2 for a comment on the value of h.) We see that upon
measurement, the wave function will have collapsed into ¥(z) = Be®?, where B is a
step function which is proportional to s on the interval z € (m,(0s), m,(0Os)] and is
zero otherwise. This law of measurement is seemingly different than the customary R
(projection and renormalization) in quantum mechanics itself. In fact, it is deterministic
and “environment” independent, and as we have seen, noncomputable. Thus it satisfies
the properties of the object reduction (OR) process forecast by Penrose.
Uncertainty principle: The uncertainty principle follows from the Heisenberg in-
equality [5], a general mathematical relationship involving functions f(2) and their
Fourier transforms f (w), equivalently, involving operators and their complements. We
shall give two examples of the uncertainty principle. The first deals with the summation
operator S and the second with the location operatm L.

Summation. Using the identity (2miw)~! - 4 f(w) = —2mi( (f7_ Ef(6)dE)7 we find the
complementary operator D to the summation operator S, viz
ik d
T 4nlpda’

For the commutator, we have [S, D] = h?/272. Then the Heisenberg inequality applied
to D and S states that

/Z o /Z v'(z) / ; EY(€)dedz] ()| do

<[ o g [ HEE R > 06

— 00 — 00

To compute (3, D) it suffices to consider the single term (z) = Be'%. Then a

computation gives ~
1 log ms — logm,

(4, D) =

ms —m,
An additional computation gives (see the Appendix, A3)

(14 0(7))

(¥, DY) =

Thus the uncertainty in observing S and D (simultaneously) corresponds to an uncer-
tainty computing in the mean and the harmonic mean of the components of a vector.
In the case of scalars, the uncertainty is in the simultaneous determination of the scalar
itself and its reciprocal. Note the correspondence of this to electrical resistance in series
and in parallel.

Location. Using the identity zﬁf(w) = (zf(z))", we find the complimentary opera-
tor V (“velocity”) to L, viz ;

V=i—
zdw
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For the commutator we have [L, V] = —i. To compute (3, Vi), we use ¢ = Bei# | once
again to find

(¢) V¢) =-h""

We interpret this by saying that the average velocity of a scalar (“a free particle”)
corresponds to a drift to the left.
Dynamics: Time is clocked in cycles, t = 0,1,..., and an initial state

<p(0) = (ZoBoei%
evolves through multiplication,
(,D(t) = (ItBtQO(t - 1), t= 1, 2, el

The B, are step functions which specify the evolution from ¢t — 1 to ¢, and the a; are
normalization factors. In particular,

ay = | B¢—1Bi—2 - - - Bol|
|B¢Bi—1 - Bol| ’

t=0,1,...,
where the empty product is unity, and
et = [ joeih Pz

Nonlocality: With a notion of dynamics in hand, we may display nonlocality by
duplicating the canonical interferometer experiment. In the present context the passage
through the interferometer consists of executing an algorithm on the state agBoe' h
which ‘enters’ it. This algorithm gives the output state Boyce*/* = H?.—_o a; Bjei? !t
where (neglecting normalizations for convenience)

Bl = (1 + i),Bo,

B; =1 By,
Then

Bout = —2Bo.

To see that this consists of the entry state following two separate interfering algo-
rithms, we simply review the canonical interferometer experiment comparing it with
these algorithmic steps. For convenience, we shall denote the entry state Boeislh =
(M (20)—mp(20)) "1/ 2e*/" which represents the number z, by the Dirac symbol |zg >.
The subscript ¢ refers to the time clocked in cycles.
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Diagram illustrating nonlocality

Referring to the diagram (in which [ depicts a “half silvered mirror” and fa “fully
solved mirror”), the state |zo > enters the interferometer at £ = 0. We define the first
dynamic step (an algorithm) by

|20 >0— |21 >1= |20 > +i|zo >,

indicating that |zo > has simultaneously become the sum of unity times itself and ¢ times
itself, the latter denoting the path upward (“reflection from the half silvered mirror”),
the former denoting the path rightward (passage through that mirror). Continuing, we
next have “reflections of the two fully silvered mirrors” giving

|21 >1— |z >2=i(Jzo > +i|zo >) = i|zg > —|z0 > .
Finally, the encounter with the “half silvered mirror on the upper right” gives

|5B2 >9— |.’L‘3 >3 = 1(‘910 > +‘&|m0 >) —Tg > —?:l.’v(_) >
= —2|:110 > .

This indicates that the state emerges from the interferometer (upper right in the dia-
gram) as follows. The two (nonlocal) aspects of the state during this dynamical process
have interfered with each other. With respect to components of the state, those with
imaginary amplitude (the exit upward) have interfered perfectly destructively, giving a
null value. The exiting real components (the rightward exit) have interfered perfectly
constructively.




3. ALGORITHMIC DOUBLE SLIT EXPERIMENT

Tn this section, we validate the wave approach to computation, by demonstrating
through an experiment, the existence of interference in computation. We do this by
defining and then performing the algorithmic analog of the double slit experiment.

The use of (1, S¥) to represent an observation implies the use of a probability ampli-
tude (as opposed to a probability density) in this theory. One way to justify this choice
is to perform an algorithmic version of the double slit experiment. [7].

In the computer version of this experiment, the passage of a data state (information)
through an algorithm takes the roll of the passage of a physical state along a trajectory.
For convenience, we specialize to triples of real numbers,

p =p(a, b, c).
Let
m(p) =a+b+c,

and let

u = Ou, Vu € R.

Experiment A (the case of “interference”)
Choose triples p at random and compute m(p) in S. That is, compute

m(p) =aBOBC
There are three methods of summation (three algorithms):

i) (@@b)@c
i) a@ (@)
i) (@B |b.

For each triple p(a, b, c), choose a summation method 1), ii) or iii) at random. Next
compute the quantity

and make a scatter plot of e(p). The latter is the computer analog of the density of
photons hitting the screen in the conventional double slit experiment. We expect e(p)
to exhibit an interference pattern (possibly periodic). '

Experiment B (the case of “non-interference”)

Here we examine each randomly chosen triple prior to the computation of m(p) (so
that as in the conventional double slit experiment, the interference should disappear).
Here is how we proceed. Let

|ul = max{]al, [b], ||},




and let
{v,w} = {a,b,c} — {u}.
Now compute, using ii)
my(p) =u B (vBw),
and )
mii\p
€ =1- ——.
(®) m(p)

Make a scatter plot of e;;(p). We expect e;;(p) to be a unimodal curve exhibiting no
(little) interference.
Experimental Results: The actual experiment was performed as follows.

(i) k numbers are chosen at random in [0,1] : n{,... 0}
(i) They are scaled to be in [-range, range]: n,...,ng
(iii) A sum S, (representing m(p)) is computed in double precision, viz

k

i=1

(iv) The exact sum (representing m(p)) is computed in two ways. These are called
S3(1) and S2(2), resp.
1. For S3(1) we simulate full precision arithmetic and compute the sum exactly.
This sum is then rounded to double precision, viz

k
52(1) =01 Z n;.
i=1

2. The ny, ..., ny are sorted to give a sequence
my<my <<y, K0<py Kpa <Pk, kLt =k
The sum S3(2) is computed in double precision, viz

tr=(((pr Bp2)Bps)--- Bpx,),
to = (- ((mg, Bmg,_1) By, o) Bmy),
S2(2) =t Bi,.

(v) The error is computed in two ways. 1. e(k) = 185, EHS2(4), i =1,2. That is,
in double precision. 2. e(k) = 1—8; +S52(), i = 1,2. That is, with (simulated)
full precision.

In the figures we make a scatter plot of loge(k) versus e(k) for the cases k =
3,10, 50, 100. In each case, one million sample sums were chosen at random, and range
= 1020, To the accuracy of the graphical representation, there is no difference in the
results of all the experimental variations.
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Examples of states and observables: The triple p(a, b, ¢) is the computer analog of
a particle in mechanics (more properly, a state in quantum mechanics), and m(p) is the
analog of an observable. It might be convenient to think of it as the mass or location
(when measured) of the state. As an indication of the possibilities of computer states
and observables in wave computing we offer two illustrations.

Polynomials: The state is an (n + 2)-tuple

p =p(z,a0,...,an),

and the observable 1s

n
m(p) = Z ajz™ i
j=1

An observation is m(p), computer evaluation of m(p).
Fourier series: The state is an infinite sequence,

Y4 =p(“0)a’:|:1>"~))

and the observable is -

m(p) = Z aje?.

- 00

An observation is 7(p), a computer evaluation of a truncated version of this series [11].

4. SPIN

We introduce a notion of spin in computation by means of measurements (roundings)
of complex numbers (complex intervals). The rounding of the real and imaginary parts
are treated differently, indeed both the rounding and the screen are duplex: O = (O,, ;)
and S = (S,,S;).

With z = z + iy (intervals) we have

Oz =0,z + i0(y)0;y.
Here 0,2 € S, and O;y € S;, and . .
1
[0} ) sgn[]iy Z 0)

o(y) =
7], o

The conventional case of spin in quantum mechanics is obtained by taking

si = {1,-1},
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or
S; = {0,41,£2,...},

etc. However, we see that many other possibilities exist.
An arithmetic operation @, o€ {4, —, x, =~} on two floating point complex numbers
(two rounded (i.e. measured) complex intervals) is defined by semimorphism [12], viz

Dzltdl DZz = D[Drwl (o) D,.(l!z + i(J(yl)D;yl o O'(yz)Diyz)]
= Dr([]rml o DrmZ) + iDi(a(yl)Di Y10 U(yZ)Diy2)>

where (recall that) the round of a vector is taken componentwise.
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Appendix
Al: Evaluation of (¢,S%) for S¢(z) = £ [7 ¢yp(Q)d¢ and 9(z) = S r_y Brel®
with Bg(z) = 0 except on the interval (m,(xn), m,(zx)] where Bi(z) = (m,(zx) —
m,(z1))~/? proceeds as follows.

Without loss of generality, we may suppose that the xx,k = 1,...,n are different
floating point numbers. Now integrating directly gives

SP(z) = 3 Bel(ifi + min(z, m, (zx))e R min(me(2+)

k=1
— (ih + min(z, mp(;cn))e% min(z,mp(2x))]
= Bka(z).
k=1
Using this, we have
0o n n ms(ze) .
/ P(2)SP(z)dz = B Bre 'R Ci(2)dz.
- t=1 k=17 m»(ze)

On the interval of integration, all By (z) vanish except the one for which k = £. Moreover,
on this interval the minima may be resolved, viz

min(z, ms(z,)) = z and min(z, m,(z¢)) = my(2¢).

Using these observations and performing the integration here gives

ms(zr)

(4, S9) = ZB [(ZM)Z "’ie""‘e*"”"<“’<m»p(mk>+z‘ﬁ>]

mp(zx)

Zak + er (mp(xk1+ m)(ms(ﬂw)e—%m‘ — my(21))]-

Here
Ag = my(zr) — my(zr).

A2: An obvious choice for ki is “the machine epsilon”, b~**+emin_ For this choice, the last
sum here is O(b~%). However, this choice causes the loss of the universality of A which
prevails in mechanics. This suggests that whereas in nature there may be a unique
observable reality, the collection of different classes of computers provide a collection of
computational realities.

A3: The evaluation of (log m, —logm,)/(m, —m;) proceeds as follows. Using Taylor’s
theorem with remainder, we have

—z)? 1
lOg’nzszlogw_l_(ms__m)%_(msQ T) ;_2_
1
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and
(my —2)? 1

2 x2’

1
logm, =logz + (m, —z)— —
T
Here x4 € (z,m,) and z_ € (m,, z). Then subtracting, we find

log m, — log m, _i[l__1_<ms—a;i_mp—a:_:_c_)]
1 :

Ty Ty -  x_

mg — My x

Continuing, we have

m,—z & b=(m+ b7 —be=m mbes
Ty x4 e?(m + 3b71) e?(m + $b=*)
= S5+ 0(7).

Using this result and the corresponding one with m, and «_ replacing m, and z 4, resp.,

we find
log m; — log m,

= %(1 +0(b7Y).

my — My
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