Loop Transformations for Massive Parallelism
Lee-Chung Lu

YALEU/DCS/RR-937
November 1992



Loop Transformations

for Massive Parallelism

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by
Lee-Chung Lu
November 1992



© Copyright by Lee-Chung Lu 1993
All Rights Reserved




Abstract

Loop Transformations for Massive Parallelism

Lee-Chung Lu
Yale University
1992

Massively parallel technology is the new trend in building supercomputers. Two
software challenges must be overcome to make massively parallel machines truly us-
able: large-scale parallelism detection for fully utilizing the large number of proces-
sors, and good data layout for reducing communication overhead. This thesis presents
two new classes of loop parallelization techniques to help overcome these difficulties.

The first class of techniques focuses on static methods for scheduling the execu-
tion of loops with affine array references, going beyond previous dependence analysis
and loop transformation methods by considering dependences under conditionals and
generating more general piece-wise affine schedules. The new dependence test takes
advantage of special properties of FORTRAN programs, e.g. most coefficients of
affine expressions are 1, 0, —1, to obtain accurate dependence information efficiently.
The generated piece-wise affine schedules can be different for each disjoint subdo-
main of the loop iteration space or for each different subset of statements in the loop
body. An experiment on the Connection Machine shows that such methods can have
dramatic effects on the performance of a transformed program. We also show that
the problems studied are tied to existing loop transformation techniques, unified by
a theory of loop transformations.

The second class of techniques is for parallelizing loops with indirect array ref-
erences (FORTRAN style) or pointers (C style). The new technique is a hybrid
compiler/run-time approach in which a scheduler is generated by the compiler using
static dependence analysis and program slicing. At run-time, the scheduler records
the read and write reference patterns and allocates work to processors based on dy-
namic dependences so deduced. Experiments show that a new optimization technique,
called redundant reference elimination, can help to make the run-time scheduling and

data layout overhead insignificant for a subclass of loops with indirections or pointers.
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Chapter 1

Introduction

1.1 Massively Parallel Technology

The new trend in building supercomputers with massively parallel technology has
posed a great many challenges to software designers.

Traditional supercomputers are built with vector units using exotic circuit tech-
nologies that have provided a six-fold speedup for single processor performance over
15 years, from a 160 million floating-point operations per second (MFLOPS) Cray-1
in 1976 to a one billion floating-point operations per second (GFLOPS) single-head
Cray Y-MP in 1991. The Cray C90, a 16-head Y-MP that provides 16 GFLOPS and
250 GigaBytes of memory bandwidth, is still the most powerful machine today for a
wide range of applications.

However, any further significant increase in single processor performance would
have to come at an extremely high cost, as demonstrated by the Cray-3 technology,
while the RISC-superscalar architectures based on ever-denser silicon technologies are
providing inexpensive, high volume microprocessors at 200 MFLOPS peak perfor-
mance. The availability of such high-performance commodity microprocessors makes
it possible to build a 1024-node Connection Machine CM/5 with 130 GFLOPS peak
performance and an aggregate bisection bandwidth of 5 GigaBytes, and a 576-node
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Intel Touchstone Delta with 34 GFLOPS peak performance and an aggregate bisec-
tion bandwidth of 875 MegaBytes. More processors can be used to build even faster
supercomputers. The Intel Paragon can have up to 4096 nodes with 300 GFLOPS
peak pefformance and a 16384-node Connection Machine CM/5 can even reach 2000
GFLOPS peak performance.

In addition to much higher peak performance, massively parallel machines also
have much better cost/performance ratios than traditional supercomputers. For
example, the cost/performance for the Cray C90 is approximately $2 million per
GFLOPS, whereas for the Connection Machine CM/5 it is about $0.2 million per
GFLOPS. Therefore, from a hardware point of view, massively parallel machines are
much more cost /performance effective than traditional supercomputers.

Unfortunately, the story is different from the software point of view. Because
most programs are written in high-level languages, increasing processor performance
will speed up original applications while maintaining portability. Only the compilers
need to be adapted to new processors, and vectorizing compilers have successfully
made traditional supercomputers usable by helping users to vectorize and port many
scientific and engineering applications onto these machines. But large numbers of
processors in massively parallel machines may also involve significant changes to ap-
plications as well as compilers. There are two reasons for this. First, large-scale
parallelism, at least insofar as concerns the number of processors, must be exploited
to utilize those processors fully. Otherwise, a significant percentage of the processors
will be idle and the performance will be far from the potential peak performance of
the machines. (For traditional supercomputers, small-scale parallelism in the order
of the depth of pipelines is enough to sustain the peak performance.) Second, the
communication bandwidth of massively parallel machines is much smaller than the
memory bandwidth of traditional supercomputers. Therefore, data layout with high
locality to reduce communication overhead becomes a critical issue in the case of
massively parallel machines.

The locality issue also exists in memory hierarchy. Compiler optimizations such
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as those presented in [13,14,32,36,50] can increase the utilization of registers and
caches to hide memory latency. These optimizations are useful for both traditional
supercomputers and massively parallel machines because they both have memory
hierarchy.

Today, traditional supercomputers serve far more different kinds of applications
than can massively parallel machines, and the question is whether software can over-
come the problems of large-scale parallelism detection and high-locality data layout

posed by massively parallel technologies.

1.2 Software Challenges

To make massively parallel machines truly usable, many real applications must be
ported. More and more complex and critical applications — e.g. the N-body problem
[94,11], circuit simulation [48], data base systems [30] and financial analysis applica-
tions [93] — have been found that are very suitable to be parallelized and executed on
massively parallel machines in order to gain tremendous performance over traditional
supercomputers. However, most of them are written with explicit communication
primitives, and this is very tedious and error prone. To make massively parallel ma-
chines truly usable, new high-level languages as well as similar kinds of software tools
such as vectorizing compilers for traditional supercomputers must be made avail-
able. These new high-level languages and parallelizing compilers encounter two new
challenges: exploiting large-scale parallelism and optimizing data locality, to gain

tremendous performance for applications running on massively parallel machines.

New Languages Recently, several new parallel languages have been developed, no-
tably FORTRAN 90 [37], FORTRAN D [38,45], Vienna FORTRAN [15], CM FOR-
TRAN [22] and ARF [27] (all FORTRAN based), and C* [21], Dataparallel C [43]
and DINO [92] (all C based). Most of these new languages have extensions to
specify explicit parallelism (e.g. vector notations and DOALL) and data layout (e.g.
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DECOMPOSITION, DISTRIBUTE and ALIGN).

With these extensions, the burden of parallelism detection and data layout has
been transferred from compilers to users. Therefore, these languages are very useful
for applications with apparent parallelism using regular (e.g. block and cyclic) data
layout that can be reasoned and specified easily by users. However, it is difficult
and tedious for users to detect less-apparent parallelism or find a good irregular data
layout. Furthermore, if the parallelism is input-data dependent, then vector notations
and DOALL are not effective in expressing the dynamic parallelism.

A carefully designed parallelizing compiler, on the other hand, is very useful in
detecting less-apparent parallelism. We use the following example to show the diffi-
culty in detecting less-apparent parallelism by users. This example is modified and
simplified from the dynamic programming example discussed in Chapter 4 in a way
that the innermost loop becomes readily vectorizable:

Loop Nest 1.1

INTEGER A(1001,1000,1000), B(1001,1000,1000)

n = 1000

DO (:=mn,1,-1){

DO (j =¢,n){
DO (k=1i,n){

Sy : IF(z = j) A(3,4,k) = B(i + 1,n, k)
Syt IF(i < 5) AGL,5,k) = A(+ 1,7, k)
S3: IF(2j —i > n)B(i,j,k) = B(i,7 — 1,k) + A(s,5,k) } } }

The vector form of the above loop is:
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Loop Nest 1.2

INTEGER A(1001,1000,1000), B(1001,1000,1000)
n = 1000
DO (i =n,1,-1){
DO (j =1¢,n){
Sy : IFG=3)A(,5,1:n)=B(i+1,n,1:n)
Sy: IF(2 < j)A(@E,5,1:n) = A(t+1,5,1:n)
S3: IF(2j —i>n)B(i,j,1:n)= B(:,j — 1,1 : n) + A(3,5,1:n) } }
Although 1000 parallel iterations in the innermost loop of Loop Nest 1.2 can keep
the pipelines in vector machines busy, they are not enough for fully utilizing thousands
of processors in massively parallel machines. Even using 1000 processors is wasteful
because one iteration per processor is too fine-grained and too much communication
overhead will be induced. Our new loop transformations presented in Chapter 4 can

obtain the following piecewise affine transformation such that two innermost loops of

Loop Nest 1.1 become parallelizable:

95 —i > 1000 — (=2 + j,4, k) = (¢,5, k) W
97 — i < 1000 — (=4 — j + 1000, 4, k) = (t,4, k)

Under this transformation, Loop Nest 1.1 is transformed into the following loop

nest:
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Loop Nest 1.3

INTEGER A(1001,1000,1000), B(1001,1000,1000)

n = 1000

DO (t = —1000,998) {

DOALL (¢ = (1000 — t)/2, max(1, —t),—1){
DOALL (k=1,n){
j=t+2
IF(25 — < > 1000)
Sz lF(Z < ]) A(Z,], k) = A(z +1,7, k)
S3: IF(2j —¢>n)B(,5,k) = B(i,j — 1,k) + A(,5,k)
j=1000 —¢t—1
IF(27 — ¢ < 1000)
S1: IF(i =3) A, 5,k) = B(1+ 1,n,k)
S2: IF(i < J) AGj, ) = A +1,5, %) }})

It is very difficult for users simply to verify that the transformation given in
Equation 1.1 is valid (i.e. the dependence ordering is preserved). It is even harder
for users to figure out the transformation and derive the transformed loop nest.

In addition to programs with less-apparent parallelism, it is also difficult for users
to write parallel codes for problems with input-dependent or dynamic-changing struc-
tures. Problems with such properties include sparse matrix solvers and partial dif-

ferential equation solvers using adaptive and unstructured meshes. Consider the

following sparse triangular solver given in [98]:
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Loop Nest 1.4

DO (: =1,n){
DO (5 = low(s), hagh(:)) {
y(?) = y(é) — a(j) * y(column(j)) } }

Since the values of array column are read in during the computation of the pro-
gram, the parallelism of the loop cannot be determined by the user at coding time or
by the compiler. The parallelism of the loop, as well as a good data layout, can only
be detected at run time. In this case, vector notations and DOALL are not effective
in expressing the dynamic parallelism. And finding a good irregular data layout to
reduce communication overhead and achieve load balancing is extra and tedious work

for users.

1.3 Novel Compilation Techniques

Having described the software challenges for making massively parallel machines truly
usable and the insufficient solutions provided by those new languages, we will now
investigate new compiler techniques for massively parallel machines. These new com-
piler techniques can help to overcome these difficulties for two important classes of
programs: those consisting of affine loops and those consisting of nonaffine loops (to
be defined momentarily). And these techniques are not only useful for programs
written in sequential languages like FORTRAN and C, but also are applicable to pro-
grams written in new parallel languages like FORTRAN 90, if the explicit parallelism
is not enough to fully utilize the large number of processors, or the parallelism is
input dependent.

Figure 1.1 shows the structure of a parallelizing compiler including the new tech-
niques presented in this thesis and related previous techniques. The dashed-line boxes

are the new techniques discussed in this thesis. There are two different compilation
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Affine Loops

Restricted Nonaffine Loops

Static Scheduler

Fast Dependence Test, e.g. the GCD Test

' Dependence Analysis

i
i
L

: and RRE

. Scheduler Generator |
' Using Program Slicing |

!

Parallel-Program Generator

Data Layout

Communication Analysis

Code Generation

v

Parallel Target Program
(2)

Run-time Scheduler
Parallel Target Program

(b)

Figure 1.1: The structure of a parallelizing compiler.
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processes for two different classes of input programs. Figure 1.1{a) shows a static
compilation process for parallelizing affine loops, which are loops possibly with con-
ditional statements where the guards as well as the array index expressions are affine
expressions of the loop indices. Figure 1.1(b) shows a hybrid compiler/run-time ap-
proach for parallelizing nonaffine loops, which are loops with indirect array references
or pointers. We now give a brief introduction to these two compilation processes.

The compilation process in Figure 1.1(a) consists of three major phases: static
parallelism detection, data layout and communication analysis, and code generation.
The final outputs of the compiler are target parallel programs. The data layout and
communication analysis phase comes into play after the parallelism-detection phase
because a good data layout should distribute data which can be computed in parallel
to different processors. Data layout, communication analysis and code generation
have been extensively studied in [67,68,69,70,71]. Here, we focus on new techniques,
i.e. the subdomain dependence test and piecewise affine loop transformations, to ex-
ploit large-scale parallelism.

Parallelizing compilers rely on dependence analysis to detect dependences in ap-
plication programs. The dependence analysis problem has been studied extensively
(3,4,5,6,7,8,12,40,52,54,55,72,74,110,113]. Our subdomain dependence test has two
improvements over these techniques. First, the test includes in the system of depen-
dence inequalities the information arising from a program’s predicates. Second, it
is an improved dependence test for equations with —1, 0, 1 coefficients. The test is
more accurate for testing coupled array subscripts in statements with and without
conditionals than previous dependence tests.

For loops with true dependences which prevent large-scale parallelization, loop
transformation can be applied to reveal parallelism. Our new loop transformations
have two improvements. First, we present a complete classification of static loop
transformations by viewing the iteration space and statements as distinct dimensions
in which code is restructured. From the classification, we have a clear picture of the

previous techniques and how they can be extended to detect more parallelism. Second,
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we provide algorithms to find piecewise affine loop transformations, which can detect
more parallelism than unimodular loop transformations [10] including lo.op reversal,
interchange, permutation and skewing [4,5,9,58,61,110,111,113]. Experimental results
on the Connection Machine CM/2 show that the difference in performance of the
transformed codes, which is essentially due to the available parallelism determined
by our methods, can amount to two orders of magnitude better than unimodular
transformations.

I would like to point out that, although the subdomain dependence test is more
accurate for statements with conditionals or with coupled array subscripts, its com-
plexity is higher than some previous dependence tests, e.g. the GCD test [6]. There-
fore, the GCD test and other fast dependence tests can be used first to filter out
some independent computations. The subdomain dependence test can then be used
between the remaining dependent statements to report more accurate dependences.
Similarly, piecewise affine loop transformations can detect more parallelism but its
complexity is also higher than unimodular loop transformations. Hence, piecewise
affine loop transformations are used when unimodular loop transformations cannot
reveal enough parallelism.

The compilation process in Figure 1.1(b) shows a hybrid compile-time and run-
time approach for parallelizing nonaffine loops, i.e. loops with indirections or point-
ers. Compile-time techniques like dependence analysis and loop transformations have
so far been unsuccessful in parallelizing such loops. Though programs using point-
ers can be analyzed to some extent [16,42,44,46,49,62,63], those containing input-
dependent or dynamic-changing structures are not amenable to compile-time analy-
sis. For such programs, many run-time scheduling techniques have been proposed
[26,27,33,80,82,87,95,97,98,101,104,115,114,116].  Clearly, minimizing the run-time
scheduling overhead is critical. It is even more critical for massively parallel machines
because the scheduling overhead can be significantly amplified by the large-scale par-
allelism in the source code. We improve the previous techniques by providing new

compile-time analysis to make the run-time scheduling overhead insignificant for a
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subclass of nonaffine loops. We call the loops in this subclass restricted nonaffine
loops, and their definition will be given in Section 5.5.1. Two new compiler tech-
niques are developed: (1) redundant reference elimination for reducing the run-time
scheduling overhead, and (2) scheduler generation using program slicing and depen-

dence recording procedures.

1.4 Organization of the Thesis

The thesis is organized as follows.

Chapter 2. Terminologies and definitions of index domain and data dependence
used throughout the thesis are given.

Chapter 3. This chapter presents a new data dependence analysis, the subdomain
dependence test, for conditional statements with coupled array subscripts. Based on
the fact that most coefficients of loop indices in linear subscripts and conditionals are
either 0, —1 or 1, an efficient algorithm for solving the subdomain dependence test is
described. This test is also applicable to statements without conditionals, and to the
problem of “dependence cycle breaking” [7].

Chapter 4. This chapter presents new loop transformation techniques that can ex-
tract more parallelism than the previous techniques. A formal mathematical frame-
work which unifies the previous loop transformation techniques is given. We classify
schedules of a loop transformation into three classes: uniform, subdomain-variant, and
statement-variant. New algorithms for generating these schedules are given. Viewed
from the degree of parallelism to be gained by loop transformation, the schedules
can also be classified as single-sequential level, multiple-sequential level, and mized
schedules. We also describe iterative and recursive algorithms to obtain multiple-
sequential level and mixed schedules based on the algorithms for single-sequential
level schedules.

Chapter 5. This chapter presents a hybrid compi_ler/ run-time approach for paral-

lelizing loops with pointers or indirect array references. A scheduler is generated by
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the compiler based on information deduced from dependence analysis and program
slicing. At run-time, the scheduler records dynamic dependences and allocates work
to processors based on the run-time reference patterns. New compiler techniques are
presented to reduce the run-time scheduling overhead.

Chapter 6. Concluding remarks and directions of future work are presented.



Chapter 2

Definitions and Terminology

Throughout this thesis, programming examples with array references are written in
a FORTRAN-like notation, while programming examples with pointers are written

in a C-like notation.

2.1 Index Domains and The Generic Loop Nest

Index Domains Let [a,b] be an interval domain of integers from a to b. We define
an indez domain D (also called an iteration space in [110]) of the following d-level

nested loop:
Loop Nest 2.1

DO (i3 = h,u) {
DO (...){
DO (ig = g, ua) {
loop body }  }}

to be the Cartesian product [l3,u;] X ... X [l4, ug] of d interval domains [lx, uz] for
1<k<d.

13
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For the purpose of formulating loop transformations, we consider D to be a subset

of the d-dimensional vector space over rationals. Throughout the thesis, we let

I = (i1,...,1a),
J = (jl)"')jd)a and
K = (k... ka).

With the domain and tuple notations, Loop Nest 2.1 can be rewritten as follows:

Loop Nest 2.2

DO (I:D){
loop body }
Perfectly and Imperfectly Nested Loops If the statements in the loop body
are not interleaved with loop headers defining the loop indices, e.g. DO(: = 1,n),
then we call the loop perfectly nested. For example, Loop Nest 2.1 is a perfectly
nested loop. If loop bodies are interleaved with loop headers, then we call the loop

imperfectly nested. For example, Loop Nest 2.3 is an imperfectly nested loop:
Loop Nest 2.3

DO (i =1,n){
loop body,
DO (7 =1,n){
loop body, }
DO (j =1,n){
loop body; } }

Throughout the thesis, we use the following perfectly nested loop as a generic
example for loops with array references, where D is a d-dimensional index domain

and 7[a] is an expression containing a:
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Loop Nest L

DO (I:D){
:9.1': IF(P(1)) A(X(D)) = ...

Sy : IF(Py(I)) B(Z(I)) = r[A(Y(]))]
}

Figure 2.1: The Generic Loop Nest L.

2.2 Data Dependence

Definitions We now review data dependences between statements. Let S; and S,
be two statements of a program. A flow dependence exists from S; to S, if S writes
data that can subsequently be read by S, within the same or at a later iteration.
An anti-dependence exists from S; to S; if S; reads data that S; can subsequently
overwrite within the same or at a later iteration. An output dependence exists from
S to S, if S; writes data that S, can subsequently overwrite within the same or at a

later iteration. We use the notation S; = S to denote a dependence from 5; to S,.

Lexicographical Ordering We now define relations on elements J and K of a d
dimensional index domain. We define “<” to be the lexicographical ordering: we say
(J < K) if there exists I, 1 < I < d, such that (j, = kn) for all m, m < [, and
(ji < ki). We define “<” to be an element-wise ordering of “<” and say (J < K)
if (ji < ki) for all [, 1 < I < d. Similarly, “=" is defined to be (j; = ki) for all [,
1<1<d Wesay (J3K)if (J< K)or(J=K),and (J < K)if (ji < k) for all [,
1 <1< d. We use 0 to denote the zero vector.

Loop-independent and Loop-carried Dependences Consider Loop Nest L. For
statement S, to compute the value B(Z(K)) at iteration K, the value A(Y(K)) is
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needed. If A(Y(K)) is computed from statement S; at iteration J,i.e. Y(K) = X(J),
and J < K, then we say S, at iteration K is flow dependent on S; at iteration
J, denoted by S1@J = S;@K. The same notation is used for anti- and output
dependences.

Clearly, if dependence S;@J = S;@QK exists, then J < K must hold. A depen-
dence $,@J = S;@K is either loop-independent if J = K, or loop-carried if J < K.

Dependence Graph The dependence graph for a program segment of n statements
consists of n nodes, each node labeled by one statement. For each dependence relation
Sy = S,, there is a corresponding edge in the dependence graph from node S; to node
Ss.

Equivalence Classes over Statements in a Loop Nest Let “=” be the reflexive
and transitive closure of the dependence relation “=" over statements. We define a
binary operation “~” over statements where S; ~ S, if S; = S, and S, = S;. Note
that “~” is an equivalence relation, and therefore, partitions loop statements into
equivalence classes (called 7 blocks in [110]). The technique of loop fission [110] can
be applied to split the loop nest into several new loop nests, one for each equivalence

class.

Dependent versus Independent Blocks We call a statement S self-dependent
if the dependence relation S = S holds. By the definition of the equivalence relation
“~?” a single statement which is not self-dependent can form an equivalence class on
its own. This case must be distinguished from all others where cyclic dependences
actually occur. We call this special case of an equivalence class under the dependence
relation an independent block, and others dependent blocks (strongly connected com-

ponents in the dependence graph). For example, consider the following loop nest:



CHAPTER 2. DEFINITIONS AND TERMINOLOGY 17

Loop Nest 2.4

DO (i =1,n) {
DO (j =i+1,n){
Sy: A(i,j—i)=B(i,j—i—1)
Syt B(iyj—i)=A(i—1,j — )
Ss: C(i,5) = A(4,j —i)+ B(i—1,j +1) } }

Statements S; and S; are in the same dependent block because of cyclic flow
dependences, and statement S3 forms an independent block. Loop fission can be
applied to split Loop Nest 2.4 into two new loop nests:

Loop Nest 2.5

DO (i = 1,n) {
DO (j =i +1,n){
Syt A(i,j—i) = B(i,j —i—1)
S2: B(i,j—1)=A(i—-1,5-14)}}
DO (i = 1,n) {
DO (j =i+ 1,n){
S3: C(i,j) = A(l,j —9)+B(i—-1,+1) } }

Loop fission can be used to separate an independent block from other dependent
blocks, and the new loop nest consisting of one independent block is readily paralleliz-
able: Similarly, loop fission can be used to transform a loop body containing multiple
dependent blocks into multiple loop nests, each with a single dependent block.

Clearly, parallelizing one dependent block is easier than parallelizing two blocks
at the same time. Therefore, for the purpose of detecting the maximum degree of

parallelism, we assume that a loop nest with multiple dependent blocks is separated
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into multiple loop nests and we only consider loops containing one dependent block
from now on. In practice, loop fission will induce smaller granularity in the loop body

and extra overheads for repeatedly ranging loop indices over loop boundaries.

Direction Vectors A loop nest consisting of a dependent block may be parallelized
by several techniques, namely statement reordering, loop vectorization, interchange
and permutation [9,110]. To determine whether these transformations are applicable
or not, the notion of a direction vector [110] is necessary.

For a dependence $,@J = S,@QK, the vector (sig(ky — j1),-..,sig(ka — ja)) is
called a direction vector from Sy to S; [110], where sig is a function from the set of
integers to the set of ordering relations “<”, “=", and “>":

( 3

z2<0— <

Slg(Z) =4z=0—- %“=" (21)

z2>0— 7

J

We use “+” as a shorthand for (“<” or “=" or “>”).

Dependence Vectors Loop skewing [110,113] is another transformation which may
expose more parallelism, if the parallelism gained from the above-mentioned tech-
niques is insufficient. Loop skewing transforms Loop Nest 2.1 as follows: shifting
index ¢, with respect to index ¢,,, 1 < m < n < d, by a factor of f, where f is a
positive integer, replacing I, with the expression (I, + in * f), replacing u, with the
expression (u, + i, * f), and replacing all occurrences of %, in the loop body with the
expression (i, — i, * f) .

In order to do loop skewing, we need to know the relative positions of index
tuples J and K for each dependence $1@J = S,@QK [83,110]. For a dependence
51@J = S,@K, the vector (ki — ji,...,ka — ja) is called a dependence vector from
S1 to S, [110].



CHAPTER 2. DEFINITIONS AND TERMINOLOGY 19

Since J and K are in the d-dimensional vector space, we use J + K to denote the
addition of two vectors J and K, i.e. J+ K = (j1 + k1,...,J4a + k4); and similarly,
J—K = —k,-..,Ja—ka)

Notation for Concatenation Since we will be using matrix and vector notations,
we define the notation for matrix concatenation here. We treat a row vector of length
d as a degenerate 1-by-d matrix, a column vector of length d as a degenerate d-by-1
matrix, and a scalar as a degenerate 1-by-1 matrix.

A vertical concatenation of an m-by-I matrix A and an n-by-l matrix B, denoted
by {g], is an (m + n)-by-I matrix, where the (i, 7)-th element of {2] is equal to
the (z,7)-th element of A if ¢ < m, or it is equal to the (i — m, j)-th element of B if

1> m.






Chapter 3

Subdomain Dependence Test

3.1 Motivation

Parallelizing compilers rely on dependence analysis to detect dependences in appli-
cation programs. A precise and efficient data dependence analysis is essential to the
effectiveness of parallelizing compilers. This dependence analysis problem has been
studied extensively [3,4,5,6,7,8,12,40,52,54,55,72,74,110,113]. However, all of the pre-
vious dependence decision algorithms are “conservative” in considering data depen-
dence between statements occurring in conditional branches, although some of them
are exact if there are no conditionals. By “conservative” we mean that the dependence
analysis may report a dependence relation to exist even if there is no dependence due
to conditionals. The reasons for not considering an exact dependence analysis for
conditional statements in the past have possibly been that (1) the decision algorithm
may at the least involve integer programming, which was considered expensive, and
(2) the payoff in speedup as a result of a more accurate dependence analysis may not
be significant for vector processors or small scale (tens of processors) shared-memory
multi-computers. In attempting to parallelize certain algorithms for execution on the
Connection Machine, we realize that the potential speedup can be of orders of mag-

nitude because of a more accurate analysis for conditional statements. This chapter

20
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Figure 3.1: Dependences of Gauss-Jordan elimination code.

presents a new dependence analysis for array references in conditional statements.
Since expressions of domain indices appearing as guards in conditional statements
can be thought of as conditions that divide an index domain into subdomains, we call
such a dependence analysis the subdomain dependence test.

Let us first take a simple example to show the use of the subdomain dependence

test.

An Example: Gauss-Jordan Elimination Consider the following Gauss-Jordan
elimination code which reduces the rows of the n-by-n matrix A using the k-th row
as pivot:

Loop Nest 3.1
DO (i =1,n){
IF(i # k) DO (j = 1,n){
A(%,5) = A(5,5) — A(k,j) » DUM(3) } }

Without considering the conditional (i # k), the pivoting row will also be updated

and there is dependence between the computation of rows as shown in Figure 3.1.
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Therefore, only the inner loop which computes elements of one row can be parallelized.
The outer loop, which computes different rows, cannot be parallelized.

— However, from the conditional (i # k), we know that the pivoting row is not
updated in the loop. Therefore, there is no dependence at all and both loops can be
parallelized.

Organization of the Chapter In the next section, we formulate precisely the
problem of analyzing data dependence between conditional statements. In Section
3.3, we describe the methods and algorithms for solving the subdomain dependence
test. Finally, we describe the application of the subdomain dependence test to the
problem of “dependence cycle breaking” [7] and the use of the subdomain dependence

test in analyzing functional programs.

3.2 Formulating Subdomain Dependence Test

Let us start with formulating dependence analysis without considering conditionals.

3.2.1 Dependence Analysis without Considering Condition-
als
Problem Formulation We now formulate dependence analysis for the generic

Loop Nest L in Chapter 2 without considering conditionals. For easy reference, Loop

Nest L is repeated below:
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Loop Nest 3.2

DO (I:D){
Sy : IF(B(D) AX (D)) = ...

Sq 2 IF(P,(I)) B(Z(I)) = r[A(Y(]))]
}

There is a flow dependence from S; to S; if and only if there exist integer indices
I and J satisfying Equations (3.1), (3.2), (3.3) and (3.4). Note that the presence of

conditional expressions is ignored:

I € D, (3.1)
J € D, (3.2)
X(I) = Y(J), and (3.3)
I=J (3.4)

Equation (3.4) implies that (d+1) direction vectors must be considered. For example,
if the dimension d is three, then the direction vectors are (<, *, *), (=, <, *), (=, =, <),

and (=,=,=).

Rectangles and Trapezoids Let Z? be the d-dimensional Cartesian product of
Z. Let [;; and u;; be rational constants where 2 <i<dand1<j<d-—1. Let P

and ) be two d-tuples of constant rational numbers, and L and U be two constant
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matrices:

(000...0\ (o o 0...0\
by 0 0 ... 0 gy 0 0 ... 0

L= lay I 0 ... 0 |> U= s us2 0 ... 0

\ldl ldz ld3...0) \udl Ud2 ud30/

A subspace of Z¢ that can be expressed as {I | (P < I < @)} is called a rectangle
[8]. A subspace of Z¢ that can be expressed as {I | (LI+P < I < UI+Q)} is called
a trapezoid [8].

Traditional dependence analysis [8] restricts that an index domain of a do loop be
either a rectangle or a trapezoid, or a union of such domains. For the purpose of a
dependence analysis, each member domain of the union can be considered separately.
Hence we can further restrict, without loss of generality, that an index domain of a do
loop be a rectangle or a trapezoid. Conventional dependence analysis also restricts
all subscript functions, e.g. X, Y and Z in Loop Nest 3.2, to be affine functions of
the loop indices.

The problem of previous dependence analysis is to determine if there exist I and
J that satisfy Equations (3.1), (3.2), (3.3) and (3.4), where conditionals are not

considered.

Previous Algorithms Typical methods for analyzing include the single indez ezact
test [7,8,110,113] for single-level loop, which can be efficiently performed to analyze
indices which are integers.

For one-dimensional arrays in a multi-level loop, methods for testing integer in-
dices include those described in Section 3.3 in [7] and Section 2.5.4 in [113]. Both
algorithms have the disadvantage that they require time exponential in the number

of loop levels. There are several efficient algorithms for testing rational indices for
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one-dimensional array references [3,4,5,6,7,8,72,110,113].

For multi-dimensional arrays in a multi-level loop, integer programming [65,99]
is needed for testing integer indices. A faster algorithm is the A test [74], which
determines if there exist rational indices for multi-dimensional array references.

Other methods include using the theories of Diophantine equations [8,72] to decide
whether Equation (3.3) has an integer solution. The GCD test [6] is used to decide if
Equation (3.3) has integer solutions when the number of equality in EQuation (3.3)
is one [8]. The I test [52,54,55] improved the accuracy of the GCD test for one-
dimensional array references.

The efliciency of some of these dependence decision algorithms is partly due to
the fact that the index domains of loops, i.e. domain D in Equations (3.1) and (3.2),
are either rectangles or trapezoids. In the next section, we will show that this fact is

no longer true when conditionals are considered.

3.2.2 Subdomain Dependence Test

We will now formulate the same problem with conditionals taken into consideration.

Notation and Definitions Let h; and c be rational constants where 1 < k < d.
Let H be a d-tuple (hy,hs2,...,hqs). A subspace of Z¢ that can be expressed as
{I | HI = ¢} is called a hyperplane. A subspace of Z¢ that can be expressed as
{I'| HI < ¢}, is called a half space. The intersection of a finite number of hyperplanes
and half spaces is called a polyhedron. A bounded polyhedron is called a polytope [100).

A conditional expression is said to be in disjunctive normal form if it is the disjunc-
tion of conjunctions of predicates. It is well-known that any conditional expression
can be transformed into disjunctive normal form.

Consider a statement S with a conditional expression P in a loop over index
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domain D:

DO (I:D){

S: IF(P)) ...
}

We define the index domain of statement S to be D under the restriction of P,
denoted by (D|P):

D|P ={I|1I € D,and P(I) is true}. (3.5)

Problem Formulation Now consider the generic Loop Nest 3.2. A subdomain
dependence test is formulated as: A flow dependence from S; to S; exists if and only

if there exist integer index tuples I and J satisfying

I € (D\Py), (3.6)
J € (DLPy), (3.7)
X(I) = Y(J), and (3.8)
I=J (3.9)

We restrict the form of a conditional expression to be an affine expression of
the indices. Under this restriction, a predicate in the disjunctive normal form of
a conditional expression is either an equality (HI = c) or an inequality (HI <
c). Therefore, a conjunction of predicates specifies a polyhedron and a disjunction
specifies a union of polyhedra. Since we can test multiple polyhedra one by one, it
suffices to consider predicates that specify a polyhedron. To summarize, the index
domain of a statement in a conditional branch generated by predicate P is (D|P), an
intersection of a rectangle or a trapezoid with a polyhedron, which is, in general, a

polytope.
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Note that a rectangle or a trapezoid is a polytope, but not vice versa. This is
another way of seeing that, in the presence of conditional expressions, a dependence
decision algorithm is conservative if it can only be applied to a rectangle or trapezoid
that encloses the polytope in question.

Since Equations (3.6),(3.7) and (3.8) specify a polytope while Equation (3.9) re-
quires the consideration of (d + 1) direction vectors, the union of (d + 1) polytopes
must be considered. A flow dependence from statement S; to statement S, exists in
Loop Nest 3.2 if and only if the (d + 1) polytopes contain integer points. It appears
that to obtain both flow and anti-dependence information, (2d + 1) polytopes must
be tested for each pair of statements S; and S; in Loop Nest 3.2. This complexity
can be reduced by applying the techniques of the hierarchical dependence test [12] so
as to reduce the number of direction vectors that need to be examined and thus the

number of polytopes to be tested.

How Hard is Subdomain Dependence Test? If a polytope cannot be charac-
terized as a member of a special class, e.g. rectangles or trapezoids, then we say it is
a general polytope.

The following theorem states that the complexity of a subdomain dependence test
is high.

Theorem 3.1 A subdomain dependence test is as hard as deciding whether a general

polytope contains an integer point.

Proof.
Consider a general polytope T specified by T' = {I | AI < B}. We need to prove that
deciding if T contains an integer point is polynomial-time reducible to a subdomain

dependence testing problem. Consider the following loop nest:
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Loop Nest 3.3

DO (I:D){
Sy IF(A(D) A = ...
Sy : IF(Py(I)) ... = A(I) }

The problem of the subdomain dependence test between statements S; and S,
is formulated as: A flow dependence from S; to S; exists if and only if there exist
integer index tuples I and J satisfying (I € (DLP1)), (J € (D{P;)), and (I = J). It is
easy to see that the dependence exists if and only if domain (D|P) contains an integer
point, where P(I) is the conjunction of Pi(I) and P,(I). We can make P(I) to be
the conjunction of the inequalities in AI < B so that (D{P) = (D NT). The key
point is to find an index domain D in polynomial time such that (D N T) contains
an integer point whenever T' contains an integer point. If this can be achieved, then
deciding if T contains an integer point is polynomial-time reducible to deciding if
(DLP) contains an integer point, which is a subdomain dependence testing problem.
A theorem by Schrijver (Corollary 17.1b in [100]) said that: If AT < B has an integer
solution, then it has one of size polynomially bounded by the sum of the sizes of A
and B. (For a matrix A = (a;;)1<i<c1<j<d, size(A) = exd+ T ;;(1+ [logy(las;| +1)1)-)
Let s be the sum of the sizes of A and B. We can construct the index domain D to
be {(21,-..,%2) | =2° <41 < 2°,1 <1 < d} so that D is large enough to contain an
integer point in T if one does exist. O

A theorem by by Schrijver (Theorem 18.1 in [100]) said that: Given matrix A and
vector B, the problem for deciding whether AT < B has an integer solution is NP-
complete. By Theorem 3.1 and Schrijver’s theorem. we know that the subdomain
dependence testing problem is N P-complete.

I would like to point out that there is still no literature discussing the complexity
of the exact dependence analysis for array references with coupled subscripts in state-

ments without conditionals. In proving the subdomain dependence test problem to
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be N P-complete, we use the property that the conditionals can contain general lin-
ear predicates of loop indices. Without conditionals, this generality will be replaced
by the confined property of index domains: an index domain of a loop is either a
rectangle, or a trapezoid, or a union of such domains. Therefore, the proof of Theo-
rem 3.1 cannot be used to prove the complexity of exact dependence analysis between

statements without conditionals.

3.3 Algorithms for the Subdomain Dependence
Test

Recently, an empirical study of program characteristics [102] found that 93% of the
coefficients of loop indices in linear subscript functions are either 0, —1 or 1. We
will assume that most coeflicients of loop indices in linear conditional expressions are
either 0, —1 or 1. By taking advantage of 0, —1 and 1 coefficients, we present an
efficient solution for this special case in Section 3.3.1. We then give a general solution
for the subdomain dependence test in Section 3.3.2, and discuss unknown loop bounds

in Section 3.3.3.

3.3.1 Solution for the Special Case

The basic idea of our solution for the special case with 0, —1, or 1 coefficients is as
follows. Let T be the polytope to be tested. We can use linear programming to find
whether T' contains any real points. If not, then there is no integer point in 7" and
we are done. Otherwise, let R be an arbitrary real point in T'. We will show that if
T contains any integer points at all, then it contains an integer point very close to R.
Therefore, to determine if there are any integer points in T, it suffices to check for

integer points close to R.
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Comparing with Banerjee’s and Li’s Methods Banerjee [6] and Li [72] have
developed efficient dependence decision algorithms for this special case with further
restrictions. Banerjee [6] found that if the index domain of the loop is a rectangle
and no conditionals are considered, and arrays are one-dimensional, then the test
for real indices is also valid for integer indices. Li [72] extended Banerjee’s result to
two-dimensional array references.

Our approach does not restrict the index domain to be a rectangle or trapezoid.
Therefore, it is useful for statements with and without conditionals. Further, our
method has no restrictions on the dimensions of arrays, and is more efficient for lower
dimensional polytopes. However, the generality of our result does not come for free.
Our approach requires linear programming to find the coordinates of a real point in
the polytope, while Banerjee’s and Li’s methods only need to test if there is a real
point.

The following problem remains open: Is there a fast algorithm for Banerjee’s and

Li’s methods for multi-dimensional arrays when conditionals are not considered?

The Solution We now describe the solution for the special case. Let T be the
polytope to be tested. Clearly, T' can be expressed as T = {I | AI < B}, where A is
an integer matrix and B is a vector. Theorem 3.2 states that the difference between
any real point R and its closest integer point I in T, i.e. R — I, depends on a set
of vectors, called a basis, which is determined by A. We then tighten the relation
between R and I by constructing the basis explicitly. Lemmas 3.3 and 3.4, together
with a theorem given by Fernandez and Quinton [35], provide a precise definition
of the basis, from which we know how the basis can be constructed systematically.
The relation of R and I in terms of the vectors in the basis is given in Lemma 3.5,
which describes a systematic way to find all integer points I that need to be tested for
multi-dimensional polytopes in general. Theorem 3.6 gives the number of such integer
points for the special cases when all elements in A are either 0, —1 or 1 especially for

2, 3 and 4-dimensional polytopes.
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Below, we use ||V|| to denote the length of a vector V, and use A(A) to denote
the maximum of the absoluté values of the determinants of the square submatrices of
A. Theorem 3.2 is very similar to a theorem by Cook et al. [23], which gives a bound
for the distance between any optimal solution to a linear program and the nearest

optimal integer solution.

Theorem 3.2 If T contains integer points, then for any real point R in T there exists

an integer point I in T with ||R — I|| < tA(A), where ¢ is the dimension of T'.

Proof. Assume Z is an integer point in T'. Split A into submatrices A; and A, such
that A1R > A;Z and A;R < A3Z. Let C be a cone C = {X | 41X >0,4:X <0}.
(A nonempty set C of points in Euclidean space is called a cone if Az + uy € C
whenever z,y € C and A\, p > 0.) Let G be a finite set of integer vectors which
generates C (so G is a basis of C and any vector in C can be written as a nonnegative
linear combination of ¢ vectors in G, where c is the dimension of C, ¢ < ¢t and ¢
is less than or equal to the number of vectors in G). Using Cramer’s rule we may
assume that the length of each vector in G is less than or equal to A(A). Since
R — Z € C, there exist numbers A; > 0 and vectors G; € G, 1 < i < ¢, such that
R—7=MG +...+ AG.. Let

I =24 MG +...4|\]G.

= B— (= MG — = (e = [AJ)Ger

Since Z is integral and Gy, ..., G, are integral, I is also integral. Furthermore,

(3.10)

Al = AZ + [M]A:G1+ ...+ [A]A:G. < AZ
- and  AyJ = AR — (M — [M))A1G1— ... — (Ac = [A))A1G: < A R.
So AI < B and I is an integer point in T'. Finally,
[B=1Ill = [[(A = [M])G1+ ...+ (A — [A])Gell
< |Gl + .. + |G-
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So |R — I|| < cA(A) < tA(A). O
As described in the proof of Theorem 3.2, the length of each vector in G is less
than or equal to A(A). We now sharpen the bounds on R — I by constructing §

—A
explicitly. Let A’ = ' , then C' can also be expressed as C = {X | A’X < 0}.

A,
Fernandez and Quinton [35] showed that G does not contain any redundant vectors,
i.e. any vector in G cannot be represented as a positive linear combination of other
vectors in G, if and only if for all distinct vectors G and G’ in G, there is a row V
of A’ such that VG = 0 and VG < 0. We can also assume that G contains no zero
vectors and let each G = (g1, 92, -.) in G be normalized in the sense that the greatest
common divisor of g1, g2, ... is 1. From Fernandez and Quinton’s theorem we have

the following lemma:

Lemma 3.3 A vector G in G is not redundant if and only if there does not exist

another vector G’ in G such that for every row V of A, VG = 0 implies VG’ = 0.

Let A(t,n) be a matrix whose rows contain all possible vectors of length ¢ and
with elements being in the interval (—n,n). For example, the 9 rows of A(2,1) are
(0,0), (0,£1), (£1,0) and (£1,=1) (we use (£1, £1) as a shorthand for (1,1), (1,-1),
(=1,1) and (=1,—1)). Recall that the length of each vector G in G is less than or
equal to A(A) as described in the proof of Theorem 3.2. Together with Lemma 3.3,

we have the following lemma:

Lemma 3.4 If A has t columns and all elements in A are in the interval (—n,n),
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then all possible vectors in G are in the following set B(t,n):

B(t,n) ={G | |Gl < A(A(t,n)), and
there does not exist another vector G’ in B(t,n)
such that for every row V of A(¢,n),
VG = 0 implies VG’ = 0}.

Lemma 3.4 gives a systematic way to generate B(t,n). Two examples of B(t,n)

are:

B(2,1) = { (0,+£1),(£1,0), (£1,41)},
B(3,1) = { (0,0,£1),(0,£1,0),(%1,0,0), (0, £1, 1), (£1,0, £1),
(£1,41,0), (£1, £1, £1), (£1, £1, £2), (£1, £2, +1), (£2, £1, £1)}.

Let R be a real point and I be an integer point. Clearly, R can be represented
as a sum of an integer point R; and a real point Rp, i.e. R = R; + Rp, where
(0,...,0) £ Rr < (1,...,1). The following lemma relates I to Ry:

Lemma 3.5 If R and I satisfy Equation (3.10), then there exist numbers §;, 0 <
Bi < 1, and vectors G; in B(t,n), 1 < 1 < ¢, such that

(0,...,0) S T—Ri+BGi+...+ BGi < (1,...,1). (3.11)

Proof. From Equation (3.10), we can let i = A — |\ for 1 <i<candlet ;=0
for ¢ < 2 < t. Therefore, 0 < 3; <1 holds for 1 < <t and

R—I= ﬂ]G] +...+ﬂth.
Replacing R by R; + Rpg, we have

Rp=1I—-R;+ p,G1+...+ B:G:.
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Figure 3.2: Twelve integer points to be tested for a 2-dimensional polytope.

Since (0,...,0) < Rr < (1,...,1), we have the proof. O

We can write a program to find all integer points I surrounding an integer point
R; such that Equation (3.11) holds. If all elements of A are either 0, —1 or 1, then
we find that there are 12 such I when T is 2-dimensional, 776 such I when T is 3-
dimensional and 708480 such I when T is 4-dimensional. We thus have the following

theorem:

Theorem 3.6 Let all elements of A be either 0, —1 or 1. Let R be a real point in
T. We need test no more than 12 integer points surrounding R to decide whether T
contains integer points when T is 2-dimensional, 776 points when T is 3-dimensional.

and 708480 points when T is 4-dimensional.

For example, Figure 3.2 shows the 12 integer points surrounding R to be tested
for 2-dimensional polytopes.

Let aI < b be an inequality in AI < B which specifies the polytope to be tested.
If aR = b holds, i.e. the real point R is on the hyperplane {I | aI = b}, then the half
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space {I | al < b} contains roughly half of those integer points given in Theorem 3.6.
The other half will be ruled out by al < b. For instance, in Figure 3.2, 7 points are on
one side of the dotted line and 5 points are on the other side. Therefore, we can first
find an inequality al < bin Al < B such that aR = b holds, we then only need to
test 6, 388 and 354240 integer points in average for 2, 3 and 4-dimensional polytopes

respectively.

3.3.2 General Solution

We now discuss the solution of the subdomain dependence test when the polytope T
to be tested does not fall under the above special case.

If the condition of 0, —1, 1 coefficients holds but the dimension of T is larger than
4, then we can try to reduce the dimension of T by the following two methods:

(1) Linearly Independent Equalities: Assume T is specified by n linearly independent
equalities. We can use the methods given in Chapter 5 in [8] to solve the Diophantine
equations of these n equalities to decrease the dimension of T by n.

(2) Subsystems: For any two variables appearing in the same equalities or inequalities,
we say they are in the same equivalence class. If there are more than one equivalence
class of the variables (de-coupled indices), then the system of equalities and inequali-
ties can be separated into subsystems according to the equivalence classes of variables.
Clearly, any empty subsystem implies that the original system is also empty.

If the dimension of T' cannot be reduced to be less than or equal to 4, or the system
contains coefficients other than 0, —1 or 1, then integer programming is used to find
integer points. Feit’s algorithm [34] can solve two—dimensional integer programming
problems in O(nlogn) time where n is the number of constraints. And Scarf’s basis
reduction algorithm [99], a general integer programming solver, can test any polytope

for integer points.
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3.3.3 Unknown Loop Bounds

At compile time, some loop bounds may be specified by unknown constants. Clearly,
techniques such as constant propagation should be applied first. For the remaining
unknown constants, we will treat them as extra variables. Therefore, a t-dimensional
polytope T specified by v unknown constants can be considered as a (t+u)-dimensional
index domain 7" without unknown constants. Since there are no bounds for these
extra variables, T” can be a polyhedron. Theorem 3.6 and Feit’s [34] algorithm are
also applicable to polyhedra. The basis reduction algorithm [99] cannot test if a poly-
hedron is free of integer points but it can determine whether T is a polytope or a
polyhedron. If Theorem 3.6 and Feit’s [34] algorithm cannot be applied and 7" is a
polyhedron containing real points, then we assume that 7" contains integer points,

yielding a more conservative result.

3.3.4 Summary of Subdomain Dependence Testing Steps

To summarize, the subdomain dependence test consists of the following steps:

1. Formulate the systems of dependence inequalities according to Equations (3.6),
(3.7), (3.8) and (3.9) and the hierarchical dependence test [12]. (There can be

as many as (2d + 1) systems, where d is the dimension of the loop nest.)
2. For each system, repeat the following steps:

3. Treat unknown loop bounds as extra variables, which increase the dimension of

the system.

4. Reduce the dimension of the system by solving linearly independent equalities

and finding subsystems of equalities and inequalities.

5. For each subsystem with 0, —1 and 1 coefficients and 2, 3 or 4 dimension, do

steps 6, 7 and 8. Otherwise, do step 9.
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6. Use linear programming to find a real point R in the subsystem.

7. If there is no such R, then the original system is empty and no dependence

exists.

8. Otherwise, test surrounding integer points of R to decide whether the subsystem

contains integer points.
9. Use integer programming to decide whether the subsystem is empty.

This new dependence test has two independent subresults. First, the test includes
in the system of dependence inequalities the information arising from a program’s
predicates. Second, it is an improved dependence test for equations with —1, 0, 1
coefficients: It is more accurate than previous tests and more efficient than integer
programming. However, the subdomain dependence testing algorithm is more ex-
pensive than some previous dependence tests, e.g. the GCD test [6]. Therefore, the
GCD test and other fast dependence tests can be used first to filter out some inde-
pendent computations. The subdomain dependence test can then be used between

the remaining dependent statements to report more accurate dependences.

3.4 Application of the Subdomain Dependence
Test

3.4.1 Cycle Breaking

Dependence cycles can be removed by several techniques, e.g. indez set splitting
[7,110,113], IF removal, scalar expansion and recurrence recognition [25]. We now
show that the subdomain dependence test can be used to improve index set splitting
for more general cycle breaking.

Banerjee’s cycle breaking technique is capable of breaking a cycle consisting of

a flow and an anti-dependence between two statements in a single level loop of the
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following form, where B is a one-dimensional array and I, v and ¢; for 1 < k < 4 are
integer constants:

Loop Nest 3.4
DO (i =l u){
S1: A(...) = B(ait + ¢3)
SzZB(C3i+C4)=... }

This kind of cycle can always be removed because the flow and anti-dependences
are over disjoint sub-index domains of the two statements. The boundaries of the
sub-index domains can be computed only when ¢; and cs are not both zero [7], i.e.
the inverse of either (17 + c2) or (cai + c4) is well defined. Consider the following
program from [113]:

Loop Nest 3.5

DO (: =1,101) {
Sy: A(E) = B(101 — &) +
S, : B(i) = E(3) }
The flow dependence (5,@j = $;@3) is over (: € [51,100]) and (j € [1,50]); and
the anti-dependence (S1@i = S,@j) is over (¢ € [1,50]) and (j € [51,100]). By

splitting index domain [1,101] into disjoint domains [1,50] and [51,101], the cycle is

removed and the loop can be fully parallelized as shown below:
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Loop Nest 3.6
DOALL (: =1,50) {
S1: A(z) = B(101 —¢) +2
$:: B() = E() }
DOALL (: = 51,101) {
S1: A(x) = B(101 —¢) +¢
The subdomain dependence test breaks cycles for more general cases. It can break
cycles for any number of dependences between multiple statements in a multi-level
loop with reference to multi-dimensional arrays. We use the following example to

show the power of the subdomain dependence test in breaking cycles:

Loop Nest 3.7

DO (I:D){

S1: IF(P(I)) A(X(I)) = C(Y(]))
Sy 2 IF(P(1)) B(....) = A(Z(]))
Ss: IF(P(I)) C(W(I)) = B(...)

}

Assume there are cyclic flow dependences (S; = Sz = S3 = 5;). We know that
(5:@I = S;@J) for I and J in the following polytope:

I € (DIR), (3.12)
J € (DIR), (3.13)
X(I) = Z(J), and (3.14)
I=<J. (3.15)
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Similarly, (S3@K = $,@I) for I and K in the following polytope:

I € (D\P), (3.16)
K € (DiPs), (3.17)
Y(I) = W(K), and (3.18)
I K. (3.19)

Let D, be the domain containing all I satisfying Equations (3.12), (3.13), (3.14) and
(3.15), and let D, be the domain containing all I satisfying Equations (3.16), (3.17),
(3.18) and (3.19). By the subdomain dependence test, we know whether integer tuples
I, J and K exist which satisfy Equations from (3.12) to (3.19). If I, J1 and K, are
such integer tuples, then (I; € Dq) and (I; € D,); therefore, D; and D, are not
disjoint. Conversely, if no such integer tuples exist, then D, and D, are disjoint, and

we can decompose S; into two sub-statements Sy, and Syp:

Swa: IF(I € (DIP) — Dy) A(X(I))
Slb : IF(I € (Dz)) (X(I))

such that the flow dependences become (S1, = S2 = Ss = Su), and the cycle is
removed.
In order to obtain D,, the inverse of the subscript function W should be well

defined, the same as in Banerjee’s technique. Let W1 be the inverse of W. Equation
(3.18) implies that (K = W~(Y(I))) and it is clear that

={I| I €(D\R),(W(Y(])) € (D\Fs)),
(I = WY (D))}

With D,, statement S; can be decomposed and the cycle can be removed.
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3.4.2 Use of the Subdomain Dependence Test in Functional

Programs

The subdomain dependence test is useful not only for imperative programs but also for
functional programs. We use the following notation to express a functional program,
where A and B are two function definitions, D and E are index domains, P, and P,

are conditional expressions and Y is an affine function:

Pl'—P...
A(I:D) = ¢

e
\

sy < |7 AT

If only dependences between function definitions, e.g. A and B, are considered, then
no dependence test is required to say that B depends on A. However, A and B can

be decomposed into sub-definitions according to conditional expressions as

Al(Ii(D.Lpl)) = ...
Bi\(I:(ELR)) = 7[A(Y(D))]

More precise dependences can be obtained between these sub-definitions. To know if
B; depends on A;, the subdomain dependence test can be used to determine if the

following polytope contains integer points:

(DLP) NY (ELP,).

Due to functionality, only one polytope, instead of (2d + 1), needs to be tested to

obtain dependence information between each pair of sub-definitions.



Chapter 4

Static Scheduler

4.1 Motivation

For loops with true dependences which prevent large-scale parallelization, loop trans-
formation can be applied to reveal parallelism. This chapter presents new loop trans-

formation techniques that can extract more parallelism than previous techniques.

Organization of the Chapter In Section 4.2, we present a formal mathematical
framework which unifies the previous loop transformation techniques, and sets the
stage for discussing the more general classes of loop transformers. A loop transformer
is a function that relates a given loop nest with its transformed version, and consists
of two parts: a spatial morphism, and a temporal morphism, called a schedule. Next,
in Section 4.3, we classify schedules by the properties of uniformity and the degree of
parallelism to be gained, and describe the functional forms of the schedules for each
class. Previous loop transformation techniques are given as examples of these classes
of schedules.

In Section 4.4, we review Quinton’s algorithm for obtaining single-sequential level
uniform schedules and present the problem formulations for two new classes of sched-

ules, namely, subdomain-variant schedules and statement-variant schedules and the

42
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algorithms to generate them. The generation of subdomain-variant schedules requires
non-linear programming, and an alternative heuristic algorithm using linear program-
ming is given.

Section 4.5 describes an iterative algorithm toi obtain multiple-sequential level
schedules based on the algorithms for single-sequential level schedules. Section 4.6
presents a recursive algorithm to generate mized schedules that result in imperfectly
nested loops, again using the algorithms for single-sequential level schedules as the
basic step.

Finally, we illustrate the usefulness of the new loop transformation techniques
with example programs in Section 4.8. Versions of the transformed program using
different schedules are implemented on a Connection Machine CM/2. The difference
in performance, which is essentially due to the available parallelism determined by

the schedule, can amount to two orders of magnitude.

Previous Work Numerous techniques such as statement reordering, loop vec-
torization, interchange, permutation and skewing used in restructuring compilers
[3,4,5,6,7,8,9,10,12,24,58,61,72,74,86,108,109,110,113] have been proven effective in
gaining parallelism for vector computers and small-scale shared memory parallel ma-
chines.

Much work in the area of mapping recurrence equations to systolic architectures
[19,29,51,59,66,81,83,84,85,88,89,90,91], in contrast, focuses on developing algorithms
for loop skewing.

Guerra [41], Lin et al. [75] and Sheu et al. [103] discussed different transformation
functions over different subdomains of the the iteration space of a loop nest, which
is similar to the subdomain-variant schedules presented here. However, Guerra’s and
Lin’s methods are not systematic, and Sheu’s algorithm is only suitable for loops
with constant dependence vectors and with partitions on the innermost loop. On the
other hand, our techniques are systematic and applicable to much more general loops

where the only requirement is that conditionals as well as the array index expressions
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are affine expressions of the loop indices.

Mauras et al. [79] discussed variable-variant schedules where each variable of the
system of affine recurrence equations can be scheduled differently from other variables.
Our statement-variant schedule, developed at about the same time [76,77}, is more
general than their variable-variant schedule in that our techniques are applicable to
FORTRAN loops with side effects while theirs are only applicable to affine recurrence
equations without side effects.

In all previous work on loop transformation, dependence vectors and dependence
direction vectors are all that are needed. And for the type of loop nests of interest,
there are constant numbers of such vectors. In order to generate subdomain and
statement-variant schedules, we need actually to capture the dependence inder pair
where a dependence relation occurs. The problem is that there are many such pairs
that need to be considered, and they can be infinitely many when the loop bounds
are unknown at compile time. We need to rely on a technique called polyhedra de-
composition [35,90,100] to manage the complexity of the algorithm.

Some recent work attempting to formalize loop transformations requires the trans-
formation functions to be unimodular [10]. We will show that this requirement is not
essential, and allow a much more general class of functions to be used as a loop

transformer.

4.1.1 Application Domain: Affine Loops

The new loop transformation techniques presented in this chapter are applicable to
a specific class of loops that consists of perfectly nested loops, possibly with condi-
tional statements where the guards as well as the array index expressions are affine

expréssions of the loop indices. We call the loops in this class affine loops.

An Example We now use an example program to show why subdomain-variant

schedules are more powerful than loop interchange and skewing. The following ex-
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ample is the same as Loop Nest 1.1 in Chapter 1 except that the vectorizable k loop
has been removed.

Loop Nest 4.1

n = 1000
DO (i=n,1,-1){
DO (j =4,n){

S1: IF(i=j)A(3,7) = B(i+ 1,n)
Sy : IF(G < §) A(5,7) = AG +1,7)
S3: IF(2j —1 > n) B(s,5) = B(i,j_— 1)+ A(5,5) } }

The dependence graph with dependence vectors of this program is shown in Fig-
ure 4.1. Figure 4.2(a) shows the index domain of the loop nest with the loop bound
n being replaced by 5 for easier representation. An edge from domain element (21, j1)
to (42, j2) in Figure 4.2(a) indicates that there exists statements S, and S, a € [1, 3],
b € [1, 3], such that dependence S,@(¢y,j1) = Sp@(i2,j2) holds. Figure 4.2(b) shows
dependence vectors originated from the origin for this program. Due to the strange
angles of these dependence vectors, we can only skew index j with respect to index i
by a factor of —1000 and then interchange loops i and j to make the inner ¢ loop par-
allelizable. (The separating hyperplane [51] is (—1000: + 7 = 0) so that all dependence
vectors are on the same side of this hyperplane.) The combination of the skewing
and interchange is a unimodular transformation which maps (2, §) to (—1000z + 7,2).
The transformed loop nest using Wolfe’s transformation algorithm [110,113] is Loop
Nest 4.2 below.
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(=1,0 (1,0, (~1,-1), ..., (—1,—999)

(—170) (071)

Figure 4.1: Dependence graph with dependence vectors.

(2) (b)

Figure 4.2: Index domain and dependence relation.
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Loop Nest 4.2

n = 1000
DO (t = —999000,0) {
DOALL (¢ = (—t/1000) + 1, max(1,—t/999), —1) {
J =t + 10002
S1: IF(t=73) A(G,5) = Bz + 1,n)
Sy IF(i < j) A(4,5) = A(i + 1,7)
Ss: IF(2j — > n) B(;,§) = B(i,j — 1) + A(i,4) } }

A better way to parallelize this program is to use a subdomain schedule where
the starting index points of dependence vectors (—1,-1), (~1,-2), ..., (=1, —999)
are scheduled differently from the ending index points of these dependence vectors.
This can avoid the strange angles of these dependence vectors in order to increase
parallelism in the transformed loop nest.

By using the subdomain scheduling algorithm described in Section 4.4.3 below,

we can obtain the following subdomain schedule with two transformations over two

disjoint subdomains partitioned by the hyperplane (25 — ¢ = 1000):
25 — i > 1000 = (=2 + j,1) = (¢, 1)
95 — 4 < 1000 — (—i — j +1000,5) = (¢,5)

The transformed loop nest from the subdomain transformation is Loop Nest 4.3 below.
Note that Loop Nest 4.3 has 1999 (= 998 + 1000 + 1) sequential steps while Loop
Nest 4.2 has 999001 (= 999000 + 1) sequential steps.
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Loop Nest 4.3
n = 1000
DO (¢t = —1000,998) {
DOALL (¢ = (1000 — t)/2, max(1, —t),—1) {
) =t+ 2
IF(25 — ¢ > 1000)
S1: IF(i=j)A(:,7)=B(E + 1,n)
Sy : IF(i < 7) A(4,7) = A(z + 1,7)
Ss: IF(25 —i > n) B(:,j) = B(i,j — 1) + A(3,5)
J=1000—t—z
IF(25 — < <1000)
S : IF(i=37)A(,7) = B(i+1,n)
Sy IF(i < j) A(3,7) = AT + 1,7)
S3: IF(2j —i>n)B(i,j) = B(i,j ~ 1) + A(,5) } }

Since there are two transformations, Wolfe’s transformation algorithm for loop
interchange and skewing [110,113] should be modified as follows to derive the trans-
formed loop nests for subdomain schedules.

Loop body Each statement in the source code becomes two statements, one for
each transformation, in Loop Nest 4.3. That is, the transformed loop nest has two
sub-loop bodies corresponding to two transformations. Each sub-loop body should
be guarded by the conditionals specifying its subdomain to restrict the computation.
That is, conditional (2j — ¢ > 1000) is necessary for the sub-loop body over subdo-
main (2j — ¢ > 1000), and conditional (2 — 7 < 1000) is required for the sub-loop

body over subdomain (2j — i < 1000). Two additional statements (j = t + 2¢) and

(j = 1000 — ¢ — 7) are needed to compute the inverses of the transformations for
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obtaining the original loop index.

Loop bounds If the loop bounds from these two transformations are different, then
the union of these loop bounds becomes the loop bound of the transformed loop
nest. For example, if the two loop bounds are (¢ = a,b) and (¢ = c,d), then the
resulting loop bound is ¢t = min(a, c), max(b, d). Clearly, the sub-loop body under the
transformation with (¢ = a, b) must be guarded by an extra conditional (a < t < b),
and the sub-loop body under the transformation with (¢ = ¢, d) must be guarded by
(¢ £t < d) to restrict the computation. On the other hand, if the loop bounds from
different transformations are the same, then the resulting loop bound is also the same
and no extra conditional is necessary. This special case of subdomain transformation
is called folding [18,20] where one half of the domain is folded into the other and then
the contracted domain is transformed uniformly. This happens to be the case of this
example.

Loop Nest 4.3 can be simplified by removing useless statements guarded by con-
tradictory conditionals. For example, statement S; in subdomain (27 — 7 > 1000) is
useless because the set of conditionals {(25 — ¢ > 1000),(z = 7),( < j < 1000)} is
contradictory. Similarly, statement S5 in subdomain (25 — ¢ < 1000) is useless. Con-
tradictory conditional can be detected by the subdomain dependence test described

in Chapter 3. After removing these two statements, Loop Nest 4.3 becomes:
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Loop Nest 4.4

n = 1000
DO (t = —1000,998) {
DOALL (i = (1000 — t)/2, max(1, —t), —1) {
j=t+2
IF(25 — ¢ > 1000)
Sy: IFG < 7) A(5,7) = A(i + 1,5)
Ss: IF(25 —i > n) B(i,5) = B(3,j — 1) + A(3, )
j=1000—¢t—1
IF(25 — ¢ < 1000)
Sy : IFG =j) A(6,5) = B(i + 1,n)

Sy: IFG < §) A5, 7) = AG + 1,5) 1}

4.2 Formalizing Loop Transformation

We now formalize the notion of loop transformation from a source loop nest to a
target parallel loop nest. A loop transformeris a function defined over the Cartesian
product of the iteration space of the loop nest and the set of statements in the body
of the loop that relates a given loop nest with its transformed version. From the
standpoint of symbolic transformation of the program text, a loop transformer can
be decomposed into two components: the first component, called domain morphism,
defines how the iteration space should be mapped to a new one (with new loop bounds
and possibly new predicates guarding the loop body), and the second component,
called statement reordering function, defines the ordering of the statements in the
transformed loop nest. The process of obtaining a loop transformer, however, suggests

another decomposition: a temporal morphism and a spatial morphism.
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4.2.1 Loop Transformer and Schedule

Kinds of Index Domains For the purpose of loop transformation, it is useful to
indicate how the index domain shall be interpreted. We do this by defining kinds of
index domains. The kind of an interval domain D can be either spatial or temporal.
The kind of a product domain is the product of the kinds of the component domains.
For example, D; x D, is of kind temporal xspatial if D, is of kind temporal and D,
is of kind spatial. A single-level loop with a temporal index domain corresponds to a
sequential loop (i.e. DO), while a spatial index domain corresponds to a parallel loop
(i.e. DOALL).

Domain Morphism We define a domain morphism to be a bijective function ¢
from index domain D to index domain E, denoted by g: D — E, such that for all
dependences $;@I = S,@J, condition g(J) — g(I) > 0 holds. In other words, a
domain morphism will never reverse the ordering imposed by dependence relations.

In this chapter, we assume that the target parallel machines are fine-grain. There-
fore, all parallel loops are innermost loops in the transformed loop nest. That is, the
codomain E of a domain morphism is a cross product of a temporal index domain E;
and a spatial index domain Ej, i.e. E = E; X E;,. Since our techniques transform one
level of the source loop nest at a time, they can be easily incorporated into the al-
gorithms for parallelizing outer loops targeted to distributed memory and large-scale
multiprocessing machines.

We define ¢; and g, to be two functions:

g: : D— E;, (called a temporal morphism) and (4.1)
gs : D — E,. (called a spatial morphism) (4.2)

' Under domain morphism g, index I in the original loop will be mapped to index
J = g(I) in the transformed loop nest. Since g is bijective, it has a well-defined
inverse, denoted by g~*. Clearly, I = g~1(J). The following loop nest
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Loop Nest 4.5
DO ((I:D)){
. AXD)) -}
will be transformed into the following new loop nest under domain morphism

g:D — E; x E,:
Loop Nest 4.6

DO ((J1:E)){
DOALL ((J5:E.)){
A(X(g-l[jj))) 1)

Ja
as defined in Chapter 2.

J; . .
where [ ! ] denotes the vertical concatenation of two column vectors J; and J;

The requirement of g to be surjective is in fact not essential. For any injective
function ¢':D — E, we can always derive a corresponding bijective function g:D —
{g(I) | I € D} from D to the image of D under ¢’ [19]. Therefore, by allowing the
codomain of a bijective function to be the image of an injective function, we allow a
much more general class of functions to be used as domain morphism. For comparison,
the unimodular transformations discussed in [10,108] are special classes of bijective
functions. The generality does require some nontrivial algebraic manipulation to
generate correct loop bounds and predicates to guard the conditional statements iﬁ
the transformed loop nest. An automatic transformation procedure for doing this

based on an equational theory is described in [19].

Statement Reordering We now discuss statement reordering. Let S denote the
set of statements in the loop body. We define a statement reordering to be a function

r from the set of statements to the set of statement labels:

r:S — [1,s], where s = |S], the number of statements in S. (4.3)
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Loop Transformer With g and r defined above, the following function h, called

the loop transformer, specifies how a loop nest is transformed:

h:DxS— E; x E, x[1,9]

(4.4)
h(1,8) = (g:(I), 95(I), 7(S))-
Schedule Given h defined above, a schedule 7 is defined to be a function
7:DxS8S — Et X [1,5]
(4.5)

(1, 5) = (g:(1),7(5)),

such that condition 7(J,S;) — #(I,S;) > 0 must hold for all dependences S;@I =
S,@J in the loop nest. The condition ensures that the ordering imposed by depen-
dence relations is preserved. Clearly, a schedule determines the sequential execution
of the transformed parallel loop nest. Note that by the definition of domain mor-
phism, g:(J) — g:(I) can be equal to the zero vector, i.e. $;@I and S;@J can be
computed at the same iteration in the transformed loop nest. In this case, statement
S; must be in front of statement S; in the loop body, i.e. condition r(S;) < 7(S2)

must hold, to preserve the dependence ordering.

4.2.2 Overall Procedure to Obtain a New Loop Nest

Finding a Schedule Finding a schedule 7 is to understand what is the pdtential
parallelism that can be extracted from the source program. There may be alternative
schedules which are incomparable without on a target machine model. Traditional
loop transformation uses loop interchange to find all possible loop orderings and
chooses the best one from them for the target machine [110]. Recently, Wolf and
Lam [108,109] have proposed the notion of fully permutable loop nests as a canonical
form to exploit coarse and/or fine-grain parallelism for different target machines. In
their papers, unimodular loop transformations are used to find the fully permutable

loop nests.
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In this chapter, we focus on new techniques beyond unimodular loop transfor-
mations for parallelizing more inner loops for fine-grain parallel machines. Since our
techniques schedule one level of the source loop nest at a time, they can be easily
incorporated into the algorithms for parallelizing outer loops and other combinations
of parallel and sequential loops, and into the algorithm for finding fully permutable

loop nests.

Finding a Spatial Morphism The so-called strip mining and tiling [110,112,108]
of loops are captured by the spatial morphism g,. The choice of g,, which depends
on factors such as memory and processor organization, can be dealt with separately
and is not included in this thesis. However, given a schedule = = (g¢,7), a valid g,
should keep a loop transformer h = (g:,gs,7) injective. In this chapter, we use the
following default spatial morphism for all the examples: gs(i1, .- -,%d) = (¢pss---»%pn)>
s0 as to result in a loop transformer h that is injective, where n is the dimensionality

of the spatial index domain E,, {p;,...,pn} is a subset of interval domain [1,d], and

1 <...<pn.

Overall Procedure To summarize, the overall procedure to obtain a new loop nest

is:

1. First generate a schedule © = (g;,7) to maximize the degree of parallelism in

inner loops, i.e. the number of parallel inner loops.

2. Then determine the spatial morphism g, of domain morphism based on target
machine characteristics such as memory and processor organization, communi-

~ cation cost, etc., or use a default function as shown above.
3. The loop transformer is simply % = (g¢, s, 7).

4. Finally perform symbolic program transformation, given the source loop nest

and loop transformer h, to obtain the new loop nest.
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The remainder of this chapter is devoted to generating 7 to gain large scale par-
allelism.

4.3 Classes of Affine and Piecewise Affine Sched-
ules

We call a schedule affine if it is an affine function of the loop indices. We call a schedule
piecewise affine if the restriction of the function to each subdomain of D and each
subset of & is affine. In the loop restructuring literature, only affine schedules are
considered. In this chapter, we consider, in addition, piecewise affine schedules.

In order to discuss the algorithms for generating suitable schedules, we now classify
them according to two properties: (1) the uniformity of the schedule with respect to
the set of statements § and the index domain D, and (2) the degree of parallelism in
the transformed Loop Nest. These two properties capture the regularity of schedules.

Practically speaking, the more regular a schedule the easier it is to realize.

4.3.1 Properties of Schedules

Uniformity Let index domain D be partitioned into m disjoint subdomains Dy,
1 < k < m; and let the set of statements S be partitioned into n disjoint subsets Sk,
1 < k < n. The general form of a piecewise affine schedule 7 defined in Equation (4.5)
consists of conditional branches, one for each pair of subdomain D; and statement
subset S;, and an affine expression of the loop indices is on'the right-hand side of
each branch. We call a schedule

1. uniformifm=1and n = 1,
2. subdomain-variant if m > 1 and n = 1, (also called a subdomain schedule)

3. statement-variantif m=1and n > 1, or
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4. nonuniformifm >1and n > 1.

| Degree of Generated Parallelism As defined in Equations (4.2) and (4.5), the
dimensionality of E, the temporal index domain, indicates the number of levels of
sequential loops in the transformed loop nest. Hence a schedule 7 would generate a
target loop nest with more levels of parallel loops and thus potentially more paral-
lelism if E, is of lower dimensionality. We call the dimensionality of E; the sequential

level of w. Schedules can thus be classified as:

1. Single-sequential level schedule if E; is a subset of the set of natural numbers

N.

2. Multiple-sequential level schedule if E; is a subset of N, where n is a positive

integer and n < d, the dimensionality of the original loop nest.

3. Mized schedule if E; can be of different dimensions for each pair of subdomain
D; and statement subset S;. Such a mixed schedule will result in transformed

programs consisting of imperfectly nested loops.

Loop vectorization, interchange, permutation, reversal, skewing and unimodular
transformations are examples of single-sequential level and multiple-sequential level

uniform schedules. And inner-loop fission is an example of mixed schedules.

4.3.2 Classification and Functional Form of Schedules

Classification Clearly, the uniformity of = and the dimensionality of = are two
orthogonal properties, except that a mixed schedule cannot be uniform. Thus there
are all together eleven (4 *3 — 1) classes of affine and piecewise affine schedules. The
classes and their acronyms ranging from single-sequential level uniform schedules to

mixed nonuniform schedules are given in Table 4.1.
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Single-Sequential | Multiple-Sequential [ Mixed
Level (SSL) Level (MSL)
Uniform (U) SSL-U MSL-U
Subdomain (SD) SSL-SD MSL-SD Mixed-SD
Statement-Variant (SV) SSL-SV MSL-SV Mixed-SV
Nonuniform (NU) SSL-NU MSL-NU Mixed-NU

Table 4.1: Classes of static schedulers.

Functional Form We now describe the forms of affine and piecewise affine sched-
ules by using matrix and vector notations. Let r(S) for a given S in S be a constant

scalar. Let d be the dimensionality of the index domain of the source loop nest.

Uniform Schedule:
~(I,5)=(T1,r(S)), IeD,SeS, (4.6)

where T is a constant I-by-d matrix and [ is the sequential level of the schedule 7.

Subdomain Schedule:

¢ 3

€Dy — (T, m 11(S)

(I,5)=1... ', IeD,SeS, (4.7)

1€ Dy — (T [f] ()

\ 7/

where T;, 1 < ¢ < m, is a constant /;-by-(d + 1) matrix, I; is the sequential level of
I . .
the part of the schedule defined over D;, and [ ] ] denotes the vertical concatenation

of a column vector I and a degenerate vector with one element of value 1.
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Statement-Variant Schedule:

N\

(5csi— (T m (S)

w(I,8)=4... ', IeD,SeS, (4.8)

SeSnﬁ(Tn[l],r(S))

\ 7/

where T;, 1 < ¢ < n, is a constant /;-by-(d 4+ 1) matrix and /; is the sequential level of
the part of the schedule defined over S;.

Nonuniform Schedule:

4 3\ A

(5 €51) > (T m 1(S))
(T€D)—9... s
(S€8) = (@n ||| (5)
7([,8) =1 ... | \  IeD,SEeS,

r(s € 81) = (T H] ;Tm(S5))

7

\

(I €Dp)—><... )

(5 €)= (T [1 ] rm(S))

1

\ 7 )

where T;;, 1 <7< mand 1 <j < n,is a constant [;;-by-(d + 1) matrix and /;; is the
sequential level of the part of the schedule defined over D; and §;.

The linear terms T and T [ f] , I € D, determine the form of the sequential loops

in the transformed loop nest, which includes nesting structures, bounds, and possibly
additional predicates to guard the loop body. The constant terms r(S) determine the

orders of the statements in the transformed loop body.
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4.3.3 Examples of Different Classes of Schedules

We now give some examples of different classes of schedules. We first show that loop
vectorization, interchange, permutation and skewing are special cases of multiple-
sequential uniform schedules.

In the following, we use loc as a function that returns the position of the statement

S in the source loop nest:

loc : S=N
(4.9)

loc(S) = the position of the statement S in the source loop body

We define V(k) as a vector of length d with k-th element being 1 and all other

elements being 0, where d is the dimension of the loop nest.

Example 1: Loop Vectorization Suppose a dependence test says that m inner-
most loops can be parallelized. The schedule for the so-called loop vectorization of
the d — m outermost loops is of the following form, where d is the dimensionality of

the index domain of the loop nest:

7(1,8) = (i1,122,- - - » La—m, loc(S)), (4.10)
V(1)
ie. T= |, and (4.11)
V(d—m)
r(S) = loc(S). (4.12)

Example 2: Loop Interchange and Permutation Loop interchange and per-
mutation [3,4,5,9,110,111,113] is a process of switching inner and outer loops. We use
Loop Nest 2.1 as an example to show the effect of loop interchange and permutation.

For easy reference, Loop Nest 2.1 is repeated below:
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Loop Nest 4.7

DO (iy = h,u) {
DO (...){
DO (g = Iz, ua) {
loop body }  }}

Suppose Loop Nest 4.7 after loop interchange or permutation becomes

Loop Nest 4.8

DO (5, = lyy, up,) {
DO (...){
DO (ipy = gy tup,) {
body } Hh

where (pi1,p2,...,pd) is a permutation of (1,2,...,d). Also suppose the m inner-

most loops are parallelizable. The schedule = has the form:

(L, S) = (g pgs -+ s ipg_pns I0€(S)), (4.13)
V(p1) v
ie. T = . , and (4.14)
V(pa-m)
r(S) = loc(95). (4.15)

Example 3: Loop Skewing This operation transforms Loop Nest 4.7 as follows:
shifting index ¢, with respect to index i,,, 1 < m < n < d, by a factor of f, where f
is a positive integer, replacing [, with the expression (I, + in * f), replacing u, with

the expression (u, + im * f), and replacing all occurrences of i, in the loop body with
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the expression (in, — i, * f) [110,113]. The transformed loop nest is of the form:
Loop Nest 4.9

DO (Z] = Il,ul){

DO (2 = ln +im * fotn + im * ) {

DO (id = Id, ud) {

same loop body but with i, being replaced by (i, —im * f) } } }

The schedule for such so called loop skewing is of the form:

7(I1,8) = (21, -« ylmyeves In+ f*im ..., 2a,l0¢(S)), (4.16)
n-th element
i.e. T=|V(@)+f*xV(m) |, and (4.17)
. V@)
r(S) = loc(S). (4.18)

Example 4: Single-Sequential Level Uniform Schedule
Loop Nest 4.10

DO (i=1,n){
DO (j = 1,n){
S1: A(4,5)=B(i,j — 1) +i

S2: B(4,j) = AG—-1,5)+5}}
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A single-sequential level uniform schedule

=((3,7),5:) = (i,2), end (4.19)
7((3,5), S2) = (i,1), (4.20)
with spatial morphism g¢,(z, 5) = (j) will transform Loop Nest 4.10 into
Loop Nest 4.11
DO (i =1,n){
DOALL (j =1,n){
Sy: B(i,j)=A(Z—1,7)+7
S1: A(4,j)=B(@G,—1)+1i } }
Example 5: Multiple-Sequential Level Uniform Schedule
Loop Nest 4.12
DO(:=n—-1,1,-1){
DO (j=i+1,n){
DO (k = i,5)
Sy: IF(i+1=k)B(@,j,k) =C@ +1,37,7)
Sy : IF(G+1< k)B(s,7,k) = B(t + 1,3,k)
Ss: IF(i+j+1<2k)C(,j,k) =C(@,5,k— 1)+ B(,5,k) } } }

A two-sequential level uniform schedule
W((iaja k),S) = ((—i,k),IOC(S)) (4'21)

with spatial morphism ¢,(z, 7, k) = (5) will transform Loop Nest 4.12 into
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Loop Nest 4.13
DO (i=n—1,1,—-1){
DO (k = i,n) {
DOALL (j = max(i + 1, k),n) {
Syt IF((6+ 1= k) B(i,j,k) = C(i + 1,5,)
Sy IF((i +1 < k) B(3,5,k) = BG +1,5, k)
Ss: IF((+ 7 +1 < 2k)) C(s,5,k) = C(i,j,k— 1)+ B(,5,k) } } }

Example 6: Mixed Statement-Variant Schedule Consider Loop Nest 4.12

again. The following schedule

S = 83— ((s,k),loc(S
©((4,4,k),5) = ({5 £)foc(S) (4.22)
else — (2, loc(5))

with spatial morphism ¢,(7,j,k) = (j) for statement S3 and g¢;(3,7,k) = (j,k) for
statements S; and S, transforms Loop Nest 4.12 to Loop Nest 4.14 below, which
consists of imperfectly nested loops:

Loop Nest 4.14
| DO (i =n—1,1,-1){
DOALL ((j =i +1,n), (k = i, ) {
Si: IF((i+1= k) B(G,j, k) = Cli +1,5,7)
Syt IF((i+1 < k) BG,j k)= BG+1,5,k) }
DO (k = i,n){
DOALL (j = max(i + 1, k), ) {
Ss: IF((i +7 +1 < 2k))
C(i,5,k) = C(i,j,k—1) + B(3,5,k) } } }
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Example 7: Single-Sequential Level Subdomain-Variant Schedule Another

possible transformation of Loop Nest 4.12 is the schedule:

i+ j+1<2% — (=245 + k(S
(i k), 8) =1 (FE+i+EnED | (4.23)
P4 j+1>2k— (—i+2j —k,72(S5))

where 71(S) and r3(S) are 1 for all S € {5y, Sa, S5} except 71(S3) = 2, which implies
that statement S3 under subdomain (:+j+1 < 2k) should be the last statement in the
loop body. Using the symbolic loop transformation methods described in Section 4.1,
this schedule with spatial morphism g¢,(, j, k) = (¢,j) will transform Loop Nest 4.12
into:

Loop Nest 4.15
DO (t=1,2n—-2){
DOALL (i = min(n — 1,(2n — t)/2),1,-1){
DOALL (j = max(é + 1, (t + 2¢)/2), min(n,t + 1)) {

k=—t—i+2j

IFG+ 7 + 1> 2k)
Sy: IFG+1=k)B(,j,k)=C(E+1,5,7)
Se: IF(i +1 < k) B(i,j, k) = B(i + 1,5, k)

k=t+2—j

IFGi 4+ 7+ 1 < 2k)
Sy : IFG+1=k)B@,j,k)=CGE+1,5,7)
Se: IF(i +1 < k) B(i,5,k) = B(i + 1,4, k)
Ss: IF(i+j+1<2k)C(5,j,k) = C(i,5,k— 1)+ B(5,5,k) } } }

Similar to the transformed Loop Nest 4.3, each statement in Loop Nest 4.12

results in two statements in the transformed loop nest, except that statement S is
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guarded by contradictory conditionals under subdomain (i + j + 1 > 2k). In fact,
Loop Nest 4.12 is part of the dynamic programming code presented in Section 4.8.

4.4 Algorithms for Generating Single-Sequential
Level Schedules

Our algorithms for generating the various single-sequential level schedules are based
on Quinton’s algorithm for generating SSL-U schedules [35,89,90]. In the following, we
first review Quinton’s algorithm. We then present two algorithms, one for generating

SSL-SD schedules and the other for SSL-SV schedules.

4.4.1 Previous Work: Uniform Scheduling Algorithm

Quinton’s approach addresses the analysis and mapping of linear recurrence equations
[35,89,90]. We formulate Quinton’s algorithm in the context of loop transformations.
Problem Formulation

Constraints Derived from Data Dependences For an SSL-U schedule
7(I,S8) = (T1,r(S)), where T is a row vector, the inequality

(TJ,r(S;)) — (TI,7(S)) > 0, (4.24)

must hold for all index tuples I and J in index domain D and statements S; and S;
in § such that $1@J = S,@J. We first focus on the problem of obtaining T satisfying

the following more stringent condition:
TJ-TI=T(J ~1)>0 (4.25)

for each dependence $,@1 = S,@J. If such T exists, then Equation (4.24) also holds
for all dependences S$;@I = S,@J due to the lexicographical ordering “>” regardless

of what r is. In this case, the ordering among statements can be arbitrary. How to
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obtain T satisfying less stringent conditions, and use r, in addition to T', to preserve

the ordering imposed by dependences, will be discussed in Section 4.4.2.

Space of Dependence Vectors It is clear that in the case of uniform schedule,
dependence vectors J — I are sufficient for obtaining T'. We now formulate the set of
dependence vectors for conditional statements.

For the rest of the chapter, we consider only flow dependence in the generic Loop
Nest L given in Chapter 2. Anti-dependence and output dependence can be treated

similarly. In this case, the set of dependence vectors from statement S; to S;, denoted

by V(S51,S2), in Loop Nest L is:
V(51,5:) ={J—1|I€(D|R),J € (DlP), and X(I) =Y (J)},  (4.26)

where (D|P,) is a sub-index domain of D under the restriction of predicate P; as

defined in Equation (3.5).

Input System As described before, each dependence relation 5;@1 = S,@J de-
fines an inequality T'(J — I) > 0 that row vector T must satisfy. We call the set of
all constraints on T the input system, denoted by C:
C ={T(J—1I)> 0| there exist statements S; and S; in S, and index
tuples I and J in D, such that $;@QI = S,@J} (4.27)
= {T(J —I) > 0| there exist statements S; and S; in S,

such that (J —I) € V(51,52)}.

Decomposing Polyhedra into Vertices and Extremal Rays

Polyhedra Decomposition There can be many dependence vectors that need to
be considered, and they can be infinitely many when the loop bounds are unknown
at compile time. We need to rely on a technique that decomposes a polyhedron into

vertices and eztremal rays [35,90,100] to manage the complexity of the algorithm.
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(As defined in Section 3.2.2, a polyhedron is a intersection of a finite number of
hyperplanes and half spaces, and a polytope is a bounded polyhedron.) The algorithm

for polyhedra decomposition is described in [35].

Constraints on the Input System In the loop restructuring literature, only
rectangular and trapezoid index domains of loop nests are considered [8,110]. Note
that rectangular and trapezoid index domains are special classes of polyhedra [78]. In
order to obtain uniform schedules systematically, Quinton restricts the index domain
of each recurrence equation to be a polyhedron and all subscript functions (called
indez mappingsin [90]) to be affine expressions of the indices used in defining the index
domains. In FORTRAN-like programs, the above restriction is translated to perfectly
nested loops where loop bounds at one level may depend on the outer levels, with the
loop body consisting of conditional statements where all the predicates of conditionals
and all subscript functions are affine expressions of the loop indices. Under these
restrictions, Quinton [90] shows that the set V(S5), S;) of the dependence vectors from
statement S; to S; is a d-dimensional polyhedron, where d is the dimensionality of
the index domain of the loop nest.

We now discuss how to repres.ent polyhedron V(Si, S;) by its vertices and extremal

rays.

Vertices and Extremal Rays Any polyhedron can be decomposed into a finite
set of vertices and extremal rays [100]). (Since a line can be interpreted as two rays
in opposite directions [100], vertices and extremal rays are sufficient for polyhedra
decomposition.) Here, we use the following example to show what vertices and ex-
tremal rays are. For formal definitions, please refer to [100]. Consider the polyhedron
specified by two inequalities: {(z,y) | 2z —y > 2, and 2y — = > —1}. Point (1,0) is
the vertex and two vectors (1,2) and (2,1) are the extremal rays of this polyhedron

as shown in Figure 4.3.
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(1,0) X

K

(2,1)

Figure 4.3: Point (1,0) is the vertex and two vectors (1,2) and (2,1) are the extremal
rays.

Linear Programming Formulation

After polyhedra decomposition, each point in polyhedron V(S;,S:) can be expressed
as the sum of a convex combination of the vertices and of a positive combination of
the extremal rays of V(S1,S;) [100). Based on this property, Quinton [89,90] shows
that T'(J — I) > 0 holds for all dependence vectors J — I in V(S51,S) if and only if

the following two conditions hold:

for all vertex V of V(51,852), TV > 0, and
(4.28)

for all extremal ray R of V(5;,S5,), TR > 0.

By Quinton’s theorem, the input system C defined in Equation (4.27) can be simplified

to:

C={TV > 0| for all vertex V of V(S5;,S:), where S; and S,
are two statements in S such that S; = S,}
(4.29)
U {TR > 0| for all extremal ray R of V(Si, S2), where S; and S,

are two statements in S such that S; = S,}.
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Consequently, the row vector T of length d, which defines an SSL-U schedule of a
loop nest, can be obtained by linear programming, where d is the dimensionality of
the index domain of the loop nest. The dimensionality of the linear programming
system is d, and the number of constraints is the sum of the number of vertices and

extremal rays.

4.4.2 An Algorithm for Statement Reordering

Having reviewed the algorithm for generating an SSL-U schedule with arbitrary state-
ment reordering function r, we now discuss how to obtain an SSL-U schedule with
statement reordering terms: w(I,S) = (g:(I),r(S)), where g, is the temporal mor-
phism defined in Equation (4.2) and g/ = TI, and r is the statement reordering
function defined in Equation (4.3). The method can be modified easily to obtain the
statement reordering functions for other single-sequential level schedules, i.e. SSL-SD,
SSL-SV and SSL-NU.

The original input system for obtaining a schedule #(I,S) = (g:(I), (S)) should
be:

C = {(g9:(J),r(S2)) > (g:(I),7(S1)) | there exist statements S; and S; in S, (430)

and index tuples I and J in D, such that $,@I = S,@J}.

To solve for g; and r separately in two steps, the formulation is developed as

follows. We start with the notion of minimal target difference vectors.

Minimal Target Difference Vector We define I' to be the function space [D —
E.], where E, is a one-dimensional temporal index domain, and define Z to be the set
of ra;tionals. We define a second order function g, (f, S1,52) to be the minimal target
difference vector (in the sense of lexicographical ordering on elements of E;) ranging

over the image of the set of dependence vectors V(S;,S;) defined in Equation (4.26)
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under function f € I':

by * I'xSxS—2Z
to(f,S1,82) = min{f(K) | K € V(51,52)} (431)

f(I) = TI = g:.(I).

Input Systems for g; and r Due to the lexicographical ordering >, condition
(9¢(J),7(S2)) > (9:(I),r(51)) in Equation (4.30) holds for all (J — I) € V(51,5,) if
and only if either g, (gs, S1,S2) > 0 holds or both p, (g¢, S1,S2) = 0 and r(Sz) > r(51)
hold. Consequently, as far as the statement reordering function r is concerned, the
dependences S; = S, where y,(g:, S1,52) > 0 do not provide any constraint on r.
Only for those dependences S; = S, such that p,(g:, S1,52) = 0, the conditions
r(S1) < r(S2) must hold. So the algorithm for generating SSL schedules can start
out with a less stringent criterion y,(g:, S1,S2) > 0 for all pairs of statements S; and
S, in S such that S; = S; to find g, and follow by the criterion r(S1) < r(S7) for
those dependence relation $; = S; where p,(g¢, S1,52) = 0.

Note that condition p,(g¢, 51, S2) > 0 holds if and only if the following conditions
are true:

for all vertex V of V(51,S52), TV > 0, and
(4.32)

for all extremal ray R of V(S51,S:), TR > 0,

and condition g, (g:, S1,S52) = 0 holds if and only if conditions in Equation (4.32)
hold and there exists a vertex V of V(S1,S2) such that (T'V = 0) is true.

From the above discussion, we know that the input system defined in Equation
(4.30) can be separated into two parts, one for temporal morphism g; and the other

for statement reordering function r:

Co. = {1y (9¢,51,S2) > 0] there exist statements S; and S; in S,
for g; : (4.33)
such that S; = S.},
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Cr = {r(S1) < r(S2) | there exist statements S; and S; in S,
for r : (4.34)

such that Sl = Sz and uv(gt,51,52) = 0}
Linear programming can be used to obtain the temporal morphism g¢; from the
input system specified in Equation (4.33). We now discuss how to obtain statement
reordering function r from the input system specified in Equation (4.34) given a

temporal morphism g;.

Partial Ordering and Topological Sort To obtain statement reordering function
r given a temporal morphism g;, we need the notion of partial ordering. A partial
order on a set S is a binary relation “<” that is transitive and irreflezive, i.e. there
cannot be any cyclic relations £ < ... < z for all elements z € S. For the purposé of
statement reordering, we define S to be the set of statements S and we say S; < Sa,
i.e. statement S; must be in front of statement S, in the transformed loop body, if
S1 = S, and p,(g¢, S1,52) = 0.

If S has a partial ordering, then topological sort [53] can produce a linear ordering
of the statements, which defines r. If S does not have a partial ordering, e.g. if there
are cyclic relations S; < S; and S < 51, then there cannot be any r that will satisfy
both r(S;) < 7(S2) and r(S;) > r(S;). In this case, the given temporal morphism g;
should be rejected.

4.4.3 Subdomain Scheduling Algorithm

This section presents two algorithms for generating SSL-SD schedules. In the fol-
lowing, we first formulate the input system for finding a subdomain schedule for a
given loop nest. From the input system, we can see that the hard part of finding an
SSL-SD schedule is to determine where the subdomain boundaries are. We describe
a heuristic algorithm that first makes guesses at possible subdomain boundaries, and
then obtains an SSL-SD schedule by linear programming with given subdomains.

Subdomain boundaries are chosen from predicates in conditionals or from unbounded
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inside-out enumerative search. We then present a general algorithm which searches
through a bounded space for possible hyperplanes that partition the domain, and
comes up with affine schedules, one for each subdomain, by nonlinear programming.

However, the complexity of this general method is unacceptably high.

Problem Formulation

Constraints Derived from Data Dependences For an SSL-SD schedule defined
in Equation (4.7), the inequality

J I A
@ 7] s - @[ ]| irisy -0 (435
must hold for all index tuples I € D; and J € Dj, 1 <4,j < m (m is the number of
subdomains), and statements S; and S; in S such that $;@I = S,@J, where T; and
T; are row vectors of length (d+ 1). We focus on the problem of obtaining T; and Tj
satisfying the condition

Tj[‘lj]—:/}“]zo, (4.36)

which is the first step in obtaining an SSL-SD schedule. This step will be followed by a
topological sort to find the statement reordering function as discussed in Section 4.4.2.

Since row vector T; can be different from T}, Equation (4.36) cannot be rewritten
as T(J — I) > 0. Consequently, dependence vectors are not adequate for obtaining

subdomain schedules. A new representation of a dependence relation is necessary.

Dependence Index pairs We now introduce a new notion of dependence relations.
If dependence S$,@I = S,@J exists, then we call (I,J) a dependence index pair from

statement S; to S,.

Space of Dependence Index Pairs Similar to the set of dependence vectors

V(S1, S2) defined in Equation (4.26), we formulate the set of dependence index pairs
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from statement S; to Sz, denoted by P(Si,S,), as:
P(S1,8:) ={(I,J) | I € (D\P,),J € (D\P,), and X(I) =Y (J)}. (4.37)

It is easy to see that, under the restrictions discussed in Section 4.4.1, P(S5,52) is
a (2d)-dimensional polyhedron, where d is the dimensionality of the index domain of

the loop nest.

Input System for g; The input system for obtaining an SSL-SD temporal mor-

phism g; consists of the following constraints:
J I . .
C,. = {T; Ll T; 1 > 0| there exist statements S; and S; in S,

such that (I,J) € Q(St, S2,4,5)},  where (4:38)
Q(81,82,4,7) = {(I,J) | (I,J) € P(81,52),1 € D;,J € Dj}.

In order to obtain subdomain schedules systematically, we restrict that the subdo-
mains are separated by hyperplanes. Under this restriction, each subdomain D,
1 < i < m, is a d-dimensional polyhedron, and each Q(Si,S2,¢,j) defined in Equa-
tion (4.38) is a (2d)-dimensional polyhedron.

Again, we need to represent each polyhedron Q(Si,S2,%,j) by its vertices and
extremal rays. However, polyhedron Q(Si, Sz, 1, ) defined in Equation (4.38) is spec-
ified by two unknown subdomains D; and D;. We will describe a heuristic algorithm
that makes guesses at possible subdomain boundaries. Once the subdomains are de-
termined, polyhedron Q(S),S2,%,7) can be represented by its vertices and extremal
rays, and a subdomain schedule can be obtained by linear programming just like the

way a uniform schedule is obtained.

Statement Reordering In Section 4.4.2, we discuss how to obtain a statement
reordering function r given an SSL-U temporal morphism g;. All formulations in
Section 4.4.2 can be easily modified for other classes of g;, i.e. SSL-SD, SSL-SV and
SSL-NU.
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Let I, E;, Z be as defined in Section 4.4.2. Let A be the set of natural numbers.
We define a second-order function g, (f, S1,52,%,7) to be the minimal target differ-
ence vector ranging over the vectors f(J) — f(I) where (I,J) € Q(S1,S52,4,7) and
ferl:

bsp : IXSXSXN XN —-2Z
I‘LSD(f’ SI7SZ,i7j) - mln{f(J) —f(I) l (I’J) € Q(Sl’ SZ’i7j)} (4'39)

£(I) = T[” = g(I) if I€ D

The input system for obtaining an SSL-SD statement reordering function r consists

of the following constraints:

Cr = {ri(S1) < r;(S2) | there exist statements S; and S, in S,

such that S; = S; and p (g, S1,52,%,7) = 0}.

A Heuristic Algorithm

We use two heuristics to choose subdomain boundaries for SSL-SD schedules: using
predicates in conditionals as subdomain boundaries, and using inside-out enumerative

search to find subdomain boundaries.

Predicates in Conditionals Conditional of a statement specifies the subdomain
of the index domain where the statement is active, and different conditionals specify
different subdomains with different dependences. Therefore, predicates in condition-
als may be a good guess for subdomain boundaries. And this appears to be the case
for example programs including the dynamic programming example and the algebraic

path problem to be discussed in Section 4.8.

Inside-Out Enumerative Search Another heuristic for generating subdomain

boundaries is inside-out unbounded enumerative search [64,66]. Let a partitioning
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hyperplane be specified by BI = ¢, where B is a row vector, and ¢ is a scalar. The
inside-out enumerative search starts by setting the bounds of the absolute values of
the elements of row vector B and scalar ¢ to be 1, then 2, 3, etc., until a schedule is
found, or a pre-determined bound is reached without obtaining a schedule successfully.
Hopefully, if there exists a subdomain schedule, the values of the elements of B and
¢ would be small. The largest absolute value of the elements of B and c is 2 for the
dynamic programming example and the algebraic path problem to be discussed in

Section 4.8.

Linear Programming Formulation Once the subdomains are determined, each
polyhedron Q(Si, Sz, 1, ) defined in Equation (4.38) can be decomposed into vertices
and extremal rays. Therefore, the input system C,, defined in Equation (4.38) can be

simplified to the following linear programming form:

Co. = {T; [‘;‘I —T; ‘1/1] > 0 | for all vertex (V1,Vs) of Q(S1, S2,%,7),

where S; and S are two statements in S such that S; = S,

R, 84.40)

U {T; [ 0 -T; R;I] > 0 | for all extremal ray (Rz, Ry) of Q(S1,S2,1,7),

-

where S; and S, are two statements in S such that S; = S,}.

We have the following theorem:

Theorem 4.1 Row vectors T; and functions r;, 1 < ¢ < m, define an SSL-SD
schedule if and only if Equation (4.40) holds and r;(S1) < r;(S2) is true whenever
ﬂSD(f, S1, Sg,i,j) = 0 holds.

Proof.
Only if Consider a dependence S;@I = S;@J where I € D; and J € D;. By

the definition of a schedule, Tj [{] - T; { {] > 0 must hold for all such index pairs
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(I,J), including the vertex of Q(Si, S2,1,;). On the other hand, if (V1,V7) is a vertex
and (Rp, R;) is an extremal ray of Q(S1,S52,¢,7), then index (Vi + nR;, Vs + nRy)
is also in Q(S1,S2,%,7) for any positive integer n. By the definition of a schedule,

T; [ Vi +1nRJ] - T; [VI +1nR1} > 0 must hold for any positive integer n. That is,

T, [ ‘;J ] _T [ ‘;I ] +n(T; [ 1?’)" ] ~T [ }31 ]) > 0 must hold for any positive integer n.

Ry
0
must hold for a valid schedule. Furthermore, when g, (f,S1,52,%,5) = 0 holds,

computation of $1@I, I € D;, and computation of S;@J, J € D;, can be scheduled

This implies that n(T; [ ] -T; [131 ]) > 0 must hold. Therefore, Equation (4.40)

in the same iteration of the transformed loop nest. Consequently, statement ordering
7;(S1) must be in front of r;(S;) to satisfy the dependence.

If Consider a dependence $,@J = S,@J where I € D; and J € D;. Let V be
the set of vertices and R be the set of extremal rays of Q(Si,S2,%,7). Since (I,J)
is the sum of a convex combination of the vertices (V7,Vs) in V and of a positive

combination of extremal rays (R, Rs) in R, we have
(I,J)= Ea,(VI,, Viz) + Eby(RIy,RJy), where Ea, =1, a,20, b, >0.
z v z
Therefore,

o[2]-r -] Ao ] [ )

Since Equation (4.40) holds, T {] ~T; [{] > 0 also holds. In addition, if T} [ {] -

1
Therefore, The row vectors T; and functions r;, 1 < ¢ < m, define an SSL-SD schedule.

]

T; [I ] can be zero, then 7;(S;) < r;(S;) can preserve the dependence ordering.

From Theorem 4.1, it is clear that, given subdomains of the index domain D of a
loop nest, polyhedra decomposition, linear programming and topological sort can find

an SSL-SD schedule if one exists. The dimension of the linear programming system
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is m * (d + 1), where m is the number of subdomains and d is the dimension of the

index domain of the loop nest.

A General Algorithm

We now present a general algorithm for finding SSL-SD schedules. Since the complex-
ity of the general algorithm is unacceptably high, we will use the heuristic algorithm
described above in practice. The reason for presenting the general algorithm is that
it only requires bounded search space for subdomain boundaries so that it does not
need to guess at subdomain boundaries as the heuristic does. However, nothing
comes for free. The bounded search induces nonlinear programming, instead of linear
programming, in finding an SSL-SD schedule.

In the following, we use a simple example to show why the search space can be
bounded and why we need nonlinear programming. We then give a theorem about

the complexity of the general method. The proof of the theorem is described in [77].

Bounded Search Space Let D be an unbounded rectangular domain {(Z,7) |
(2,7) € [1,n] x [1,n]} where n is unknown at oompile time. It is easy to see that
polyhedron D has one vertex (1,1) and two extremal rays (0,1) and (1,0). Suppose
polyhedron D is separated by a vertical line (¢ = a), where a is an unknown integer,
into two subdomains @, = {(¢,7) | (5,7) € D,i < a} and @, = {(¢,7) | (¢,j) € D,i >
a + 1}. We now need to find the vertices and extremal rays of Q; and Q,. Since
there can be infinite number of possible n and a, there are infinite number of possible
sets of vertices and extremal rays. However, if we allow parameterized vertices and
extremal rays, then there are only four possible sets of vertices and extremal rays of
Q1 and Q. as shown in Figure 4.4.

The four possible sets of vertices and extremal rays of(}; and Q. are:
1. if a < 1: @ is empty and @, is D, as shown in Figure 4.4(a),

2. if a = 1: (1,1) is a vertex and (0,1) is an extremal ray of @, and (2,1) is a
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vertex and (0,1) and (1,0) are extremal rays of @2, as shown in Figure 4.4(b),

3. ifn >a >1: (1,1) and (a,1) are vertices and (0,1) is an extremal ray of @,
and (a+1,1) is a vertex and (0,1) and (1,0) are extremal rays of @2, as shown
in Figure 4.4(c),

4. if a > n: Q is D and Q; is empty, as shown in Figure 4.4(d) and (e).

Note that vertices (a,1) and (a + 1,1) in Figure 4.4(c) are parameterized using the
unknown integer a. So the basic idea is that the search space of the subdomain
boundaries and the vertices and extremal rays of those subdomains can be bounded

if parameterized vertices and extremal rays are used.

r-=—=-=-=-=-- i T A i r-=TtT---=-- ]
¥ 1 ¥ ' 1
1 1 1 { !
1 1 1 ! I
J: Q2 ' Q@ Q1| Q2
| { | 1 I
i 1 ! 1 I
v P e . | .
1 2 n
i=a (@Qaxl (b)a=1 c)l<a<n
r-=-=-==-==5 r—-—-—-===-=-= B
I 1 I
t 1 1
@ Qo
H H 1
i H I
1 H I
| EE U UG U UG P J
(da=n ()a>n

Figure 4.4: Bounded search space: an example.
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Nonlinear Programming Recall that the input system defined in Equation (4.40)

contains T [ ‘;‘I J -T; [ ‘;I ] > 0and T; [ IEJ ] -T; [ I(%),- ] > 0 as constraints. With un-
known T;, T;, parameterized vertex (Vi, V) and parameterized extremal ray (Rr, Rj),
the input system becomes a nonlinear one. Hence nonlinear programming is required
to obtain the partitioning hyperplanes and the schedule for each disjoint subdomain.

We now give a theorem about the complexity of the general method for finding

an SSL-SD schedule. The proof of the theorem is described in [77].

Theorem 4.2 An SSL-SD schedule with p partitioning hyperplanes on the domain
can be obtained by enumerative search through a bounded search space over B where
B contains all possible sets of parameterized polyhedra specifying dependences under
p partitioning hyperplanes. At each instance of B, nonlinear programming of order

2p + 1 computes the partitioning hyperplanes and the schedule for each subdomain.

4.4.4 Statement-Variant Scheduling Algorithm

Single Statement in Each Partition From the subdomain schedule, we know
that it is hard to find the partition of an index domain and the schedule for each
subdomain at the same time. If the partition of the domain is given, then the problem
becomes much simpler. This is also true for obtaining statement-variant schedules.
Fortunately, for statement-variant schedules we can consider the extreme case where
statements are partitioned into singleton sets. In this case, the problem reduces to

subdomain scheduling problem with known subdomains. The input system C,, is:

C,. = {T; [J] ) {I] > 0| there exist statements S; and S; in &, such that
1 1 (4.41)

(I, J) € ?(Si’ Sj)}’

where P(S;, S;) is defined in Equation (4.37).
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Linear Programming Formulation If we obtain the vertices and extremal rays
of P(S;, S;), then the input system C,, defined in Equation (4.41) can be simplified

to:

¢, = {T; [‘f’ ~T: ‘;’] > 0 | for all vertex (V1, Vy) of P(S;, S;),

where S; and S; are two statements in S such that S; = Sj%4 2)
U {T; [}3" ~T; };I] > 0 | for all extremal ray (Ry, Ry) of P(S;, S;),

where S; and S; are two statements in S such that S; = S;}-

Statement Reordering Let I, E;, Z be as defined before. We define a second-
order function g, (f, S1,S2) to be the minimal target difference vector ranging over

the vectors f(J) — f(I) where (I,J) € P(51,52) and f € I:

by : I'XxSEXSE-Z

tsv(f,5:,85) = min{f(J) = f(I) | (I, J) € P(51,52)} (4-43)
) =1 [f] = g:(I) for the computation of S;@I.

The input system for obtaining an SSL-SV statement reordering function r consists

of the following constraints:
Cr = {r(S1) < r(S2) | there exist statements S; and S; in S,
such that S; = S, and g, (9¢, S1, S2) = 0}.

We have the following theorem:

Theorem 4.8 Row vectors T;, 1 < ¢ < s, and a function r define an SSL-SV
schedule if and only if Equation (4.42) holds and r(S;) < r(S;) is true whenever
p,sv(f, S;, Sj) = 0 holds.
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The proof of this theorem is omitted since it is very similar to the proof of Theo-
rem 4.1.

From the above theorem, it is clear that polyhedra decomposition, linear program-
ming and topological sort can find an SSL-SV schedule if one exists. The dimension
of the linear programming system is s * (d 4+ 1), where s is the number of statements

and d is the dimension of the index domain of the loop nest.

Algorithm for Generating Nonuniform Schedules Since a nonuniform sched-
ule is a combination of a subdomain schedule and a statement-variant schedule, it

can be obtained by the algorithms described in Sections 4.4.3 and 4.4.4.

4.5 An Iterative Algorithm for Generating Multiple-

Sequential Level Schedules

We now discuss extending single-sequential level scheduling algorithms to multiple-
sequential level and mixed scheduling algorithms. As stated before, we assume the
target parallel machines are fine-grain. Therefore, all parallel loops are innermost
loops in the transformed loop nest. We start with multiple-sequential level scheduling
algorithm.

To obtain an n-sequential level schedule, our approach is to first find n SSL tem-
poral morphisms g}, ..., g*, one at a time, followed by generating the statement
reordering function r. This technique applies to all schedules: uniform, subdomain-
variant, statement-variant or nonuniform.

To describe an iterative algorithm, we need to define a sequence of minimal target

difference vectors similar to the ones defined in Equations (4.31), (4.39) and (4.43).

A Sequence of Target Difference Vectors We first define T';, 1 <7 < n, to be
the function space [D — El x...x Ei], where each E}, 1 < j < n, is a one-dimensional

temporal index domain, and define Z to be the set of rationals.
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For uniform schedules, we define a family of second-order functions p;(f, S1, S2),
1 < i < d, to be a sequence of minimal target difference vectors (in the sense of
lexicographical ordering on elements of E; x ... x E}) ranging over the images of the
set of dependence vectors V(Si, S3) defined in Equation (4.26) under function f € I';:

p; : [ x8 xS — Z, where
(4.44)

pi(f,51,52) = min{f(K) | K € V(51,82)}.
Similarly, a family of u functions can be defined for subdomain, statement-variant

and nonuniform schedules.

Iterative Algorithm Similar to the algorithm for obtaining SSL schedules with
statement reordering functions as discussed in Section 4.4.2, the algorithm for gen-
erating multiple-sequential level schedules starts with criterion u(g;,S1,S2) > 0 for
all pairs of statements S; and S, such that S; = S, to generate an SSL temporal
morphism g!. We then use the constraint u(g?,S51,S52) > 0 for those dependences
Sy = Sy such that (g}, S1,S52) = 0 to find g?. The same process is iterated until
the n-th iteration, 1 < n < d, when the remaining dependences S; = S, where
pin((gl,...,g7),S1,S;) = 0 are not cyclic. In this case, the set of statements S has
the partial ordering defined in Section 4.4.2. We then use topological sort to find the
linear ordering of the statements.

We summarize the above discussion as the following iterative algorithm for gen-
erating multiple-sequential level schedules: The inputs of Algorithm MSL consist of
the set of all dependences in a loop nest, denoted by £, and the choice of one of the
algorithms presented in Section 4.4.1, 4.4.3 or 4.4.4, denoted by A.

Algorithm MSL (L : a set of dependences, A : an algorithm)

1. ¢ « 0 (¢ will be ranging over the loop levels);
2. While ¢ < d and £ contains cyclic dependences, do

(a) 1 —2+1;
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(b) Find an SSL temporal morphism g} by using algorithm A4 such that
r(gi, S1,S2) > 0 holds for all S} = S, € L;

(c) If such g} does not exist, then the algorithm terminates without returning

a schedule;

(d) Else, £ « {(S1 = S2) | (S1 = S2) € L such that u(gi, S1,S2) = 0};

3. (Now L contains no cyclic dependences.) Find a statement reordering function
r by topological sort, such that r(S;) < r(S) for all (S; = S;) € L.

Note that the sequential loops in the transformed loop nest generated by Algo-
rithm MSL are perfectly nested.

4.6 A Recursive Algorithm for Generating Mixed
Schedules

We now present the algorithm for generating mixed schedules. We first discuss the

basic idea of this algorithm.

Basic Idea Algorithm MSL presented in the previous section for generating multiple-
sequential level schedules treats all the statements in the same way throughout the
iterations even though more and more of the dependences become uninformative in
obtaining the sequence g}, ..., g¢. Clearly, when some instances of dependence re-
lations are not considered, a new set of equivalence classes under relation “~” over
statements emerges. As discussed in Chapter 2, these new equivalence classes can

be scheduled separately for the subsequent iterations. To do this, a tree of temporal

morphisms, instead of just a sequence gtl, ..+ g, will be generated.

Labeling a Tree We use a prefix notation to label each node of the trees of temporal

morphisms, equivalence classes and sets of dependence relations to be defined later.
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Let the root of the tree be labeled 1. For a node which is the i-th child of its parent
node, we say the order of this node is i. A node is labeled [ o7 if [ is the label of its
parent node and it has order i. A temporal morphism g; with label [ is denoted by

9:(1), an equivalence class B with label [ is denoted by S(!), and a set of dependences
L with label [ is denoted by L(I).

Recursive Algorithm The initial inputs of the recursive algorithm for generating
mixed schedules consist of the equivalence class S(1), which contains all statements
in 8, and the set £(1), which contains all dependences in the source loop nest. With
inputs S(!) and L(!), the algorithm obtains an SSL temporal morphism g¢,() such that
p(g:(D), S1,52) = 0 holds for all (S; = S2) € L(I). Under g:(1), the set of dependences

Ul ={(S1 = $) | (S = $) € L(1), wlge(1), 1, 52) > 0} (4.45)

becomes uninformative and should be removed from L(I). A new set of equivalence

classes, denoted by new(!), emerges:
new(l) = {S(l 01) | S(l 07) is the i-th equivalence class from L(I) —U(l)}. (4.46)

For each new equivalence class S(l01), 1 < ¢ < |new(!)|, the associated set of depen-

dences L(l017) is
LUoi)={(S1 = 5) |51 €8(0i),S;€80i), (S = 82) € (L(I) —U())Y4.47)

IfS(loi),1 < i< |new(l)],is a dependent block, then the same algorithm is applied
recursively to the new inputs S({oz) and £(loz). The recursive algorithm stops when
all dependent blocks have been broken up and all remaining blocks are independent.

We summarize the above discussion as the following recursive algorithm for gener-
ating mixed schedules: The initial inputs of Algorithm MIX consist of the equivalence
class S(1), the set of dependences £(1), and the choice of one of the algorithms pre-
sented in Section 4.4.1, 4.4.3 or 4.4.4, denoted by A.
Algorithm MIX (S(!) : an equivalence class, £(I) : a set of dependences,

A : an algorithm)
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1. Find an SSL temporal morphism g¢;(!) by using algorithm A4, such that
#(g:(1), S1,S2) = 0 holds for all (S; = S;) € L(I);

2. If such g() does not exist, then the algorithm terminates without returning a

schedule.

3. obtain the set new(!) (remove uninformative dependences and generate new

equivalence classes);
4. Generate new sets of dependences L(l01),1 < i < [new(l)|;

5. For i € [1, |new(!)]], if S(lo?) is a dependent block, then MIX(S(lo1), L(lot), A).

Statement Reordering We now discuss how to obtain the statement reordering
function r for mixed schedules. Since the algorithm for generating mixed schedules
is recursive, statement ordering is also obtained recursively. Suppose we want to
find the ordering among the statements in an equivalence class S(I). Let S(I o ¢),
1 € ¢ £ n, be the equivalence classes in new(l) generated from S(I). We can first
determine the ordering among these n equivalence classes, which induces the ordering
among statements in different S(I0¢), but not the ordering among statements within
the same S(! 03). Since each S(l0¢), 1 < ¢ < n, will be scheduled separately, the
ordering among statements in different S( o ¢) will never be changed subsequently.
The same process is then applied recursively to each S(Ioi), 1 <7 < n, to determine
the ordering among statements within S(I o z).

The ordering among these n equivalence classes is obtained as follows. Similar
to Section 4.4.2, we define a partial ordering “<” over the set of equivalence classes
new(l). We say S(lo1) < S(l02), i.e. equivalence class S(I 0 1) must be in front
of equivalence class S(I 0 2) in the transformed loop body, if there exist statements
S1 € §(1o1) and S; € S(I 02) such that (S; = S;) € L(I) and p(g:(1), 51, S2) = 0.

Due to the way these n equivalence classes are generated from S(1), new(l) always

has this partial ordering. Therefore, topological sort can produce the linear ordering
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of these n equivalence classes.

Imperfect Loop Nests For a given statement S, it may belong to a nested level
of dependent blocks &§(1), ..., §(I), where §(1) O ... D §(I). Clearly, the schedule
of statement S is |/|-sequential level, where || is the length of the label I:

(1, 5) = (g:(1)(1),...,9:()(1),7(5))- (4.48)

Since different statements can belong to different sets of dependent blocks, the se-
quential level of 7(I,S) can be different for different statements. And the sequential
loops in the transformed parallel loop nest can be of any form, i.e. perfectly and
imperfectly nested loops.

When different equivalence classes are scheduled differently, each SSL temporal
morphism will be a statement-variant schedule with the partition of statements be-
ing these new equivalence classes. Recall that in Section 4.4.4, a statement-variant
schedule is obtained by allowing each statement to be scheduled differently, but not
independently. The advantage to schedule independently is that the likelihood of
obtaining a suitable schedule with more parallelism increases if each dependent block

is considered separately.

An Example We use the following example to explain Algorithm MIX further.
In this example, each SSL temporal morphism used in Algorithm MIX is a uniform

one.
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Loop Nest 4.16

DO (i =2,n){

DO (5 =2,n){
DO (k = 2,n){
Sy: AG,j, k)= A — 1,k,7) + B(G — 1,5,k)
S2: B(i,5,k) = B(i,5 — 1,5) + C(i — 1,5, k)
S3: C(i,5,k) = C(i,j, k= 1) + A(5,5,k)  }}}

The initial S(1) is the set {S1,S2, 53} and L£(1) is the set {(S; = S,) | (z,¥) €
{(1,1),(2,2),(8,3),(2,1),(3,2),(1,3)}. It is easy to check that if g;(1)((¢,7,k),S) = ¢
for all S € 8(1), then p(g:(1), Sz, Sy) = Lfor (z,y) in theset U = {(1,1),(2,1),(3,2)}.
And p(g:(1), Sz, S,) = 0 for (z,y) in (z,y) € {(2,2),(3,3),(1,3)}. Consequently,
dependences S, = S, (z,y) € U, can be removed and S(1) is broken up into three
equivalence classes S(1 01¢), 1 < i < 3; each contains a single statement S;.

Since S(101) is an independent block, the schedule for S; will be single-sequential
level. Furthermore, S, and S are in different equivalence classes and they can be
scheduled independently. Let g:(1 0 2)((¢,4,k),S) = j and g:(1 0 3)((3,4,%),S) = k.
It is easy to check that u(g:(102),S3,5;) =1 and p(g:(1 03),S55,53) =1.

To summarize, the mixed schedule is single-sequential level for S; (two-dimensional
parallelism), and is two-sequential level for S; and Ss (one-dimensional parallelism)

as shown below:

N\

S=25 — (i1)
w{((5,5,k),8) =48 = S, — (4,5,2) {- (4.49)

S = 53—> (i,k,3)}

Because £(g¢(1),51,S5) = 0 and statements S; and Sz are in different equivalence

classes, S; must be in front of S3 in the transformed loop body. The resulting paral-
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lelized program with imperfectly nested sequential loops is:
Loop Nest 4.17

DO (¢ = 2,n) {
DOALL ((j = 2,n), (k = 2,n)) {
S1: A(,5,k) = A(i ~ Lk, j) + B(i - 1,5,k) }
DO (j =2,m){
DOALL (k =2,n){
S2: B(i,j,k)=B(4,j - 1,j) +C(i—1,5,k) } } .
DO (k =2,n){
DOALL (j = 2,n){
S3: C(i,5,k) = CG,5, k= 1)+ AG—1,5,k) } } }

4.7 The Structure of Static Scheduler

Figure 4.5 shows the structure of a compiler for parallelizing affine loops (defined
in Section 4.1.1). It includes the subdomain dependence test presented in Chapter 3,
new loop transformations presented in this chapter, and related previous techniques.

As discussed in Chapter 1, the compilation process in Figure 4.5 consists of three
major phases: static parallelism detection, data layout and communication analysis,
and code generation. We now discuss the static scheduling part in more detail.

Although the subdomain dependence test is more accurate for statements with
conditionals and with coupled array subscripts, its complexity is higher than some
previous dependence tests, e.g. the GCD test [6]. Therefore, the GCD test and other
fast dependence tests can be used first to filter out some independent computations.
The subdomain dependence test can then be used between the remaining dependent

statements to report more accurate dependences.
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Figure 4.5: The structure of the static parallelization system.
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On the loop transformation part, piecewise affine scheduling algorithms can detect
more parallelism than uniform scheduling method (including unimodular loop trans-
formations [10]), but their complexity is also higher. Hence, piecewise affine schedul-
ing algorithms are used when the uniform scheduling method cannot reveal enough
parallelism. Among piecewise affine schedules, nonuniform scheduling algorithm is
more powerful and more complex than subdomain and statement-variant scheduling
algorithms, but it is noncomparable between the latter two. Therefore, subdomain
and statement-variant scheduling algorithms are used after uniform scheduling algo-
rithm, and nonuniform scheduling algorithm comes last as shown in Figure 4.5.

In addition to the ordering between using uniform, subdomain, statement-variant
and nonuniform scheduling methods, there is also an ordering between using single-
sequential level, multiple-sequential level, and mixed scheduling algorithms. Since a
single-sequential level schedule has maximal degree of parallelism, the single-sequential
level scheduling method is used first. If it fails to find a single-sequential level sched-
ule, then the multiple-sequential level scheduling method is used next. The mixed
scheduling method comes last when the obtained multiple-sequential level schedule
does not posses enough parallelism.

To summarize, we begin with the single-sequential level uniform scheduling method,
and follow by the multiple-sequential level uniform scheduling method. Since there is
no mixed uniform schedule, the next one we try is single-sequential level subdomain
or statement-variant scheduling method. The scheduling process stops when enough
parallelism is detected or the mixed nonuniform scheduling method, the last one in
our classification, is used, which reveals most parallelism among these techniques.

The subdomain dependence test and previous dependence analysis can provide
dependence information and the corresponding direction vectors between statements.
Direction vectors are very useful for loop transformations such as loop vectorization,
reversal, interchange and permutation. For piecewise affine loop transformations, the
notion of dependence index pair (defined in Section 4.4.3) is necessary to capture

more precise dependence information. Since the complexity of polyhedra decom-
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position, which can obtain representative dependence index pairs, is N P-complete
[35,100], we had better avoid decomposing empty polyhedra resulting from indepen-
dent computations. That is, efficient dependence analysis can still be used to detect
empty polyhedra before exercising polyhedra decomposition. Therefore, dependence
analysis can provide information to (1) determine whether loop transformations such
as loop vectorization, reversal, interchange and permutation are applicable, and (2)
detect empty polyhedra to save the compilation time for obtaining piecewise affine

loop transformations.

4.8 Applications of Subdomain and Statement-

Variant Schedules

To illustrate the usefulness of the new scheduling algorithms, we take dynamic pro-

gramming, transitive closure and shortest path problems as examples.

4.8.1 Dynamic Programming

Source Code Dynamic programming has sequential complexity O(n®) for a prob-
lem of size n. The source code is given in Loop Nest 4.18.

Loop Nest 4.18
DO (i =1,n —2){
DO (j=i+2,n){
C(Z,]) = mini<k<j (h(C(z, k)a C(kaj))) } }

This source program is first transformed to the following form in a systematic
manner by applying fan-in and fan-out reductions [17] to reduce potential concurrent

accesses of variables. The result is Loop Nest 4.19:
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Loop Nest 4.19

DO (t=n-1,1,-1){
DO (j=i¢+1,n){
DO (k=1,j){

Sa1: IF(k < j) A(i, 5, k) = AG,j — 1, k)

Sp: IF(e+1=k)B(,j5,k)=C(i+1,5,5)

Se2: IF(t+1 < k) B(3,7,k) = B(i + 1,j,k)

S : IFGE+7+1=2k)C(s,5,k) = hi(A(s, j, k), B(¢, J, k),

A% 4yi+7 = k), B(i, 5, + j = k)
Se: IFG+7+1 <2k <25)C(, 7, k) = hao(CG, 4, k — 1), A(, 7, k),
B(i,j,k), A, 4, + 7 — k), B(i,5,i + j — k))

Sa: IF(k=3)C(,5,k)=C(,5,k—1)

Saz : IF(k = j) A(i, 5, k) = C(3,5, k) 11}
Schedules We wrote three *Lisp programs on the Connection Machine CM/2, each
with the control structure generated by a two-sequential level uniform schedule, a
mixed statement-variant schedule and a single-sequential level subdomain schedule
respectively. These schedules are generated according to the algorithms described
before. For the subdomain schedule, the subdomain boundary (z + j + 1 = 2k) is

chosen from the predicate of statement S.;. We also have a sequential Common-Lisp

program on the Symbolics to compute the same problem. The three schedules are
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3-sequential level | 2-sequential level mixed | 1-sequential level

n sequential uniform | statement-variant subdomain
32 6.8 10.72 2.47 0.87
64 55.0 42.88 9.73 1.73
128 440.0 171.50 39.16 3.48
256 3520.0 686.45 235.70 6.96
512 28160.0 2745.80 1159.24 31.70

Table 4.2: Running time in seconds of dynamic programming on an 8K-processor
CM/2. .

given below. For simplicity, we do not give the constant terms 7(S) of function 7.

two-sequential level uniform schedule:

W((iaja k)a S) = (.7 - i, k— Z)
mixed statement-variant schedule:

S=845—(j—ik—i
7(S, (5,4, k) = Uik

else — (j —7)
single-sequential level subdomain schedule:

o t+7+1<2k—-214+j7+k
71'(5, (Z,],k)) = .
i+7+1>2k—>—-14+2j—k

Recall that Loop Nest 4.12 is part of Loop Nest 4.19. Therefore, the transformed
Loop Nest 4.13, 4.14 and 4.15 are part of the transformed loop nests of the dynamic

progiamming source code for these three schedules respectively.

Experimental Result The experiment is conducted as follows: we run the sequen-
tial code on the Symbolics and parallel codes on an 8K-processor Connection Machine

with Symbolics as its host. The results described in Table 4.2 and Figure 4.6 show that



CHAPTER 4. STATIC SCHEDULER 94

10000 a: n =32
bd b: n =64
¢ n=128 re,
1000f d: » =256 «uniform pe
Time(sec‘b‘f’c “n= 512/ . /
100 B B¢ statementy
q:b , nlb va,na.nt‘é ke
0g,  d Rt
oa o -=C
1 w5~ subdomain
%87 517 48K 33K 256K

Virtual Processors Used

Figure 4.6: Running time vs. problem size.

the version using a single-sequential level subdomain schedule is three orders of mag-
nitude faster than the sequential code, and is two orders of magnitude faster than the
versions using a two-sequential level uniform schedule and mixed statement-variant
schedule. And the program using a mixed statement-variant schedule is about three

to four times faster than the program using a two-sequential level uniform schedule.

4.8.2 Transitive Closure and Shortest Path Problems

The Warshall’s algorithm for the transitive closure problem and the Floyd’s algorithm
for the shortest path problem can be expressed in Loop Nest 4.20 with sequential

complexity O(n?) for a problem of size n.

Loop Nest 4.20

DO (k= 1,n){
Do (i=1,n){
DO (j = i,n) {
X(i,5,k) = X(i,5,k—1) + X(i, b,k — 1)« X (k, 5,k = 1) } } }
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This source program can be transformed to the following form by adding propa-
gating variables R and C [60,75]: |
Loop Nest 4.21
DO (k=1,n){
DO (:=1,n){
DO (j =4,n){

S1:IF( =k)C(3,5,k) = X(3,5,k— 1)

Sy: IF(j < k)C(i,5,k) = C(6,5 + 1, k)

Ss3: IF(j > k)C(¢,4,k) =C(3,5 — 1,k)

Sy: IF(E=k)R(i,5,k) = X(¢,5,k— 1)

Ss: IF(: < k) R(¢,j,k) = R(i + 1,5, k)

Se: IF(z > k) R(3,5,k) = R(i — 1,5, k)

Sr: X(i,5,k) = X(3,5,k — 1) + R(2,5,k) x C(3,5,k) } } }
Schedule A single-sequential level subdomain schedule can be generated according

to the algorithms described before. Two subdomain boundaries (i = k) and (j = k)

are chosen from predicates. The generated subdomain schedule is

\

(G2 RAGE2E) = (G +5+km(S)

(.5, K), S) = | (G<E)A(E2 k)= (i +3k,r2(S5))
(G = k)AG < k)= (=i +j + 3k,r3(5))

|G < F)AG < k) = (=i = + 5k, 7a(5)),

where r;(S) =2 for S = 57,1 < i <4, and r;(S) = 1 for other statements, 1 < : < 4.
This schedule with spatial morphism g,(z, j, k) = (¢, j) transforms Loop Nest 4.21 into
Loop Nest 4.22 below. The transformed loop nest has (5n —4) sequential steps, which



CHAPTER 4. STATIC SCHEDULER 96

is the same as those presented in [60] and [75]. However, our scheduling algorithm is
systematic while their schedules were obtained by ad hoc methods.
Loop Nest 4.22
DO (¢t = 3,50 - 2){
DOALL (i = 1,n) {
DOALL (j = 4,n) {
k=t—i-j
IF(L<k<n)AG2E)AGES ) Si, Soy Ss, Sa, Ss, Se
k=(t-i+7)/3
IF(L<k<n)A(G<E)A( > k) S1, S2, Say Sa, S5, Se
k=(t+i-7)/3
IF(1<k<n)AG>K)AG<E) Siy Sz, Ss, Sa, Ss, Se
k=@+i+5)/5
IF(1<k<n)A(>E)A(i> k) S1, Sz, Sa, S4, S5, Se
k=t—i—j
FASESD)AGZRAG2E) S
E=(t—i+7)/3
IF(1<k<n)A(G<E)A(i2 k) 57
E=(+i-75)/3
F(1<k<n)AG2 K)AG<K)) S
k=(@+:+7)/5
IF(A<ESn)AG>K)A(i> k) 57 11}






Chapter 5

Dynamic Scheduler Generator

5.1 Motivation

Automatic parallelization has so far been unsuccessful in dealing with many real-world
programs where extensive indirect array references or pointers are used. Though pro-
grams using pointers can be analyzed to some extent [16,42,44,46,49,62,63], those con-
taining input-dependent or dynamic-changing structures are not amenable to compile-
time analysis. For such programs, many run-time scheduling techniques have been
proposed [26,27,33,80,82,87,95,97,98,101,104,115,114,116].

In this chapter, we present a hybrid compile-time and run-time approach where
a scheduler is generated by the compiler based on information deduced from static
analysis. At run-time, the scheduler records dynamic data references and allocates
work to processors based on the run-time reference patterns. The central point is that
compiler analysis can help to make the overhead incurred by the run-time scheduler
insignificant, thereby lessening the major problem often faced by a run-time system.

In this context, the compiler’s main task is to do scheduler generation in addition
to parallel program generation. Upon seeing each read (or write) reference, the sched-
uler generator emits a call to a recording procedure for flow dependence (or anti- or

output dependence) in conjunction with the necessary static program slices [105] that

97
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control the program’s flow to that reference. However, care must be taken to avoid
either the space or time blowing up due to the sheer number of references in any real
program. Those indirect references or pointers that do not produce dependences (e.g.
pointer dereferencing, induction variable, etc.), or produce only redundant depen-
dences, must be identified and no calls to the recording procedure shall be emitted

for them. The technique is called redundant reference elimination (RRE).

5.1.1 Application Domain: Restricted Nonaffine Loops

Our approach applies to both FORTRAN-style programs with indirect array refer-
ences and C-style programs with pointers. In contrast to the affine loops defined in
Section 4.1.1, we call loops with indirections or pointers nonaffine loops. We find that
compiler analysis can make the run-time scheduling overhead insignificant for loops
in a subclass of nonaffine loops. We call the loops in this subclass restricted nonaffine
loops. Since defining restricted affine loops requires some terminologies presented

below, the definition will be given in Section 5.5.1.

Organization of the Chapter The rest of the chapter is organized as follows.
In Section 5.2, we survey various run-time parallelization approaches by classifying
them according to (1) how and when work is assigned to processors, (2) how the work
is scheduled within each processor. We also compare our work with related work,
in both run-time scheduling and redundant dependence elimination. In Section 5.3,
we first give an overview of our system, and then present the main technique of
scheduler generation with algorithms for the recording procedures. In Section 5.4, we
describe several redundant reference elimination techniques. Finally, we illustrate the

usefulness of the dynamic scheduler generator with example programs in Section 5.5.
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5.2 A Survey of Run-time Loop Parallelization

Approaches

5.2.1 Characterizing Loop-Parallelization Techniques

Various run-time loop parallelization (automatic or manual) approaches can be broadly
characterized by two orthogonal factors: (1) assignment strategy specifying how and
when work is assigned to processors and (2) scheduling method dictating how the work
is scheduled within each processor. We discuss three assignment strategies and two

scheduling methods as follows:

Assignment Strategies

Compile-time: The work is assigned at compile-time, independent of any input data

or dynamic behavior of the program.

Run-time Invariant: The work is assigned at run-time but before entering the loop,

and stays invariant throughout the entire loop execution.

Run-time Dynamic: The work is assigned to processors during the loop execution,

and the behavior of the computation may affect the assignment.

Scheduling Methods To describe scheduling methods for loop iterations, we rep-
~ resent each iteration as a node of a directed graph, which will be formally defined
as the iteration dependence graph (IDG) in Section 5.3.2. Any loop-carried depen-
dence from iteration I to iteration J is represented by a directed edge from node I
to node J. An IDG is always acyclic because the directed arcs represent loop-carried
dependences, and, for any two dependent iterations, one must be lexically prior to
the other.

Wavefront Method: Since any IDG is acyclic, we can define the notion of the

wavefront number of a node: the maximum path length leading into the node from
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some source node, where a source node is one that does not have any incoming edge.
A wavefront is just the set of all nodes with the same wavefront number. Clearly, those
iterations of the same wavefront can execute in parallel. Thus if the set of wavefronts
of a loop is known either at compile-time or at run-time before entering the loop, it
can be used to determine the execution sequence of the iterations beforehand. One
technical detail is that a global synchronization between the processors is required to
control the progress from one wavefront to the next.

Data-driven Method: Another way of scheduling the iterations is data-driven,
which allows each iteration to start execution as soon as all its required data become
available. In this case, the synchronization among the processors is done locally in a
distributed fashion.

The choice of the two methods depends on the nature of the computation and
the tradeoffs in the implementation cost. The wavefront method is more suitable
for programs with regular data structures, where the schedule can be obtained at
compile-time. The advantage is that there will be no overhead to support data-driven
execution. For programs with irregular data structures, where the computation load
of different iterations in the same wavefront can f/ary a great deal, the data-driven
method usually works better because the wavefront method will incur unnecessary

delay due to the global synchronization.

Characterization Using these two orthogonal factors, we can now characterize
various compile-time and run-time loop-parallelization techniques. For each of the
entries on compile-time techniques in Table 5.1, an example is given. The run-time

techniques are described in greater detail since they relate closely to our work.

CW Performing loop skewing followed by iteration space tiling is an example of

compiler-time assignment and wavefront scheduling.

CD Assigns iterations to processors randomly. Data-driven scheduling is the natural

choice to combine with random assignment.
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Compile-time | run-time Invariant | run-time Dynamic
Wavefront Ccw Iw DW
Data-driven CD ID DD

Table 5.1: Dynamic loop-parallelization techniques characterized by assignment
strategies and scheduling methods.

IW Saltz, Mirchandaney, et al. [82,97,98] describe a technique where an inspector

collects data references of a code block or a DoConsider loop at run-time,
constructs a DAG representing the dependences, and assigns work to processors
by partitioning the DAG. An ezecutor then computes the code block or the loop

on either shared-memory or distributed-memory machines.

ID Johnson, Zukowski and Shea [48] at IBM have developed a parallel circuit sim-

DW

ulator running on the Victor multiprocessor systems consisting of an array of
transputers. A hand-coded run-time module reads input data structures, ana-
lyzes dependences, partitions the loop iteration space and the data structures
associated with it, and assigns each portion to a processor. The processors
run in a data-driven fashion, sending required circuit information between one
another. The module is written with the knowledge of the specific application

program as well as properties of input streams.

Computing wavefront at the last minute when tasks are dynamically assigned
seems hardly worthwhile; using data-driven execution will be much easier and

more efficient.

DD Fang, Tang, Yew and Zhu [33] describe a method in which each iteration of the

loop is a task. It uses data-driven scheduling in the sense that all active tasks,
defined to be those whose predecessors have been completed, are placed in a task
pool. Whenever a processor becomes free, it goes to the task pool and picks up

an executable task. The guided self-scheduling method from Polychronopoulos
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and Kuck [87] and the shortest-delay self-scheduling method from Tang, Yew
and Zhu [104] also fall into this class.

In addition to the above, Zhu and Yew [116] and Midkiff and Padua [80] have
developed techniques to insert the synchronization primitives into loops with loop-
carried dependence to ensure proper parallel execution. These methods should be

combinable with all three assignment strategies.

Our Work The dynamic scheduling approach we are going to describe falls into the
class of run-time invariant assignment using either wavefront or data-driven sched-
ule, each requiring different code for house-keeping. We choose to investigate run-
time invariant assignment because many important applications such as circuit sim-

ulators [101], computational fluid dynamic computation and sparse matrix solvers

[27,82,95,97,98,115,114] can be dealt with effectively with this strategy.

5.2.2 Related Work

Comparison with Shared-Memory Model Experimental results [33,87,104] show
that the overhead of systems using run-time dynamic assignment with asynchronous
data-driven schedule are low on shared-memory machines. But techniques such as the

task pool can incur high communication overhead on distributed-memory machines.

Comparison with Saltz ef al.’s Approach The work by Saltz et al. on run-time
systems [27,82,95,97,98,115,114] for both shared-memory and distributed-memory
machines can be characterized as a pure run-time approach in the sense that all mech-
anisms (DAG encoding routine, inspector routines, etc.) pertaining to the scheduler
are hand-written run-time library routines. Code blocks and variables of the source
program are annotated for the needs of run-time support. Their work focuses on sci-
entific applications written in FORTRAN with simple loop structures and reference

patterns where the data size rather than redundant references is the main problem.
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In contrast, our scheduler is generated by the scheduler generator for each applica-
tion program, customized by the program slices extracted from the original program.
In this scheduler generation framework, we can deal with nested loops where each
level can be recursively scheduled over the processors, useful for problems operating
over a hierarchy of more and more refined data structures. In addition, compile-time
analysis such as redundant reference elimination and dependence analysis can be used

to lower the run-time overhead significantly.

We use the following two examples to show the main difference between our and
Saltz et al.’s work.
Loop Nest 5.1

1 while(topA != NULL) {

2 if(...) €

3 bar = topA->uB;

4 foo = topA->rB;

5 bar->rwC->valC = foo->rwC->valC+i;
6 bar->valB = foo->valB+2;

7 topA->vall = topA->valA+3; }

8 else {...}

9 topA = topA->next; }

Loop Nest 5.2

doconsider (i = 1,n) {
do (j = low(i), high(i)) {
y(5) = y(3) = a(§) * y(eolumn()) } }

Our scheduling method is applicable to both Loop Nest 5.1 and Loop Nest 5.2,
while Saltz et al.’s method is only applicable to the latter. This is because our system

includes compilation analysis such as program slicing, redundant redundant reference
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elimination and dependence analysis of pointers. For Loop Nest 5.1, the effects of

these compiler techniques are:

¢ Dependence analysis of pointers finds that lines 5 and 6, but not the other lines,
can cause loop-carried dependence. Therefore, references occurred in lines 5 and

6 need be recorded by the run-time scheduler to find a parallel schedule.

e Redundant reference elimination detects that references in line 5 is subsumed
(to de defined in Section 5.4) by references in line 6. Therefore, only references

occurred in line 6, but not line 5, need be recorded.

¢ Program slicing finds that lines 1,2,3,4,8 and 9, but not lines 5,6 and 7, can affect
reference locations in line 6. (The program slice includes control statements
while and [F-THEN-ELSE.) Therefore, lines 1,2,3,4,8 and 9 should be copied

into the run-time scheduler to compute the reference locations to be recorded.

Clearly, these compiler techniques are necessary for sending the run-time scheduler
for Loop Nest 5.1. In addition, dependence analysis and redundant reference elimi-
nation can reduce the number of references to be recorded, and, therefore, reduce the
run-time scheduling overhead for applications with many redundant references and
references that do not cause loop-carried dependences. Two examples of applications
in this category are the circuit simulator and the fluid dynamics kernel presented
in Section 5.5. The scheduling overhead of the circuit simulator is 0.63% of the se-
quential execution time of the source code. And the overhead is 6.1% for the fluid
dynamics kernel.

Experimental results from Saltz et al. [98] show that the overhead of their run-
time-scheduler ranges from 20% to 60% for applications like the one shown in Loop
Nest 5.2. For such applications which do not have redundant references and complex
control structures in the first place, our compiler techniques would not really help.
So the compiler techniques in our system are not in Saltz et al.’s system. However,

for large programs with complex control structures. and many redundant references
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like the circuit simulator, compiler techniques are crucial for this run-time approach

to be workable in practice.

Comparison with Work on Redundant Dependence Elimination Li and
Abu-Sufah [73], Midkiff and Padua [80], and Krothapalli and Sadayappan [57] have
studied redundant dependence elimination techniques in the context of parallelizing
loops by inserting synchronization primitives. Such analysis reduces the number of
synchronizations issued.

Our work is motivated by distributed-memory machines where communication
costs must be carefully considered. We consider iteration-level parallelism, which is
more coarse-grained than the shared-memory approach. Since data must be parti-
tioned, it is more important to collect dependent iterations into the same processor
to minimize communication. The focus will be on distributing the independent itera-
tions over different processors as opposed to overlapping the execution of dependent
iterations. These differences in perspective result in quite different techniques for

reducing redundant references. We will discuss these points further.

Comparison with Work on Access Anomaly Detection Dinning and Schon-
berg [31] have studied methods for monitoring parallel program execution to detect
access anomalies. An access anomaly occurs when either two concurrent threads
both write or one reads and one writes a shared memory location without coordinat-
ing these accesses. Because they do not use static compile-time analysis to reduce
redundant references, and because the monitoring overhead is compared with the tim-
ing of parallel program execution, their experimental results show that monitoring
entails a 3-fold to 6-fold slowdown.

In comparison, the iteration-level dependence used in our method is much more
coarse-grained than access anomaly detection. Furthermore, our experiments show
that redundant reference elimination and dependence analysis do greatly reduce the

run-time scheduling overhead for restricted nonaffine loops (defined in Section 5.1.1).
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A similarity between their and our methods is that we use the same technique to save
memory in storing reference histories. This technique will be discussed with the read

set and last write in Section 5.3.3.

5.3 Scheduler Generator

5.3.1 System Overview

The hybrid system consists of a run-time component and a compile-time component
as shown in Figure 5.1. The run-time component consists of, in addition to the target
parallel program, an IDG-constructor, an IDG—partitioner, and a data partitioner
customized for the source program.

The IDG-constructor builds the iteration dependence graph (IDG) at run time.
The IDG-partitioner then assigns and schedules loop iterations by performing graph-
partitioning on the IDG. By the inverse of the so-called owner-compute rule of SPMD
style programs, the input data structure is partitioned according to the iteration
partition over the IDG. By “inverse” we mean that the processor which computes the
iteration gets assigned a copy of the corresponding data. Together, these three parts
are referred to as the run-time scheduler.

The compiler consists of two main components: a schedule generator and a parallel-
program generator. We do not describe the parallel-program generator in this chapter,
which is an extension of the work by Li and Chen [67] and closely relates to the work
by Saltz et al. [27,82,95,97,98,115,114] The focus is on the scheduler generator, and
in particular, the one with low run-time overhead. To construct the IDG, read and
write references of the source program must be recorded at run-time. If one does this
naively, the space and time may both blow up for large programs. The idea behind
our approach is to examine the minimum number of references necessary to construct
an IDG. Some references such as pointer dereferencing and induction variables do not

create dependence. Others form equivalence classes whereby only representative ones
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Figure 5.1: The structure of the hybrid compiler/run-time parallelization system.
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O

Figure 5.2: An example of the iteration dependence graph.

need to be recorded.
In the following, we first describe the IDG representation, then the primitives for
scheduler generation, and finally the methods and optimizations. A C programming

example is also given.

5.3.2 Iteration Dependence Graph (IDG)

We define the iteration dependence graph (IDG for short) of a loop L to be a directed
graph with one vertex for each iteration of L. There is an edge from node J to node
K, denoted by J = K, in the IDG if and only if for some statements S; and S,
in the loop a loop-carried dependence $,@J = S;@K exists in L. (A dependence
$,@J = S,@QK is loop-carried if J < K as defined in Section 2.2.) Since only loop-
carried dependences are presented in the IDG, J < K must hold for an edge J = K
in the IDG. Therefore, any IDG is acyclic.

Recall that “=" is the reflexive and transitive closure of the dependence relation
“=” over iterations as defined in Chapter 2. If J = K holds, then iterations J and
K are dependent. If neither J = K nor K = J holds, then iterations J and K are
independent.

An example of an IDG is shown in Figure 5.2. Iterations are assigned to processors
by partitioning the IDG. In order to reduce communication overhead for distributed-

memory machines, dependent iterations, e.g. iterations 1 and 3, should be aggregated
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to the same processor. Additionally, in order to maximize parallelism, independent
iterations, e.g. iterations 1 and 2, should be distributed to different processors.

This representation is similar to the DAG representation in [17,82,96)], except that
an IDG is defined with respect to a loop nest while the others are defined with respect
to a set of recursive definitions or an annotated code block.

We now discuss how to generate the most important part of the run-time scheduler:

the IDG-constructor.

5.3.3 IDG-Constructor

As discussed above, the IDG is built at run-time by the IDG-constructor, which is
generated by the compiler. The IDG-constructor records read and write references
to build the IDG. We now define the notion of read set and last write to capture the

relationship between data references and loop iterations.

Read Set and Last Write Let X be a memory location being referenced. We
define R(X), called the read set for X, to be a set containing the iterations I in the
iteration space at which X is read after X is last written. If X is read more than
once at iteration I, then only one instance is in the set R(X).

Similarly, we define W(X), called the last write for X, to be the iteration at which
X is last written, or null if X is not yet written.

Note that, for FORTRAN, “memory location” is replaced by “array name” applied

to an “array index”.

Recording Procedure For each reference in the source program, the compiler
generates a call to a procedure record_dep which updates the read set and the last
write, deduces dependences and constructs edges in the IDG. Procedure record_dep
has three parameters: the first two parameters X and I indicate that memory location
X is referenced at iteration I, and the third parameter is either ‘r’ for a read reference

or a ‘w’ for a write reference.
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A call to procedure record_dep(X, I,'r’) is for recording possible flow dependence
caused by a read reference to location X at iteration I. Clearly, I should be added to
the read set R(X). If the last write W(X) is not null, i.e. J = W(X), then location
X is last written at iteration J and the flow dependence J = I exists, which implies
an edge in the IDG. On the other hand, if W(X) is null, then X has not yet been
written and there is no flow dependence.

A call to procedure record_dep(X, I, w') is for recording possible output and anti-
dependences caused by a write reference to location X at iteration I. If the last
write W(X) is not null, i.e. J = W(X), then X is also written at iteration J and
the output dependence J = I exists. Now I is the last iteration which writes X;
therefore, the last write W(X) should be assigned a new value I. On the other hand,
if the last write W(X) is null, then there is no output dependence and we only need
to assign I to W(X).

Similar discussion holds for anti-dependences as follows. If the read set R(X) is
not empty, then for all J in R(X), the anti-dependence J = I exists. In addition,
the read set R(X) should be reset to the empty set because there is no new read
after the latest write at iteration I. To summarize, procedure record.dep is defined in

Figure 5.3.

An Example for Dependences Consider the following example: Let a location
X be read at iterations 1, 3 and 4, and be written at iterations 2 and 5 as shown in
Figure 5.4. The results from calling record_dep at these iterations are:

After iteration 1, no dependence is found, R(X) = {1} and W(X) = null.

After iteration 2, anti-dependence 1 = 2 is found, R(X) = {} and W(X) = 2.
After iteration 3, flow dependence 2 = 3 is found, R(X) = {3} and W(X) = 2.
After iteration 4, flow dependence 2 = 4 is found, R(X) = {3,4} and W(X) = 2.
After iteration 5, output dependence 2 = 5 and anti-dependences 3 = 5 and 4 = 5
are found, R(X) = {} and W(X) =4.

We now use an example to illustrate how to generate the IDG-constructor with
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record_dep (X, I,¢)
X:a reference location
I: an iteration
c: 'r or '
if (¢='r")
R(X) =R(X)u{l}
if (W(X) # null)
then J = W(X)
there is a flow dependence J = I
(an edge from J to I in the IDG)
if (¢ =" w')
if (W(X) # null)
then J = W(X)
the output dependence J = I exists
WX)=1
for all J € R(X)
the anti-dependence J = I exists
R(X)={}

Figure 5.3: The recording procedure.

Write Read
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Figure 5.4: An example of dependences.
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calls to these two procedures.

An Example for IDG-constructor The example C program with pointers is in

Figure 5.5. We want to parallelize the while loop from line 11 to line 17.

Functionality of the Program The relationships among structures and pointers
are shown in Figure 5.6. Instances of structure A form a linked list, and similarly for
instances of structure B. Each instance of A has two pointers rB and wB pointing to
some instances of B, which can be different. (We use r for labeling a read access, w
for labeling a write access, and wr for labeling an access which can be either read or
write.) These two pointers ta.ké on values returned by the function lookup, which
finds a particular instance of B that matches the identifier given as the first argument
of lookup as shown in lines 8 and 9 of the code. The identifiers id1 and id2 are read
from the input stream in line 7. Each instance of B has a pointer rwC pointing to an
instance of structure C created by the malloc function.

The while loop goes through every instance of structure A where the current one is
pointed by topA. Lines 14, 15 and 16 in the loop body read three integers to compute
three other integers contained in the instances of A, B and C respectively.

Note that, since the pointers from instances of A to instances of B are input
dependent, and dependences are determined by those pointers, this while loop cannot

be parallelized by static compile-time analysis.

Algorithm for Generating A Naive IDG-Constructor We now focus on the
while loop (line 11-17) which is repeated below for easy reference.

Loop Nest 5.3

The Source Loop from Figure 5.5:

11 while(topA != NULL) {
12 bar = topA->wB;
13 foo = topA->rB;
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typedef struct C {

int valC;
other fields ...} *pointerC;

typedef struct B {

int idB, valB;
pointerC rwC;
struct B *next; } *pointerB;

typedef struct A {

int vali;

pointerB rB, wB;

struct A *next; } *pointeri;

main()

{

W o0 ~NO "N WN -~ O

-
o

i1
12
13
14
18

16 .

17

int
int

int idt, id2, nA, nB, i;
pointerA nodeA, topA;

pointerB nodeB, topB, foo, bar;
pointerC nodeC;

scanf ("%d %d",&nB,&nl);
for(i=0; i<nB; i++) { /% initialize'B and C */
nodeB = (pointerB) malloc(sizeof *nodeB);
nodeC = (pointerC) malloc(sizeof *nodeC);
scanf ("%d Y%d %d",&(nodeB->idB),&(nodeB->valB),&(nodeC->valC));
nodeB->rwC = nodeC; nodeB->next = topB; topB = nodeB;}
for(i=0; i<nA; i++) { /* initialize A */
nodeA = (pointerA) malloc(sizeof *noded);
scanf("%d %d %d",&(nodeA->vald),,&id1,&id2);
nodeA->rB = (pointerB) lookup(idi,topB); /* find B instances */
nodeA->wB = (pointerB) lookup(id2,topB); /* matching the id */
nodeA->next = topA; topA = noded; } /* build list */

while(topA != NULL) {
bar = topA->wB;
foo = topA->rB;
bar->rwC->valC = foo->rwC->valC+i;
bar->valB = foo->valB+2;
topA->valA = topA->valld+3;
topA = topA-dnext; } }

lookup(id,topB)

id; pointerB topB;
pointerB nodeB;
nodeB = topB;
while(nodeB != NULL) {

if(nodeB->idB == id) return(nodeB);
nodeB = nodeB->next; }}

Figure 5.5: An example program with pointers.

113
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topA ¥ topB y
val A idB valC
wB valB
rB N rwC
next ) next
wB y valB
rB / wC
next | next |

Figure 5.6: Relationship among structures and pointers of the example.

14 bar->rwC->valC = foo->rwC->valC+1;
15 bar->valB = foo->valB+2;

16 topA->valA = topA->valA+3;

17 topA = topA->next; }

Nodes of the IDG For each instance of the iteration space of the loop, a call to
procedure create_node is generated which creates a node corresponding to the current
iteration instance in the IDG. For identifying these nodes, we need an explicit loop
iteration counter. In this example, variable ¢ is used as the iteration counter. Clearly,
¢ should be incremented for each iteration, and 7 is used as a parameter for the

procedure calls create_.node and record_dep.

Edges of the IDG For each reference, a call to procedure record.dep is generated
which creates edges between the nodes of the IDG. For example, a read reference to

location &(topA — wB) in line 12 implies a call to record_dep(&(topA — wB), 1, r').
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Program Slices In addition to generating those procedure calls, we also need to
copy some statements from the source loop to the IDG-constructor as follows. If a
variable is necessary to determine the reference location, e.g. bar is used in the call
to record_dep(&(bar — rwC — valC),i,’w’), then the set of statements that directly
or indirectly contributed to the value of that variable needs to be copied from the
source program to the IDG-constructor. Similarly for control statements like while
and if-then-else, since they determine whether a location is referenced or not.

The technique of static program slicing [105], which is based on data flow analysis
and execution trace, can be used to find the program slice with respect to one variable.
A program slice with respect to a set of variables can be obtained by taking the union
of slices with respect to individual variables in the sét. In this example, the program
slice we need consists of statements in lines 12, 13 and 17 of the source program which
compute bar, foo and topA. The resulting naive IDG-constructor is shown in Loop

Nest 5.4.
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Loop Nest 5.4
A Naive IDG-Constructor:

i=0;

while (topA # NULL){ /*11
i+ +; /*explicit iteration counter * /
create_node(i); /* create a node of the IDG*/
bar = topA — wB; [ *12
foo = topA — rB; /%13
record_dep(&(topA — wB), i,/ r');
record_dep(&bar, i, w'); /%12

record_dep(&(topA — rB),i,' r');

record_dep(& foo, i,’ w'); /%13
record_dep(&(foo — rwC — valC),i,'r');
record_dep(&(bar — rwC — valC), i,/ w'); / * 14
record_dep(&(foo — valB), i, r');

record_dep(&(bar — valB),1,' w'); / 15
record_dep(&(topA — valA),,'r');

record_dep(&(topA — valA), 1,/ w'); [ * 16
record_dep(&(topA — next),i,’'r');

record_dep(&topA, i, w'); : [ *17

topA = topA — nezt; [ *17

116

slicing * /

slicing* /

slicing* /

recording * /

recording * /

recording * /

recording * /

recording * /

recording * /

slicing* /}

For program slicing including control statement, let us look at the following exam-

ple. The source code is on the left-hand side, and the corresponding ID G-constructor

is on the right-hand side, which includes both conditional expressions as shown below:
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Loop Nest 5.5 Loop Nest 5.6
while (...){ i=0;
ifla>0) b—c=... while (...) {
else bod=... } i+ +;

if(a > 0) record_dep(&(b — ¢),i,' w')
else record.dep(&(b — d),, w')
}

Another point to mention is that we need static program slicing [105] instead of
dynamic program slicing [1,56]. The difference between the two is that the static slice
is the set of all statements that might affect the value of a given variable for any
program input, while the dynamic slice consists of all statements that actually affect
the value of a variable for a given program input. We need static slicing because the
scheduler should work for any program input. For loops with procedure calls, we need

interprocedural program slicing [47).

5.3.4 Optimizing IDG-Constructor

Dependence Analysis and RRE The naive IDG-constructor constructs the IDG
by recording all data references. In fact, some references do not contribute to edges
in the IDG and some other references contribute to redundant edges in the IDG.
All those references are called redundant references and should not be made into the
IDG-constructor.

For this example, dependence analysis on pointers [16,42,44,46,49,62,63] tells us
that

¢ Instances of structure A do not cause loop-carried dependence.
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e foo and bar are used for pointer dereferencing; they do not cause true depen-

dences.
e topA is an “induction” variable for navigating through the linked list.

In addition, RRE says that instances of structures B and C cause identical depen-
dences, and therefore, only the references to instances of either B or C need to be
recorded. After removing those recording procedure calls for redundant references,
the resulting IDG-constructor is as shown in Loop Nest 5.7. This IDG-constructor is
much smaller and uses much less space for the read sets and the last writes.

Loop Nest 5.7

An IDG-constructor with redundant references being removed:

t=0;

while (topA # NULL){ / *11 slicing« /
i+ +; create_node(i);
bar = topA — whB; / #12 slicingx /
foo = topA — rB; /%13 slicing* /
record_dep(&(foo — valB),i,'r');
record_dep(&(bar — valB),i,’w’); [/ * 15 recording* /

topA = topA — nezt; /%17 slicing=* [/}

Statement Substitution Note that, foo and bar in the source program shown in
Figure 5.5 are read twice in lines 14 and 15. Therefore, using these two variables
for pointer dereferencing can avoid recomputing topA — wB and topA — rB. How-
ever, after removing redundant references, foo and bar are only read once in the
IDG-constructor as shown in Loop Nest 5.7. In this case, using them for pointer
dereferencing in unnecessary and they can cause extra load and store instructions
in the compiled object code of the IDG-constructor. This situation can be avoided

by statement substitution [110] as follows. Each read reference to foo is substituted
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by topA — wB and each read reference to bar is substituted by topA — rB, and the
two statements computing foo and bar are removed. After statement substitution,
the optimized IDG-constructor is shown in Loop Nest 5.8.

Loop Nest 5.8

An optimized IDG-constructor:
1= 0;
while (topA # NULL){ /*11 slicing* /
i+ +; create_node(?);
record_dep(&(topA — rB — valB),i,'r');
record.dep(&(topA — wB — valB),i,’w'); [+ 15 recording « /

topA = topA — nezt; /%17 slicing* [}

5.3.5 IDG-Partitioner and Data Partitioner

Once the IDG is constructed, an IDG-partitioner partitions the nodes of the IDG into
disjoint sets such that dependent iterations are aggregated into the same processor as
much as possible and independent iterations are distributed to different processors.
This is as hard as the minimum cut problem which is N P-complete [39]. Therefore,
we use a heuristic to do the partition. How to choose a good heuristic algorithm is
beyond the scope of this thesis.

Partition on IDG induces a partition on the data using the inverse of the so-
called owner-compute rule: A(X(I)) will be written by processor P which is assigned

iteration I.

5.3.6 Summary of Scheduler Generating Steps
To summarize, the compiler generates the run-time scheduler in the following steps:

1. Use dependence analysis and redundant reference elimination techniques to ob-

tain representative references in the source loop.
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2. For each representative reference, generate a call to the recording procedure

record_dep in the IDG-constructor. -

3. Find the program slice which computes the values of the variables necessary to

determine the reference locations.

4. Generate a code based on a chosen heuristic for partitioning the IDG into p
disjoint subsets, where p is the number of processors of the target distributed-

memory machine.

5. Generate a code for data partitioning using the inverse of the owner-compute

rule.

5.4 Redundant Reference Elimination (RRE)

We now discuss how to eliminate redundant references to reduce the run-time over-

head of the scheduler. We consider both array and pointer references.

5.4.1 Common References

Common References to Arrays and Fields If an array is read more than once
in the loop body with common subscript expressions, then we say these reads are
common references. Similarly for multiple writes. Clearly, all except one common
reference is redundant. Therefore, the IDG-constructor only needs to record one
reference from a set of common references.

Similarly, if a field of an instance of a structure is read (written) several times in

the loop body, all except one reference is redundant.

Common References to Multiple Arrays and Fields Common references to a
single array or a single field can be generalized to multiple arrays and multiple fields

of the same instance of a structure due to the underlying assumptions that (1) if
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arrays have common references, then they will be aligned and assigned to processors
in the same way, and (2) an entire instance of a structure will be assigned to the same
processor. For example, arrays A and B and fields z and y have common references

in the following loops:

Loop Nest 5.9 Loop Nest 5.10
DO (I:F){ while (...) {
AXI)=... a=...
...=AY (D)) a—zT=...
B(X(I)) =... a—y=...}

...=B(Y)}

Common References under Simultaneous Permutation of Components
Theorem 5.1 (Simultaneous permutation of components)

Common references under simultaneous permutation of components are redundant.

Consider the following loop:
Loop Nest 5.11
DO (I:E){
AXID, YD) =...
.= AU), VD))
BY(I),XI))=...
...=B(V(I),U) }

This theorem says that the references to either A or B, but not both, are redun-

dant.
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5.4.2 Subsumed References

Partial Reference If some components of subscripts are ignored in dependence
analysis, then we call it partial dependence analysis. An array reference with some
components of subscripts being ignored is called a partial reference. The components
used in partial reference and partial dependence analysis are called critical compo-
nents.

It is easy to see that partial dependence analysis is always conservative [113].
This is because considering more components will further differentiate the reference

locations and make dependence less possible. Consider the following loops:

Loop Nest 5.12 " Loop Nest 5.13
DO (: =1,n){ DO (:=1,n){
A(i, B(2)) = ... - AGR) = ...

= A@G,C3H) } = A(2) }

Let the first component of the subscripts of array A be the critical component. After
ignoring the second component, Loop Nest 5.12 becomes Loop Nest 5.13 above. No
loop-carried dependence in Loop Nest 5.13 implies no loop-carried dependence in
Loop Nest 5.12, and loop-independent dependence in Loop Nest 5.13 implies that
loop-independent dependence may exist in Loop Nest 5.12. In fact, there is loop-
independent dependence in Loop Nest 5.12 only when § exists in [1,n] such that

B(i) = C(i).

Subsumed Partial Reference

Theorem 5.2 (Subsumed partial reference)

If the partial references at critical components to array A are subsumed by complete
references of the same symbolic forms to array B, then references to array A are

redundant.
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This is because references to B will cause more conservative dependences than
references to A. Consider the following loop:

Loop Nest 5.14

DO (I:E) {
B(X(I))=...
...=BY(I))
AXD),UI))=...
=AY,V }

By choosing the first component as the critical component of subscripts of array

A, Theorem 5.2 says that references to A are redundant.

Subsumed Pointer Reference To obtain a pointer version of Theorem 5.2, we
need to review some definitions.

A structureis an object composed of a collection of fields. A collection of structures
can be modeled by a directed graph G = (V, E), which is called a structure graph in
[62,63]. Each vertex a in V corresponds to an instance of a structure. We use a to
denote both the vertex and the structure instance represented by a. Each edge in E
from vertex a to vertex b indicates that the structure instance a contains a pointer in
a field to the structure instance b.

A directed graph is rooted at vertex r if there is a path from r to every vertex
in the graph [2]. We assume that the structure graph is rooted. (Otherwise, we just
add a root and some edges to make it rooted.) Vertex a is a dominator of vertex b if

every path from the root to b contains a [2].

Theorem 5.3 (Pointer version of Theorem 5.2)

Let vertex a be a dominator of vertex b in the structure graph. Let z be a field of
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a. If the fields of b are read only when z is read and the fields of b are written only

when z is written, then the references to all fields of b are redundant.

In the following example, if a is a dominator of b in the structure graph, then
Theorem 5.3 says that write references to field y of b is redundant:
Loop Nest 5.15

while (...){
a=...
a—zT=...
a—=b—oy=...}

This theorem can be used to detect that references to foo—rwC—valC and

bar—rwC—valC are redundant in the code in Figure 5.5.

5.5 Applications of the Dynamic Scheduler Gen-
erator

We now demonstrate the effectiveness of our hybrid compiler/run-time scheduling
method by applying it to two realistic application programs. We first define a specific
class of loops, the restricted nonaffine loops, for which the hybrid method is more
suitable because the run-time scheduling overhead for such loops can be reduced to

an insignificant level.

5.5.1 Restricted Nonaffine Loops

We define restricted nonaffine loops to be a class of loops consisting of iterative loops,
and loops with loop-invariant pointers and much smaller IDG-constructors compared

to the loops themselves. Clearly, a much smaller IDG-constructor requires much less
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computation time than the source loop. We now discuss loop-invariant pointers and

iterative loops.

Loop-Invariant Pointers If pointers and indirect array reference locations are
computed before the computation of the loop nest and they do not change during the
computation of the loop nest, then we call them loop-invariant pointers. Otherwise,
they are loop-variant pointers.

Our method is more suitable for loop nests with loop-invariant pointers because
the scheduler only needs to record, but not compute, the reference locations. For
loop nests with loop-variant pointers, recording and computing reference locations
may result in large scheduling overhead. Consider the following loop nest:

Loop Nest 5.16

DO (j =1,n){
A(B(7)) = ---
B(A(j))=..-}

Since the two statements in the loop body are in the same dependent block and
reference locations are determined by the computation of these two statements, the
program slice must contain both statements to compute the reference locations. With
the program slice and calls to recording procedures, the scheduler of Loop Nest 5.16
is shown in Loop Nest 5.17 below, where “array name” and “array index” are used as
parameters to the recording procedure record_dep. Clearly, the scheduling overhead

of this example is higher than computing the loop itself.
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Loop Nest 5.17
DO (j = 1,n){
record_dep(“B”,j,4,’r’) record_dep(“A”, B(j),J, w')
A(B(j5)) = ...
record_dep(“A”, j,4,'r') record_dep(“B”, A(j),J, w')
BAG)) = ... | }

Iterative Loop Nests Consider the following loop nest:

Loop Nest 5.18
DO (i =1,3ter){

Loop Nest £}
If Loop Nest £ only contains loop-invariant pointers, then we call Loop Nest 5.18

an iterative loop nest. That is, data reference locations, and therefore data depen-
dences, in Loop Nest £ are invariant to different iterations of the outer loop. In this
case, we only need to schedule Loop Nest £ once and the same schedule can be used
iter times for the parallel execution of Loop Nest £. Therefore, the overhead of the
scheduler is amortized among those iterations. The scheduler and parallel code of
Loop Nest 5.18 is:

Loop Nest 5.19

scheduler of Loop Nest £
DO (Z = 1,ster) {

parallel code of Loop Nest £ }

5.5.2 Optimizing Data Layout

Our hybrid method is effective not only for detecting parallelism but also for opti-

mizing data layout to reduce communication overhead. This effect is illustrated by
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the fluid dynamics kernel presented in Section 5.5.4 below. For this example, we
compare the communication time associated with two data layouts: one is a regular
block partition, and the other is an irregular data layout obtained by the scheduler.
We find that the irregular data layout results in less communication time, and the
communication time saved is larger than the scheduling overhead. Therefore, the

total execution time is reduced when using the scheduler.

Partitioner If the application is readily parallelizable and the main concern is to
find a good irregular data layout, then the recording procedures in the schedulers
should be modified accordingly. For obtaining a good data layout, it does not matter
whether a reference is either a read or a write. That is, the last parameter v’ or
‘w’ of procedure record_dep can be eliminated. In addition, since all iterations are
readily parallelizable, and the main purpose for constructing an IDG is to detect par-
allelism, an IDG is not necessary for finding a good data layout. Therefore, procedure
record_dep is modified to assign the current iteration and data elements referenced in
the current iteration to processors directly. This modification saves the overhead for
constructing the IDG. Since the IDG-constructor is not a suitable name in this case,
we call it the partitioner. Again, how to.choose a good mapping strategy is beyond
the scope of this thesis.

We now present the two application programs: a circuit simulator and a fluid
dynamics kernel. Both applications are iterative loops with loop-invariant pointers -

and small IDG-constructors.

5.5.3 Circuit Simulator

The first application is a waveform-relaxation circuit simulator [28] developed at
IBM by Shea, Johnson and Zukowski [48,101]. The simulator is a 12,000-line C
program with pointers, where the example program in Figure 5.5 captures major

pointer dependences in the source code. The main concern is to find parallelism out
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of loop iterations. The run-time scheduler is generated by hand-compilation according
to dependence analysis of pointers, program slicing and RRE, and the parallel circuit

simulator is coded by Johnson and Zukowski.

Experimental Result The experimental timing of executing the circuit simulation
loop for a specific circuit is collected as follows, after being normalized according to

transputer timing:
e The sequential loop takes 18000 seconds on one transputer.
o The run-time scheduler takes 112.95 seconds on one transputer.

e The parallel loop takes 99.45 seconds on Victor, the 256-node transputer array
developed at IBM. |

The scheduling overhead is 0.63% (112.95/18000) of the sequential execution time,
and it is 113.6% (112.95/99.45) of the parallel execution time. Note that the over-
head is significantly amplified by parallelization. This is another reason why using
compile-time analysis to reduce the run-time overhead is critical for massively parallel

machines.

5.5.4 Fluid Dynamics Kernel

Source Code The second application is a fluid dynamics kernel taken from a pro-
gram that computes convective fluxes using a method based on Roe’s approximate
Riemann Solver {106,107,27,95,115,114]. We transform the source code from ARF
(ARguably FORTRAN) [27,95,115,114] to C and the result is given in Figure 5.7.
This loop is readily parallelizable because the only loop carried dependences are
caused by lines 36 and 37 with accumulative operations. Therefore, the main concern
is to generate a partitioner which will find a good data layout at run time to reduce

communication overhead.
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for(i=0;i<medsiz;i++) {

¥

1
2

4
5

36
37

ni=indx[0] [i];
n2=indx[1] [i];
for(k=0;k<4;k++) {

q1[kl=qq[k] [n1];

q2[k]=qq[k] [n2]; }
rnx=0.1; rny=0.1; rmag=0.1;
rhol=q1[0]; ul=qi1[1]; vl=qi1[2]; pl=qi[3];
rhor=q2[0]; ur=q2[1]; vr=q2[2]; pr=q2[3];
ubr=rnx*ur+rny*vr; ublsranx*ul+rny*vl;
hr=gammal*pr/(rhor*gml)+(urkur+vr*vr)*0.5;
hl=gammai*pl/(rhol*gmi)+(ul*ul+vl*vl)*0.5; ri2=(rhor/rhol);
rhol2=ri2*rhol; ri2i=1./(r12+1.); ul2=(ri12*ur+ul)*ri21;
vi12=(r12*vr+vl) *r121; ub12=(ri12*ubr+ubl)*ri21; hi12=(r12*hr+hl)*ri21;
c12=(gmi*(h12-(u12¥u12+v12*v12)%0.5)); drho=rhor-rhol;
du=ur-ul; dv=vr-vl; dp=pr-pl; dub=ubr-ubl;
alami=fabs(ub12); alam2=fabs(ubi2+c12); alam3=fabs(ub12-c12);
cvari=drho-dp/(c12¥c12); qspd2=(ul2%ul2+vi2%v12)*0.5;
c1221=1./(2.%c12%c12);
fil=cvari*alami;
£12=(ul2*cvari+rho12*(du-rnx*dub) ) *alami;
£13=(v12*cvari+rhoi12*(dv-rny*dub) ) *alami;
f14=(qspd2*cvari+rho12*(u12*du+vi2+dv-ubi12*dub))*alami;
£21=(dp+rho12+c12*dub)*c1221*alam?2;
£22=£21%(ul2+c12*rnx);
£23=£21*(v12+c12*rny);
£24=£21%(h12+c12%ubl12);
£31=(dp-rho12*c12*dub)*c1221*alam3;
£32=£31%(u12-c12*rnx) ;
£33=£31%(v12-c12*rny);
£34=£31*(h12-c12*ub12) ;
£1x[0]=rmag* (rhor*ubr+rhol*ubl-f11-£21-£31)*0.5;
flx[1]=rmag* (rhor*ur*ubr+prirax+rhol*ul*ubl+pl*rnx-f12-£22-£32)%0.5;
f1x[2]=rmag* (rhor*vr*ubr+pr*rny+rhol*vl*ubl+pl*rny-f13-£23-£33)*0.5;
£1x[3]=rmag* (hr*ubr*rhor+hl*ubl*rhol-f14-£24-£34)*0.5;
for(k=0;k<4;k++) {

res[k] [n1]=res[k] [n1]-flx[k];

res[k] [n2]=res[k] [n2]+f1x[k]; '}

Figure 5.7: Fluid dynamics kernel.
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Partitioner We have implemented a partitioner generator which takes C programs
with indirect array references as input and performs dependence analysis, program
slicing, RRE and statement substitution to generate run-time partitioners.

To generate the partitioner for the fluid dynamics kernel, the compile-time analysis

is as follows:

e Dependence analysis tells us that variables nl and n2, computed in lines 1 and
2, induce indirect array references in lines 4, 5, 36 and 37, and the program slice

affecting indirect array references consists of lines 1 and 2 only.

e RRE detects that references to either gq in lines 4 and 5 or res in lines 36 and 37
are redundant since they are common references. Note that, the first dimension
of gq (or res) is referenced with loop index k; therefore, we only need to record
indirect references to the second dimension of ¢ggq (or res). In addition, since ¢q
(or res) is the only variable to be recorded, parameter “gq” is in fact redundant

for procedure record_dep in this special case.

e Since nl and n2 are used only once for pointer dereferencing in the partitioner,
they should be removed by statement substitution to avoid extra load and

store instructions as discussed before.

To summarize, the partitioner for the fluid dynamics kernel is shown in Loop Nest 5.20.

Loop Nest 5.20

The partitioner for the fluid dynamics kernel:
for (i = 0;i < medsiz;i+ +){
record_dep(indz[0][¢),7); /*4 recording=*/
record_dep(indz[1][z], 2); /%5 recording * [}

Comparing with Hand-Written Partitioner As described before, procedure

record_dep records data elements referenced in the current iteration and decides which
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sequential | sequential | parallel kernel w. | parallel kernel w.

edges kernel | partitioner | irregular partition block partition
131072 8885 541 1392 2456
262144 18013 1001 2552 4360

Table 5.2: Running time in mini seconds of the fluid dynamics kernel on a 32-processor

iPSC/860.

processors those referenced data elements and the current iteration can be mapped
to. In order to compare our compiler-generated partitioner with the hand-coded
partitioner from Joel Saltz et al. [27,95,115,114], we follow their partitioning strategy
in generating code for record_dep. Due to dependence analysis, program slicing, RRE,
statement substitution, and the same partitioning strategy, there is no difference

between these two partitioners.

Comparing with Regular Partitioning Ir order to see that we really need a par-
titioner to reduce communication overhead, instead of partitioning the data regularly,
we run the parallel code with two types of partitioning data. The parallel C code
of the kernel is generated by the compiler designed and implemented by Berryman,
Das, Hiranandani, Mavriplis, Saltz and Wu [27,95,115,114]. In the experiment, we
use a 256 by 256 point mesh (data elements). Two sets of randomly selected edges
(iterations) are used to connect those mesh points: one with 131072 edges and the
other with 262144 edges. And we use block partition as the regular partition strategy.

The parallel code is executed on a 32-processor Intel iPSC/860 parallel machine,
and the sequential kernel and partitioner are executed on a single iPSC/860 node.
The timing of executing sequential and parallel codes for different sizes of input data
with different partitions is described in Table 5.2.

From the timing, we know that, by paying the overhead for obtaining a better

data layout, we can save more communication overhead, i.e. (541 < 2456 — 1392)
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for size 131072 and (1001 < 4360 — 2552) for size 262144. In real fluid dynamics
simulation, the kernel loop will be iterated several times, which makes the scheduling
overhead insignificant and a good data layout more critical.

The scheduling time is 6.1% (541/8885) for size 131072 and 5.6% (1001/18013)
for size 262144 of the sequential execution time. And the scheduling time is 38.9%
(541/1392) for size 131072 and 39.2% (1001/2552) for size 262144 of the parallel

execution time. The overhead is also greatly amplified by parallelization.



Chapter 6

Conclusions

6.1 Summary of Contributions

This thesis has made the following contributions to the field of compiling high-level

languages to massively parallel machines:

1. It presents a new dependence test with two independent contributions. First,
the test includes in the system of dependence inequalities the information arising
from a program’s predicates. Second, it is an improved dependence test for
equations with —1, 0, 1 coefficients. The test is more accurate for testing coupled
array subscripts in statements with and without conditionals than previous

dependence tests.

2. It presents a complete classification of static loop transformations by viewing
the iteration space and statements as distinct dimensions in which code is re-
structured. From the classification, we have a clear picture of the previous

techniques and how they can be extended to detect more parallelism.

3. It provides algorithms to find piecewise affine scheduling, which can detect
more parallelism than unimodular loop transformations {10} including loop in-

terchange, permutation and skewing.
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4. It presents a new hybrid compiler/run-time method for scheduling and load
balancing programs with extensive indirections or pointers. It demonstrates
that compile-time analysis can help to make the run-time scheduling and data

partitioning overhead for restricted nonaffine loops insignificant.

Massively parallel machine technology is the trend for building the fastest ma-
chines. Two software challenges must be overcome to make massively parallel ma-
chines truly usable: large-scale parallelism detection for fully utilizing the large num-
ber of processors, and good data layout for reducing communication overhead. The
new compiler techniques presented in this thesis help to overcome these difficulties
for two important classes of programs: those consisting of affine loops and those

consisting of restricted nonaffine loops.

6.2 Directions for Future Research

The work presented in this thesis can be extended in many directions. We now
describe some suggestions for future research.

Our new techniques are applicable to several well-known applications, e.g. Gauss-
Jordan elimination, dynamic programming, transitive closure, shortest path, circuit
simulation and fluid dynamics. More applications should be tested to see how general
these techniques can be in practice for parallelizing real and complex programs.

For the static scheduler part, more research is necessary to find a general and
efficient subdomain scheduling algorithm. We present an efficient heuristic to find
subdomain schedules when subdomains are given, but we only find a general but
complicated algorithm to obtain both the schedule and the subdomains in the same
time.

For the dynamic scheduler part, more research can be done to reduce further the
run-time scheduling overhead. Two possible directions are as follows:

The first direction is to investigate more types of redundant references for loop
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nests with indirections and pointers. Two types of redundant references discussed in
this thesis are common references and subsumed references. There might be more
types of references that are redundant and therefore can be eliminated from the run-
time scheduler.

The second direction is to parallelize the run-time scheduler. The scheduler pre-
sented in this thesis is sequential. If the scheduler can be parallelized, then the
run-time scheduling overhead can be further reduced and the memory problem can
be circumvented. QOur preliminary study shows that the IDG-constructor can be
parallelized if the source loop only contains loop-invariant pointers (defined in Sec-
tion 5.5.1), and parallel graph partitioning algorithms can be used to partition the
IDG in parallel.
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