To appear in the Proceedings of the Hypercube Microprocessors Conf., Knoxville, TN Aug. 26-28,
1985

Crystal: A Synthesis Aproach to
Programming Parallel Machines

Marina C. Chen

Research Report YALEU/DCS/RR-465
March 1986

Work supported by Office of Naval Research Contract N00014-85-K-0030 and National Science
Foundation Grant DCR-8106181.




Abstract

This paper addresses two software issues in parallel processing: First, how to program parallel
machines effectively, and second, how to realize the high performance promised by the parallel
hardware technology. An overview of the language Crystal and a programming methodology
for a class of computational problems are presented. Crystal provides high-level abstractions
for the behavior of an ensemble of parallel processors, and is devised for the purpose of managing
effectively the complexity of programming large scale parallel systems. To address the issue of
effective utilization of hardware technologies, a design metho dology is developed for synthesizing
efficient systolic algorithms and architectures from problem definitions.

1 Introduction

Parallel processing is concerned with the effective use of hardware technologies that is inherently
highly parallel. In order to expoit fully its potential, parallelism must be used at the algorithmic
level as well as at the hardware level. As a consequence, parallel software technologies that
facilitate the use of parallel hardware play an increasingly more important role in the arena of
parallel processing.

One of the difficulties of achieving efficient and reliable parallel software lies in the complex
behavior arising from the interaction of a large scale of autonomous parallel processes. Beyond
the sheer number of these processes, there is the complexity attributed to the concurrent flow
of control and data distributed over the large number of processes.

Hardware technologies, on the other hand, constrain the way in which parallel computation
can be efficiently organized. Dominant costs at the technological level often have profound
implications in the designs at algorithmic and architectural levels. In order to achieve an efficient
program design, one must take advantage of what the technology can offer, and minimize the
costs associated with the constraints it imposes upon a design.

To manage effectively such complexity in programming and to realize the efficiency promised
by the harware technology, we must strive for the advancements of software technologies in
many areas, in particular, the devising of programming languages which provide high-level ab-
straction of the behavior of parallel processors, and programming methodologies for effectively
partitioning and distributing tasks to a large-scale assemblage of processors.

Department of Computer Science, Yale University, New Haven, CT 06520. Work supported in part by the
National Science Foundation under Grant No. MCS-8106181 (DCR-8106181) and the Office of Naval Research
under Contract No. N00014-85-K-0030.




This paper presents an overview of the language Crystal and a programming methodology
for a class of problems. In Section 2, language issues and programming methodologies are
discussed. In Section 3, several example programs written in the language Crystal are given.
In Section 4, we illustrate how to interpret a naive Crystal program so as to reveal its large
scale parallelism. In Section 5, we describe the synthesis rules which allow the derivation of
efficient parallel programs. In Section 6, we illustrate automatic incorporation of pipelining into
programs. A resulting program has improved efficiency and embodies a systolic computation.

2 Programming Large Scale Parallel Machines

Programming a parallel machine is much more difficult than programming a sequential machine
because unlike the computation in a sequential machine, where it can be modeled as a sequence
of state changes and thus be reasoned with relative ease, the state changes in a parallel machine
are concurrent and distributed, and a reasoning tool is not as easily attainable.

One may envision the computation going on in a collection of parallel processors being
started by a set of source processors, each of which produces outputs which are sent to other
processors, and cause those receiving processors to start execution, change state, and produce
outputs, which in turn cause more processors to start computing and communicating. Critical
to the description of such a computing system is a clear and unambiguous specification (de-
terministic or non-deterministic) of the intended state transition of a processor after which an
outputshould be sent, and conversely, the intended state transition of a processor in which a
particular received input should be used.

The programming notation Communicating Sequential Processes (CSP) pioneered by Hoare
[10] provides guarded communication commands which serve this purpose. The central idea
of CSP, embodied by its explicit communication commands, has been incorporated in the pro-
gramming languages Occam [15], and widely adopted in languages supported by manufacturers
of parallel machines, such as the extended C and Fortran languages on the Intel iPSC machines.

Undoubtably, such languages serve the purpose of unambiguously describing desired compu-
tations very well and are flexible enough for programmers to specify any desirable parallelism.
But by merely having these parallel languages at hand, one does not come closer to resolving
the problem of programming difficulty: i.e., how to reason about a parallel program which
embodies concurrent and distributed state changes in a large-scale assemblage of processors.

2.1 Parallel Programming at a Suitable Level

In programming sequential machines, it is generally accepted that assembly languages are more
flexible and may allow more efficient implementations than high-level languages, but are not
suitable for large scale programming due to the burden of details they lay on programmers.
Advancement in optimizing compilers of high-level languages eventually makes high-level pro-
gramming both practical as well as desirable.

An analogous situation occurs in the choice of the level of descriptions in parallel program-
ming, except that an even sharper contrast might be exhibited in the complexity of program-
ming activity for the different choices made. Does the CSP style of language support the
programming of parallel machines at a suitable level?

In a given CSP program, one can see very clearly the computation of each individual pro-
cessor and, locally, how it explicitly communicates with others. However, when the number of
processors become slightly larger and the interactions slightly more complicated, one quickly
finds that it is very difficult to see through a CSP program — consisting of statements de-
scribing each minute state change in each individual process, and communication commands
describing each interaction with other processes, — and still manage to obtain quickly a global




view of the parallel computation the program embodies. Often it becomes necessary to simulate
the program in one’s mind to see how processors are structured. The problem is that too many
minute state changes and communications are seen at once by a programmer, and they obstruct
a lucid global view of the parallel system. In other words, there is too much detail at too low
a level. What is needed are language constructs that encapsulate explicit communications and
minute state changes to form major state transitions of the entire assemblage, so that a similar
reasoning process used in sequential programming may ensue. '

Any sequential language augmented by a set of communication commands serves well as
a parallel language, but only at the object language level in which a compiler generates code,
and not at the source language level in which a programmer writes code. For instance, we
use the high-level parallel language Crystal, and build compilers which generate object code
in a CSP-style of language. A Crystal compiler currently targeted for Intel’s iPSC hyper-
cube multiprocessor uses the programming language C augmented with iPSC’s communication
commands as an object language. ,

2.2 Programming with High-level Functions

The language Crystal allows a functional style of programming in recursion equations, which
alms at making the reasoning process of a parallel program easier. Abstractions of parallel
operations into high-level functions are introduced.

What appears as a sequence of send and receive commands intermixed with local commu-
nications on a multiple number of processes in a CSP-style program, appears, in contrast, in
a Crystal program as a single high-level functional call in which all actions said above are
encapsulated. Moreover, the encapsulating functions can be defined at an abstract level which
is independent of the process structure to be employed by a program, or the network topology
of the machine on which the program is to be executed, thus eliminating unnecessary details
when reasoning about a program.

Taking graph algorithms as an example, a user program can be specified in terms of the
vertices and edges of a graph, rather than in terms of a particular data structure. A single
functional call is able to describe operations such as “at each vertex, find the edge with minimum
weight over all incident edge on that vertex”,“for each tree in a graph, find an edge with
minimum weight that connects the tree with some other tree”, etc. Such functions encapsulate
multiple communications and multiple steps of local computations in a multiple number of
processes.

To gain efficiency during execution, compilers make appropriate decisions on the pro-
cess structures and routing schemes for a target network topology. For instance, the above-
mentioned functions are compiled to employ the structure of an adjacency list when applied to
graphs with the number of edges linearly proportional to the number of vertices. In the case of
dense graphs, the structure of an adjacency matrix is used. Depending on the network topology
of the multiprocessor used, each version of these functions is compiled to object code that uses
particular embeddings of processes to processors and particular routing schemes suitable for
the network.

With high-level functions as described above, a typical graph algorithm, such as finding the
minimum weight spanning tree, can be described by several functional definitions. In Section
5.6, two high-level functions are defined and used in synthesizing systolic algorithms.

3 The Language Crystal

Crystal is a general purpose language for high level parallel programming. Syntactically, it
consists mainly of formalized mathematical notations. Semantically, it is quite unlike any of




the imperative programming languages such as FORTRAN, PASCAL, or C, and is similar to
functional languages such as LISP. However, its model of interpretation is data-driven, and
therefore departs significantly from the demand-driven model of conventional applicative or
functional languages.

The language Crystal consists of:

e sets for data types;

o functions for abstraction, where a function may be implemented either as sequential code
or by an assemblage of parallel processes;

o recursion equations, which are the main constructs for parallelism;

bounded range, which is basically a for loop constuct;

and unbounded minimalization, as in recursive function theory, which is essentially a while
loop construct, and allows the specification of recursions without an a priori bound.

With these constructs, Crystal is able to express homogeneous or inhomogeneous parallel
systems of any network connectivity.

3.1 Definitions as Programs

At the top level, each parallel program in Crystal consists of a system of recursion equation(s).
For example, the number of partitions of an integer k into integers less than or equal to m can
be obtained by applying the following recursively defined function C to the pair of integers
(m, k).

i=1—1

Ol ) = i>7—0oli-11) (1)
i>1—< i=7->C@F—-1,7)+1
i<j—C(E-17)+C(,5—1)

In Equation (1), we call ¢ and j recursion variables and C a functional variable of the equation.
The definition of dynamic programming can be posed in a general form where C(3, 5) is
some cost function which is to be minimized.

J =1+ 1— C; (the individual costs),

C(,4) = { (2)

J> 1+ 1— minj<k<; B(C(7, k), C(k, 7)) (h is some function on the costs),

where recursion variables ¢ and j range over integers 0 < ¢ < j < n, for some constant integer
n. Another similar example,

n
C(i,j) = ZA(@', k) x B(k,j) for 0 < 4,5 <n, (3)
k=1

is a specification for the matrix multiplication, with functional variable C for the resulting
product and recursion variables 7 and j for, respectively, the row and column index of matrices

A and B.

3.2 Symmetry of Recursion Variables

Comparing Crystal’s recursion equations with the notation of recurrences, they seem to be
merely notational variances of each other. However, the significance is that Crystal intends to
treat all recursion variables in a symmetrical manner. Taking the problem of LU decomposition




of matrices as another example: In Crystal, it is defined as the following system of recursion
equations which is essentially the standard definition of LU decomposition. It describes that
the decomposition of the matrix A is obtained iteratively as index k ranges from 0 to n, and
at each iteration, a column of the L matrix and a row of the U matrix are computed.

aivi) = { =02 Al)

145 0<k<n—a(i,sk—1)+ L k) x (<U(k, 7))
1<i<k—0

L, k)y=3 i=k—1 (4)
k<i—a(i,kk—1)x U(k,k)~!

N_J1Z5<k—0
U(k,])_{ k..<...7'_>a(k’j’k_l)

In the system of equations, we call ¢, 7, and k recursion variables; they correspond to subscripts
(e.g. indices of matrix elements) and superscripts (e.g. indices for iterations) in the notation
of linear recurrences. In a recurrence, a subscript such as ¢ or 7 is thought to be an index for a

static location of some structured data, and a superscript such as k is thought to be an index
for iterative computational steps. However, in the multi-dimensional design space of parallel
programs, there are numerous different ways a subscript or superscript can be interpreted:

statically as a location, dynamically as a computational step, or as a linear combination of
both. For this reason, Crystal chooses to treat both subscripts and superscripts in recurrences

in a symmetrical manner.

3.3 Expressive Power of Crystal

Formally, a Crystal program assumes the form of course-of-value recursion with unbounded
minimalization, and thus it is general recursive. Practically, we have had some experience in
expressing problems in various application domains in Crystal. We have found that prob-
lems in scientific computing and physics can be expressed very fluently, perhaps due to the
mathematical nature of the language. On the side of symbolic computation, the kernal of
a VLSI switch level simulator [1] has been described in Crystal as three levels of recursion
equations [5]. Graph algorithms, such as finding connected components, minimum spanning
trees, bi-connected components, etc. [11], can easily be expressed in Crystal as well. Crystal
also serves as a hardware description language for various computer aided design tools. The
descriptions of VLSI arithmetics, logic designs, and machine architectures [5], etc., in Crystal,
serve as precise functional definitions of the hardware.

4 Parallel Interpretation of Crystal Programs

4.1 Process structure

Crystal interpretes a program based on a data-driven model. Take the straightforward def-
inition given in Equation (3) for matrix multiplication as an example: each pair of indices

(¢,7) is interpreted as a process in the process structure P 2! N2 which is a cartesian prod-

uct of N &f {1,2,...,n}. The input set C of the program consists of the input data C def

{A(3,4), B(i,5) : 1< 4,5 < n}.




O process B(1,1) A_] LN\ B(1,2)
(J input

AL, DL A(I,Z)k a,10 . 912)
- '

® O
(zy (2,2)

Figure 1: The DAG describing the data dependency of the multiplication of 2-by-2 matrices

A2, a2,y

4.2 Data Dependency Relation

The union of the process structure and the input set P U C is ordered by a data, dependency
relation. We say that a process u € P immediately precedes a process v € P (u < v), or
v immediately depends on u (v > u) when v appears on the right-hand side of a system of
equations, and u appears on the left-hand side of the system as F(u) where F is one of the
functional variables in the system. We also say that a process v € P immediately depends on
a constant ¢ € C' (¢ < v) when some constant ¢ appears on the right-hand side of the system
while v appears on the left-hand side. A system (e.g. Equation 3) must be such that the

* . . . .
transitive closure “<? (precedes) of “<” on all processes 1s a partial order, and that there is
no infinite decreasing chain from any process u € P, i.e., the domain of process with relation

“:”, denoted by (P, -:), is a well-founded set.

The set (P U C, :) can be depicted as a DAG (Directed Acyclic Graph), which is shown
in Figure 1. It consists of nodes, where each node is either a process u € P or some constant
¢ € C, and directed edges, where an edge is emitting from node u to node v if u < v. Those
nodes that have no incoming edges are called sources, thus all nodes in the input set are sources.

4.3 Data-driven Model and Execution Wavefront

Extracting a sequence of exzeculion wavefronts from each Crystal program is useful in reasoning
about the program and in synthesizing efficient parallel implementation from the program. The
wavefront sequence of a program essentially captures the sequence of global state transitions
in the assemblage of parallel processes, and thus provides a useful tool for reasoning about the
program.

Our data-driven interpretation of a Crystal program envisions a parallel computation which
starts at the sources, and is followed by other processes each of which starts execution when all




of its required inputs, or dependent data, become available. A sequence of ezecution wavefronts
w; for ¢ =0,1,2,..., can be defined. All sources belong to the zero’th wavefront (¢ =0) in the
sequence, and a process belongs to the n’th wavefront if all of its dependent processes belong
to wavefronts n — 1 or less and there is at least one dependent process belonging to wavefront
n—1, i.e.,

wy, & {v:Vu<v,u€w,k<nand Ju,u€ w,—,}, for n> 0.

For matrix multiplication, the sequence consists of only two wavefronts: wp containing all
sources and w; containing all processes (¢,7), 1 < 4,5 < n.

4.4 Synchronous vs. Asynchronous Systems

The wavefront sequence of a program provides a reasoning tool independent of whether the par-
allel implementation of the program uses synchronous circuitry or an ensemble of asynchronous
processors. Clearly, processes belonging to the same execution wavefront do not depend on one
another. In an implementation of the parallel interpretation, such processes could be arranged
to execute simultaneouly as in a synchronous system. However, such synchronization is not
necessary; processes belonging to the same wavefront may be executed at different instances in
real time. Nor is it necessary for a process at wavefront w; to be executed at a prior time than
all of the processes at wavefront w;+1. Such is the case in a self-timed system [21].

4.5 Local Processing Functions

The local function each process should perform can be extracted from the definition. The

local function performed may vary from process to process; hence, often a family of local

functions, subscripted by the indices of the process, are defined. For the definition of matrix -
multiplication in Equation (3), the family of processing functions G;,; happens to be identical
to a single function G which is defined as:

n
Ga1, a2, ..., @nyb1,bay. b)) B S ap x by (5)
k=1 .
The function G is defined with 2n formal parameters a; and by for k = 1,...,n.

4.6 Communication Functions

Similarly, the communications between processes can be extracted from the definition. Each
formal parameter of a local processing function, at run time, might either be substituted by a
functional value evaluated within the process, or by a value passed on by other processes. In the
latter case, a communication function is defined for specifying which process is passing on a value
for the parameter substitution. In the definition of matrix multiplication, all actual parameters
are input constants, hence no communication functions are extracted. In the definition of integer

. . - s . def . .
partition 1, there are two different families of communication functions: T1i,g = (r—1,7) and

24,5 < (4,5 —7). Note that in this example, the communication functions used at each process
(¢,7) depends only on the indices of the process. In general, a communication function may be
data dependent.

To summarize, the local processing function of each process and the communications be-
tween processes can be extracted from a Crystal program which is written in a high-level
functional notation in which explicit communication command is not necessary.




4.7 Complexity of the Naive Parallel Algorithm

Using one processor for each process in Equation (3), we obtain immediately a naive parallel
algorithm in which the local processing at each processor and the communications between
processors are obtained from the definition as described above. Altogether O(n?) number of
parallel processors are needed. The number of time steps needed is two, the total number of
execution wavefronts. As exemplified by the definition of matrix multiplication, if a parallel
program does not consider how computations and commuications are constrained by hardware,
then the measure of its time complexity is too naive to be useful. In the next section, we show
how to transform systematically a definition to a parallel program that does take into account
realistic costs of hardware, and allows the wavefront number to serve as a valid measure of time
complexity.

5 Efficiency of Parallel Programs

To address the issue of effective utilization of hardware technologies, we have developed a de-
sign methodology for synthesizing efficient systolic algorithms and architectures from problem
definitions. Systolic algorithms, as exemplfied by a large body of literature [13], make use of
hardware technology very effectively in several aspects: (1) they avoid the incurrence of high
communication cost by organizing the computation in such a way that only local communi-
cations take place; (2) they avoid large numbers of fan-ins and fan-outs by using networks of
fixed degrees of connectivity; and (3) they use hardware resources effectively by pipelining, i.e.,
re-using each component O(k) number of times where k is proportional to problem sizes (e.g.
linear or square root of problem size).

Can such efficiency be incorporated into a program with relative ease or must each systolic
algorithm be obtained painstakingly in an ad hoc fashion? Numerous reports [19,18], [17],
[20], [14], [6], [7], [3], and [12] have appeared in the area of systhesis methodology for systolic
algorithms. A detailed review on the relative strength of these different approaches and com-
parisons of the computational complexity of the mapping procedures appear in [7]. Mostly, the
emphasis of these reported synthesis methods is on the mapping of a problem specification to
a systolic architecture by a linear transform. The specification is mostly given in recurrences
of one form or another. Very little attention has been paid to how to come up with a suitable
problem specification that is amenable to a linear transformation in the first place. In [19]
and [17], a problem specification is obtained from a FORTRAN loop by augmenting it with
suitable indices. In (7], several guidelines (eg. first order recursion equations for nearest neigh-
bor communications) for transforming specifications to a target specification are given, but no
specific formal rules. In [12], the method first seeks linear transforms and then requires the user
to modify the problem specification if the former fails. The process iterates until some linear
transform is found, but no guideline as to how modification should proceed is given. Clearly,
a unified methodology for synthesizing systolic algorithms, at the specification stage as well as
at the mapping stage, is highly desirable.

With our synthesis methodology, a systolic algorithm can be generated systematically by a
series of transformations on the description of problem definition, each aiming at reducing the
dominant costs in the underlying hardware which might be incurred by the parallel implemen-
tation of the definition. A set of formal rules, and the necessary and sufficient conditions for
the existence of linear designs are given. All specifications, from the initial problem definition
to the target specification, and rules of transformations, are described in the same notation —
the language Crystal [4]. This uniformity makes the tools that incorporate the methodology
portable to any target machines.




5.1 Communication: An Implicit Cost

For each process in a given execution wavefront, it either communicates with other processes
belonging to previous wavefronts, or receives a datum in the input set. The time it takes
for a process to complete a communication, unfortunately, is not entirely independent of the
number of destinations to which data must be sent (the fan-out degree), nor of the number of
sources from which data must be received (the fan-in degree). The time complexity of a parallel
algorithm, therefore, cannot be determined by the number of execution wavefronts alone; the
time spent for each communication must also be taken into account.

Definition 5.1 The amount of time for completing a single process (single source) to process
(single destination) communication is called unit communication time.

5.2 Locality of Communications

From the standpoint of hardware cost, the more local a communication is, the less the area and
the shorter the time required for its implementation. Locality of a communication is another
factor that affecting the amount time it takes for its completion. The concept of locality of
communications is defined with respect to a given process structure P.

Definition 5.2 If the process structure P of a program is an m-dimensional vector space

over the rationals, then the path length between two processes v def (v1y..+yvm) € P and
udf (u1,...,um) € P with respect to P is defined to be lvi —us|+ - + |vm — upm|, where
each of the components u; and v; fori = 1,2,...,m is an integer.

Given the definition of path length with respect to a specific process structure, locality can be
defined:

Definition 5.8 A communication between two processes u,v € P, where u < v, is local if
their path length with respect to P is less than a fixed constant.

Definition 5.4 The order of a system of recursion equations is defined to be the maximum
path length with respect to P over all pairs of processes u and v in P, where u < v.

5.3 Problem with Large Numbers of Fan-ins and Fan-outs

Due to the inherent physical constraints imposed by the driving capability of communication
channels, power consumptions, heat dissipations, memory bandwidth, etc., data cannot be sent
or received to or from a large number of destinations or sources in a unit communication time.
Putting such constraints in algorithmic terms: The time it takes for a communication between
two processes to complete depends on the fan-in and fan-out degrees, where the fan-in degree
of a datum is defined as the number of data items it depends on, and fan-out degree is the
number of data items dependent upon it. The number of unit communication times incurred
for a communication that has a large fan-out degree, say degree O(n), may become as large as
O(n). Thus the elimination of large fan-in and fan-out degrees is essential in devising efficient
parallel algorithms.

5.4 Counting Fan-in and Fan-out Degrees

The fan-in degree of a process u is obtained by counting the number of distinct processes v
or constants ¢ appearing on the right hand side of a definition. Conversely, the fan-out degree
of a process u or a constant ¢ is the number of times u (or ¢) appears on the right-hand side
while a process v, each time with a different v, appears on the left-hand side.




From Equation (3), the fan-in degree of each process (%,7) in the definition of matrix mul-
tiplication is 2n and the fan-out degree of any input data, A(¢, ) or B(i,7), is n; both degrees
are unbounded.

5.5 Bounded Fan-in and Fan-out degrees

Can the unbounded fan-in and fan-out degrees of a program be decreased so as to decrease its
total time complexity? Is there any alternative cost one must pay for the bounded fan-in and
fan-out degrees? One would expect that the number of execution wavefronts might increase as
a result of decreased fan-in and fan-out degrees. It turns out that often the reduction in the
number of unit communication times due to reduction in the fan-in and fan-out degrees exceeds
the increase in the number of execution wavefronts. Thus the total time complexity is reduced.

5.6 Reduce Fan-in and Fan-out Degrees

The fan-in and fan-out degrees of a system of recursion equations can be reduced if the following
high-level functions and rules of transformations are applied.

Definition 5.5 (associative operation) An operation “@”, where y = Duci<o (1), is as-
sociative if there exists a binary operation @, a function z of variable l, and a function ®

def | I=u— Ideg
<I>(z,:c,l,u,v,®) - { u<lsv_)z(l_1)®x(l)

such that
y = z(v) and

2(l) = @(z, 2,1, u,v,®) (6)

where Ideg is the identity of “®”, and z(l) has fan-in degree 1+ deg(z(l)) and fan-out degree
1, where deg(2(l)) is the fan-in degree of x(l).

The high fan-in degree of an n-ary associative operation can be reduced by serializing the
computation as the composition of a sequence of binary operations. Such serialization can be
generalized to using compositions of a sequence of k-ary operations where k is bounded.
Remark: Function ® in Equation () = ®(z, 2,1, u,v, ®) of Definition 5.5 encapsulates the
computations and the communications of v — u + 1 number of processes.

Definition 5.6 (concurrent assignment) A set of equations f(I) = H(z) for integer I, u <
! < v, contains a set of concurrent assignments {z(l) = z:u <1< v} if such a z exists and

F(1) = H(2(1)).

Proposition 5.7 (serial assignment) A set of concurrent assignments {z)=z:u<i<
v} is equivalent to the sequence(s) of serial assignments defined by the recursion equation

2(l) = ¥(z, 2,1, u,v,w), where (7)
l=w—z
U(z, 2,1, u,v,w) & w<l<v—z(l-1)
u<l<w—z(I+1) (8)

for some fixed w, u < w < v,

In Equation (7), fan-out degrees of x and z(l) foru <1< w and w < < v are all 1, and the
fan-out degree of z(w) equals 2 if u < w < v and equals 1 if w = u or w = v.

10




Remark: The choice of w in Proposition 5.7 concerns the issue of locality of the communication
between value z and variable z(w). When « is a constant, then w = u or w = v. When x
is some value F(l) depending on recursion variable I, then w is chosen so that |w — 1| is the
minimum over all choices of w.

Remark: Function ¥ in Proposition 5.7 encapsulates the communications of v — u + 1 number
of processes.

5.7 An Example

In the matrix multiplication example, we note that Equation (3) contains an n-ary associative
operation ”)_”. The high fan-in degree is reduced by applying function ® of Definition 5.5
to approprite arguments of Equation (3), and the high fan-out degrees of A(?, k) and B(k,j)
are reduced by detecting concurrent assignments in the System and replace them with serial
assignments. The steps of program transformations and some notations are given below.

Notation 5.8 If f is a function of variable x defined by an expression E, then we use the
notation Ax.E to denote f, i.e., f = A\z.E, and the functional value f(z) is denoted by Az.E(z).

First, Equation (3) is transformed to one that is in the form of Equation (6):

C(4,7) =c¢(4,5)(n)  and
c(?, 5) (k) = ®(c(s, ), Mk.JA(4, k) x B(k, 7)], k,0,n,+)

Expanding the definition of function ®, and redefine c(3, 5) (k) as ¢(¢, 5, k), we obtain

C(i,5) = (i, 4,n) and
BB ZY 0<k<n— (i, k— 1) + A, k) x B(k, )

Next, observe that Equation (9) contains 2n sets of concurrent assignments

{a(s,k)(5) = A(5,k) : 0 < 5 < n+ 1} such that c(i, j, k) = H,(a(?,k)(5))
{o(k, 5)() = B(k, ) : 0 < < n+ 1} such that c(s, j, k) = H,(b(k, NG)-
where

a(7, k) is a function of j,

b(k, 7) is a function of ¢,

k=0—0 R

0<k<n-—c(i,j,k—1)+ Ax B(k,j), and

d-gf/\ﬁ k=0—0
Tl 0<k<n— (i, k—1)+ A(, k) x B.

H, ¥ \A. {
H,

Now applying function ¥ in Proposition 5.7 to appropriate arguments of Equation (9), two
equations of the form of Equation (7) are obtained:

a(i, k)(j) = U(a(i, k), A(i, k), 4,0,n + 1,0),  and
b(k, §)(&) = ¥(b(k, 5), B(k, ), 5,0,n + 1,0).

11




Problem definition
C(i,j) = minjck<;h(C(i, k), C(k, 7))
Cli,i+1)=¢;

y

Parallel interpretation of definitions.

!

Reduce fan-in and fan-out degrees.

Ensure locality of communications.

!

Crystal programs: bounded order recursion equations
with bounded fan-in and fan-out degrees.

Figure 2: Program transformation.

Expanding the definition of function ¥ and redefine function a(¢, k) and b(k, 5) so that a(7, k)(5)
is written as a(, 7, k) and b(k, 5)(¢) is written as b(?, 7, k), we obtain

L _ j=0——>A(i,k)
a(z,j,k) - { 0 <j< n+1— a(i,f*l,k)
and
v _ [ i=0— B(k,j)
b(i,],k‘)—{ 0<z<n+1—>b(i—1,j,k) (10)
such that

c(i,7,k) = k=0>0
PV 0<k <n— i gk — 1) + a6, 5,k) x b, 1, &)

Remark: The order of the application of Definition 5.5 and Proposition 5.7 to Equation (3)
can be interchanged.

Now the system of equations (10) is a Crystal program with fan-in and fan-out degree
three. Figure 2 summarizes the steps of program transformations.

6 Incorporating Pipelining by Space-time Mapping

A naive implementation of System (10) derived above could use one processor for each process;
however, after the execution of a process, a processor would be sitting idle, wasting resources.
In general, a system of low-order recursion equations with bounded fan-in and fan-out degrees
defined on a d-dimensional process structure with the size in each dimension of O(n) calling
for O(n?) number of processes needs only O(n"1) number of processors. In other words, each
processor can be re-used by O(n) number of processes. The space-time mapping procedure
described below achieves the saving of O(n) number of processors.

12




6.1 Mapping Processes to Processors

System (10) derived above may be further improved by incorporating pipelining. From the
stand-point of implementation, a process v in a system of recursion equations will be mapped
to some physical functional unit, or processor s during execution, and once the process is
terminated, another process can be mapped to the same processor. In fact, such re-use of the
resource is the essence of pipelining. We call each execution of a process by a processor an
invocation of the processor. Let ¢ be an index for labeling the invocations so that the processes
executed in the same processor can be differentiated, and let these invocations be labeled by
strictly increasing non-negative integers. Then for a given implementation of a program, each
process v has an alias [s,t] &' (v), telling when (which invocation) and where (in which
processor) it is executed. The key to an efficient parallel implementation of an algorithm is to
find an appropriate one-to-one function f that maps a process v to its alias [s,¢] such that ¢

will be non-negative and ¢ > ¢, if v4 < va, where [s;, t1] det f(v1) and [s2, 2] def f(v2).

6.2 Data Dependency Vectors

To find such a mapping, we require that the domains of the recursion variables of a Crystal
program be vector spaces, and that appropriate vector addition and scaler vector product be
defined. Though each of the recursion variables ¢, 7, and k in Equation (10) assumes an integer
value, its domain can be extended to the set of rationals. For instance, an m-dimensional
domain of processes is now embedded in an m-dimensional vector space over the rationals.
From now on, we may refer to the m-tuple of values of recursion variables identified with a
process as a vector. As suggested by [19], a data dependency vector plays an important role
in mapping algorithms to parallel processors. Since the vector addition is defined and the

difference of two vectors takes on an exact meaning, a data dependency vector can be formally
defined:

Definition 6.1 A data-dependency vector is the difference v — u of vector v and vector u,
where u < v (u immediately precedes v).

The three data dependency vectors that appear in System (10) are

def def

d; ¥ (1,0,0)7, dz & (0,1,0)7, ds & (0,0, 1)7.

6.3 Basis Communication Vectors

As described above, each program defines a set of data dependency vectors; on the other hand,

each network topology defines a set of basis communication vectors. For instance, in an n-

dimensional hypercube, a processor has n connections to its nearest neighboring processors.

Each of the n communication vectors (one for each connection), has n + 1 components: the

first n ones indicating the movement in space, and the last in time, which is always positive
(counting invocations). These n-communication vectors, together with the communication
vector [0,0,...,0,1], representing the processors’s communication of its current state to its
next state, form the basis communication vectors. In an n dimensional network, there can
be more than one set of basis communication vectors. Taking a two-dimensional hexagonal
network as an example, a diagonal connection has a communication vector [1,1,1]. The set
of vectors {[1,0,1],[0,1,1],[1, 1, 1]} serves as bases as well as the set {[1,0,1],[0, 1,1],[0,0, 1]}.
Any n-dimensional network which has nearest neighbor connections and is regularly connected

and indefinitely extensible can be obtained by the subgroups of the symmetry groups Lin and

Mead [16]. All such possible two dimensional networks are shown in Figure 3.

13




Figure 3: All the possible two dimensional regularly connected network (the bottom row), and
the corresponding process structures in the 3-dimensional space-time (the top row).

6.4 Uniformity of a Parallel Algorithm

The concept of uniformity is introduced to characterize parallel algorithms so that an expedient
procedure can be applied to a uniform algorithm to find the space-time mapping from processes
to processors. Let d;, 1 < ¢ < k denote the data dependency vectors appear in a program.

Definition 6.2 (Uniformity) A uniform algorithm is one in which a single set of basis vectors
bj, 1 < 7 < m can be chosen so as to satisfy the following mapping condition: every data
dependency vector d; appearing in the algorithm can be expressed as a linear combination of
the chosen basis vectors with non-negative coordinates:

there exist b;,1 < § < m such that (1)
11
d; = a1b; + azb, + - “++amby, for 1 <i <k, where a; >0

6.5 Motivation for the Mapping Condition

The mapping condition is motivated by the possibility of using as the space-time mapping a
linear mapping from the basis dependency vectors to the basis communication vectors. Each
basis communication vector e; corresponds to a nearest neighbor communication on a network
of processors, and its time component is always 1. When the mapping between the two sets
of basis vectors is determined, then the communication vector ¢;, to which a data dependency
vector d; corresponds is also determined, i.e., ¢; = Yoy aze;ifd; = ey asbj.

If a data dependency vector d; has a term with a negative coordinate aj; in its linear
combination, then « j1€y represents a communication that takes negative time steps, a situation
that is not feasible in any physical implementation.

It can be shown that uniformity is the necessary and sufficient condition for the existence
of a linear function as space-time mapping, and that a set of optimal basis dependency vectors
{b;} can be generated so that the maximum path length of the resulting communication vectors
c; for all ¢ is the shortest over all possible choices of {b;}. The procedure of uniformity test and
the generation of an optimal set of basis dependency vectors has a time complexity polynomial

14




difference vectors CV1 CVv2 CVs3 CV4
d; ¥ (1,0,0) (L0, 1]T  |ex ¥ [1,0,1T| [1,0,1]T [1,0,1]
def def
d; = (0,1,0) [0,1,1]T  |ex = [0,1,1]T [0,1,1])T [0,1,1]
def def
d; = (0,0,1) [0,0,1]T |es = [1,1,1)T| [-1,-1, 17 [-1,0,1]
Tl T2 T3 T4
1 00 1 01 1 0 -1 1 0 -1
linear mapping* 010 011 01 -1 01 0
111 111 11 1 11 1
MM obvious [23] [22]
LU [9,8] [7] [22]

Table 1: Data dependecy vectors, communication vectors, linear mappings, and systolic algo-
rithms for matrix multiplication and LU decomposition.

of the dimensionality of the process structure, which is usuallly a small constant independent
of the problem size. The results mensioned in this paragraph will be presented in a sequel.

In the case of a non-uniform program, more than one set of basis data dependency vectors
must be chosen so as to satisfy the mapping condition, and the space-time mapping may become
non-linear. In this case, the inductive mapping procedure becomes necessary.

Examples of using such a simple procedure to find linear mappings of processes to parallel
architectures for LU decomposition, dynamic programming, and array multipliers can be found
in [6,7,2,3]. Most of the systolic algorithms reported in the literature can be obtained this
way, and new systolic algorithms are discovered due to the ability to generate systematically
all possible sets of basis communication vectors.

6.6 Obtain Linear Mappings for Uniform Algorithms

For matrix multiplication, let the basis data dependency vectors be the three data, dependency
vectors themselves. Clearly, they satisfy the mapping condition and System (10) is a uniform
algorithm. .

For a uniform algorithm, each linear function that maps the basis dependency vectors to
basis communication vectors determines a parallel implementation. Since there are numerous
sets of basis communication vectors, many implementations using different network topology
with different control and data flow may result.

Thus for each set of basis communication vectors obtained from the subgroup enumeration,
we immediately obtain the linear mapping from the basis dependency vectors to them, and in
turn the mapping T from processes to invocations of processors.

Listed in Table 1 are the basis communication vectors for matrix multiplication in System
(10), four different sets of communication vectors (CV1, CV2, CV3, CV4) and the resulting
systolic algorithms. Also listed are the systolic algorithms for LU decomposition derived using
the same method.

*In the matrix notation where all dependency and communication vectors are written as column vectors.

15




7 Space-time Recursion Equations

def

Proposition 7.1 The space-time mapping Tp = maps every process (1,7,k)

[
[Rg
e

(written as a column vector) of P to an invocation [z, y,t| (written as a column vector), or in
a functional notation:

(@, y,t) = f(§,5,k) = (1 +k,j+k,i+j+ k) where 1<z <2n,1<y< 2n,2 <t < 3n.
The inverse mapping from the image of f to the domain of processes, denoted by f~1 is

(iaj)k) = f_l(mayat) = (t—y,t—:z:,w+y—t),

specifying at a particular invocation of a processor, which corresponding process is being exe-
cuted.

Figure 4 shows the process structure for the matrix multiplication in the original coordi-
nate system (from System (10)), and the new axis using mapping T;. In the case where the
communications to the outside world from a network of processors are limited only to those
via its boundary processors, the inputs must reside outside the boundaries initially, and then
be shifted into the network. For this example, we know where the inputs should appear in the
process stucture from System (10), as shown in Figure 4. To figure out where they should be
outside the network initially, the inputs A(i, k), B(k, 5), and C(3, 5) are shifted out from inside
the boundaries of the process structure in the directions opposite to [0,1,1],[1,0,1], and [1, 1, 1]
respectively, until all inputs are outside of the network. The two-dimensional systolic network
obtained by mapping 7> and the appropriate initialization of its input streams are depicted in
Figure 5.

Formally, a system of space-time recursion equations can be obtained from System (10)
by algebraic transformations using the space-time mapping f. The procedure for space-time
mapping is summarized in Figure 6. Various other features for each algorithm, such as the
number of processes and time steps needed, the latency, the utilization rate of each processor,
etc., can also be obtained by using f and f~1.

This new program can now be interfaced to silicon compilers to produce special-purpose
VLSI designs, or else undergo another stage of transformations that map the algorithm using
a virtual network (a network with ideal size and connectivity) to a machine with a given archi-
tecture and size. For instance, a Crystal program using a d-dimensional virtual network can
be mapped to hypercube machines by employing the scheme of binary reflected Grey encoding.
Some code optimization that is machine-characteristic dependent might be needed at this stage
to balance the amount of computations and communications. The steps of transformation at
this stage are shown in Figure 7.

8 Concluding Remarks

Crystal provides a simple, straightforward, but powerful way of defining computational prob-
lems. When interpreted by Crystal, the definition naturally discloses a parallel algorithm
where the communications between processes and the computation within an individual pro-
cess become clear. The Crystal programming environment takes such definitions, analyses and
performs the necessary transformations to yield algorithms having bounded degrees of fan-in
and fan-out and using only local communications. The resulting algorithms go through the
process of space-time mapping to yield programs with pipelining automatically incorporated.

16




e

Figure 4: Process structure in the original coordinate system,

and the axis of the new coordinate
system.

17




j [n+1,2n] [2n,2n]
R(6,6) ®
! ‘X—n,Zn]
4 . . [} . P
| L
X L
< . B -.\\ . 3 . L] 3
B(6,1) [2,n+1] [2n,n+1]
B(1,6) g PROCESSORS ¢t
[~n,n+1] A
. . . p . . . . . L4
° . 4 .
L[]
[2,2]
B(1,1)% *——
[-1,2]
| (0,0 ~»
c<1,.e/»{l,_1] e, 1 | a1, 1)
a ’_1
{-1,-11 (2,-1]
r '} . . L] 9
L * C L] * L |
- ° Y 3 o o
o g . . [ - ° * \
P AC6,1) -
C(6,6) ce, 1) [n+l,-n] ac6,6)
[-n,-n) [-1,-n) tan, -2n]

Figure 5: The systolic network using basis communication vectors CVva,

18




bounded order recursion equations
with bounded fan-in and fan-out degrees

data dependency vectors |

T
basis dependency vectors (BDV)

\

dimension of network analysis of uniformity
) 7
basis communication  uniform | Eon—uniform;‘

symmetry group
vectors (BCV)

~

inductive
- - mapping
all possible mappings procedure
from BDV to BCV /
space-time
recursion
equations

Figure 6: Incorporating pipelining by space-time mapping.

19




space-time recursion equations

virtual network

VLSI architectures

size

!

guest network

J connectivity

host network

|

multiprocessor code
3

Figure 7: Mapping parallel algorithms to multiprocessors.

20




Thus, based on the language Crystal, a unified theory for understanding and generating sys-
tolic computation comes into existence.

From a programmer’s point of view, Crystal is easy to use because the programmer does not
need to specify explicit communications in a program; the specification is a functional definition
that is natural to the problem rather than tailored to machine execution. The correctness of
a Crystal program is easy to ensure. First of all, we start with problem definition whose
correctness is self-evident and scientifically estabilished. Secondly, Crystal provides high-level
functions that capture efficient computations and communications of many processors as a
whole. The problem definition is then transformed by employing these high-level functions to
produce programs with guranteed correctness as well as efficiency.

Crystal encourages large scale parallelism, but at the same time allows a complex system
to be specified by a hierarchy of parallel sub-systems by composition and abstraction. The
Crystal compiler generates all possible space-time implementations from a functional and
deterministic definition by using a set of powerful synthesis methods, as opposed to allowing
programmers to use non-deterministic programming constructs to specify possible alternative
implementations which are often error-prone.

The high level notation and algebraic properties the language Crystal enjoys allow pro-
grammers to use Crystal not only as a means to interact with computer systems, but as a
way of communciation among themselves. On the other hand, they make Crystal amenable
to algebraic manipulation; thus all algorithm transformations described above can be carried
out mechanically. _

Last but not least is the portability issue. Notice that in this approach to parallel processing,
successive transformations are performed on programs all written in the same language —
Crystal — including the code optimization step which takes the machine characteristics as
parameters. Only at the last code generation step do different machines require different code
generators and routing schemes. Such a high level of portability is especially important in an
age where larger, faster and ever more different machines are built.

21




References

[1] R. E. Bryant. A Switch-Level Simulation Model Jor Integrated Logic Circuits. PhD thesis,
Massachusetts Institute of Technology, March 1981.

[2] M. C. Chen. Automatic Generation of VLSI Architectures: Dynamic Programming Solver.
Technical Report 455, Yale University,, Febuary 1986.

[3] M. C. Chen. The generation of a class of multipliers: a synthesis approach to the design
of highly parallel algorithms in vlsi. In Proceedings of the IEEE International Conference
on Computer Design: VLSI in Computers, page , October 1985,

[4] M. C. Chen. A Parallel Language and Its Compilation to Multiprocessor Machines or
VLSI, 13th ACM POPL Proceedings, page 131-139, January 1986.

[5] M. C. Chen. Space-time Algorithms: Semantics and Methodology. PhD thesis, California
Institute of Technology, May 1983.

[6] M. C. Chen. A Synthesis Method for Systolic Designs. Technical Report 334, Yale Uni-
versity, January 1985.

[7] M. C. Chen. Synthesizing systolic designs. In Proceedings of the Second International
Sympostum on VLSI Technology, Systems, and Applications, pages 209-215, May 1985.

[8] J. Delosme and Morf M. Scattering arrays for matrix computations. In Proceedings of
SPIE, Real time signal processing IV, pages 74-91, August 1981.

[9] W.M. Gentleman and H.T. Kung. Matrix triangularization by systolic arrays. In Proceed-
ings of SPIE, Real time signal processing IV, pages 19-26, August 1981.

[10] C.A.R. Hoare. Communicating sequential processes. Communication of ACM, 21(8):666—
677, 1978.

[11] Ming-Deh A. Huang. Solving some graph problems with optimal or near-optimal speedup
on mesh-of-trees networks. In Proceedings of FOCS, pages 232-240, IEEE, October 1985.

[12] Delosme J-M and Iise Ipsen. An illustration of a methodology for the construction of
efficient systolic architecture in vlsi. In Proceedings of the Second International Symposium
on VLSI Technology, Systems, and Applications, pages 268-273, May 1985.

[13] H.T. Kung. Why systolic architecture? IEEE Computer, :37-46, January 1982.

[14] G.-J. Li and Wah B. W. The design of optimal systolic arrays. IEEE Transactions on
Computer, C-34(1):66-77, January 1985.

[15] INMOS Limited. OCCAM Programming Manual. Prentice Hall, International series in
Computer Science, 1984.

[16] T.Z. Lin and C.A. Mead. The Application of Group Theory in Classifying Systolic Arrays.
Display File 5006, Caltech, March 1982.

[17] W. L. Miranker. Spacetime representations of computational structures. In Computing,
pages 93-114, 1984.

[18] Dan. I. Moldovan. Advis: a software package for the design of systolic arrays. Proceedings
of ICCD, 1984.

22




[19] Dan I. Moldovan. On the design of algorithms for vlsi systolic arrays. In IEEE Transaction
on Computer, 1983.

[20] Quinton P. Automatic synthesis of systolic arrays from uniform recurrent equations. In
Proceedings of 11th Annual Symposium on Computer Architecture, pages 208-214, 1984.

[21] C. Seitz. System Timing, chapter 7. Addison-Wesley, 1980.

[22] Kung H. T. and Leiserson C. E. Algorithms for VLSI Processor Arrays, chapter 8.3.
Addison-Wesley, 1980.

[23] U. Weiser and A. Davis. A Wavefront Notation Tool for VLSI Array Design. Computer
Science Press, 1981.

23




