Research Report Number 71 - 3 Department of Computer Science YALE UNIVERSITY

New Haven, Connecticut 06520

April 1971

DISCRETE TCHEBYCHEFF APPROXIMATION

A

FOR MULTIVARIATE SPLINES

by

#4

 $\mathbf{t} \in \mathbb{R}^{n \times n} \times L$

Martin H. Schultz 71-3

The preparation of this manuscript was supported in part by the Office of Naval Research (NR 044-401).

In this paper we give the theoretical analysis for the combination of two ideas in numerical analysis. The first is to approximate the Tchebycheff approximation to a function over a continuum, X, in \mathbb{R}^{M} by Tchebycheff approximations over finite, discrete subsets of X, cf. [4], [5], [7], and [8], and the second is the use of multivariate spline functions as approximators. Experimental results for this combination have previously been reported in [5].

To be precise, let X be a compact subset of R^M. If Y is any closed subset of X and g is a real-valued, continuous function on Y, let

$$||g||_{\mathbf{y}} \equiv \max \{|g(\mathbf{y})| | \mathbf{y} \in \mathbf{Y}\}.$$

Given a real-valued, continuous function f and n linearly inderedent, real-valued, continuous basis functions $\{B_j(x)\}_{j=1}^n$, a common problem in numerical analysis is to solve the optimization problem

(1)
$$\inf \{ ||f - \sum_{j=1}^{n} \beta_{j} B_{j}||_{X} | \underline{\beta} \in \mathbb{R}^{n} \}.$$

The standard difficulties are that (i) f is usually given only on a finite discrete point set, (ii) the basis functions $\{B_j\}_{j=1}^n$ don't satisfy the Haar condition in general so that Renez type algorithms don't work, and (iii) interpolation type schemes are impossible to define for general domains in \mathbb{R}^M , $M \geq 2$.

The approach studied in this paper is to replace X by an appropriate discrete subset Y and to consider the approximate optimization problem

(2)
$$\inf \{ || f - \sum_{j=1}^{n} \beta_{j}^{B} || | \beta_{\varepsilon} R^{n} \}$$

which, following [4], [5], and [7], is solved by being reformulated as a linear programming problem, which in turn is solved by either the simplex or dual simplex method.

We now consider a reformulation of problem (2). Let

$$\mathbb{R}^{n+1} \cap \mathbb{K} \equiv \{ \underline{\alpha} \in \mathbb{R}^{n+1} \mid \alpha_i \ge 0, 1 \le i \le n+1 \}$$
 and consider

(3)
$$\inf \{ || f - \sum_{j=1}^{n+1} \alpha_j B_j ||_Y | \underline{\alpha} \in \mathbb{R}^{n+1} \cap K \}$$

where $B \equiv -\sum_{j=1}^{n} B_j$. The following standard equivalence result is

easy to prove.

Theorem 1. The two formulations (2) and (3) of the optimization problem are equivalent.

Proof. It suffices to show that

$$\{\sum_{j=1}^{n} \beta_{j}B_{j} \mid \underline{\beta} \in \Gamma^{n} \} \equiv \{\sum_{j=1}^{n+1} \alpha_{j}B_{j} \mid \underline{\alpha} \in \mathbb{R}^{n+1} \cap \mathbb{K} \}.$$

Clearly the right-hand side is a subset of the left-hand side and hence it suffices to show the converse. Given $\underline{\beta} \in \mathbb{R}^n$, let $\alpha_{n+1} \equiv \max(0, -\min \beta_1)$ $1 \leq j \leq n$ jand $\alpha_j \equiv \alpha_{n+1} + \beta_j$, $1 \leq j \leq n$. Then $\prod_{j=1}^n \beta_j B_j = \sum_{j=1}^n \beta_j B_j + \alpha_{n+1} B_{n+1} + \alpha_{n+1} \sum_{j=1}^n B_j = \sum_{j=1}^n \alpha_j B_j + \alpha_{n+1} B_{n+1} = \sum_{j=1}^{n+1} \alpha_j B_j$. QED. Let $Y \equiv \{y_i\}_{i=1}^N$, $f_i \equiv f(y_i)$, and $B_{ij} \equiv B_j(y_i)$, for all $1 \leq j \leq n+1$, $1 \leq i \leq N$. Then, if $\epsilon(\underline{\alpha}) \equiv ||f - \sum_{j=1}^{n+1} \alpha_j B_j||_Y$, we wish to minimize ϵ with respect to all $(\underline{\alpha}, \epsilon) \in \mathbb{R}^{n+2} \cap K$ subject to the constraints

(4)
$$-\varepsilon \leq f - \sum_{j=1}^{n+1} \alpha_j B_j \leq \varepsilon, 1 \leq i \leq \lambda,$$

i.e., there are n+2 unknowns and 2N constraints. Rewriting (4) we have

(5)
$$\varepsilon - \sum_{j=1}^{n+1} \alpha_j B_{ij} \ge -f_i$$
, $1 \le i \le N$, and

(6)
$$\varepsilon + \sum_{j=1}^{n+1} \alpha_j B_{j} \geq f_i, 1 \leq i \leq N.$$

3

But this is the form of a standard linear programming problem, i.e., given $\underline{b} \in \mathbb{R}^{n+2}$, A a real 2N × (n+2) matrix, and $\underline{c} \in \mathbb{R}^{2N}$, minimize (y, \underline{b}) with respect to $y \in \mathbb{R}^{n+2} \cap \mathbb{K}$ subject to the constraint that $A \not{y} \geq \underline{c}$. This problem has the dual problem of maximizing (x,c) with respect to $\underline{x} \in \mathbb{R}^{2N} \cap \mathbb{K}$ subject to the constraint that $\underline{x}^T A \leq \underline{b}$, cf. [6].

In this case, $\underline{b} \equiv (0, \ldots, 0, 1), \underline{z} \equiv (\varepsilon, \alpha_1, \ldots, \alpha_{n+1}),$ $\underline{c} \equiv (-f_1, \ldots, -f_N, f_1, \ldots, f_N)$, and $A \equiv \begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\$

we use the simplex method to solve a linear program the number of arithmetic operations involved is directly proportional to the number of constraints and in general 2N > (n+2). Hence, we expect that the dual program, solved by the simplex method, will be <u>more</u> efficient, cf. [6]. Furthermore, we remark that in general we expect to obtain a "degenerate" programming problem. However, such problems present no difficulties for the simplex method, cf. [1], [3], [4], and [6].

ų

Hence, in general we seek to maximize

$$\sum_{i=1}^{N} \{ s_i f_i + t_i (-f_i) \} = \sum_{i=1}^{N} f_i (s_i - t_i) \text{ with respect to}$$

$$(\underline{s,t}) \in \mathbb{R}^{2N} \cap \mathbb{K} \text{ subject to the constraints } \sum_{i=1}^{N} \mathbb{B}_{ij} (s_i - t_i) \leq 0,$$

$$1 \leq i \leq n+1 \text{ and } \sum_{i=1}^{N} (s_i + t_i) \leq 1.$$

We turn now to the choice of the basis functions, $\{B_i\}_{i=1}^n$.

We first examine the one dimensional case of $X \equiv [0,1]$. The classical choice for basis functions are the algebraic polynomials, cf. [3]. However, polynomials are numerically unstable and give rise to unwanted oscillations in the approximation. Moreover, the matrices A are dense and many function evaluations are needed. To remedy these we consider polynomial spline basis functions.

In particular, let P denote the set of all partitions, Δ , of [0,1] of the form, Δ : $0 = x_0 < \cdots < \pi_N < x_{N+1} = 1$ and for each $\Delta \in P$ and each positive integer d, S (Δ , d) denote the set of functions s(x) which are a polynomial of degree d on each subinterval [x_i , x_{i+1}] defined by Δ and which are in c^{d-1} [0,1]. We remark that all the results of this paper may easily be extended to the case in which s(x) is assumed to be in $C^{2}i$, $0 \le z_i \le d-1$, at each interior knot x_i , $1 \le i \le N$.

5

To define suitable basis functions for $S(\Delta, d)$, we follow [2] and augment the partition Δ : $0 = x_0 < \cdots < x_{N+1} = 1$ with the points $x_{-d} < x_{-d+1} < \cdots < x_{-1} < x_0$ and $x_{N+1} < x_{N+1+1} < \cdots < x_{N+1+d}$ to form a new partition λ ; $x_{-d} < \cdots < x_0 < \cdots < x_{N+1} < x < \cdots < x_{N+1+d}$

Letting
$$x_{+}^{d} \equiv \begin{cases} x^{d} , \text{ if } x \geq 0 , & d+1 \\ 0 , \text{ if } x < 0 , & \text{and } W_{1}(x) \equiv \Pi \\ k=0 \end{cases}$$
 (x-x^{i+k})

for
$$-d \leq i \leq N$$
, we define $M_{d,i}(x; \Delta) \equiv \sum_{k=0}^{\lambda} (d+1) = \frac{(x^{i+k}-x)_{+}^{d}}{W_i(x^{i+k})}$

for $-d \le i \le M$. As a basis for $S(\Delta,d)$ we take the restriction of the functions { $M_{d,i}(x; \Delta)$ } $\sum_{i=-d}^{N}$ to the interval [0,1].

If Y is a finite subset of [0,1] and $|Y| \equiv \max \min |x-y|$, $x \in [0,1] y \in Y$

then we obtain the following new error bound which relates the error in approximating f by a solution, s_{γ} , of the discrete optimization problem to the error in approximating f by a solution s_{χ} of the continuous optimization problem. The proof uses a technique developed in [8] for the case of polynomial basis functions. <u>Theorem 2</u>. If $\Delta \in P$ and 2d $2 \Delta^{-1} |Y| < 1$, where $\Delta \equiv \min_{\substack{0 \le i \le N \\ 0 \le i \le N}} (x_{i+1} - x_i)$, then

(7)
$$||f - s_{Y}||_{X} \leq [2(1 - 2d^{2} \Delta^{-1} |Y|)^{-1} + 1]||f - s_{X}||_{X}$$

Proof. By the triangle inequality

(8) $||f - s_{Y}||_{X} \leq ||f - s_{X}||_{X} + ||s_{X} - s_{Y}||_{X}$

Let t ε [0,1] be such that $|(s_X - s_Y)(t)| = ||s_X - s_Y||_X$. Then there exists $y \in Y$ such that $|t - y| \le |Y|$ and

$$|(s_{X} - s_{Y})(t)| \leq |(s_{X} - s_{Y})(y)| + |Y| ||D(s_{X} - s_{Y})||_{X}$$

Hence, using the Markov inequality for polynomial splines, cf. [9],

(9) $||s_{X} - s_{Y}||_{X} \leq ||s_{X} - s_{Y}||_{Y} + |Y| 2d^{2} \Delta^{-1} ||s_{X} - s_{Y}||_{X}$

and $||s_X - s_Y||_X \leq (1 - |Y| 2d^2 \Delta^{-1})^{-1} ||s_X - s_Y||_Y$

- $\leq (1 |Y| 2d^2 \Delta^{-1})^{-1} (||f s_X||_y + ||f s_Y||_y)$
- $\leq (1 |Y| 2d^2 \Delta^{-1})^{-1}$ (2 ||f s_X||_X). The required result

now follows from the triangle inequality and (7) and (8). QED.

If we assume a certain regularity of the function f, then we can bound the right hand side of (7). Using results of deBoor, cf. [2], we obtain

<u>Corollary 1</u>. Let $2d^2 \Delta^{-1} |Y| < 1$ and $f \in W^{t,\infty}$ [0,1], $0 \le t \le d+1$, i.e., $D^{t-1}f$ is absolutely continuous and $D^t f \in L^{\infty}$ [0,1]. There exists a positive constant, $K_{d,t}$, such that if $\Delta \in P$ and $2d^2 \Delta^{-1} |Y| < 1$ then (10) $||f - s_Y||_X \perp [2(1-2d^2 \Delta^{-1} |Y|)^{-1} +1] K_{d,t} \Delta^t ||D^t f||_X$, where $\overline{\Delta} \equiv \max_{0 \le i \le N} (x_{i+1} = x_i)$.

We remark that for $S(\Delta,d)$, |Y| need only be of order $\underline{\Delta}$, for Theorem 2 to hold. While for polynomials of degree n, |Y| need be of order n^{-2} , for the corresponding result to hold, cf. [8].

We may obtain still a further Corrollary about computing the maximum absolute value of a polynomial spline function, s(x). The idea is that by sampling the size of a spline at a sufficiently large number of points we may give a rigorous estimate of it everywhere.

Corollary 2. If
$$\Delta \in P$$
, $s(x) \in S(\Delta,d)$, and $2d^2 \Delta^{-1} |Y| < 1$, then
(11) $||s||_{Y} \leq ||s||_{X} \leq (1 - 2d^2 \Delta^{-1} |Y|)^{-1} ||s||_{Y}$,
and

(12)
$$0 \le ||s||_{Y} - ||s||_{Y} \le [(1 - 2d^{2} \Delta^{-1} |Y|)^{-1} -1] ||s||_{Y}$$

 $\le (2d^{2} \Delta^{-1} |Y|) (1 - 2d^{2} \Delta^{-1} |Y|)^{-1} ||s||_{Y}.$

We now turn to the multivariate case. Let $\Omega \in \mathbb{R}^{M}$ be a closed set contined in the unit cube $\begin{array}{l} M\\ x\\ i=1 \end{array}$ $[0,1]_{i}$ in \mathbb{R}^{M} and for each $1 \leq i \leq N$ let Δ_{i} : $0=x_{1} < x_{2} < \cdots < x_{N_{i}} < x_{N_{i}}+1 = 1$ be a partition of $[0,1]_{i}$. Let \mathbb{P}_{M} denote the set of all partitions, \mathbb{P} , of the cube of the form $\mathbb{P} \equiv \begin{array}{l} M\\ x\\ i=1 \end{array}$ Λ_{i} , $\overline{\mathbb{P}} \equiv \max_{1\leq i\leq M} \{\overline{\Delta_{i}}\}$, and $\underline{\mathbb{P}} \equiv \min_{1\leq i\leq M} \{\underline{\Delta_{i}}\}$, i.e., $\underline{\mathbb{P}}$ is the minimum distance between two $1\leq i\leq M$ partition points. Furthermore, let $S(d,\mathbb{P}) \equiv \begin{array}{l} N\\ x\\ i=1 \end{array}$ $S(d,\mathbb{C})^{*}$, i.e., $S(d,\mathbb{P})$ is the space of multivariate polynomial spline functions of degree d with respect to \mathbb{P} , $\mathfrak{Q}_{p} \equiv \{x \in \Omega \mid \text{ the "N" - cell" of P}$ containing x is contained in Ω , and $\mathbb{Y}_{p} \equiv \{y \in \mathbb{Y} \mid y \in \mathbb{Q}_{p}\}$.

Finally, let
$$|Y_p| \equiv \max \min \inf \{ \int ||d\underline{\alpha}||_{\ell_1} | \Gamma(x,y) \\ x \in \Omega_p \quad y \in Y_p \quad \alpha \in \Gamma(x,y) \end{bmatrix}$$

is a piecewise smooth curve all of whose points lie in Ω_p and which connect y to x , i.e., given x $\in \Omega_p$ there exists y $\in Y_p$ such that the ℓ_1 - distance in Ω_p between x and y is no more than $|Y_p|$.

The following result is a multivariate analogue of Theorem 2. <u>Theorem 3</u>. If $\Delta \in P$ and, $2d^2 \underline{P}^{-1} |Y_p| < 1$, then (13) $|| f - s_{Y_p} ||_{\Omega_p} \leq [2(1 - 2d^2 \underline{P}^{-1} |Y_p|)^{-1} + 1]||f - s_{\Omega_p} ||_{\Omega_p}$

$$\frac{\text{Proof.}}{\sum_{p}} \left\| \left\| f - s_{\gamma_{p}} \right\|_{\Omega_{p}} \leq \left\| \left\| f - s_{\gamma_{p}} \right\|_{\Omega_{p}} + \left\| s_{\gamma_{p}} - s_{\gamma_{p}} \right\|_{\Omega_{p}} \right\|_{\Omega_{p}}$$

Let $t \in \Omega_p$ be such that $|s(t)| \equiv |s_{Y_p}(t) - s_{\Omega_p}(t)|$

- = $||s_{P} s_{P}||_{\Omega_{P}}$. There exists a point y ε Y such that
- $| s(t)| \leq | s(y)| + \sum_{i=1}^{N} | D_{i} s(\xi_{i})| | y_{i} t_{i}|$ $\leq || s||_{Y_{p}} + \sum_{i=1}^{N} || D_{i} s||_{\Omega_{p}} | y_{i} t_{i}|$ $\leq || s||_{Y_{p}} + 2d^{2} \sum_{i=1}^{N} \Delta_{i}^{-1} || s||_{\Omega_{p}} | y_{i} t_{i}|$

10

$$\leq ||s||_{\Upsilon_p} + 2d^2 \underline{P}^{-1} |\Upsilon_p|$$

Thus,

$$|| s_{P} - s_{\Omega P} ||_{\Omega P} \leq (1 - |Y_{P}| 2d^{2}P^{-1})^{-1} ||s_{P} - s_{\Omega P} ||_{Y_{P}}$$

and the result follows as in Theorem 2.

QED.

Let $W^{t,\infty}(\Omega)$ denote the closure of the set of real-valued, infinitely differentiable functions on Ω with respect to the norm

$$\begin{array}{c} || \phi || & \equiv \max & || D^{\alpha} \phi || \\ W^{t, \infty} (\Omega) & |\alpha| \leq t & L^{\infty} (\Omega) \end{array}$$

Using the results of [9] we obtain the following multivariate analogue of Corollary 1 of Theorem 2.

Corollary 1. Let
$$f \in W^{t,\infty}(\Omega)$$
, $0 \leq t \leq d+1$.

Beer with Charles and Charles and

There exists a positive constant, $C_{d,t}$, such that if $P \in P_M$

and $2d^{2} \underline{P}^{-1} |Y_{p}| < 1$, then (14) $||f - s_{Y_{p}}||_{\Omega_{p}} \leq [2(1 - 2d^{2} \underline{P}^{-1} |Y_{p}|)^{-1} + 1] C_{d,t} \overline{P}^{t}||f||_{W}^{t,\infty}(\Omega)$

Similiarly, we can prove the following multivariate analogue of Corollary 2 of Theorem 2.

<u>Corollary 2.</u> If $P \in P_M$, $s \in S(P,d)$ and $2d^2 \underline{P}^{-1} |Y_P| < 1$, then (15) $|| s ||_{Y_P} \leq || s ||_{\Omega_P} \leq (1 - |Y| 2d^2 \underline{P}^{-1})^{-1} || s ||_{Y_P}$, and

(16)
$$0 \le || s ||_{\Omega_{\mathbf{P}}} - || s ||_{Y_{\mathbf{P}}} \le [(1 - |Y_{\mathbf{P}}| 2d^2 \underline{p}^{-1})^{-1} - 1] || s ||_{Y_{\mathbf{P}}}$$

$$\leq (2d^2 |Y_p| \underline{p}^{-1}) (1 - |Y_p| 2d^2 \underline{p}^{-1})^{-1} || s ||_{Y_p}$$

References

- [1] Beale, E.M.L., Cycling in the Dual Simplex Algorithm. <u>Naval Res. Logist. Quart.</u> 2, 269-275 (1955).
- [2] deBoor, C., On Uniform Approximation by Splines. J. Approx Theory 1, 219-235 (1968).
- [3] Charnes, A., Optimality and Degeneracy in Linear Programming. Econometrica 20, 160-170 (1952).
- [4] Descloux, J., Dégénérescence dans les approximations de Tschebyscheff lineaires et discretes. <u>Numer. Math. 3</u>, 180-187 (1961).
- [5] Each, R.E. and W.L. Eastman, Computational Methods for Best Spline Function Approximation. J. Approx. Theory 2, 85-96 (1969).
- [6] Hadley, G., Linear Programming. Addison-Wesley, Reading. (1962).
- [7] Kelley, J.E., Jr., An Application of Linear Programming to Curve Fitting. <u>SIAM Journal on Applied Math 6</u>, 15-22 (1958).
- [8] Rivlin. T.J., and Cheney E.W., A Comparison of Uniform Approximations on an Interval and a Finite Subset Thereof. <u>SIAM J. Numer. Anal. 3</u>, 311-320 (1966).
- [9] Schultz, M.H., L[∞] Multivariate Approximation Theory. <u>SIAM J. Numer. Anal. 6</u>, 161-183 (1969).

(2) Decided and provide of the endedice of the second product o

anderen anderen ente anderen anderen in Statistica (1995) an anderen anderen anderen anderen Statistica (1995) anderen Statistica (1995) anderen signalistica (1995)

andras (* 1990) 1990 - State Marine, State (* 1990) 1990 - State State (* 1990) 1990 - State State (* 1990) 1990 - State State (* 1990)