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in this paper we give the theoretical analysis for the combinati§n
of two ideas in numericesl analysis. Tﬁe first is to approximate the
Tchebycheff approximation to a function over a continuum, X, in RM by
Tcheb&cheff approximations over finite, discrete subsets cf X, cf. [4],
[51, [7], and [8], and the second is the use of nultivariate spline
functions as approximators. Experimental results fcr this combination

have previously been reported in [5].

M
To be precise, let X be a compact subset of R'. If Y is any closed

subset of X and g is a real-valued, continucus function on Y, let

llglly = sax Clstni Iy < 1.

-~

Given & real-valued, continuous function f and n linearly
s

indero .Jint, real-valued, continuous basis functions {Bj (x)}§ X
- a comnon problem in numerical analysis is to solve the optimization
problen
n
(1) inf {||£- J 8,8, ||.] 8er"Y .
j=1 h X -

The standard difficulties are that (i) f is usually given only on a
finite disc¢rete point set, (ii) the basis functions {Bj};~l den't
satisfy the Haar condition in general so that Remez type algorithms

don't work, and (iii) interpolation type schemes are impossibie to define

bo!
for general domains in R, M > 2,




The approach studied in this paper is to replace X by an appropriate

discrete subset Y and to consider the approximate optimization problenm

n
2) inf { || £- ] sjB

I, leer™ ),
3=1 ¥

|
which, following [4], [5], and [7], is solved by being reformulated
as a linear programming problenm, which in turn is solved by either the

sicplex or dual simplex methed.

We now consider a reformulation of problem (2). Let

: +1
Bp-l-l Nk = {ac Rﬁ l ai >0,1<1i<nHl } and consider
/
n+l v
(3) inf { || £-= ) oB, || lace gt N K}
h|
n
where Bn+l = - Z B . The following standard equivalence result is
j=1
easy to prove,
Theorem 1. The two formulations (2) and (3) of the optimizztion prcblem
are equivalent.
Proof. It suffices to show that
n ntl ntl
) ByB, | ger® ¥={ J aB, | ce®R AR L
j:l j:l J 3



Clearly the right-hand side is a subset of the left-hand side and hence

' n
it suffices to show the converse. Given B € R, let a ., = max (0, - min B))

1<j<n -
and aj = a4l + Bj » 1 <j<n. Then
) ) e L 37 ) T
) BB, = B:B,to 1B te 3, = a:B. +a B g = a,B..
QED.
Let Y { }N f f f 111 +1
= = = < <
et yi =1 ’ i (yi)’ and Bij Bj(yi)’ or a < 3 £ notl,
, rtl
1<4i<N., Then, if ¢ (o) = ||f - 7 asBy [ly» we wish to minimize e with
=1
+2 ”

o ,
respect to all (a,e) ¢ R M K subject to the constraints
(4) -—e<f - ] o B_< e,l<icq

i.e., there are n+2 unknowns and 2N constraints. Rewriting (4) we have

n+l

(5) e - jgl aByy 2 - £, , 1<icN, and
n+l

(6) e+ ) ajBiJ > £, lcicN
i=1




But this is the form of a standard linear orograrming problem, i.e.,

n+2

given be R 2N

. A a real 2N x(n+2) matrix, and c € R™ , mininize

: n
(y, b ) vith respect to ye A & subject to the constraint

‘that A y> c. This problem has the dual problem of maximizing (x,c)

with respect to x € R2N MK subject to thz constraint that

xT A<, cf. [6].

~In this case, b (0, . . ., ,0,1), 7 = (5,01. o e e 0

n+l)’
E. = (-fl, e o o 9 -fllu fl’ e o o fH) 'y and
. ff&
bof-s]
A= . R where B = [B‘j] . Since, in general
l B

we use the simplex method to solve a linear program the number of
arithmetic operations involved is directly proporticnal tolthe number
of constraints and in general 2N > (n+2) . Hence, we expect that
the dual program, solved by the simplex methcd, will be more efficient,
cf. [6]. Furthermore, we remark that in general we expect to ottain

a "degenerate" programming problem. However, such problcms present

no difficulties for the simplex method, cf. [1], [3!, [4], and [6].




Hence, in general we seek to maximize

N N
Z { s £ + ty ('fi) } = .Z fi(si - ti) with respect to
1=1 , i=1
i 3
(s,t) € R" () K subject to the constraints |} Byy(sy - £5) <0,
i=1

N
l<i<n+land J (sqy +t4) < 1.
i=1 ‘

We turn now to the choice of the basis functions, {B }n

3'3=1°
We first examine the one dimensional case of X = [0,1]. The
classical choice for basis functions are the algebraic polynomials,
cf, [8]. However; polynomials are numerically unstable and give
rise to unwanted oscillations in the ;;proximation. Moreover, the
matrices A are dense and many function evaluations are needed.

To remedy these we consider polynomial spline basis functions.

In particular, let P denote the set of all partitions,A, of

[0,1] of the form, &4 : 0 = xo < see< e T 1 and for each

L ¢ P and each positive integer d, S (A, d) denote the set of

functions s(x) which are a polynomial cf degree d on each sub-
interval [x4, xi+1} defined by 4 and which are in Cd -l[O,l].
We remark that all the results of this paper may easily be extended

to the case in which s(x) is assured to be in C1 » 0% < d-1,

z
i
at each interior knot xi, 1<ic<N.




To define suitable basis functions for S(A,d), we follow (2]

and augment the partition A : 0 = Xy < oo < xm_1 = 1 with the

points x_d < x_d+1 < ees< x_.1 < x4 and XN+1<XN+1+1<...<XN+1+d
to form a new partition X ¢ X_g<eee < Xo <soe< xN+1< X<eo e<xﬁ+l+d.
: xd if x>0 d+1
d > Z Vo i+k
Letting x = and W, (x) = T (x=x""7)
*lo , ifx<0, k=0
d+1 (xi+k-x)i~
for -d < i < N, we define Md,i (x38) = kzo (d+1) v pEE

v

Fa

for -d <1 < M. As a basis for S(4,d) we take the restriction of the

functions { M, . (x; 1) } N to the interval [0,1].
d,1 i=~d

max min | x~y |,

If Y is a finite subset of [0,1] and | Y |
xe[0,1] yeY

then we obtain the following new error bound which relates the error
in approximating f£f by a solution, Sy» of the discrete optimization
problem to the error in approximating f by a solution Sy of the
continuous optimization problem., The proof uses a technique developed

in [8] for the case of polynomial basis functicnms,



Theorem 2, If A € P and 2d 2 Y -1 |¥] < 1, where A = min (xi_’_ -x.),
then

2 -1 -1
(¢)) IIf-sYHXf__ [2(Q-2a°8" " ]¥|) +1]Hf-stx.
Proof. By the triangile inequality
@ - sylles 1E- sl * sy - sylly -

Let t ¢ [0,1] be such that | (sx - SY) (t) | = ||sx - SYHX .
Then there exists y ¢ Y such that |t - y| < |¥]| and

T

! (sx- sY) (t) | i{(sx- sY) )+ 1Y i (sx- s

P
b

Y il

Hence, using the Markov inequality for polynomial splines, cf. [9],
: ) 1‘
O oy =sylly <1l s =s Ho+111 20" a7 |ls =5l

.2 =1
and “SX‘SYHXS. Q- 'Yl 2d ) st°syl|y

2 1 -
< Q- [y 28 g TH ey (I, + |1 -

< - |y| 2d2 é_'l)'l ( 72 |1£ - SXHX ). The required result

now follows from the trianzle inequality and (7) and (8). QED.




If we assume a certain regularity of the function £, then we
can bound the right hand side of (7). Using results of deBoor, cf.

[2], we obtain

Corollary 1. Iet 242 é"l Y] < 1end £¢ W [0,1], 0 < t < 41,

t-1 t ©
i.e., D f is absolutely continuous and D~ f ¢ L [0,1].

There exists a positive constant, K, , such that if A € P and

d,t
2d2 A=1 |¥| < 1 then
I 2 -1 -1 —t,, ..t
0 le-s, lly L 2 @-2a"a ¥ Tl kg o B D,
where & £ max (x = xi). )

Ocien 1+

We remark that for S(a,d) , !Yl need only be of order A, for Theorem
2 to hold. While for polynomials of degree n, |Y| need be of

order n'-2 s for the corresponding result to hold, cf. [8].

We may obtain still a further Corrollary about computing the
maximum absolute value of a polynomial spline function, s(x). The
idea is that by sampling the size of a spline ct a sufficiently large

number of points we may give a rigorous estimate of it everywhere.




Corollary 2. If A € P, s(x) ¢ S(A,d), and 242 é_-l |¥| < 1, then
an syl sl < a-22a ) ). g
and
1

a2 o< |lslly = Ils [y ta=-2a g7 1) ™ 11 s |l
< @t v a2 e sl

M
We now turn to the multivariate case., Let Q¢ R be a closed

M
set contined in the unit cube ¥ [0,1]1 in RM and for each

i=1

liif_NletAi: 0=xl<x2<u<< ’51<:5¢+1=1

be a partiticn of {O,l]:L « Let PM denote the set of 211 partitions, P,

M v
of the cube of the form P = x A, , P = mex {Ki} , and
1= 1 1<icM
P = =in {A;} , i.e., P is the minimum Cistance between two
1<i<M
N
partition points. Furthermore, let S(d,P) = ¥ s(d,. ',
i=1 -

i.e., S(d,P) is the space of multivariate polynomial splise functions
of degree d with respect to P, %= {xe 0 | the "N" - cell" of P

containing x is contained in Q}, and YP ={ ye YI ye $ 1.




10

Finally, let |¥,| = max  min dinf { [ldell, | rex,y)
P xe yeY ael(x,y) 4
P P ’
is a piecewise smooth curve all of whose points lie in QP and
which connect y to x , i.e., given x ¢ S% there exists y ¢ YP
such that the 21 - distance in {5 between x and y is no more
than |YP| .

The following result is a multivariate analogue of Theorem 2.

Theorem 3, If 4 € P and, 2d2 271 IYPI < 1, then

2 -1 _1
(13) Il £-s, |}, < [2@=-2a 27 |¥ | )" +11]|f -sclle
YP & — - P §§ f%
JA
Proof. || £-s. || < [l£-s_ ||, +|ls, -5 Il
¥p» ap B % T, %%
Let t € 8 be such that |s(t)| = IsYP (t) - 5, (t) |
= Ils -8 Il « There exists a point y € Y_ such that
» % % P
N
L s@l<leml + T Ipgs el |y, -ty
Welly + 1 Ingsll, | |
e s ||, *+ D, s y, - t
b 1=1 17 0ep 711

Ia

.2 X
HsHYP+ 2d ZAL 1ERL

i=1




11

< lslly + 22227 x|
S

Thus,

2,-1,-1 _
Is, - sg IlQP < - y| 2 lleP sQPHYP,

Yp ‘P

and the result follows as in Theorem 2, QED.

Let Wt’m(fb denote the closure of the set of real-valued,

infinitely differentiable functions on § with respect to the ncrm

el .. = omax  |10%].
| WOl Jalct L(D .

&

Using the results of [9] we obtain the following multivariate

analogue of Corollary 1 of Theorem 2.
Corollary 1. Let f ¢ Wt’m(SD » 0 <t < d+l.

There exists a positive constant, Cd ¢ ? such that if P € Py
. 9 3

2

and 2d 271

lYPl < 1, then

an |le-s, ||
Yp 8

Similiarly, we can prove the following multivariate analogue of

Corollary 2 of Theorem 2,

' a2 =1 -1 St
< [2@-2a" 7 |y D77 +11 ¢y P Hf“wt,co(

&




12
Corollary 2. If P e PM, s € 8(P,d) and 242 2—1 ]YPI < 1, then

, -1 -1
a) sy < Hslly < ¢1-]el2a22™H7 || s ||, ena

D

.

. o
16) 0 < - 1- Y | 2d°p -1 e
a0 osllellg, = Ielly < tcn- gl 27 |le 1y

. - - .
< @ qrlrty (1-y,) 2’p sy

e et st oot remgpeos e i o
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