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Abstract

We describe a simple, practical algorithmic framework for constrained nonlinear optimization.
Any algorithm that may be expressed in this framework, and most existing algorithms can, will
converge to a local minimum from an arbitrary feasible starting point. The framework is
particularly suitable for the analysis and development of algorithms for large-scale optimization,
since it permits radical changes in the active set to occur at each step and can be implemented in
terms of quantities that are easily computed.




1. Introduction

Consider the canonical constrained nonlinear programming problem:

CNLP Minimize: fi(z) (1)
Subject to flz) =0 (2)
I<z<wu 3)

where f: R" — R, f: R® — R™ and 4, | € R" are given vectors.

A feasible direction method for CNLP is one which starts at a feasible point z, and produces a
set of feasible directions, p;, and feasible points, z,, with z, +1 = T+ pya,) where a, is the
steplength at iteration k and p,(a,) is referred to as the kth step. The vector function p: R* —

R" is also referred to as a “search direction” and @ > 0 is the stepsize along this direction. The

primary reason for defining p as a function of a is because our framework encompasses
algorithms for which p(a) is a curved arc along some nonlinear constraint surface as in
Generalized Reduced Gradient (GRG) algorithms [17] or p(a) is a piecewise linear/curved arc in
the case of projection methods [1, 2]. For the purposes of this paper we require p(a) to be a
continuous function of a for @ > 0. A very common situation is the case where p(a) is linear,
i.c., pla) = ad and d is a search direction computed at z.

Since the inception of linear programming over 35 years ago, numerous feasible direction
methods have been proposed for CNLP (see, for example, Fletcher (10, 11], Zoutendijk [28] and
Polak [22] for details and extensive referemces). Still, as yet there is no simple, convergent
framework for such methods. It is true that many convergence theorems have been published,
each of which imposes a variety of conditions, and with the possible exception of a few [3, 11, 16]
are all impractical to test in computer implementations, especially for large-scale programming.

Unfortunately, it is difficult to extract the essential ingredients for a convergence theorem by
studying the myriad of conditions and theorems that have been proposed for various algorithms
in the literature. For instance, nothing as simple or elegant as the Goldstein-Armijo framework
for unconstrained problems (see Dennis and Schnabel [9] or Ortega and Rheinboldt [21] for
example) exists for CNLP. The purpose of this paper is to take a step towards such a simple
framework by decomposing the convergence problem into manageable components. We provide a
framework that is sufficiently general to encompass almost all existing descent algorithms for
CNLP, ranging from projection to active-set methods. Furthermore, we provide a set of




conditions that are sufficient to guarantee convergence. These conditions help focus attention on
the aspects of an algorithm for CNLP that are crucial to convergence. Once one realizes that
they need to be satisfied, they guide both the development of algorithms and convergence proofs.

2. Background and Notation

Before describing our framework we need to present some notation.

Definition 2.1 (Active Set, A(z))

At a given point z, we define the active set A(z), as the sct of equality constraints (2) taken
together with all inequality constraints (3) that hold as equations at z.

In what follows we will need to work with a restriction of CNLP to some given active set. We
use R(A) to denote the restriction of CNLP with constraints i € 4 treated as equalities and all
remaining inequality constraints ignored. The gradient of f{z) is denoted by g(z).

Definition 2.2 (Critical Point) |
A critical point of the problem R(4) is onc that satisfics first order optimality conditions.

Definition 2.3 (Optimal Point)
An optimal point ¢s a critical point of CNLP.

3. A New, Globally-Convergent Framework

Our framework involves two types of feasible steps:

1. restricted steps, which are defined as feasible descent steps restricted to lie in a
manifold containing the current active set, and

2. relaxing steps, which are defined as feasible descent steps along which one or more
constraints may be relaxed.

Definition 3.1 (Gradient-related steps)
A sequence of relaxing descent steps p (a), at points {z,} is said to be gradient-related i f

along any convergent subsequence {z,} — Z , with Z not a critical point of CNLP, we have
_ (T,

; T
{‘*‘Plun [g(z,,)] P, < 0.



A sequence of restricted descent steps {p,’:(a)}, computed at points {z,}, is said to be
gradient-related if, along any convergent subsquence {z,} = T, of points restricted to the
active set A, with T not a critical posnt for the restricted problem R(A), we have

lim [¢oz, )]Tp;: <0

where p* is a direction that is feasible and lies on the mani fold generated by the constrasnts
in A.

One way of obtaining gradient-related relaxing steps is to project the negative gradients onto
the feasible region (see, for example, Bertsekas 1], Goldstein [15], Levitin and Polyak [18]).
Another way is to move-off a single constraint with a negative multiplier estimate (see, for
example, Fletcher [11] and Gill and Murray [13]).

To compute gradient related restricted steps one may use, for example, a restriction of the
negative gradient to the active set as is done in Rosen’s projected gradient method [24] or Wolfe's
reduced gradient method [13] or the variable reduction method of McCormick [20].

Essentially, the motivation for defining relaxing and restricted steps is that any method that
generates a sequence of feasible points uses some combination of such steps.

Definition 3.2 (Acceptable points)
Let p(a) be a descent step computed at a feasible point, z. We refer to a point
gzt = z + p(a) as acceptable if z* is feasible and the step p(a), @ > 0 satisfics either
(a) both Goldstein-Armijo conditions

(GAL): f@*) < fiz) + (=) Tola) ; vE (0, 1)

(GA2): g(z*)Tp(a) > Po(z)Tp(a) ; BE(1 1)
or

() a =G and z* satisfics GA1 only; where @ > 0is the mazimum dsistance
along p(a) before any additional constrasnts become active.



Remark 3.1

For the purposes of our main global convergence theorem, GA2 may be replaced by any of the
standard conditions (see Fletcher [11], for example) that bound the stepsize away from zero ai
noncritical points. Both GAl and GA2 may also be replaced by an Armijo rule [21] or modified
Armijo rule [1] if a backtracking linesearch is used.

We are now in a position to describe our framework.
Algorithmic Framework #1
START with z, feasible
(Major Iteration; Index == k)
IF  optimal at z, THEN exit.
(Minor Iteration)

ELSE compute a relaxing step p(a,)
and an acceptable point z} = z, + p(a,),

sety*—z:;

WHILE a constraint relaxation condition is not satisfied at g,
compute a restricted step p(a)
and an acceptable point y* = y + p(a),

set y = y* and repeat.

ELSE ke~k+1
zZ, =y

start a new major iteration.



Schematically, one may represent a major iteration as is shown in Figure 3.1 . That is, an
acceptable relaxation step followed (possibly) by a sequence of acceptable restricted steps.

Rdaxina l <— Qes'l‘ﬁ;fd' Steps —>
Step .

b
da '3‘ Y3« 31.

/ g

Figure 3.1 A Major Iteration

Remark 3.2

There is no limit to the number of constraints that may be dropped or added mspectiwl&, in
any single step. For example, each step might involve a projection in which many constraints
could be added (in the case of restricted steps) or dropped (in the case of relaxing steps). A
description of how this may be achieved is given in Section 5. ‘

The only aspect of this framework that has been left (deliberately) vague is the “constraint
relaxation condition”. This is always the aspect most crucial to convergence, since, as a simple
example due to Wolfe [26] shows, without imposing any conditions on relaxing steps, feasible
direction methods may fail to converge. The following discussion illuminates an important
component in the decision to drop constraints.

Definition 3.3 (Manifold Minimization Principle)

Let z, be an infinite sequence of major iterates on some given active set A. This sequence
is said to satisfy the manifold minimisation principle i f cvery limit posnt of the sequence
is a critical point of the restricted problem R(4).

It is clear that any convergent algorithm in our framework must satisfy the manifold
minimisation principle.



With this in mind we make the following definition.

Definition 3.4 (Acceptable constraint relaxation conditions)

A relazation condition is said to be acceptable if the resulting sequence of magor iterates
generated by our framework satisfics the mani fold minimization principle.

A number of simple, practical rules satisfy the manifold minimization condition. We give two
simple examples below which are by no means exhaustive.
(i) Relax constraints only when
| current reduced gradient || < #, || ozg) | wherey, —0.

(ii) Relax constraints only after a step that satisfies both GA1 and GA2
(or their equivalent) has been taken.
We refer to rule (i) as the “forcing sequence strategy®. It was originally proposed by
Dembo (4] and has been implemented in the Primal Truncated Newton algorithm in [5] and in
the PROBE algorithm described in Dembo and Tulowitzki [6].

Rule (ii) has to our knowledge, not been proposed elsewhere and is extremely easy to
implement. We refer to it as the “one sufficiently-long step on a manifold® rule.

Both these conditions impose very weak requirements on the amount of work that needs to be
done on an active set before allowing constraints to be relaxed. It is relatively straightforward to
show that rule (i) satisfies the manifold minimization principle. Proposition 3.1 shows that rule
(ii) does as well.

Proposition 3.1 (One sufficiently-long minor step = manifold minimization principle)

Relazing constraints only afier at least one step satisfying both GAl and GA2 (or their
equivalent) has been taken will yicld an algorithm satisfying the mans fold minimization

principle.

Proof:

Let {z,} — z* be convergent subsequence of major iterates that lie on some (constant) active
set 4. Let y, be a minor iterate immediately preceding z;. Then, since GAl is satisfied by every
minor iterate (i.e., the stepsize is acceptable),

flz) < fly) + 'ﬂ(ﬂg)T?g



Now since f is bounded below, this implies that f{z,) — f(z*) and hence

w(v,,)Tpﬁ —0.

Now assume that z* is not a critical point of the restricted problem R(A) which, in
particular, implies that {lg(y,)ll 2 M > 0 for k sufficiently large. Also

. - AN . e«
&2 lz, - v, bl_{z lp;ll == § & 0 (by GA2, since this is a “long” step)

which implies that, for k sufficiently large, using the gradient-related property of o’

dv) Trf < -slew)ll lpfll < -pMs < 0
for some p > 0, which is a contradiction.

Q.E.D.

Remark 3.3

This lemma remains true as long as there is one sufficiently-long minor step prior to z,. To
see this, let y, be the starting point for the long step and y} the ending point. Let all the steps
from y} to z, be “short” ones. -

: . . = L 1t ) .
Then l‘_‘:o lz, - v l‘_ﬁ llyg - vl 70
Furthermore (z, - y,) is gradient-related for sufficiently large k.

This shows that, provided f{z,) < Ay,) for all k, taking a few additional short minor steps
does not affect the manifold minimization properties of the “one long step on a manifold” rule.

Definition 3.5 (Global convergence)

Within the context of this paper, an algorithm is said to be globally convergent if, given an
arbitrary feasible point z, it generates a sequence of points {z,} converging to a eritical point
of CNLP.

The manifold minimization principle is a necessary condition for global convergence but
it is not sufficient as the following example shows.



Consider the problem:

minimize 1 /2[312 + zzz + (z4 - 1)3

subject to 3120,2220,2320.

Now consider an algorithm that generates the following sequence of points:

z, =) [Ireduced gradient||
(1,0,0) 1/2 +1/2 1
(0, 1/2, 0) 1/8 + 1/2 1/2
(1/4, 0, 0) 1/32 + 1/2 1/4
(0, 1/8, 0) | 1/128 + 1/2 1/8
(o, (;, 0) 1/2 .o
(Not optimal!)

Note that it is easy to show that this algorithm drops comstraints according to a forcing
sequence rule (i) (page 7). Also, the subsequences restricted to the active sets A, (defined by
z, = 73 == 0) and 4, (defined by z, = z, == 0) converge to critical points on these active sets
so that the manifold minimization principle is satisfied (i.e., the constraint dropping rule is
acceptable). What causes this algorithm to fail is the fact that the search directions that are
generated are not gradient-related.

As we will see later in this paper, one requirement for convergence, in addition to an acceptable
relaxing rule, for problems such as the above example with “box constraints”, is that the search
be made along projected gradient directions.

Wolfe (26] gives an example of an algorithm that uses projected-gradient directions on a box-
constrained problem but fails to converge. The reason his example fails is simply that the
constraint relaxation rule that is used is not acceptable since it does not satisfy the manifold
minimization principle.

What then might prevent global convergence when both gradient-related directions, acceptable
steps and acceptable relaxing rules are utilized? For one thing, these requirements place no
restrictions other than acceptability on the relaxing steps. It is reasonable to require that these
steps be “sufficiently-long”, especially in the neighborhood of nonoptimal critical points. This is
because acceptable relaxing rules will force all convergent subsequences to converge to critical
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points for some restricted problem. We then need something that prevents us from being trapped
in the neighborhood of nonoptimal critical points. This motivates the following definition.

Let 2} = z, + p,(a,) where [|p,|| = a, .

Definition 3.8 (Sufficiently-long relaxing steps)

A sequence of relazing steps is said to be sufficiently-long if for every subsequence {zk}
converging to ¢ nonoptimal critical point, Z, of some restricted problem,

H <+ - = . .
z,.,-lrlm "“’k‘ z";“ s,.,-.lm a".‘ # 0

There are a number of assumptions and conditions that are easy to implement, each of which
guarantees sufficiently-long relaxing steps. They are presented and analyzed in Section 4.

In summary, we have identified three important requirements for global
convergence:

1. gradient-related restricted and relaxing directions;
2. a relaxation rule that satisfies the manifold minimisation principle; and

3. sufficiently-long relaxing steps in the vicinity of nono;mmsl critical
points.

It is fairly straightforward to see why these three conditions are sufficient for global
convergence.

The manifold minimization condition ensures that all cluster points of major iterates are
critical for some restricted problem R(4). Gradient-related directions and an acceptable relaxing
rule guarantee that in a neighborhood of nonoptimal critical points, for some restricted problem,
constraints are dropped each time a relaxing step is taken. Sufficiently-long relaxing steps then
ensure that one eventually leaves the neighborhood of any nonoptimal critical point.

This is formalized in the Theorem below.

Theorem 3.1 (Global Convergence)

Suppose f(z) is continuously differentiable and bounded below and that g(z) is Lipschitz
continuous on the feasible region of CNLP. Then any limit point of an algorithm con forming
to our framework, using gradient-related directions, acceptable relazation tests and sufficiently-
long relazing steps is optimal.
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Proof:

Since, by assumption, the manifold minimization condition is satisfied, it suffices to examine an
infinite subsequence {z,} of relaxing steps.
Let zt denote the point reached after a relaxation step has been taken, that is

32' =z, + P],(ag) ’ “Pk“ =a,.

Since the steps are always acceptable and in minor iterations the objective function is
nonincreasing,

ﬂzk.ﬂ) < ﬂzz) < Azg)""fd’k)-r?g(ﬂkL

Let z* be a limit point of the algorithm. Since f{z) is monotonically decreasing and bounded
below, it approaches a limit point which must be f{z*). Now assume that z* is not an
optimal (critical) point of CNLP.

Then:

1. 3 feasible, gradient-related descent steps at z* ;

2. near z* an acceptable relaxation test will force the algorithm to take a relaxing step;
3. long relaxing steps ﬁ.i_ig a,=§ > 0 (see Definition 3.6);

4. gradient-related steps = for k sufficiently large, ’kTPI: < -pa, for some p > 0;

= flz,,) < Az)-+p
= klim flz) = -0
which contradicts the fact that fis bounded below.

Q.E.D.
Remark 3.4
The proof does not require the Lipschitz assumption. However, it might be difficult to show
that steps generated by a particular algorithm are gradient-related if the gradients are not
Lipschitz.

The beauty of Theorem 3.1 is that it decomposes the convergence problem into three
manageable parts, namely, gradient relatedness, manifold minimization and sufficiently-long
relaxing steps. Its practical value, however, hinges on the ease with which one can compute
quantities which ensure that these three assumptions hold.

We have already described some simple relaxing rules that guarantee manifold minimization.
Gradient-relatedness is a condition that is required in the Goldstein-Armijo framework for
unconstrained optimization in order to prove that ¢(z,) — 0. We therefore refer readers to
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discussions on this issue in Fletcher [11] and Dennis and Schnabel [9]. We have shown however
that here it plays an additional role, namely, it forces constraints to be dropped in a
neighborhood of a nonoptimal critical point. It only remains to be shown how the “long-relaxing
step” condition may be satisfied. Doing so is instructive in that it shows the precise role played
by certain assumptions in the various global convergence results in the literature.

4. Conditions that guarantee sufficiently-long relaxing steps

There are many ways to ensure sufficiently long relaxing steps. We discuss four methods that
have been used widely in the literature.

1. Nondegeneracy, that is, at every critical point on some active set, multipliers
corresponding to active inequality constraints are strictly positive (i.e., strict
complementarity) ;

2. Use of a relaxing step that drops only from among those constraints whose
multiplier estimates are less than some fixed fraction of the most negatwe
multiplier (a particular case of this where a single constraint is dropped is
described in Byrd and Schultz [3], Gill and Murray [13], Fletcher [11]; an example of
the use of this rule is given in Dembo [8]) ;

3. Use of a projected gradient direction in the presence of constraints that are mutually
orthogonal (see for example Bertsekas [1, 2]) ;

4. Use of e-active constraint sets [2, 16, 22, 28] .
Lemma 4.1 and Proposition 4.1 below show why nondegeneracy implies sufficiently-long
relaxing steps.

Lemma 4.1 (The active set settles down on nondegenerate problems)

Assume z, — z*, a nondegencrate solution of some restricted equality-constrained problem
with constraints in A(z,). Then there czists a k such that for all k > k,, A(z,) = A(z?).

Proof:

Consider a subsequence along which A(z,) is constant. Such a subsequence exists because t.heA

number of possible active constraints is finite. Also, because the manifold minimization condition
is satisfied, z, — z* where z* is a critical point of the restricted problem R(A(z,)).

It is clear that A(z,) C A(z*). Furthermore, by the manifold minimization principle, z* is a
critical point of the problem R(4(z,)). Hence the constraints in A(z*)\A(z,) are redundant and
consequently have zero multipliers. By the nondegeneracy assumption this implies A(z*)\A(z,) is
empty and consequently A(z*) = A(z,).
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Now assume that the active set never settles down. This implies that there are at least two
active sets, 4, and 4,, that recur infinitely often. But, by the above argument, 4 1 = A(z*) and
Ay = A(z*)for all k > k). Thus A, = A, which concludes the proof.

Q.E.D.

Proposition 4.1 (Nondegeneracy = sufficiently long relaxing steps)

Assume z, converges to some critical point, z*, on some active sct such that z* is not a
first-order minimum of CNLP. Let p,(a) be an unrestricted direction with leila |l =a, .
Then

lim |fzt-z,) = lim «a 0.
{:,}-.s’u k b" {5;)—2* k "

Proof:

By examining a subsequence, if necessary, there are two possible situations:

1. GA1 and GA? are satisfied infinitely often, or
2. GAl is satisfied and a, == @ (we move to the nearest constraint along p;) infinitely
often.
If condition (1.) is true then g(zk)Tpk — 0 by the standard argument used to show convergence
for unconstrained optimization [11]. This implies that lo(z)ll — O since p, is gradient-related.
Hence z* is a local minimum, which contradicts the assumption on z*.

If condition (2.) is true we show by contradiction that a ad! S

Suppose in this case that o) = nzz - z;/l = 0. Now since a g = O, the active set changes in
going from z, to z}, that is A(z,) # A(z}). In particular, A(z}) contains at least one constraint
not in 4(z;). But since z} — z* (by assumption), A(z}) C A(z*) = A(z,) for k sufficiently
large, which is a contradiction.

Q.ED.

It is also possible to ensure sufficiently-long relaxing steps by specifying which constraints are
to be dropped. This is the essential purpose of the commonly-stated rule “drop the constraint
with the most negative multiplier estimate®. We show below that this is a special case of
a more general rule that permits more than one constraint to be dropped.

Suppose that in addition to the sequence of major iterates, {z.}, the algorithm generates a
corresponding sequence of multiplier estimates. Our only stipulation on these estimates is that if
{z.} — z*, a solution of R(#(z*)), then the multiplier estimates converge to the corresponding
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Karush-Kuhn-Tucker multipliers for CNLP. We refer to such estimates as consistent
multiplier estimates.

Definition 4.1 (The multiplier dropping rule)

An algorithm is said to satisfy the multiplier dropping rule if it generates relazing
directions that drop only from among those constraints whose multiplier estimates arc less
than some fized fraction of the most negative multiplicr estimate.

Proposition 4.2 (Multiplier dropping rule =» sufficiently-long relaxing steps
for functions bounded below)
Any algorithm con forming to our framework that uses consistent multiplier estimates and
only relazes constraints according to the multiplier dropping rule, will generate relazing steps
that are sufficiently-long.

Proof:

Assume {z,} — z* is an infinite convergent subsequence on some constant maximal active set
A(z,) = A. By the manifold minimization condition, z* is a solution of the restricted problems -
R(4) and R(A(z*)). We write 4,(z*) for the set of constraints in A(2*) whose multipliers either
have the wrong sign or are equal to zero.

Assume by way of contradiction that z* is not optimal, which implies that
A(z*) D A(z*), that A(z*)\A(2*) is not empty, and that il-?:o llzf - 2l = 0, that is, relaxing
steps are not “sufficiently-long”. Then the GA conditions (in particular GA2) are not satisfied at
zz’ for otherwise we could show convergence. This implies that some new constraints become
active at ;. Since 2} — z*, we may assume that (for sufficiently large k) A(z}) C A(z*), so
that any new active constraints are from A(z*)\A and, by the proof of Lemma 4.1, have zero
multipliers in a neighborhood of z*.

Since z* is not a local minimum of CNLP, there exist some constraints at z,':' whose multipliers
are negative and bounded away from zero. Consequently, there is a neighborhood of z* such
that a relaxing step, satisfying the multiplier dropping rule, will not drop any of the constraints
in A(z*)\A. Now, if the algorithm never leaves this neighborhood, all the relaxed constraints
from A never become active again, for them, since the additional constraints picked up from
A(z*)\A are not dropped, we will have contradicted the maximality of 4 .
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The above implies 3 § > 0 such that, for large &,

1. The algorithm leaves a § neighborhood of z* between the points z, and z, wE
2. The reduced gradient is bounded away from zero at the set of points

{zf, 2%, ..., y,} where v, is the first point outside the given é-neighborhood (since
some constraints with negative multipliers are not active).
Write z] for z, and zifor (zi,;l)+ and let y, = z}. Then
fz) - A=) 2 fz) - Ay 2 A=) - Avy)
-1 . .
= 51 | A=}) - A=Y |
a1 . . . .
> 8T, Sl o Hitl .
> 5 old=) ol Isi- ) by GAL

By (2.) and gradient relatedness, we may choose M such that
(=}, ) Tp(2i)| = M for all i and all sufficiently large k.

*-1 . .
= fz)- flag,y) 2 ME -2 2 My, - 2f]

Now since 2z} — z* and flv, - =*ll > &, the R.H.S. > 4M# for large k, which leads to the
same contradiction as in Theorem 3.1 . -

QED.

5. Relationship to Other Algogithms

For our framework to be useful it should be relatively easy to show that many (or perhaps all)
of the existing feasible-direction methods for CNLP may be viewed in terms of it. For our global
convergence theorem to have captured the essence of the problem, it should be able to shed
insight into the reason for the various conditions for global convergence that keep on recurring in
the numerous convergence proofs in the literature.

To see how our analysis may be applied to existing methods we analyze two very different
classes of algorithms; active set strategies and projection methods. As a prototype for active set
strategies we choose the framework described in Byrd and Schultz [3]. This is because, to date,
with the exception of Kovasevic [16], theirs is the least restrictive framework that we are aware
of in the class of active-set methods. Our prototype for projection methods is the one described
by Bertsekas [1, 2].
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Byrd and Schultz [3] use gradient related, feasible restricted and relaxing steps. Manifold
minimization is guaranteed by the fact that their framework only allows a single constraint to
be dropped after an Armijo (i.e., sufficiently-long) step has been taken on some active set. Long
relaxing steps are guaranteed by the multiplier dropping rule.

Using the above observations, our results show immediately how their framework may be
generalized. In particular, we show that they need not restrict themselves to adding or dropping
a single constraint at a time. Their proof, however, depends on this fact. Also, it becomes
straightforward to obtain their theorem by mixing and matching various alternative conditions
that guarantee manifold minimization and sufficiently-long relaxing steps (see Table 6.1).

Convergence Theory for Algorithms that Operate Exclusively with Relaxing Steps

There are a number of algorithms that work exclusively with relaxing steps. For example,
projection methods (see Goldstein [15], Levitin and Polyak [18], Bertsekas [1, 2]) and feasible
direction methods such as the Frank-Wolfe [12] algorithm, Successive Quadratic Programming
[11] and Truncated Quadratic Programming [4, 7] methods. For such methods our framework
has the following simple form:

Algorithmic Framework #2

START with z, feasible

WHILE ot optimal at z, DO
compute a relaxing step p,(a,),
and an acceptable point z} =z, + p,(a,) ;
setke—k+1

z, « z}  and repeat.

Theorem ‘5.1 (Global Convergence; Framework #:2)

Suppose f(z) is continuously di fferentiable and bounded below on R and that g(z) is Lipschitz
continuous on R". Then any limit point of an algorithm con forming to Framework #2 that
uses gradient-related directions and steps that satisfy GAl and GAZ2 (or their equivalent),
converges to an optimal point.
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Proof: !

The proof is essentially the same as for unconstrained optimization.

Since fis bounded below, flz,) — f{z*).

Assume {z,} — z*, a nonoptimal point. Then by GAl

ﬂzh.l) < ﬂzg) + 7d3§)TPk(a;,)
and for k sufficiently large
< flzy) - 7o, p (since p, is gradient-related).
Now since {ﬁ!}li a, 7 0 by GA2 (or its equivalent)
23 )—2*
= 'Lng Az,) = -00, a contradiction.
Q.E.D.

The first reaction one might have is, “do such directions and steplengths exist?. Rather
_ than prove this directly we will exhibit some algorithms that fit in Framework #2 and satisfy the
conditions of the theorem.

Consider, for example, the Frank-Wolfe algorithm [12] for linearly-constrained problems, in
which a search direction is generated by solving a linear programming problem obtained by
linearizing the objective function in CNLP about the point z,. In this case p, is given by
z{p - 7, where z{p is the optimal vertex. If a backtracking linesearch with an Armijo rule is
used (as is done in Dembo and Tulowitzki [7]), then the relaxation step is long (i.c., it satisfies an
equivalent GA condition). Here a, == ||z}, - z,]| if 2{p satisfies GA1 and otherwise is the first

point in a backtracking procedure (see [9] for example) that satisfies GA1l. Such a point exists
since p, is a descent direction. Note that a, is bounded away from zero at nonoptimal points z,.

Finally, the directions that are generate:i are gradient-related and hence the Frank-Wolfe.
algorithm as implemented in {7] is globally convergent by Theorem 5.1 .

Similar arguments may be used to show that Successive and Truncated Quadratic
Programming algorithms (7, 11] conform to Framework #2. For the same reasons as for Frank-
Wolfe, they are convergent when a backtracking linesearch is used.

It is more interesting to see how “bending” [19] and projection algorithms [1, 2, 15, 18] may be
analyzed in Framework #2. For these algorithms we compute the search direction and stepsize
by iterating as follows.
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Search direction and safeguarded backtracking linesearch computation for
projection methods

Given d;, a gradient-related, feasible descent direction computed at z, , let (90° - 8) be the
angle between -g, and d,.

Define y,(A) = [z, + Ad,J* where [z]* is the projection of z onto the feasible region of
CNLP (i.e., the closest feasible point to z).

Define p,(N) = p(a,(A)) = y,(7) - z, where a,(A) = [ly,()) - 2]l

and let (90° - &(\)) be the angle between p(A) and -g,.

Starting at some initial guess Ay > 0, backtrack (see [9] for various backtracking strategies)
until:

(8) Sy, (V) < flzp) + 19(z) Tp (V)

and

(b) 80° > ) > ¢/N

where N > 1 and 7 € (0, 1) are fixed numbers independent of the iteration.
Let ), be the first point in the sequence that satisfies both (a) and (b). Then set -

zf = y(\) and pa) = zf-z, .

Remark 5.1

Condition (b) is a safeguard for ensuring gradient-related directions. Since d, is a gradient-
related descent direction and p, == \d, for sufficiently small ), it is clear that there exists a A
satisfying both (a) and (b).

Remark 5.2

In order to show that projection methods are convergent using Theorem 5.1, we require P, to
- be gradient-related (which it is by construction, if the above backtracking procedure is used) and
a, to be bounded away from zero at monoptimal critical points. The modified Armijo rule
proposed by Bertsekas for projected-gradient algorithms on box-constrained problems [1] fits this
framework, because gradient relatedness always holds and relaxing steps are sufficiently-long for
such algorithms.
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Remark 5.3

The existence of such an a ¢ bounded away from zero follows immediately from the
backtracking procedure if one assumes any of the conditions required to ensure sufficiently-long
relaxing steps (see Section 4).

Remark 5.4

The drawback of projection methods is that it is very expensive to compute the projection of a
point onto a general polyhedral set. Thus at first glance it might appear that they are
impractical for all but problems with simple constraints such as variable bounds. However, in
Dembo [8] a method is given that permits one to project cheaply onto a restriction of a general
polyhedral set thereby making such methods practical for general linear constraints.

8. Summary and Conclusions

We have' analyzed a number of conditions that guarantee manifold minimization and
sufficiently-long relaxing steps (see Table 6.1 below). Undoubtedly there are many more. The
main benefit to viewing the convergence problem as we have is that one may construct
convergent algorithms by simply “mixing and matching” conditions that imply the above two
properties. That is, pick any condition satisfying the manifold minimization principle and match
it with any condition implying sufficiently-long relaxing steps and, provided gradient-related
directions and acceptable steps are used, the resulting algorithm will be globally convergent.

In some cases, where active set determination is implicit in the search procedure, the simple
but restrictive framework described in Section 5 may be more appropriate. The convergent
algorithms that may be built up in this way are probably among the least restrictive
(theoretically), practical convergent methods known. Although we have not addressed the
problem of convergence for algorithms using trust regions, it is possible to analyze them in much
the same manner as we have outlined here for linesearch-based methods.
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Table 6.1 Summary of Conditions Satisfying
Assumptions Needed for Global Convergence

Summary of Conditions Guaranteeing:

Manifold Minimisation
Principle

. One “long step” on a manifold
(easy to implement).

. The forcing sequence strategy
(easy to implement).

. For fiz) quadratic; exact
minimization on some manifold
(impractical for large problems).

. A projected gradient direction
coupled with a modified-Armijo
linesearch (easy to implement).

. Our safeguarded backtracking
procedure for projection methods

(easy to implement and guarantees
gradient-related steps).

Sufficiently-Long Relaxing
Steps ’

1. Nondegeneracy
(difficult to verify).

2. e-active sets (easy to implement for
some problems).

3. Use of a projected gradient direction
on problems with constraints that
are mutually orthogonal
(practical for large problems).

4. A projected gradient direction
coupled with a modified-Armijo
linesearch (easy to implement).

5. The multiplier dropping rule
(easy to implement).
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