Squeezing the Most out of an Algorithm
in Cray Fortran

Jack J. Dongarrcfr and Stanley C. FEisenstatt

Research Report YALEU/DCS/RR-269
May 1983

! Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.

} Department of Computer Science and Research Center for Scientific Computation, Yale
University, P. O. Box 2158, New Haven, CT 06520.

The work presented in this paper was supported in part by the Office of Naval Research under
contract N00014-82-K-0184, by the National Science Foundation under grant MCS-81-04874 and
grant MCS-81-06181, and by the Applied Mathematical Sciences Research Program (KC-04-02)
of the Office of Energy Research of the Department of Energy under contract W-31-109-Eng-38.

Squeezing the Most out of an Algorithm
in Cray Fortran

Jack J. Dongarra!
Mathematics and Computer Science Division
Argonne National Laboratory

Stanley C. Eisenstat!

Department of Computer Science and
Research Center for Scientific Computation
Yale University

Abstract — This paper discusses a technique for achieving super-vector performance on a
Cray in a purely Fortran environment (i.e., without resorting to assembly language). The
technique can be applied to a wide variety of algorithms in linear algebra, and is
beneficial in other architectural settings.

Introduction

There are three basic performance levels on the Cray-1 — scalar, vector, and
super-vector [3]:

Performance Level | Rate of Execution*

Scalar 0-10 MFLOPS
Vector 10-50 MFLOPS
Super-Vector 50-160 MFLOPS

The difference between scalar and vector modes is the use of vector instructions to elim-
inate loop overhead and take full advantage of the pipelined functional units. The
difference between vector and super-vector modes is the use of vector registers to reduce
the number of memory references (and thus avoid letting the one path to/from memory
become a bottleneck).

Typically, programs written in Fortran run at scalar or vector speeds, so that one
must resort to assembly language (or assembly language kernels) to improve

t Work supported in part by the Applied Mathematical Sciences Research Program (KC-04-02) of
the Office of Energy Research of the U. S. Department of Energy under Contract W-31-109-Eng-38.
! Work supported in part by the Office of Naval Research under contract N00014-82-K-0184 and by
the National Science Foundation under grant MCS-81-04874.

*MFLOPS is an acronym for Million FLoating-point OPerations (additions or multiplications) per
Second.

-9-

performance. In this paper, we discuss a technique for attaining super-vector speeds

from Fortran.

The Ideal Setting [3]

Most algorithms in linear algebra are easily vectorized. For example, consider the

following subroutine which adds the product of a matrix and a vector to another vector:

SUBROUTINE SMXPY (N1,Y,N2,LDM,X,M)
REAL Y(#), X(*), M(LDM,#)
DO 20 J=1,N2
DO 10 I=1,NI1
Y(I) = Y(I) + X(J)*M(L,J)

10 CONTINUE
20 CONTINUE
RETURN
END

The innermost loop is a SAXPY [4] (adding a multiple of one vector to another) and
would be detected by a good vectorizing compiler. Thus, the Cray CFT Fortran com-
piler generates vector code of the general form:

Load vector Y

Load scalar X(J)

Load vector M(%,J)

Multiply scalar X(J) times vector M(*,J)
Add result to vector Y

Store result in'Y

Note that there are three memory references for each two floating-point operations.
Since there is only one path to/from memory and the memory bandwidth is 80 million
words per second, the maximum rate of execution is ~53 MFLOPS (less than 50
MFLOPS when vector startup time is taken into account) — vector performance.

Thus to attain super-vector performance, it is necessary to expand the scope of the
vectorizing process to more than just simple vector operations. In this case, a closer
inspection reveals that the vector Y is stored and then reloaded in successive SAXPY's.
If instead we accumulate Y in a vector register (up to 64 words at a time) until all of the
columns of M have been processed, we can avoid two of the three memory references in
the innermost loop. The maximum rate of execution is then 160 MFLOPS (~147
MFLOPS when vector startup time is taken into account) — super-vector performance.

Reality

The Cray CFT compiler does not detect the fact that the result can be accumu-
lated in a register (and not stored between successive vector operations). Thus, the rate
of execution is limited to vector speeds.

But if we unroll [1] the outer loop (in this case to a depth of four) and insert
parentheses to force the arithmetic operations to be performed in the most efficient
order, then the innermost loop becomes:

DO 10 I =1, NI
Y(1) = (Y(D)) + X(J-3)*M(1,J-3)) + X(J-2)+M(L,J-2))
$ + X(I-1)*M(L,J-1)) + X(J) *M(LJ)
10 CONTINUE

Now the code generated by CFT has siz memory references for each eight floating-point
operations. Thus the maximum rate of execution is ~100 MFLOPS — super-vector per-
formance from Fortran. The complete subroutine SMXPY4 is given in Appendix I.

Generalizations

With this approach we can develop quite a collection of procedures from linear alge-
bra. The key idea is to use two kernels — SMXPY and SXMPY (add a vector times a
matrix to another vector; see Appendix II) — to do the bulk of the work. Since both
kernels can be unrolled* to give super-vector performance, the procedures themselves are
capable of super-vector performance.

Many processes which involve elementary transformations can be described in these
terms, e.g., matrix multiplication, Cholesky decomposition, and LU factorization (see
Appendix III and [3, 5]). However, the formulation is often not the ‘“‘natural’” one, which
may be based on outer-products of vectors or accumulating variable-length vectors, nei-

ther of which can be super-vectorized in Fortran.

Tables 1-3 below summarize the results obtained for these procedures on a Cray 1-S
(as well as on the new Cray 1-M! and Cray X-MP*) when the subroutines SMXPY and
SXMPY were unrolled to the specified depth. All runs used the CFT 1.11 Fortran com-
piler.

* Although there are only eight vector registers, the number required is largely independent of the
depth of unrolling.

t The Cray 1-M is essentially a Cray 1-S with “slow” memory. Its is faster in these tests because of
a chaining anomaly.

! The Cray X-MP is a multiprocessor with a cycle time of 9.5 ns (vs. 12.5 ns for the Cray 1-S) and
three paths to/from memory. The timings were obtained using only one processor.

-4-

Table 1: 300 X. 300 Matrix Multiplication

Unrolled MFLOPS
Depth Cray 1-M | Cray 1-S | Cray X-MP
1 39 40 106
2 60 53 151
4 83 72 161
8 101 86 170
16 111 96 177

Table 2: 300 X 300 Cholesky Decomposition

Unrolled MFLOPS
Depth Cray 1-M | Cray 1-S | Cray X-MP
1 31 33 68
2 48 45 99
4 67 60 118
8 81 70 131
16 86 78 139

Table 3a: 300 X 300 LU Decomposition with Pivoting

Unrolled MFLOPS
Depth Cray 1-M | Cray 1-S | Cray X-MP
1 28 29 56
2 42 39 78
4 56 52 93
8 66 60 103
16 69 66 108

-5-

Table 8b: 300 X 300 LU Decomposition with Pivoting
(Using an Assembly Language Implementation of ISAMAX*)

Unrolled MFLOPS
Depth Cray 1-M | Cray 1-S | Cray X-MP
1 30 32 62
2 46 43 96
4 64 59 117
8 78 68 129
16 83 76 136

By contrast, 30 MFLOPS is often cited as a ‘‘good rate for Fortran” [2] and 100
MFLOPS as a “good rate for CAL (Cray Assembly Language)” [2] (e.g., Fong and Jor-
dan (3] report 107 MFLOPS for an assembly language implementation of LU decomposi-
tion with pivoting).

Conclusion

We have described a technique that can produce significant gains in execution
speed on the Cray-1. Moreover, to the extent that this approach reduces loop overhead
and takes advantage of segmented functional units, it will be effective on more conven-
tional computers as well as on other “super-computer” architectures. And since optim-
ized assembly language implementations of the SMXPY and SXMPY kernels are easy to
code (as much so as any kernel) and frequently available, one can get most of the advan-

tages of assembly language while programming in Fortran.

ACKNOWLEDGMENTS

We would like to thank the National Magnetic Fusion Energy Computer Center for
providing computer time to carry out some of the experiments, and Cray Research for
their cooperation.

* The search for the maximum element in the pivot column (ISAMAX [4]) does not vectorize and
thus limits performance. These times were obtained using an assembly language implementation of

ISAMAX.

REFERENCES

[1] J. J. Dongarra and A. R. Hinds, “Unrolling loops in Fortran,” Software—Practice
and Ezperience 9 (1979), 219-229.

[2] L S. Duff and J. K. Reid, Ezperience of Sparse Matriz Codes on the Cray-1, Report
CSS-116, Computer Science and Systems Division, AERE Harwell, October 1981.

[38] Kirby Fong and Thomas L. Jordan, Some Linear Algebra Algorithms and Tkesr
Performance on the CRAY-1, Los Alamos Scientific Laboratory, UC-32, June 1977.

[4] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic Linear Algebra Subpro-
grams for Fortran Usage,” ACM Transactions on Mathematical Software 5 (1979),
308-371.

[5] D. A. Orbits and D. A. Calahan, Data Flow Considerations in Implementing a Full
Matriz Solver with Backing Store on the Cray-1, Report #98, Systems Engineering
Laboratory, University of Michigan, September 1976.

APPENDIX I

aaogaaaoaoaaaooaaaoaaaoaaoaOnOQaQaan

(e XeXe]

ann

SUBROUTINE SMXPY4 (N1,Y,N2,LDM,X,M)
REAL Y(*), X(#), M(LDM,*)

PURPOSE:
Multiply matrix M times vector X and add the result to vector Y.

PARAMETERS:

N1 INTEGER, number of elements in vector Y, and number of rows in
matrix M

¥ REAL(N1), vector of length N1 to which 1s added the product M#X

N2 INTEGER, number of elements in vector X, and number of columns
in matrix M

LDM INTEGER, leading dimension of array M
X REAL(N2), vector of length N2
M REAL(LDM,N2), matrix of Ni rows and N2 columns

Cleanup odd vector

J = MOD(N2,2)
IF (J .GE. 1) THEN
DO 10 I =1, Nt
Y(I) = (Y(I)) + X(J3)*M(I,J)
10 CONTINUE
ENDIF

Cleanup odd group of two vectors

J = MOD(N2,4)
IF (J .GE. 2) THEN

DO 20 I =1, N1
(1@ = (Y1)
+ X(J-1)*M(I,J-1)) + X(I)*M(I,J)
20 CONTINUE
ENDIF

Main loop - groups of four vectors

JMIN = J+4
DO 40 J = JMIN, N2, 4
DO 30 I =1, N1

Y(I) = ((C (Y1)
+ X(J-8)#M(I,J-8)) + X(J-2)*M(I,J-2))
$ + X(I-1)*M(I,J-1)) + X(J) *M(I,d)
30 CONTINUE
40 CONTINUE
RETURN

END

APPENDIX II

aaaaaaaoaaQQQOaOOQOQQaQQON

SUBROUTINE SMXPY (N1,Y,N2,LDM,X,M)
REAL Y(#), X(*), M(LDM,*)

PURPOSE:
Multiply matrix M times vector X and add the result to vector Y.

PARAMETERS:

N1 INTEGER, number of elements in vector Y, and number of rows in
matrix M

Y REAL(N1), vector of length N1 to which is added the product M*X

N2 INTEGER, number of elements in vector X, and number of columns
in matrix M

LDM INTEGER, leading dimension of array M
X REAL(N2), vector of length N2
M REAL(LDM,N2), matrix of N1 rows and N2 columns

DO 20 J =1, N2
DO 10 I =1, N1
Y(I) = (Y(I)) + X(J)*M(I,J)
10 CONTINUE
20 CONTINUE
RETURN
END

[2Ee NN e Ne oo N e Ne o N e o N oo N e N2 K2 Ne N2 X2 K2 K2 N2 X2 X2 X2 K2 K2

SUBROUTINE SXMPY (N1,LDY,Y,N2,LDX,X,LDM,M)
REAL Y(LDY,*), X(LDX,*), M(LDM,*)

PURPOSE:
Multiply row vector X times matrix M and add the result to row
vector Y.

PARAMETERS:

N1 INTEGER, number of columns in row vector Y, and number of
columns in matrix M

LDY INTEGER, leading dimension of array Y

Y REAL(LDY,N1), row vector of length Ni to which 1s added the
product X*M

N2 INTEGER, number of columns in row vector X, and number of
rows in matrix M

LDX INTEGER, leading dimension of array X

X REAL(LDX,N2), row vector of length N2

LDM INTEGER, leading dimension of array M

M REAL(LDM,N1), matrix of N2 rows and N1 columns

DO 20 J =1, N2
DO 10 I =1, N1
Y(1,1) = (Y(1,I)) + X(1,J)*M(J,I)
10 CONTINUE
20 CONTINUE

RETURN
END

APPENDIX III

SUBROUTINE MM (A,LDA,N1,N3,B,LDB,N2,C,LDC) SUBROUTINE LLT (A,LDA,N,ROVI,INFO)
REAL A(LDA,*), B(LDB,*), C(LDC,*) REAL A(LDA,*), ROWI(%), T

PURPOSE:
Multiply matrix B times matrix C and store the result in matrix A.

PURPOSE: t
Form the Cholesky factorization A = L#L of a symmetric positive
definite matrix A with factor L overwriting A.
PARAMETERS :
PARAMETERS:
A REAL(LDA,N3), matrix of N1 rows and N3 columns
A REAL(LDA,N), matrix to be decomposed; only the lower triangle
LDA INTEGER, leading dimension of array A need be supplied, the upper triangle is not referenced

N1 INTEGER, number of rows in matrices A and B LDA INTEGER, leading dimension of array A

N3 INTEGER, number of columns in matrices A and C N INTEGER, number of rows and columns in the matrix A

B REAL(LDB,N2), matrix of N1 rows and N2 columns ROWI REAL(N), work array

LDB INTEGER, leading dimension of array B INFO INTEGER, = O for normal return
I 1f I-th leading minor 1s not positive definite

N2 INTEGER, number of columns in matrix B, and number of rows in

(2 X222 N2 N2 N2 N2 N2 N2E2 22Kz N2 2 N2 Ee N2 N2 X 2]

(2N e NN e s oo N oo N o N N o N o N e N2 N2 K2 N2 N2 X2 K2 K2 X2 X2 X2 X2 K2]

matrix C
C REAL(LDC,N3), matrix of N2 rows and N3 columns INFO = 0
D030 I=1,N
LDC INTEGER, leading dimension of array C C
[~ Subtract multiples of preceding columns from I-th column of A
C
DO 10 J =1, I-1
DO 20 J =1, N3 ROWI(J) = -A(I,J)
DO 10 I =1, N1 10 CONTINUE
A(I,J) =0 CALL SMXPY (N-I+1,A(I,I),I-1,LDA,ROWI,A(I,1))
10 CONTINUE c
CALL SMXPY (N2,A(1,J),N1,LDB,C(1,J),B) c Test for non-positive definite leading minor
20 CONTINUE c
C IF (A(I,I) .LE. 0) THEN
RETURN INFO = I
END GO TO 40
ENDIF
c
c Form I-th column of L
c
T = 1/SQRT(A(I.I))
A(LLI) =T
DO 20 J = I+1, N
A(J,I) = T#A(J,1)
20 CONTINUE
80 CONTINUE
c
40 RETURN

END

aaaaaaaaaaaaaaQaoaaaaaoaqn

aaa a0

aoa

Qan

SUBROUTINE LU (A,LDA,N,IPVT,INFQ)
INTEGER IPVT(*)
REAL A(LDA,*), T

PURPOSE:

Form the LU factorization of A, where L is lower triangular and U
is unit upper triangular, with the factors L and U overwriting A.

PARAMETERS:

A REAL(LDA,N), matrix to be factored

LDA INTEGER, leading dimension of the array A

N INTEGER, number of rows and columns in the matrix A
IPVT INTEGER(N), sequence of pivot rows

INFO INTEGER, 0 normal return.

= J if L(J,J) 1s zero (whence A is singular)

10

20

INFO = 0
DO 40J =1, N

Form J-th column of L

CALL SMXPY (N-J+1,A(J,J),J-1,LDA,A(1,J),A(J,1))
Search for pivot

T

ABS(A(J,))
J

K
DO 10 I = J+1, N
IF (ABS(A(I,J)) .GT. T) THEN
T = ABS(A(I,J)))
K=1I
END IF
CONTINUE
IPVT(J) = K

Test for zero pivot

IF (T .EQ. 0) THEN

INFO = J
GO TO &0
ENDIF

Interchange rows

DO20I =1, N

T = A(J,I)

A(J,I) = A(K,I)

A(K,I) =
CONTINUE

aoa

Form J-th row of U

A(J)) = 1/AQ3.0)
CALL SXMPY (N-J,LDA,A(J,J+1),J-1,LDA,A(J,1),LDA,A(1,J+1))
T = -A(J,J)
DO 30 I =J+1, N
A(J,I) = T#A(J,I)
30 CONTINUE
40 CONTINUE

80 RETURN
END

APPENDIX IV

aaaaoaaoaoaaoaaoaaa

SUBROUTINE LLTS (A,LDA,N,X,B)
REAL A(LDA,*), X(*), B(*), XX

PURPOSE:

Solve the symmetric positive definite system Ax =
Cholesky factorization of A (as computed in LLT).

ADDITIONAL PARAMETERS (NOT PARAMETERS OF LLT):

X REAL(N), solution of linear system
B REAL(N), right-hand-side of linear system

b given the

10

20
30

40
50

DO 10 K
X(K)
CONTINUE

1, N
B(K)

Do so K = N
= X(K)*A(K K)
DO 20 I = K+1, N
X(I) = X(I) - A(IK)*XK
CONTINUE
X(K) = XK
CONTINUE

A(K,I)*XK
CONTINUE
X(K) =

CONTINUE

RETURN
END

aaaoaaaaoaoaaaaa

SUBROUTINE LUS (A,LDA,N,IPVT,X,B)

INTEGER IPVT (*)

REAL A(LDA,*), X(#), B(¥), XX
PURPOSE:

Solve the linear system Ax

computed in LU).
ADDITIONAL PARAMETERS (NOT PARAMETERS OF LU):

X REAL(N), solution of linear system

B REAL(N), right-hand-side of linear system

DO 10K =1, N
X(K) = B(K)
10 CONTINUE
DO 20K =1, N
= IPVT(K)
XX = X(L)
X(L) = X(x)
X(K) = XX
20 CONTINUE

DO40K =1, N
XK = X(K)*A(K,K)
DO 30 I = K+1, N
X(I) = X(I) - A(I.K)*XK
30 CONTINUE
X(K) =
40 CONTINUE

A(I,K)#XK
&0 CONTINUE
80 CONTINUE

RETURN
END

= b given the LU factorization of A (as

