A direct algorithm is presented for the rapid solution of the Laplace equation on regions
with fractal boundaries. In a typical application, the numerical simulation has to be on a
very large scale involving at least tens of thousands of equations with as many unknowns,
in order to obtain any meaningful results. Attempts to use conventional techniques have
encountered insurmountable difficulties, due to excessive CPU time requirements of the
computations involved. Indeed, conventional direct algorithms for the solution of linear sys-
tems require order O(N3) operations for the solution of an N x N — problem, while classical
iterative methods require order O(N?) operations, with the constant strongly dependent
on the problem in question. In either case, the computational expense is prohibitive for
large-scale problems. The direct algorithm of the present paper requires O(NN) operations
with a constant dependent only on the geometry of the boundary, making it considerably
more practical for large-scale problems encountered in the computation of harmonic mea-
sure of fractals, complex iteration theory, potential theory, and growth phenomena such as
crystallization, electrodeposition, viscous fingering, and diffusion-limited aggregation.
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1 Introduction

During the last decade, the numerical solution of the Laplace equation on regions with fractal
boundaries has been becoming increasingly popular both in mathematics and physics. In
mathematics, examples include harmonic measure of fractals, complex iteration theory, and
potential theory. In physics, examples include growth phenomena such as crystallization,
electrodeposition, viscous fingering, and diffusion-limited aggregation, where the harmonic
measure governs the growth of the fractal surfaces [26]. Thus, much recent work has been
focused on the study of the metric properties of harmonic measure on fractals ([1], [7], [14],
[17]). Several attempts have been made during the last several years to solve such problems
numerically (see [1]).

Two approaches to the study of the metric properties of the harmonic measure on fractals
have received most of the attention in recent years.

1. Viewing the harmonic measure as the relative hitting probability at points on the surface,
and using the Monte Carlo method to conduct computer simulations on parallel machines
such as the Connection machine (see [1]).

2. Formulating the problem as an integral equation of the first kind, and solving the resulting
equation numerically.

While the first approach has produced some significant results (see [1]), the computation
becomes prohibitively expensive when high accuracy is desired, due to the slow convergence of
the Monte Carlo method (as is well known, the error of a Monte Carlo simulation decays like
1/+/N, where N is the number of trials).

On the other hand, the second approach has also encountered insurmountable difficulties,
due to excessive CPU time requirements of the computations involved. Indeed, in order to
obtain mathematically meaningful results, systems of linear equations have to be solved, in-
volving at least tens of thousands of equations with as many unknowns. Conventional direct
methods require order O(N?) operations for the solution of an N x N linear system, while
classical iterative methods require order O(/N?) operations, with the constant strongly depen-
dent on the problem in question. In either case, the computational expense is prohibitive for
large-scale problems.

We present a direct algorithm for the rapid solution of the Laplace equation on regions with
fractal boundaries. The algorithm requires O(N) operations with a constant dependent only
on the geometrical properties of the fractal boundaries, where N is the number of elements
in the discretization of the fractal. The scheme is sufficiently fast that problems involving
N ~ 10% can be solved, even without the use of supercomputers, and admits far-reaching
generalizations.

The plan of the paper is as follows. In Section 2, we begin with the definition of the
problems to be addressed; in Section 3, we summarize certain mathematical and numerical
facts to be used in this paper; in Section 4, we develop the mathematical apparatus used in
the construction of the fast algorithm by borrowing terminology from the standard scattering
theory for the Helmholtz equation; in Section 5, we present the description of the fast algorithm,
and in Section 6, we illustrate the performance of the algorithm by numerical examples. Finally,
in Section 7, we discuss our conclusions.
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Figure 1: Sequence {C§,C¢,C%,- -}

2 Statement of the Problems

In this section, we define the problems to be addressed, namely, the boundary value problems
for the Laplace equation on regions with fractals of Cantor type as the boundaries.

A fractal of Cantor type is a classical example of fractals (see, for example, [2], [10], [18]),
which can be generated recursively by dividing a square in the plane into four squares (boxes)
with a ratio of sides as a parameter.

Given a real number a (0 < a < ), we define a sequence of sets as follows (See Figure 1)

C; = { the unit square }, (1)
C? = {4 corner boxes with a as their sizes }, (2)
Cf = {4 corner boxes with a' as their sizes }, (3)

where [ is an integer. The sequence {C§,C§,C%,- -} decreases monotonically:
Ce2CE2CED .

The Cantor set C* associated with the given ratio a is defined as the intersection of the
sequence (see Figure 2):
c* = ﬂ Cr. (4)
1e{0,1,2,...,00}
For a given integer | > 1, we define the I-th approximation to the Cantor set C* as a set

A; = { the centers of all boxes in C} }. (5)

We will refer to the 4' boxes of C} generated during the I-th step of the above process as
level I boxes. Thus, there is one box on level 0, and it coincides with the unit square. The level
1 + 1 is obtained from the level ! by subdividing each box on the level ! into 4 corner boxes
(see Figure 1).

We will also impose a tree structure on the hierarchical structure of C?, so that if iboz is a
fixed box at level I, the four boxes at level [ + 1 obtained by subdivision of iboz are considered
its children, while the four child boxes are considered brothers.




Figure 2: Cantor Set C* - A Fractal



Given a Cantor set C*, we will consider the exterior Dirichlet problem for the Laplace
equation defined by the formulae

Au = 0 for xe€ R?\Ce 6)
’U,lca = f
To insure the uniqueness of the solution of problem (6), the far-field condition
LIm |u(z)| < o© (7)
lz|—o0

is normally imposed.

The proof of the following Theorem can be found, for example, in [25]; and Remark 2.1 is
a well-known fact (see [9]), for example).

Theorem 2.1 The boundary value problem (6) is a well-posed problem.

Remark 2.1 Suppose that lim;_,, fi = f on C®, and u; is the solution of Dirichlet problem
with boundary condition defined on a set of bozes C}' (see (3)):

Au 0 for =ze€R?\CP,

_ (8)
ulee = fi,

and satisfies the far-field condition (7). Then w; converges to the solution u of the boundary

value problem (6).

Remark 2.2 As is well-known (see [9], for ezample), the boundary value problems (8) can
be formulated as an integral equation of the first kind by representing the solution as the log-
arithmic potential of the charge distribution on the boundary C}. Denoting by o the charge
distribution over the boundary C}, we obtain the integral equation

[ ke - tldo(t) = fi(@) - () ©)
]
with ¢ € C}, where the integration is in the sense of Borel measure. Detailed discussion of the

unigueness of the solution of (9) can be found, for ezample, in [25].

For a given integer [ > 1, suppose that N = 4!, and 4; = {z; | i = 1,2,..., N} is the I-th
approximation to the Cantor set C®. Then, by the definition of Borel integration, the integral
equation (9) is discretized as a linear system of equations

As=b with AeR"N and beRN, (10)
where

Aij = log|z —z| fori#j, (11)

Ai = / / _nrdady / / _dady, (12)

with 7 = \/(z — 20)% + (¥ — ¥0)?, and a square € C} centered at (zo,y0). The following
theorem can be easily verified.

Theorem 2.2 Defined by (10), (11) and (12), the matriz A is nonsingular.

In the rest of this paper, we focus on the numerical solution of linear systems of the type
defined by (10), (11) and (12).




3 Mathematical and Numerical Preliminaries

In this section, we summarize certain well-known mathematical and numerical facts to be used
in the rest of this paper. They can be found, for example, in [5], [8], [11], [25].

3.1 Boundary Value Problems for the Laplace Equation

Suppose that I' C R? is a Jordan curve, parameterized by its length v : [0, L] — R2, and Q is
the region bounded by T, so that 8Q = I'. Suppose further that N : [0, L] — R? is the interior
normal to I'. For an integrable function f : [0, L] — R, we will be considering the following
problems.

(A) Interior Dirichlet problem

Ad(z) = 0 for z€Q (13)
o(z) = f(vy7Y2)) for =zel
(B) Exterior Neumann problem

A¥(z) = 0 for =z € R?\Q (14)

FUz) = f(r7Y(=)) for =ze€T

with ¥ satisfying the following far-field condition
. u(=)] :

0< lim ——= and lim |u(z)— clog|z|| =0 15
Im ) Jm_[u(z) - clog (15)

where ¢ # 0 is a constant.
As is well known, each of the above two problems has a unique solution for any continuous
right hand side f and piecewise smooth boundary T (see, for example, [8]).

3.2 Single and Double Layer Potentials

Suppose that a point charge of unit intensity is located at the point zo € R2. Then, for any
z € R? with z # z0, the potential due to this charge is described by the expression

¢zo(2) = —In(||z — 20l|)- (16)

The potential of a dipole of unit intensity located at o and oriented at the direction h € R?
(J|k]] = 1) is described by the formula

h(z — zo)
llz — zoll**

¢xo,h(x) = (17)

It is well known that the potential ¢,, due to a point charge at zo € R? (defined by
formula (16)) is harmonic in any region excluding the source point zo. Moreover, for any
harmonic function u : R? — R!, there exists an analytic function w : € — € such that
u(z,y) = Re(w(z,y)). In the rest of this paper, we will make no distinction between points in



R? and points inC. In complex terms, the potentials ¢, and ¢, » defined by the expressions
(16) and (17) respectively, assume the form

2 (2) = Re(—In(z - 20)),

and
h

Z—=2p

¢zo,h(z) = Re( )s

where 2z = z + 1y and 2o = %o + iyo. Following the standard practice, we will refer to the
analytic function In(z — zp) as the potential at the point z €C due to a charge located at the
point zg.

For an integrable function y : [0, L] — R, the potential of a single layer with density y is
given by the formula

L
¥(@) = [ oy@nd, (18)
and the potential of a double layer with the dipole density p is given by the formula

2(2)= [ by miof@n(dit. (19)

3.3 Integral Equations of the Classical Potential Theory

In the classical potential theory, the interior Dirichlet problem (13) is solved by representing
® as the potential of a double layer, and the exterior Neumann problem (14) is solved by
representing ¥ as the potential of a single layer. The analysis of the single layer and double
layer potentials in the vicinity of the boundaries results in two integral equations of the second
kind.

(A1) Interior Dirichlet Problem

L 9
(=) + [ g e @) - 10l = (2). (20)

(B1) Exterior Neumann Problem
o L
- @) + 5y el @) - 1l = (o) (21)

3.4 Galerkin Method for the Solution of Integral Equations

As is well-known, the classical Galerkin method can be used for the numerical solution of the
integral equations of the form

W)+ [ Ko, tpt)at = 5@) (22)

Given an orthonormal basis {P,(z)} in L?[a,b], the function u, : [0, L] — R! defined by
the formula

() = 3 e3Py (a), (23)

i=1
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and satisfying the condition
(ry1n) = 0, (24)

will be used to approximate the solution of the integral equation (22), where the error function
7(z) in formula (24) is defined via the expression

L
r(2) = pn(z) + /0 K (2, )pa(t)dt — f(z). (25)
The above procedure results in a linear system Bc¢ = b defined by formulae
L oL
B;; = / / K(z,t)P(z)P;(t)dedt for i#j and 1<4,5<n, (26)
o Jo

andfor1<:<m, B; =1,
L
b= [ f(@)P(a)ds. (27)
0

Lemma 3.1 below introduces the well-known Legendre polynomials, and Lemmas 3.2 and 3.3

present the integrals (26) in Cartesian and polar coordinates respectively for integral equations
(20) and (21).

Lemma 3.1 The Legendre polynomials P,(z) defined by the formula

1 WmFL 1 d .
Po(z)=ﬁ, Po(z) =4/ ) 2“n!dz"(z2_1)’ n=12,-.-, (28)

are orthonormal polynomials on interval [-1,1].

Lemma 3.2 Suppose that Q is a square with vertices (1,1), (1,-1), (-1,-1), (-1,1), the boundary
of Q is denoted by T, and {Pi(z), Py(z),- -+, Py(z),-- -} are the Legendre polynomials. (see
Lemma 38.1). Suppose further that p is the solution of equation (20) or (21), and for each of
the two horizontal sides of 2, ‘

=0
for each of the two vertical sides of §)
pn(y) = D W Pi(y)- (30)
=0
Then the integrals in (26) are of the form
_Mrnr (y+1)
fi = /_1 /_1 Grirt i (@hWdedy, (31)

for any two adjacent sides of the square 2, and
1 1 2
Jij = /—1 /;1 mﬂ(x)Pj(y)dzdy, (32)
for non-adjacent sides of the square Q, where 1 < 1,7 < n.
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The following lemma is obtained immediately by considering the integrals I;; in (31) in
polar coordinates.

Lemma 3.3 Suppose that for 1 < 4,j < n, integrals I;; are defined by formula (31). Then

x —2_ s -2
L;= {/04 /ome +/: /(;sme}P,-('r cos @ — 1) P;(rsin § — 1) sin Odrd6. (33)
4

Remark 3.1 While the Integrals I;; in the formula (31) are singular functions in the Cartesian
coordinates, they are smooth (C*) functions in the polar coordinates. Thus, the integrals (33)
can be efficiently evaluated via Gaussian quadratures in polar coordinates.

3.5 Ranks of Interactions

In this section, we consider electrostatic interactions and establish Theorem 3.1, which is the
principal analytical tool of this paper.

For two sets of points {z1, 22, -, Zm } and {y1,y2,- -, Yn}, We define the interaction matrix
of the two sets as a m X n matrix given by the formula

(d)yl(zl) by (z1) o0 Bya(T1)

(%j(zi)) _ ¢y15$2) ¢y2§$2) ¢y,.f~'v2) (34)
\ 80 (2n) bn(em) - Gu(Em)
[ o R et
= ; : ; (35)
\ 1n(om = 1) In(em—92) - In(@m —3a)

Lemma 3.4 below can be easily proved by expanding In(1 — w) into Taylor series with
respect to w; Lemma 3.5 is the reformulation of Lemma 3.4, and will be used in the proof of
Theorem 3.1.

Lemma 3.4 Let a unit point charge be located at zy. Then for any z such that |z| > |zo|,

$20(2) = In(z — 20) = aoln(2) + 3 Z_’; (36)
k=1
where
2
ap=1 and ar = (—)—E- (37)

Furthermore, for any p > 1,

14

Buo(z) ~ aoln(2) ~ Y0 2| < (—=)(3) (39)
k=1
where
c=|= (39)
20




A

Figure 3: Points {z;} outside the circle with radius (1 + A)R

Lemma 3.5 Suppose that the ezpansion (36) is truncated after p terms (p > 1), and the error
of the truncated expansion is denoted by €% (z)

£2,(2) = 2 () — aoln(2) - Y .

k=1

Then for any p > 1,

$20(2) = €5,(2) + wpvy (40)
with the vectors u, and v, defined by the formulae
11 1
u,,:(lnz,;,;i,---,—z-;) (41)
2 P
-2y —2 -2
v = (1, 1’ 20""7 p0)° (42)
Furthermore,
2, < (=5)(2) (43)
%o “tec—-1"¢

with ¢ defined by (39).

Clearly, the truncation error €% (z) in (43) decays exponentially as the function of p. Thus
few terms in (36) are needed to achieve any given accuracy,
The following theorem follows immediately from formulae (40 ) and (43).

Theorem 3.1 Let n unit charges be located within the circle |y| < R at points {y1,*-*,Yn},
A > 0 be some real number, and {z1,22,-+-,Zm} be another set of points such that |z;| >
(14 AR for all1 < i < m (see Figure 3). Then the interaction matriz of the two sets {z;}




Figure 4: Well-separated sets in the plane

and {y;} has the decomposition

1 1 1
11 1
e, 2 2 ¥ -4 —¥n
(¢y,~(93i)) = ; 2 2 2 2 2 + EP, (44)
- SR o (= ' S A
P P )
where the truncation error EP = (ezj(:vi)) is bounded by the expression
(2| < (P(2y) (45)
vi TOATLI4A

for1<i<mand1<j<m.

Inequality (45) states that every element of the matrix of truncation error E? decays expo-
nentially as the function of p. Thus for any given accuracy, the interaction matrix of the two
sets {z;} and {y;} can be decomposed into the product of two matrices of low rank.

For two sets of points, z1,22,-:+,2,, €C and y;1,y2, -, yn €C, we say that the two sets
are well-separated (see Figure 4) if there exist points zg,yo €C, and R > 0 such that

|zi— 20| < R for 1<i<m,

lyi—%| < R for 1<j<n,
|z0—yol > 3R.

Theorem 3.1 implies that with any prescribed precision, the interaction matrix of two well-
separated sets can be decomposed into a product of two matrices of low rank, and the rank is
bounded by a constant depending only on the separation of the two sets (see formula (45)).

3.6 Interactions in Cantor Sets

Suppose that D; and D, are two subsets of a Cantor set C?%, and A; is the | —th approximation
of C* (see (5)). Then we will refer to the interaction between D; N A; and Dy N A; as the
interaction between D; and D,.
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Figure 5: Two subsets of C*®

Theorem 3.2 below states that for any given ratio a, the interactions in Cantor set C* are
of low rank; and the ranks are bounded by a constant dependent only on the ratio a in the

generation of the Cantor set. Lemma 3.6 is obvious, and will be used in the proof of Theorem
3.2

Lemma 3.6 Suppose that Dy, D, are two subsets of a Cantor set C* with ratio a, and each
of them are divided into four pieces of equal size (child bozes) (see Figure 5). Suppose further
that A is a child boz of Dy, and B is a child boz of D;. Then the rank of the interaction matriz
between subsets Dy and Dy is at most four times as large as that between bozes A and B.

Theorem 3.2 Forareala (0<a< % ), and an integer | > 1, suppose that C* is the Cantor
set associated with the ratio a, and C} is the set of bores generated at the l—th level

Cla':{Dl')D2""aD4'}' (46)

Then for any given precision, the rank of the interaction matriz between any two bozes D; and
D; (i # j) is bounded by a constant dependent only on the ratio a for generating the Cantor
set C*. The constant does not depend on the sizes of bozes and the numbers of points inside
the bozes.

In other words, the matriz of interactions between any two bozes at any level of Cantor set
C*® is of fized rank, to any prescribed precision.

Proof: The theorem follows immediately from Theorem 3.1 if any two sets D; and D; (¢ # j)
are well-separated.

Suppose that D; and D; are not well-separated from each other. Then we divide each of
them into four pieces (child box) of equal size (see Figure 5). Suppose that A is a child box of
D;, and B is a child box of D; (see Figure 5). Then the theorem follows from Lemma 3.6 and
Theorem 3.1, if A and B are well-separated from each other.

Suppose that sets A and B are not well-separated. Then we keep dividing them into pieces
till the smallest pieces are well-separated. Due to Lemma 3.6 and Theorem 3.1, the rank of
the interaction matrix between any two boxes at any level of the Cantor set is bounded by

p-4F  with k= m(1"2‘1’3/j‘/§_1) , (47)

where p is the rank of the interaction matrix between two well-separated pieces. B
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Figure 6: Compact set D in domain Q with boundary T’

Remark 3.2 Clearly, the estimate (47) is an extremely pessimistic one. In the following
section, we obtain much sharper numerical estimates (see Section 4.3).

4 Scattering Theory for the Laplace Equation

In this section, we borrow terminology from the standard scattering theory for the Helmholtz
equation, and refer to the result as scattering theory for the Laplace equation. In the following,
we first introduce the concept of scattering matrix, and then present a merging scheme for
generating scattering matrices recursively.

Throughout this section, I' will denote a Jordan curve, parameterized by its length « :
[0, L] — R?. The region bounded by I' will be denoted by €, and D will denote a compact
subset of Q. In addition, G: Q x @ — R! will denote the Green’s function for domain 2, and
N :[0,L] — R? will denote the interior normal to I'. For a compact set E C R?, M(E) will
denote the set of all non-negative Borel measures on E.

4.1 Scattering Matrices

Any function ® : @ — R harmonic inside  and continuous on € will be referred to as
incoming potential. Asis well-known, for any continuous function ¢ : I' — R, there exists a
unique function @ : @ — R harmonic on §, and continuous on § such that ®|r = ¢. Therefore,
we will abuse the notation by referring to the function ¢ : I' — R as the incoming potential.

Suppose that ¢ € L?(Q2) and o is a Borel measure over D. Given a function K € L?(R? x
R?), the function

¥(z) = / K(z,t)q(t)do(t) for z € RA\D (48)
D
will be referred to as outgoing potential. Similarly, we will call its restriction ) = ¥|r onto T’

an outgoing potential. Outside the domain (2, function ¥ will also be referred to as scattered
potential.
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Remark 4.1 Particularly, we are interested in the case when K(z,t) = In||z — t||,
is the characteristic function of D. Then the outgoing potential

¥(z) = / In||e — t||do(t)
D
is a function harmonic in R?\D, and satisfying the far field condition (15).

We define three operators
L: L% T) - L*D),
P : M(D) — L*(R?\D),
S : M(D) = L*(T),
via the formulae

U@ = 5= [ o600 g Gla(0)-

P(o)(z) = / K(z,)q(t)do(t) for z € R?\D,
D
S(o)(z) = /D K(z,1)q(t)do(t) for z € T
We will be considering equations of the form
P(o) = f,

and ¢(t)

(49)

(50)

(51)

(52)

(53)

with f € L%(D). A special case of equation (53) is the integral equation (9) defined in Section
2, with D a Cantor set, K(z,t) = In ||z — t||, and ¢(t) the characteristic function of D.

Definition 4.1 The operator o : L%(T') — L%(T') defined by the ezpression
a=§-P1.L

will be referred to as the scattering matrix associated with the triple (D,T, K).

(54)

Remark 4.2 Given an incoming potential ¢ on the boundary T', the operation of a on ¢ can

be viewed as consisting of three steps:

1. The operator L constructs a function f = Ly : @ — R harmonic over the compact set

D, and such that (Le)|r = ¢.

2. The operator P~ constructs the solution o0 = P! f of equation (53) from the harmonic

function f = Le.

The charge distribution 0 = P~! Ly will be referred to as induced charge distribution.

3. The operator S defined by (52) constructs an outgoing potential 1 = So on T’ from the

induced charge distribution o.
The outgoing potential 1 will be referred to as induced outgoing potential.

Thus, the scattering matrix o converts an incoming potential ¢ into the induced outgoing

potential
P = ap.

13
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4.2 Recursive Generation of Scattering Matrices

When a compact subset D of domain £ is a union of mutually disjoint compact sets {D;}, the
scattering matrix of D can be obtained by merging the scattering matrices of {D;}. We begin
with introducing the requisite notation, and then present a merging scheme for the recursive
generation of scattering matrices.

4.2.1 Notation

Suppose that A = {I'1,T3,---,Tn} C O is a set of closed Jordan curves. Each I; € A is
parameterized by its length «; : [0, L;] — R2, Q; C Q is the region bounded by I';, and D; is
a compact subset of §2; (see Figure 7). Suppose further that for 1 < ¢ < m, D; is a compact
subset of §;, function G;: Q; x Q; — R! is the Green’s function for domain §;, and function
N; :[0,L] — R? is the interior normal to T};.

Assuming that the domains {Q;} are mutually disjoint, we will consider a special compact
subset of domain () defined by the formula

In addition to operators L, P, and S defined by (50), (51), and (52) in the preceding section
for (D,T'), we will require the operators for (D;,T;) with 1 < i< m

Li; : I*(T;) - L}(),
P; : M(D;) — L*(R*\D;),
Sii : M(D;) — L2(I‘¢),
defined by formulae

L)) = 5= [ pt) 5 Gilasult) -, (50
Pi(o)(z) = /D Kz a(t)do() for z € R?\D, (57)
Si(o)(z) = /D K (2, Da(t)do(t) for z € T;. (58)
We will consider equations of the form
Pi(o) = fi (59)

with f; € L*(D;),and 1 < i < m.

Definition 4.2 A function ¢; € L%(T;) will be called total incoming potential if for any
z € D,

Fi(o|p;)(z) = Lii(pi)(z), (60)

where operators P; and L;; are defined by (57) and (56) respectively, and o|p, is the restriction
of the charge distribution o (defined by (53)) to the compact subset D; C D.

14




Figure 7: D; C Q;for1 <1< m

We are now applying the definition of scattering matrix to each subset D; for 1 < < m
(see Definition 4.1). Suppose that for any ¢ (1 < ¢ < m), function ¢; is the total incoming
potential on TI';, function ; is the outgoing potential induced by ¢;, and operator a; is the
scattering matrix for the domain D;. Then we have

o; = S P Ly, (61)

¥ = o g, (62)

(see formulae (54) and (55)).
We will also require operators for 1 < 7,7 < m

L; : L2(F) — L2(Fg),
S; : L¥(T;) = L*(D),
Lyt I3(Ty) — IXTy),  i# 3,
defined by formulae

L)) = 52 [ #00) gu o) -dt Tzl (63)
Sii = /D K(z,0)q()do(f)  forz €T, (64)
Lini = /D K (=, )q(t)do(t) for z € T;. (65)

In other words, the operator S; converts the outgoing potential 1; on I'; into the scattered
potential on T', and the operator L;; converts the outgoing potential 4; on I'; into the scattered
potential on T';.
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Definition 4.3 Suppose that the operator

L*(Ty) L*(Ty)
L*(T2) L*(T)
. ﬁ .
L*(T,,) L*(T,,)
ts defined by the expression
I —Liysay -+ —Ligpapy
po| e 1 Thmen (66)
—Lpmion —Lmzaz --- I
Then the operator
L%(Ty)
LT
S, : L3(T) — (T2)
LX)
defined by the formula
L,
L,
S =U"| . (67)
L,

will be referred to as splitting matrix, provided the operator U in (66) is nonsingular.

4.2.2 A Merging Scheme for Scattering Matrices

Theorem 4.1 is the principal tool of this paper; it describes a scheme to obtain the scattering
matrix of domain D ( = U™, D; ) from the scattering matrices of subdomains D, Dy, ..., Dy,.
Lemma 4.1 is used in the proof of Theorem 4.1

Lemma 4.1 Suppose that ¢ is an incoming potential on the boundary I', and ¢; is the total
incoming potential on T'; defined by n formula (60). If the operator U defined by (66) is
nonsingular, then we have
$1
P2
: = 5p ¢ (68)
©m
In other words, the splitting matriz S, converts the incoming potential ¢ on T into the total
incoming potentials {¢1,¥2,* -+, Ym} on boundaries {I'1,T2,--+,Tpn}.
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Proof: For any i (1 < ¢ < m), the total incoming potential ¢; on the boundary I'; equals to the
sum of the potential from I' and the scattered potentials from {T';} with j #iand 1 < j < m.
That is,

@i = L,‘(p + E L,‘j’l/)j. (69)
J#
Combining (62) with (69), we have
@i = Lip+ Y Lijojp;. (70)
J#i

Viewing the above equations as a m X m linear system, we obtain (68). W
Theorem 4.1 (Recursive Generation of Scattering Matrices) Given scattering matrices
{a;} for subdomains {D;}, the scattering matriz o of domain D = UL, D; is given by the

formula

a = ( Slal Szag Smam )Sp, (71)
where operators {S;} are defined by (64), and the splitting matriz S, is defined by (67).

Proof: Suppose that ¢ is an incoming potential on T, and o is the charge distribution induced
by . Then due to (48), the induced outgoing potential 1 assumes the form

vo) = [ Kt)-qt)-do(t)
> [, Ko a0 dott (72

for any z € T.
Combining (64) with (72), we obtain

¥(z) =) (i ¥i)(). (73)
Substituting %; in (73) by a;¢p; (see (62)), we have

Y o= Y Sii=) Si-ai-p;
$1
— ( Slal S2a2 e Smam ) 302 . (74)
Pm

The conclusion of the theorem follows from the combination of (74), (68), and (54) W
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Figure 8: A subset D C C*® enclosed by T’

4.3 Scattering Matrices in Cantor Sets

Suppose that D is a compact subset of Cantor set C*, and the set D is enclosed in a domain
Q with its boundary denoted by I' (see Figure 8). The boundary T will be referred to as frame
boundary.

To specifically deal with the problem defined in Section 2 (see (10), (11), and (12))),
we consider scattering matrices in Cantor sets, with K(z,t) = In||z — t|| and ¢(t) as the
characteristic function of D. Then an incoming potential ® is harmonic in 2, and an outgoing
potential ¥ is harmonic in R?\D, and satisfies the far-field condition (15) (see Remark 4.1).

Furthermore, the operators P : L%(D) — L%(R%*\D) defined by formula (51), and § :
L?*(D) — L*(T) defined by formula (52) assume the form

P(@)(@)= [ e - tlldo(t) (75)

S(o)(z) = /D In ||e — ||do(?). (76)

In this section, we construct an analytical apparatus for the efficient representation of
scattering matrices of subsets of Cantor sets. In Section 4.3.1, we represent incoming and
outgoing potentials in terms of single and double layer distributions; in Section 4.3.2, we
describe a merging scheme for the recursive generation of scattering matrices; and in Section
4.3.3, we discuss the discretization of scattering matrices and other related operators.

4.3.1 Representation of Potentials

Theorem 4.2 below describes the representation of incoming and outgoing potentials in terms
of single and double layer distributions. Theorem 4.3 follows immediately from Theorem 4.2.
Lemmas 4.2 and 4.3 are obvious (see Section 3.3), and are used in the formulation of Theorem
4.2.

Lemma 4.2 Suppose that ¢ is an incoming potential on the boundary T', and v is an outgo-

ing potential on I'. Then the incoming and outgoing potentials ® and ¥ are respectively the
solutions of the following two boundary value problems.
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(AA) Interior Dirichlet problem (Incoming Potential)

Ad(z) = 0 for z€Q 77
2(z) = ¢(17(2)) for zel (7
(BB) Ezterior Neumann problem(Outgoing Potential)
A¥(z) = 0 for z € R\Q (78)
L) = () for zeT

with ¥ satisfying the far-field condition (15).

Lemma 4.3 Suppose that ¢ is an incoming potential on the boundary ', and v is an outgoing
potential on T'. Suppose further that a dipole distribution pq and a charge distribution p, are
respectively the solutions of the two integral equations,

L 9
mua(e) + [ g PE @) ~ vOllkalt)ét = o(z) (79)
0 L
- @) + 3y o 0@ = 1Ollia()dt = ¥(z). (80)
Then the incoming and outgoing potentials can be represented by the formulae
L 9
5() = [ g3 el @ - 1Ol (81)
L
¥(2) = [ loglIr(@) = 1Ol (52)

Theorem 4.2 below can be viewed as a reformulation of Lemma 4.3 in the operator notation.
First, we define four operators

Qa: L¥(T) - L*(Q),
Qs : L(T) - LA(R\Q),
P;: L}T) — L*T),
P, : L*(T) - L*(D),

via formulae

L 9
Qulka)(@) = [ g3 Tos @) — (@), (8)
Qus)(@) = [ Tog (@)= 7Dlualt)it (5)
L 9
Palpe)(e) = mna(e) + [ g og (=) = 1) et (85)
Pie)@) = ~1mul2) + s [ og l(a) = 100 (56
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Theorem 4.2 Suppose that ¢ is an incoming potential on the boundary T, and 1 is an out-
going potential on I'. Then the incoming and outgoing potentials can be represented via the
formulae

@ =QuP e, (87)
U =Q,P 1, (88)
where operators Q;, Qa, Ps and Py are defined by (84), (83), (86), and (85) respectively.

Theorem 4.3 Suppose that L : L*(T') — L*(D) is the operator defined by formula (50). Then

Ly = (QaP;'¢)Ip, (89)

with the operators Py and Qg defined by the formulae (85) and (83) respectively.

4.3.2 Recursive Generation Of Scattering Matrices

Suppose that {Dy, Dy, D3, D4} C C* are four subsets (boxes) resulting from the subdivision
of a bigger subset (box), and the set D is the union the four subsets {D;}

4
D= U D;. (90)
=1
Suppose further that D is enclosed in a square Q with its boundary denoted by I'. The square
) will be referred to as frame domain (box) while I' will be referred to as frame boundary.
Suppose that for any integer ¢ (1 < ¢ < m), the set D; is enclosed in a square Q; with its
boundary denoted by I'; (see Figure 9). Within the tree structure of the Cantor set C° (see
Section 2), we will refer to the frame boxes of neighbor boxes as neighbor frame bozes, and the
frame box of a parent box as parent frame boz.
In this section, we obtain the scattering matrix for D from scattering matrices for domains
{D1, Dy, D3, D4}. First, we need the representations of operators

L;: L"’(l‘) — L2(F,'),
S; : L*(T;) — L¥(T),
Lji : (L) — LX(Ty),
defined by formulae (63), (64), and (65) respectively.
Theorems 4.4 and 4.5 below follow from Theorem 4.2 immediately, Lemma 4.4 is an im-
mediate consequence of Lemma 4.1, and Theorem 4.6 is a consequence of Theorem 4.1 and
Lemma 4.4. Theorems 4.4 and 4.5 describe representations of the operators L;, S;, and L;;

defined by formulae (63), (64), and (65). Theorem 4.6 describes a merging scheme for the
recursive generation of scattering matrices for subsets of Cantor sets.

Theorem 4.4 Suppose that 1 < i < m, and L; : L*(T) — L%(T;) is the operator defined by
formula (63). Then

Lip = (QaPio)Ir;, (91)
with operators Q4 and Py defined by formulae (83)and (85) respectively.
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Figure 9: Four Subsets of C* and Their Frame Boxes

We will define the operators @, ; and P ;, and observe that they are similar to the operators

Qs in (84) and Ps in (86) with region Q replaced with region ;.
Qs : L*(T:) —» LA(R\Q),
P, : L2(I‘,~) — L2(I‘,'),
by formulae

L;
Qei(0)(@) = [ log (@) = u(Bllo(t)at,

Poslon)e) = =n0.(o) + g [ Toglhita) = (o)l

Theorem 4.5 Suppose that for 1 < 1,7 < 4, the operator

S; : LA(T;) = L*(T),
is defined by formula (64), and the operator

Lj; : LX(T;) — L*(Ty) for i # j,

| is defined by formula (65). Then

Sip = (QsiPri ¥)Ir,

Liiy = (Qsi Py 9)Ir;,
with operators Q;; and Ps; defined by formulae (92) and (93) respectively.

Remark 4.3 Suppose that the operator

L*(Ty) L*(Ty)
U L?(T3) L*(T,)
| LATs) | T LA(Ts)

L2(1“4) L2(1“4)
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is defined by the ezpression

I —Lijs0 —Lyjzaz —Lyigoy
—Lyay I —Lyzaz —Lasay
U= 96
=Ly —L3ay I —Lasay (96)
—Lgyony —Lga; —Lszas 1
Then the splitting matriz (see formula (67))
L*(Ty)
L*(Ty)
.72 2
S ) = | 1ol
L2(1‘4)
1s given by the expression
L,
L
_ 71 2
Sp=U L | (97)
Ly

with L; defined by (91) for 1 < i < 4, and L;; defined by (95) for 1 <1i,5 < 4.

Lemma 4.4 Suppose that ¢ is an incoming potential on the boundary T, and for 1 < i < 4,
®; 1s the total incoming potential on T;, as defined by (60). Then

$1
®2
¥3
¥4

=9p° P (98)

with the splitting matriz S, defined by formula (97).
In other words, the splitting matriz converts the incoming potential ¢ on T into the total
incoming potentials {¢;} on boundaries {T;}.

Theorem 4.6 Suppose that for all 1 < i < 4, the scattering matriz for the compact set D; is
denoted by a; (see 90). Then the scattering matriz o for the set D = \Ji_, D; is given by the
merging formula

a = ( Sla1 52(12 53a3 S4Ol4 )Sp, (99)

with operator S; defined by formula (94) for 1 < i < 4, and the splitting matriz S, defined by
formula (97).

Remark 4.4 Due to the self-similarity in Cantor sets (see Section 2), we only need to compute
one scattering matriz per level, even though there are 4' subsets at |—th level

22




Figure 10: Frame Boxes for Cantor Set C*

4.3.3 Discretization of Scattering Matrices

From the preceding sections, it is clear that the construction of scattering matrices for subsets
of Cantor sets, either directly or recursively, depends on the choice of frame boundaries (see
formulae (54) and (99)). For a Cantor set C?, we recursively generate frame boxes for subsets
of a Cantor set C® such that frame boxes at the same level are mutually disjoint, and the
distance between a box and its frame box equals to the distance between two neighbor frame
boxes (see Figure 10).

Based on the above choice of frame boxes, Tables 1 and 2 list the number of Legendre
nodes needed on frame boundaries for the representation of incoming and outgoing potentials
to single and double precision respectively.

Remark 4.5 Two observations can be easily made from Tables 1 and 2.

1. The number of Legendre nodes needed to obtain double precision is only twice the number
of nodes needed for single precision.

2. The number of nodes needed increases rapidly with the increase in ratio a.

With the choice of frame boundaries and Legendre nodes on the boundaries, we are ready
to discretize operators P in (75), S in (76), Py in (85), Ps; in (93), Q4 in (83), @, in (92), L
in (89), L; in (91), S; in (94), L;; in (95), and S, in (97) with 1 < 4,5 < 4.

There are three types of discretization.

1. Operators P and S in (75) and (76) are discretized as follows.

Suppose that {z1,22,-+,2n,} is the approximation to the compact subset D C 2, and
{z1,z2,+ -, 2} are the Legendre nodes on the boundary I' of domain .
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€ = 10~7 (Absolute Error)

Ratio a 01({02103|035/0.4/|0.45
Number of Nodes
Per Side 12 1 18 | 30 | 46 | 66 | 100

Table 1: Number of Legendre Nodes for Single Precision

€ = 10~* (Absolute Error)

Ratio a 0.1702103(0.35{ 04045
Number of Nodes
Per Side 30 | 44| 60 | 80 | 120 | 200

Table 2: Number of Legendre Nodes for Double Precision

The discretization of P defined by (75) is the matrix P defined by the formulae

(P);j = In||lzi—2z|| fori#j and1<i,j<m, (100)
(P)i = As (101)

where A;; is defined by (12).

Similarly, discretizing the operator S defined by (76), we obtain the matrix § defined by
the formulae

(§)i;=In||lz;— 2] for1<i<p andl1<j<m. (102)

. Operators P; in (85) and P;; in (93) are discretized by the Galerkin method described
in Section 3.4, and operators Q4 in (83) and @, ; in (92) are discretized by the Gaussian
quadrature rule based on Legendre nodes.

. Operators L, L;, S;, L;; and S, with 1 < 4,5 < 4, defined in formulae (89), (91) , (94),
(95), and (97), are combinations of operators Py in (85), Q4 in (83) @, in (92), and P, ;
in (93). Therefore, the discretization of the operators L, L;, S;, L;; and S, need not be
defined separately.

Therefore, a scattering matrix can be computed either directly via formula (54) or re-
cursively via formula (99).

The following theorem is the immediate consequence of Theorem 2.2.

Theorem 4.7 With the discretization described above, the matriz U defined by (96) is non-
singular. Therefore, the splitting matriz in (97) is uniquely defined.
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Figure 11: Approximation of Cantor set and Coefficient Matrix

5 The fast direct algorithm

In this section, we describe a direct algorithm for the rapid solution of the Laplace equation
on regions with fractal boundaries. The algorithm exploits the fact that for any given ratio a,
interactions at any level in the Cantor set C® are of low rank (the ranks depend only on the
constant ratio a for generating the Cantor set, and do not depend on the sizes of boxes and
number of points inside). The low rank of interactions is reflected in the coefficient matrix in
equation (10) as the low-rank of its off-diagonal submatrices (see Figure 11). Thus, we can
recursively compress these matrices of low rank without actually generating them.

To be more specific, let us consider four subsets (boxes) in a Cantor set C°, depicted in
Figure 12. They are boxes of size d, and the distance between any two of them is (1 — 2a)d.
The interactions between them are of low rank (see Section 3.6), and can be represented via
scattering matrices (see Section 4.3).

Starting with the hierarchical structure of a Cantor set C° (see Section 2), we proceed by
introducing a set of frame boxes arranged in a tree structure (see Section 4.3). For a given
precision €, we determine the number of Legendre nodes needed on frame boundaries for the
representation of potentials (see Tables 1 and 2).

To describe the algorithm, we need the following notation.

L Number of levels in the approximation of the Cantor set C* (see Section 2).
N N = 4L, the size of the approximation of the Cantor set C? (see Section 2).

p Number of Legendre nodes on each side of frame boundaries for the representation
of potentials to a given precision € (see Section 4.3.3).

L; Number of a level on which a scattering matrix is computed directly.

m = 4L~I1 size of linear systems to be solved directly
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(1-2a)d t

Figure 12: Four Subsets of Cantor set C*

A;  Restriction of matrix A defined by (11) onto a subset iboz at level L,. In other words,
(As)ij = In ||z — 2|, and (As)is = As
where points {21, -+, 2.} C thoz, and A;; is defined by (12).

The fast direct algorithm is a two-pass procedure. In the first (bottom-up) pass, we compute
the scattering matrix for level L; directly via formula (54), and scattering matrices for all
coarser levels (level number < L; ) by using the merging scheme described in Theorem 4.6. In
the second (top-down) pass, we generate total incoming potentials on frame boundaries up to
level L; by using Lemma 4.4. Finally, we solve 41 small-scale linear systems of size m x m
directly at level L.

Following is a formal description of the algorithm.

The Algorithm

Initializaiton
Comment [Computations in the initialization are done once for all.]

Step 1

Comment [ Given a real number a (0 < a < %) and an integer L, construct the approximation
of Cantor set C?, and its frame boxes]
dolev=0,1,2,---,L
do iboz = 1,2, --,4lev
Divide each box into 4 corner boxes according to the constant a (see Section 2).
Construct the frame box for iboz (see Section 4.3).
endo
endo
dolev=1L
do ibox =1,2,--.,4L
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Compute the center of tboz.
enddo
enddo

Step 2

Comment| For a given precision ¢, precompute operators P, 1 P71, and A;l]
do

Determine number of Legendre nodes p (see Tables 1 and 2)
Generate the inverses of operators P; and P, defined by (85) and (86), via
the classical Galerkin method (see Section 3.4).

Compute the inverse of m x m matrix Ay directly.
enddo

Upward Pass
Comment[Compute scattering matrices and splitting matrices]

Step 3

do lev = L,
Compute the discretized operators L and S defined by (89) and (76).

Compute the scattering matrix directly via formula (54): a = § A;IL.
endo

Step 4

dolev=L;-1,L-2,---,1,0
doi=1,---,4
Compute operators L; and §; (defined by formulae (91) and (94))
via the Gaussian quadrature rule based on Legendre nodes.
doj=1,---,4
Compute L;; defined by (95) via the Gaussian quadrature rule.
endo
endo -
Compute the splitting matrix S, by using formula (97).
Compute the scattering matrix « via the merging scheme in Theorem 4.6.
endo

Downward Pass

Comment|[Splitting matrices are now available. Compute total incoming potentials on all
frame boundaries up to level L]

Step 5

do lev=1,2,---,L4
do ibox = 1,2,---, 4!
Compute total incoming potential ¢; by formula 98
enddo

endo
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Step 6

do ibox = 1,2, --,41
Solve m x m linear system directly by computing o; = A;l Lp;,
where operator L has been computed at Step 3.

endo

Remark 5.1 Suppose that tboz is a fized boz at level l. Then in the splitting process, the total
incoming potential on the the frame boundary of ibox can be computed independently from those
on the other frame boundaries of bozes at the same level.

Thus, we can obtain a part of the solution independently from the rest of the solution if
only a part of the solution is desired.

A brief analysis of the algorithmic complexity is given below.

Step Number Operation Count Explanation

Step 1 O(N) 4N boxes (squares) are involved. Each
box is determined by its center and size.

Step 2 O(m3 + p%) Operators P; and P; are of size 4p x 4p,
and the Operator Ay is of size m X m.

Step 3 O(mp + m?p) Operator L is of size m X 4p.
Operator S is of size 4p X m.
Operator A;l is of size m x m.

Step 4 O(p®log N) Operator L;, S;, and L;; is of size 4p x 4p.
Sp is of size 16p X 4p. Operator « is of
size 4p X 4p. There are log N levels.

Step 5 O(p®N) The computation of the total incoming
potential ¢; on each frame boundary
requires p® operations. There are 4L1+1
(< N) frame boundaries involved.

Step 6 O(m?pN) Operator A}'l is of size m X m. Operator
L is of size m x 4p. Potential ¢; is a
vector of size 4p. Computations of A;ngo,-
are done 4%1(< N) times.

The time complexity of the algorithm is therefore

(B19® + Bam?p) - N + Bap® -log N, (103)
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where the constant m is normally chosen to be m ~ 256, the constant p depends on the

geometry of a given fractal boundary and the choice of frame boundaries (see Tables 1, 2), and

the constants (1, 32, and B3 depend on the computer system, implementation, language, etc.
The remark below can be obtained easily from formulae (88), (86), (84), and (55).

Remark 5.2 Given scattering matrices and total incoming potentials, the evaluation of the
potential

U(z) = /C In ||z - tlldo(t) (104)

at any point z € R?\C* requires at most O(log N ) operations, where o is the charge distribution
over C®.

6 Numerical Results

A computer program has been implemented utilizing the algorithm of this paper, and capable
of computing either whole or part of the solution, and of evaluating potential at any point.

For this paper, we considered fractal boundaries of Cantor type with ratio 0.1, 0.3, and 0.45.
In the first two experiments (@ = 0.1,0.3), the potentials on frame boundaries are represented
to double precision, while in the third experiment (a = 0.45) they are represented to 10 digits.
The size of linear systems inverted directly at the final stage has been chosen to be m = 256.
All calculations have been conducted on a Sparc II workstation.

The results are summarized in Tables 3, 4, and 5. The first column is the size of the
approximation to a Cantor set. The second column is the number of levels in the generation
of a Cantor set. The third column is the actual CPU time of the fast direct algorithm of
the preceding section. The forth column is either the CPU time or estimated CPU time
of the combined algorithm: the Conjugate Gradient (CG) algorithm combined with the Fast
Multipole Method (FMM) (see [21]). The last column is the estimated timing for the Gaussian
Elimination (it is given here only for comparison purposes).

The following observations can be made from Tables 3, 4, and 5.

1. Although our fast algorithm asymptotically requires O( N ) operations, the actual running
time of the algorithm as observed from the numerical experiments seems to behave like
log N, due to the fact that the constant 3 in formula (103) is rather large compared to
the constants 3; and B;. The constant (3 in formula (103) can be substantially reduced
either by a better choice of frame boundaries, or by improving the representation of
potentials .

2. For any N > 4096, our algorithm is faster than the combined algorithm (the CG method
combined with the FMM, see [21]).

3. The performance of our algorithm deteriorates with the increase in ratio a as is expected
(see Tables 1 and 2).

The following is a recapitulation of the other notation to be used in the illustration of our
numerical experiments.
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a — ratio for generating a Cantor set.
p — number of Legendre nodes on each side of frame boundaries.
m — size of linear systems inverted directly.
€ — precision of incoming and outgoing potentials.
N — size of the linear system (10) to be solved.
a=0.1,p=30,m=256,¢=10"14
il N | Levels | Toig(Minutes) | Togermm(Hours) | Tep (Estimated) ||
4,096 6 6 0.4 19.1 Hours
16,384 7 9 3.3 51 Days
65,536 8 11 26.4 (est.) 9 years
262,144 9 14 211.2 (est.) 572 years
1,048,576 | 10 19 1689.6 (est.) 366283 years
Table 3: Comparison of Timings (a = 0.1)
a=03,p=60,m=256,¢e=10"1
N Levels I Ta1g(Minutes) ] Tegermum(Hours) ! Tce (Estimated) ”
4,096 6 45 1.2 19.1 Hours
16,384 7 67 8.3 51 Days
65,536 8 88 66.7(est.) 9 years
262,144 9 110 533.8(est.) 572 years
1,048,576 10 134 - 4270.3(est.) 366283 years
Table 4: Comparison of Timings (¢ = 0.3)
a = 0.45, p= 80, m = 256, ¢ = 10~1°.
|| N | Levels | Ta1g(Minutes) ] Tccermm(Hours) I Tcr (Estimated) ”
4,096 6 122 1.6 19.1 Hours
16,384 7 181 13.0 51 Days
65,536 8 240 103.7(est.) 9 years
262,144 9 297 829.3(est.) 572 years
1,048,576 | 10 360 6634.2(est) 366283 years

Table 5: Comparison of Timings (a = 0.45)




7 Conclusions

An O(N) direct algorithm has been constructed for the rapid solution of the Laplace equation
on regions with fractal boundaries, where N is the number of elements in the discretization
of the fractal. In the algorithm, operators of low rank are recursively compressed, and the
inverse is constructed in a compressed form so that it can be applied to a vector rapidly. The
algorithm is capable of generating only a part of the solution if desired. The evaluation of
potential at any point requires O(log N) operations. Numerical examples presented in Section
6 indicate that even very large-scale problems result in acceptable CPU time requirements. In
the presented paper, a two-dimensional version of the algorithm is described. Generalizing this
result to three dimensions is fairly straightforward and will be reported at a later date.
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