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Abstract

We propose a modular specification of programming language semantics to facilitate semantics-
directed compiler generation. Modular monadic semantics allows us to define a language with a
rich set of features from reusable building blocks, each implementing a single feature. We achieve
modularity by using monads and monad transformers to structure denotational semantics, and still
retain the power of equational reasoning. The added benefits of reasoning in monadic style
include useful laws for programming language constructs, better structured proofs and more
general results. To demonstrate, we present an axiomatization of environments and use it to
prove the correctness of a well-known compilation technique. The monadic approach also helps
to generate efficient code for various target languages with different sets of built-in features. In
addition to the standard semantics, a variety of program analysis tools, such as type checkers and
abstract interpreters, can also be incorporated in our framework.




1 Introduction

We propose a modular semantics which allows language designers to:

automatically generate compilers from semantic descriptions,

add (or remove) programming language features without causing global changes to the ex-
isting specification,
o prove the correctness of compilation strategies,

¢ generate code for a variety of target languages with different sets of built-in features, and

e express various aspects of programming language semantics (in addition to core semantics,
for example, type systems and optimization techniques).

Our goal is similar to that of Action Semantics [32] and related approaches (by, for example,
Lee [26]). It has long been recognized that traditional denotational semantics [39] is not suitable for
compiler generation for a number of crucial reasons [26], among which is the lack of modularity
and extensibility.

We take advantage of a new development in programming language theory, called monads [29],
to structure denotational semantics so that it achieves a high level of modularity and extensibility.
Figure 1 shows how our modular monadic semantics is organized. Language designers specify
semantic modules by using a set of basic operations. The expression “e; := e;”, for example,
is interpreted by “Assign(vy, v2)”, where v; and v; are the results of e; and e;. Each function in
the intermediate layer (such as “Assign”) is in turn implemented using “kernel-level” primitive
operations (such as “update”).

While it is a well-known practice to base programming language semantics on a kernel-language,
the novelty of our approach lies in how the kernel-level primitive operations are organized. In our
framework, depending on how much support the upper layers need, any set of primitive operations
can be put together in a modular way using an abstraction mechanism called monad transformers
[29] [27]. Monad transformers provide the power needed to represent the abstract notion of
programming language features, but still allow us to access low-level semantic details. In fact, since
monad transformers are defined as higher-order functions, our monadic semantics is no more than
a structured version of denotational semantics, and all conventional reasoning methods (such as 3
substitution) apply.

The source language we consider in this paper has a variety of features, including both call-by-
name and call-by-value versions of functions and variable bindings:

e = nlei+e (arithmetic operations)
|  v]Apve|Ave|ere (cbn and cbv functions)
| letov=ejine;|let, v=e;ine; (letbindings)
| callec (first-class continuations)
| ei1:=ez|refe|derefe (imperative features)
| e1—eze3 (conditionals)

Our monadic semantics is developed with automatic compiler generation in mind. We will
‘investigate how an interpreter based on the modular monadic semantics can be turned into a
compiler. Major overheads of interpreters include run-time dispatch on the abstract syntax, explicit
variable lookups, dynamic type checking, and the inability to perform most optimizations. We
address each of these problems in this paper. In Section 2, we will define a compositional high-level
semantics for our source language which guarantees that we can unfold all recursive calls to the
evaluator, and thus avoid the overhead of dispatching on the abstract syntax tree. In section 3, we
show how monad laws and axioms can be used to optimize intermediate code. To demonstrate
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Figure 1: The organization of modular monadic semantics

the reasoning powers of monad transformers, in Section 4 we generalize Wand’s [43] proof of the
correctness of a well-known technique to overcome the overhead of dynamic variable lookups by
transforming variables in the source language into variables in the meta-language. In section 5 we
discuss how to utilize the modularity provided by monad transformers to generate efficient code
for a variety of target languages. In section 6 we address how to specify non-standard semantics
(for type checking and abstract interpretation) for the source language.

Although we have not actually generated a compiler from a monadic semantics, we believe that
the issues addressed in this paper are important steps towards that goal.

The major contribution of this paper is to propose a modular and easy to reason about ap-
proach to semantics-directed compiler generation. Along the way we demonstrate that reasoning
in monadic style enables us to better structure proofs and obtain more general results than in de-
notational semantics. Such insights are potentially useful in verifying large and evolving language
implementations [14].

We present our results in the traditional denotational semantics style [39], augmented with
a Haskell-like [19] type declaration syntax to express monads as type constructors. No prior
knowledge of monads is assumed.

2 A Modular Monadic Semantics

This section uses some of the results from our earlier work on modular interpreters [27] to define a
modular semantics for our source language.




2.1 A High-level Monadic Semantics

Traditional denotational semantics maps, say, a term, an environment and a continuation to an
answer. In contrast, monadic semantics maps terms to computations, where the details of the
environment, store, etc. are “hidden”. Specifically, our semantic evaluation function F has type:

E : Term — Compute Value

where Value denotes the result of the computation. The type constructor Compute is called a monad.
It abstracts away the details of a computation, exposing only the result type. We will define monads
more formally later, but for now we note that Compute comes equipped with two basic operations:

then : Computea — (a — Compute b) — Compute b
return : a — Computea

We usually write “then” in an infix form. Intuitively, “c; then Av.c2” is a computation that first
computes cy, binds the result to v, and then computes c,. “Return v” is a trivial computation that
simply returns v as result.

Monadic combinators are semantic functions returning a computation, such as:

Num : Int — Compute Value
Add : (Value, Value) — Compute Value

where “Num(n)” just returns the number n (injected into the Value domain) as the result of a trivial
computation, and “Add(vi, v2)” is a computation that adds v; and v;, and returns the result. Using
these monadic combinators, we can define a (very tiny) arithmetic semantics as follows:

E[n] Num(n)
Efe1 +e2] E[e4] then Av;.E[ez] then Avy.Add(v1, v2)

To evaluate “e; +€2”, we evaluate e; and e; in turn, and then pass the results to Add. In denotational
semantics, the interpretations for arithmetic expressions are slightly different depending on whether
we are passing an environment around, or whether we write in direct or continuation-passing styles.
In contrast, our monadic semantics for arithmetic expressions stays the same no matter what details
of computation (e.g., continuations, environments, states) are captured in the underlying monad.

The following are high-level specifications of a few other building blocks, those for functions,
declarations, first-class continuations, assignments, and conditionals:

Var  : Name — Compute Value

AbsN : (Name, Compute Value) — Compute Value
AbsV : (Name, Compute Value) — Compute Value
App : (Value, Compute Value) — Compute Value

E[v] = Var(v)

E[Anv.e] = AbsN(v, E[e]) (call-by-name)
E[\yv.e] = AbsV(v, E[e]) (call-by-value)
Efere2] = E[ei] then Af.App(f, E[ez])

LetN : (Name, Compute Value, Compute Value) — Compute Value
LetV : (Name, Compute Value, Compute Value) — Compute Value

Eflet, z = e1ine;] = LetN(z, Efes], Efez]) (name substitution)
Eflet, z = ejine;] = LetV(z, Efei], E[ez]) (value substitution)

CallCC : Compute Value




Efcallecc] = CallCC

Assign : (Value, Value) — Compute Value
Ref 1 Value — Compute Value
Deref : Value — Compute Value

Efe1:= €3]
Elfref €}
E[deref €]

E[e,] then Ml.E[e;] then Ar.Assign(l, r)
E[e] then Av.Ref v
E[e] then Xa.Deref a

Cond : (Value, Compute Value, Compute Value) — Compute Value
Ele1 — e2,e3] = Efei] then A\b.Cond(b, Ee2], Efes])

Our high-level monadic semantics bears a strong resemblance to action semantics, except that it
uses only “then” and “return” to thread computations. Together with monadic combinators, these
two operations are powerful enough to model various kinds of control flows (e.g., error handling,
function calls and callcc) in sequential languages. Like in action semantics, we make a deliberate
effort to glve a very high-level view of the source language semantics.

We requlre that a semantics specified in terms of monadic combinators to be composztzonal the
arguments in recursive calls to E are substructures of the argument received on the left-hand side.
From a theoretical point of view, it makes induction proofs on program structures possible. In
practice, this guarantees that given any abstract syntax tree, we can recursively unfold all calls to
the interpreter, effectively removing the run-time dispatch on abstract syntax tree.

Since most of the above semantics clauses are trivial, the intermediate layer of monadic combi-
nators is not strictly necessary. We put them in mainly for the purpose of presentation — from now
on we will focus on computations represented as functions, and stay away from syntax. In addi-
tion, realistic languages may have many syntactic constructs, but require relatively few monadic
combinators. A few other benefits of using an intermediate layer of monad combinators will be
mentioned during the course of the paper.

From now on we assume that the source program has been expanded into a core language
composed out of “then”, “return” and monadic combinators such as “Add” and “App”. Semantics
of the source language is specified by defining the monadic combinators accordingly.

2.2 The Standard Semantics

In the standard semantics, Value is the domain sum of basic values and functions. Functions map
computations to computations:

type Fun = Compute Value — Compute Value
type Value = Int+ Bool + Addr+ Fun+ ...

The standard semantics for arithmetic expressions is as follows:

Num, (n) = return(n in Value)
Add,(v1,v2) = if checkType(vi,v2) then err “type error”
else return((vq | Int) + (v2 | Int) in Value)

We use a primitive monadic combinator (a semantic function directly supported by the underlying
monad Compute):

err : String — Compute a



to report type errors. For clarity, from now on we will omit domain injection/projection and type
checking.

Function abstractions and applications need access to an environment Env which maps variable
names to computations, and two more primitive monadic combinators which retrieve the current
environment and perform a computation in a given environment, respectively:

type Env = Name — Compute Value
rdEnv :  Compute Env
inEnv :  Env — Compute Value — Compute Value

The standard semantics for functions is as follows:

Var, s = rdEnvthen Ap.ps

AbsN,(s,c) = rdEnv then Ap. return(Xc;.inEnv (p[c1/s]) c)

AbsV,(s,c) = rdEnv then Ap.return(Acy.c; then Av.inEnv (p[returnv/s)) c)
App,(f,c) = rdEnv then \p.f(inEnv p c)

The difference between call-by-value and call-by-name is clear: the former reduces the argument
before evaluating the function body, whereas the latter does not. In a function application, the
argument is packaged up with the current environment to form a closure.

In this paper, we only consider non-recursive let bindings, which can be translated into appli-
cations of lambda abstractions:

LetN,(s,c1,c2) = App,(AbsN,(s,c2),c1)
LetV,(s,c1,c2) = App,(AbsV,(s,c2),c1)

Here we see another benefit of using an intermediate layer of monadic combinators such as App:
Monadic combinators can be defined in terms of each other, while the high-level semantics remains
compositional.

To simplify the presentation somewhat, we assume that Assign,, Deref,, and Ref, can be defined
using the primitive monad combinator:

update : (Store — Store) — Compute Store

for some suitably chosen Store. We can read the store by passing update the identity function, and
change the store by passing it a state transformer. Although update returns the entire state, properly
defined Assign,, Deref, and Ref, can guarantee that the store is never duplicated (see, for example,
[36)).

CallCC simply returns a function expecting another function as an argument, to which the
current continuation will be passed.

callcc : ((Value — Compute Value) — Compute Value) — Compute Value
CallCC, = return(Af.f then Af’.callcc(Ak.f(Aa.a then k)))

Conditionals are supported by the meta-language:

Cond,(v,c1,¢2) = ifvthen c; else c;

2.3 Constructing the Compute Monad

It is clear that monad Compute needs to support the following primitive monad combinators:

err : String — Compute a

rdEnv  : Compute Env

inEnv  :  Env — Compute Value — Compute Value

update : (Store — Store) — Compute Store

calicc : ((Value — Compute Value) — Compute Value) — Compute Value
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If we follow the traditional denotational semantics approach, now is the time to set up domains
and implement the above functions. The major drawback of such monolithic approach is that if we
add some source language feature later on, all the functions may have to be redefined.

For the sake of modularity, we start from a simple monad and add more and more features. The
simplest monad of all is the identity monad. All it captures is function application:

typelda = a

returnyz =

xr
ctheny f fe

A monad transformer takes a monad, and returns a new monad with added features. For example,

“StateT s” adds a state s to any monad m:

type StateT sma = s — m(s,a)

returN(siater s my 2 = As.Teturny,(s, z)
c then(smer s m) k = Asp.csg then,, /\(81, a).k a s

To see how monad transformers work, let us apply StateT to the identity monad Id:

s —1d (s,a)
s —(s,a)

type StateT s Id a

return(suter s 1) As.returng(s, z)

As.(s, )
Asg.c sp theny A(s1,a).ka sq
Asg.let (s1,a) =mspinka s

c then(sater 5 1) k

Note that “StateT s Id” is the standard state monad found, for example, in Wadler’s work [40].
To make the newly introduced state accessible, “StateT s” introduces update on s which applies
f to the state, and returns the old state:

update : (s—s)—StateTsma
update f = \s.return(f s, s)

Figure 2 gives the definitions of several other monad transformers, including those for errors
(ErrorT), continuations (ContT) and environments (EnvT). Now we can construct Compute by
applying a series of monad transformers to the base monad Id:

type Compute a = EnvT Env (ContT Answer (StateT Store (ErrorT 1d))) a

Env, Store and Answer are the type of the environment, store and answer, respectively.

One issue remains to be addressed. The update function introduced by StateT does not work
on Compute, which contains features added later by other monad transformers. In general, this
is the problem of lifting operations through monad transformers. Figure 3 gives a brief summary
of useful liftings (See [27] for a detailed description.) For example, in the Compute monad above,
“update f” is:

As.Ok (f s,s)

when first introduced by StateT. After Compute is finally constructed, “update f” becomes:
Ap Ak As.k s (f s)

In summary, monad transformers allow us to easily construct monads with a certain set of
primitive monadic combinators, defined as higher-order functions.
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Continuation: ' Environment:
type ContT ans m a = (a = mans) — mans type EnvTema=e—ma

return(contt ans m) @ = Ak.ka return(enor e my @ = Ap.return,, a
¢ thencouT ans m) f = Ak.c(Aa.fak) c thenewr e m) k = Ap.cp then,, Aa.kap
calicc f = MAk.f(Aa.Mk'.ka)k rdEnv = Ap.return,, p
inEnvpe = Md.cp
Errors:
type Error a = Oka | Error String
type ErrorTma = m (Error a)
returnemmr mya = return,, -Ok
c then et m) k= cthen, Aa. case a of
(Ok z) = kz

(Error msg) —  return,, (Error msg)
err = return,, -Error

Figure 2: Monad transformers

Every monad transformer ¢ has a function:
lift; )y : ma—tma

which embeds a computation in monad m into “¢ m”. Functions err, update and rdEnv are
easily lifted using lift:

err: m) = lifty m) - erry,
update(, ,,, = lift; ) - update,,
rdEnv(; )y = lift(; m)rdENV,,

Some liftings of callcc, inEnv and the definitions of lift for each monad transformer are listed in
the following table:

tm callcc(, my f inEnv(t m) PC "ft(t m) €

EnvTem Ap.callccy, (Ak.f(Aa.Ap" ka)p) | Ap’inEnvy, p (cp)) | Ap.c

ContT ans m Ak.c then,, k

StateT s m Asg.callce, (Ak. As.inEnvp, p (cs) | As.cthen,, Az.
f(Aa.As1.k(s1,a))s0) return, (s, z)

ErrorT m calicc,, (Ak.f(Aa.k(Ok a))) inEnv,, p ¢ map,, Ok

Figure 3: Liftings




3 Using Monad Laws to Transform Programs

Following the monadic semantics presented in the previous section, by unfolding all calls to se-
mantic function E,we can transform source-level programs into monadic-style code. For example,
((Az.x + 1) 2), is transformed to:

rdEnv then \p.
return(Ac.inEnv (p[c/“x"])
(rdEnv then Ap.
p“x” then Av;.

return1 then \v;,.
return(vy + v2))) then Af.
return2 then \v.
f(returnv)

In this section we formally introduce monads and their laws, and show how to use the laws to
simplify the above program.

3.1 Monads and Monad Laws
Definition 3.1 A monad M is a type constructor, together with two operations:

then : Ma—s(a=>Mb->Mb
return : a— Ma

satisfying the following laws [40]:

(returna) thenk = ka (left unit)
cthen return = ¢ (right unit)
c1 then /\'01‘(02 then /\02.63) = (Cl then /\v1.62) then Avj.c3 (associativity)

Intuitively, the (left and right) unit laws say that trivial computations can be skipped in certain
contexts; and the associativity law captures the very basic property of sequencing, one that we
usually take for granted in programming languages.

We can verify, by equational reasoning, for example, that return;; and then, satisfy the above
laws, and EnvT, ContT etc. indeed transform monads to monads.

Monad laws are important for reasoning about monadic style programs. For example, our
compiler translates the expression “2 + 3” to:

return2 then Av;. return 3 then Av,. return(v; + v7)
We can apply the left unit law twice, and reduce the above to:
return(2 + 3)

which can of course be further optimized to “return5”.

Every application of a monad law usually corresponds to a number of 3 reductions. Monad
laws allow us to perform 3 reductions at the right places, and avoid those corresponding to actual
computations in the source program, which in turn may lead to non-termination.

Without knowledge about the environment-handling operations inEnv and rdEnv, however,
monad laws alone can only simplify the example in the beginning of the section to:




rdEnv then Ap.
(Ac.inEnv (p[c/“x"])
(rdEnv then Ap.
p“x” then Av.
return(v + 1)))
(return2))

To further simplify the above program, we need to look at the laws environment-related opera-
tions should satisfy.
3.2 Environment Axioms
We axiomatize the environment-manipulating functions as follows:

Definition 3.2 Monad M is an environment monad if it has two operations: rdEnv and inEnv,
which satisfy the following axioms:

(inEnv p) - return = return (unit)
inEnv p (c; then Av.c;) = inEnv p¢; then AvinEnv p c; (distribution)
inEnv p rdEnv = returnp (cancellation)
inEnvp (inEnvyp’ e) = inEnvy'e (overriding)

Intuitively, a trivial computation cannot depend on the environment (the unit law); the envi-
ronment stays the same across a sequence of computations (the distribution law); the environment
does not change between a set and a read if there are no intervening computations (the cancellation
law); and an inner environment supercedes an outer one (the overriding law).

As with the monad laws, the environment axioms can be verified by equational reasoning.

Proposition 3.1 The monads supporting rdEnv and inEnv constructed using monad transformers ErrorT,
EnvT, StateT and ContT are environment monads.

Equipped with the environment axioms, we can further transform the example monadic code
to:

rdEnv then Ap.
(Ac.c then Av. return(v + 1))(return2)

Note that explicit environment accesses have disappeared. Instead, the meta-language environ-
ment is directly used to support function calls. This is exactly what many partial evaluators achieve
when they transform interpreters to compilers.

4 Using Monad Laws to Reason about Computations

We successfully transformed away the explicit environment in the above example, but can we do
the same for arbitrary source programs? It turns out that we can indeed prove such a general result
by using monad laws and environment axioms. We follow Wand [43], define a “natural semantics”
which translates source language variables to lexical variables in the meta-language, and prove that
it is equivalent to the standard semantics.
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4.1 A Natural Semantics

We adopt Wand's definition of a natural semantics (different from Kahn's [5] notion) to our functional
sub-language. For any source language variable name s, we assume there is a corresponding
variable name v, in the meta-language.

Definition 4.1 A natural semantics uses the environment of the meta-language for variables in the
source language, and is given as follows:

Var, (s) = v,

AbsN,(s,c) = return(Av,.c)

AbsV,(s,c) = return(Av}.v, then AvY . return(returnv) then Av,.c)
App,(f,c) = fe

Other monadic combinators, such as CallCC, Assign etc., do not explicitly deal with the environ-
ment, and have the same natural semantics as standard semantics.

4.2 Correspondence between Natural and Standard Semantics

The next theorem, a variation of Wand’s [43], guarantees that it is safe to implement function calls
in the source language using the meta-language environment.

Theorem 4.1 Let ¢ be a program composed out of then, return, and monad combinators. Let c, be its
standard semantics in an environment monad, c,, be its natural semantics in the same monad,' and p be the
mapping from the source language variable names s to v,, we have:

inEnvpc, = ¢,

To emphasize the modularity provided in our framework, we first prove the theorem for the
functional sub-language, and then extend the result to the complete language.

4.2.1 Proof for the Functional Sub-language

We can establish the theorem for the functional sub-language by induction on the structure of compu-
tations composed out of return, then and the monad combinators for variables, lambda abstractions,
and function applications. The full proof is given in the Appendix. The basic technique is the same
as Wand’s, except that in addition to the basic rules of lambda calculus (e.g., # reduction), we also
use monad laws and environment axioms.

The proof is possible because both the source language and meta language are lexically scoped.
If the source language contained dynamically scoped functions:

AbsD,(s,c) = return(Aci.rdEnv then Ap.inEnv (p[c1/s]) ¢)

where the caller-site environment is used within the function body, the theorem would fail to hold.

1This means that in natural semantics, we are still implicitly passing around an environment, even though it is never
used. Thus the theorem as stated does not strictly correspond to Wand'’s result [43]. Fortunately, the naturality of liftings
(see our earlier work [27] for details) guarantees that adding and removing a feature does not affect computations which
do not use that particular feature. Therefore the theorem still holds if we remove the explicit environment support from the
underlying monad in natural semantics. (The next section addresses this in more detail.)
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4.2.2 Extension to the Complete Language

Consider another monad combinator CallCC. Since in proving the theorem we only used the axioms
of environment monads, none of the cases already analyzed need to be proved again. We only have
to verify that:

o the monad supporting continuations is still an environment monad, and

o the induction hypothesis holds for CallCC.

The former is stated in Proposition 3.1, and can be proved once and for all as we come up with
monad transformers. The latter can be easily proved: CallCC does not explicitly deal with the
environment, and has exactly the same natural semantics as the standard semantics. In addition, it
is a trivial computation (see the definition in the last section). Thus the induction hypothesis holds
following the unit axiom of environment monads.

Similarly we can extend the theorem to cover other features such as Assign.

In denotational semantics, adding a feature may change the structure of the entire semantics,
forcing us to redo the induction for every case of abstract syntax. Indeed, Wand [43] pointed out
that he could change the semantics into continuation-based, and prove the theorem, but only by
modifying the proofs accordingly.

In denotational semantics, a computation is captured as a piece of syntax tree coupled with an
environment, a store etc. On the other hand, we view computations as abstract entities with a set of
equations. Therefore, like Semantic Algebras [31] in action semantics, monads provide an axiomatic
view to denotational semantics.

5 Targeting Monadic Code

In general, it is more efficient to use target language built-in features instead of monadic combinators
defined as higher-order functions. We have seen how the explicit environment can be “absorbed”
into the meta-language. This section addresses the question of whether we can do the same for
other features, such as the store and continuation.

We can view a target language as having a built-in monad supporting a set of primitive monadic
combinators. For example, the following table lists the correspondence between certain ML con-
structs and primitive monadic combinators:

[ primitive monadic operators | ML construct |
returnz T
c1 then A\z.c; letval £ = c¢; in c; end
update’ ref, !, :=
callcc callcc
err raise Err

* ML reference cells support single-threaded states only.

It is easy to verify that the monad laws are satisfied in the above context. For example, the ML
let construct is associative (assuming no unwanted name capturings occur):

letval v, = letvalvi = letval vy = 1
in c; in letval v, = ¢
end = inc3

incs end

end end

12




Recall (in Section 2) that the Compute monad is constructed as:
type Compute a = EnvT Env (ContT Answer (StateT Store (ErrorT Id))) a

Now we substitute the base monad Id with the built-in ML monad (call it M ML)
type Compute’ a = EnvT Env (ContT Answer (StateT Store (ErrorT Myy1))) a

Note that Compute’ supports two sets of continuation, state and error handling functions. The
monadic code can choose to use the ML built-in ones instead of those implemented as higher-order
functions. In addition, all liftings we construct satisfy an important property (called the Naturality
of Liftings [29] [27]): adding or deleting a monad transformer does not change the result of programs
which do not use its operations. Since none of the monad transformers in Compute' is used anymore,
it suffices to run the target program on Compute':

type Compute” a = Mg a

which directly utilizes the more efficient ML built-in features.

The above transformation is possible because ML has a strictly richer set of features than our
source language. If the source language requires a non-updatable version of state (for example, for
the purpose of debugging), the corresponding state monad transformer will remain, and ensure the
state is threaded correctly through all computations. If we instead target our source language to C,
both the environment and continuation transformers have to be kept.

Therefore by using a monad with a set of primitive monadic combinators, we can expose the
features embedded in the target language. It then becomes clear what is directly supported in the
target language, and what needs to be compiled explicitly.

The above process seems trivial, but would have been impossible had we been working with
traditional denotational semantics. Various features clutter up and make it hard to determine
whether it is safe to remove certain interpretation overhead, and how to achieve that.

Earlier work [25] [11] [27] has shown that the order of monad transformers (in particular, some
cases involving ContT) has an impact on the resulting semantics. In practice, we need to make
sure when we discard the monad transformers, that the resulting change of ordering does not have
unwanted effects on semantics.

6 Non-standard Monadic Semantics

In this section we show that by using a different set of monads, and redefining the monadic
combinators, we can derive non-standard semantics corresponding to a wide range of language
processing tools, in particular, a Hindley-Milner type checker [8], and a higher-order operation
count analyzer based on abstract interpretation [7].

Specifying language processing tools as non-standard semantics of monadic combinators has
two advantages:

1. We can use equational reasoning to verify the correctness of such tools, and investigate their
relationships with the standard semantics.

2. We can share the high-level evaluator between the standard and non-standard semantics.

6.1 A Type Checker

The algorithm is based on a monadic type checker written by Hammond [16]. The difference is that
our monad includes the type environment, and is constructed using monad transformers.
The type-checking monad and the value type are:
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type TyVar = Int
type Computea = EnvT TEnv (StateT Subst (StateT TyVar (ErrorT Id))) a
type Value = TyVar + (Value — Value)

where TEnv, Subst, and TyVar denote the type environment, substitutions, and the counter for gen-
erating fresh type variables, respectively. Values here denote type signatures, which, for simplicity,
are either a type variable (represented using an integer) or a function type.

We also need the following helper functions:

type Maybea = Just a + Nothing

lookup :  String — TEnv — Maybe (Value,N + G)
newVar :  Compute Value

subst :  Value — Compute Value

instType :  Value — Compute Value

unify :  Value — Value — Compute Value

The environment maps variables to a pair consisting of a type and a flag indicating whether the
variable is let-bound or lambda-bound. A type-checking semantics for monadic combinators can
be given as (only the interesting cases are listed):

Var,(s) = rdEnv then \p.
case lookup s p of
Just (t,G) — instTypet then \t’.subst ¢’
Just (t,N) — substt
Nothing ~ —  err(“undefined var: ” ++s)
AbsN; (s, c) = rdEnv then Mp.
newVar then \t.
inEnv (p[(¢,N)/s] ¢ then Xt..
subst ¢ then At/,
return(t’ — t.)

App, (1, ¢) = cthen At,.
newVar then At.
unify t; (t2 — t) then Az.
subst ¢

LetN, (s, e, c2) = c1then At

subst ¢; then At;.
inEnv (p[(t}, G)/s])c2

Note that lambda-bound type variables are marked with “N”, whereas let-bound ones are marked
with “G”, meaning that they can be instantiated later. Unify calls err if it fails.

6.2 An Abstract Interpreter

Young [46] has built a parameterized abstract interpreter which does a variety of analyses by
redefining primitive functions. It is much harder, however, to reuse part of the standard interpreter
for abstract interpretation, due to the dramatic differences in evaluation strategies. Hall [15] has
parameterized a standard evaluator for abstract interpretation, but she dealt with a very simple
language, which, for example, did not need an environment.

In our framework, various abstract interpretation algorithms can be specified by giving a non-
standard semantics to monadic combinators. As an example, we derive a simple higher-order
operation-count analysis — which is useful for a variety of compiler optimizations — by specifying
the monad and value types as follows:
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type Computea = EnvT OpEnvIda
type Value = (Int, Value — Value)

Following Hudak and Young [20], we use a pair to capture the first-order and higher-order properties
of a given expression. For the simple analysis we describe below, which does not deal with recursion,
it is enough to use a simple environment monad mapping variables to their operation counts. If
recursions exist, however, it will be necessary to introduce another environment to cache pending
function calls [45], in order to guarantee termination.

Add.(v1,v2) return(l, L)

Var.(s) = rdEnvthen Ap.p s
AbsN, (s, c) = rdEnv then Ap. return(1, Aci.inEnv (p[c1/s]) c)
AbsV,(s, ¢) = rdEnv then Ap.
return(1, Aecj.c; then Av.
inEnv (p[return(0, sndv)/s]) c then Aa.
return(fstv + fsta, snda))
App.(f,¢) = rdEnv then Ap.(snd f)(inEnv p ¢) then Aa.

return(fst f + fsta + 1,snda)
Condc(v, c1, 62) = ¢; then Ai1.ca then Aly.
return(fstv + imax(fst i, fsti,) + 1, fmax(snd i1, snd i;))

Operation counts for all basic operations (such as addition and the creation of a closure) are
arbitrarily set to 1. Note that the operations in an argument are counted every time it is evaluated
in the body of a call-by-name function, but only once upon entering a call-by-value function. Imax
simply returns the larger of two integers, whereas fmax compares two integer-returning functions,
and has to wait for more arguments before it decides.

7 Related work

Dueto the problems with traditional denotational semantics, earlier efforts [30] [35] [42] in semantics-
directed compiler generation did not produce efficient compilers.

Mosses’s Action Semantics [32] allows modular specification of programming language seman-
tics, from which efficient compilers can be generated. In action semantics, source language con-
structs are translated into actions, built from a set of primitives and combinators. While action
semantics is easy to construct, extend, understand and implement, we note the following com-
ments made by Mosses ([32], page 5):

Although the foundations of action semantics are firm enough, the theory for reasoning
about actions (and hence about programs) is still rather weak, and needs further devel-
opment. This situation is in marked contrast to that of denotational semantics, where
the theory is strong, but severe pragmatic difficulties hinder its application to realistic
programming languages.

Action semantics provided much of the inspiration for our work, which essentially attempts to
formulate actions in a denotational semantics framework. Monad transformers roughly correspond
to facets in action semantics, although issues such as concurrency are beyond the power of our
denotational semantics-based approach.

Action semantics [4] [34] [33] and a related approach by Lee [26] have been successfully used
to generate efficient compilers. Lee has given a denotational semantics to actions, and Even and
Schmidt have presented a categorical model [12] and a type inferencer [13] for action semantics.

Doh and Schmidt [10] have presented a way to assign each action in action semantics specific
“analysis functions,” such as a type checker and a binding-time analyzer. Such analysis tools can
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thus be generated automatically together with the compiler. The differences between our approach
and Doh and Schmidt’s are:

1. They redefine the operators for threading actions. We do not have to, since “return” and
“then” come with any monad.

2. They showed how the type-checking rules for the source language can be automatically
derived from the type-checking rules given on actions. Instead, we directly specify the type-
checking algorithm. Their approach is clever, and handles subtyping, but does not deal with
let-bound polymorphism.

Moggi [29] first used monads and monad transformers to structure denotational semantics.
Wadler [41] [40] popularized Moggi’s ideas in the functional programming community by using
monads to structure functional programs, in particular, interpreters. Our work on monad-based
modular interpreters [27] follows a series of earlier attempts by Steele [38], Jones and Duponcheel
[21], and Espinosa [11].

Moggi [29] also raised (although did not address in detail) the issue of reasoning in a monadic
framework. Wadler [41] listed the laws a state monad should satisfy. Hudak [18] suggested a more
general framework — mutable abstract data types (MADTS) — to reason about states.

Oneapplication of partial evaluation [22] is to automatically generate compilers from interpreters
[44] [2] [6] [28]. A partial evaluator has been successfully applied to an action interpreter [3], and
similar results can be achieved with monadic interpreters [9]. .

Staging transformations, first proposed by Jerring and Scherlis [23], are a class of general
program transformation t iques for separating a given computation into stages. Monadic trans-
formers make computational stages somewhat more explicit by separating compile-time features,
such as the environment, from run-time features.

Several researchers, including Kelsey and Hudak [24], Appel and Jim [1], and others, have
built efficient compilers for higher-order languages by transforming the source language into
continuation-passing style (CPS). The suitability of a monadic form as an intermediate form has
been observed by many researchers (including, for example, Sabry and Felleisen [37] and Hatcliff
and Danvy [17]). We will continue to explore along this direction in order to generate machine-level
code from a monadic intermediate form.

8 Conclusions

We have shown that the monadic framework provides good support for high-level extensible
specifications, program transformations, and reasoning about computations. Monadic-style proofs
are better structured and easier to extend. The modular monadic semantics allows us to have an
axiomatized formulation of well-known programming languages features such as environments,
Our approach also facilitates generating code for various target languages and constructing program
analysis tools.

Overall, we believe that modular monadic semantics is particularly suitable for compiler gen-
eration.
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