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Frequently Used Notation

|Al; the cardinal of the set A.
e; end of proof symbol.
®; the empty set.

AU B, AN B, A — B; the union, intersection and difference of the sets A, B.

f : A — Bj; a mapping of a set A into a set B.

r — y; the mapping carries the point z to the point y.

3,V, =, & there exists, for all, implies, if and only if.

Z =y modn; z congruent to y modulo n.

(z]y); the Jacobi symbol of z with respect to y.

Zy = {z <n:gcd(z,n)=1}.

w(n) = |Zy|; the Euler function.

indexp,¢(n); the index of z with respect to g € Z;.

[z], 2], []; ceiling of z, floor of z, integral part of z.
n!=1.2---n; n factorial.

F, = 22" + 1; n-th Fermat number.

M, = 27 — 1; Mersenne number corresponding to the prime p.
order,,(z) = least k > 0 such that z¥ = 1 modm, where z € Z},.
Um(t) = largest k such that m*|t.

ERH; the Extended Riemann Hypothesis.
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1 Introduction

Prime numbers have fascinated the minds of mathematicians and amateurs
alike for thousands of years. Unfortunately, research from its outset in ancient
Greece to the 2nd World War was limited mostly to calculations done by hand.
The advent of electronic computers has changed all this and has brought to the
forefront the problem of how to efficiently test the primality of a given integer.
In recent years, prime numbers as well as the ability to test the primality of
a given integer efficiently has become very important for the construction of
secure public key cryptosystems.

- This paper is an attempt to give an account of recent work on Primality
testing. The sieve of Eratosthenes (section 2) is still useful in listing all the
primes less than or equal a given integer. Sections 3, 4 give two tests of theo-
retical significance; Wilson’s and Lucas tests. In section 5 the number of steps
needed to prove the primality of a given prime is studied. Sections 6, 7 and 8
study the primality of integers of specific forms, including Fermat and Mersenne
numbers. The Extended Riemann Hypothesis (abbreviated ERH) is explained
in 9. Sections 10, 11, 12 and 13 give three tests which prove that assuming
ERH primality can be tested in polynomial time. Two probabilistic primality
tests are given in sections 16 (Solovay - Strassen) and 17 (Rabin.) The test in
section 14 is inspired from the tests based on ERH and is of practical value.
The paper concludes with an account of the Rumeley - Adleman algorithm in
section 18.

2 The Sieve of Eratosthenes

The sieve of Eratosthenes can be useful if one wants to determine all the
primes less than or equal a given positive integer z, assuming that z is relatively
small. To do this list all the numbers from 2 up to z in their natural order in
the sequence

2,3,4,5,6,7,8,9,10,11,12,13,14, 15,..., .




Starting from 2, the first prime in the above sequence, delete all the multiples
2m of 2 such that 2 < 2m < z. The resulting sequence is

2,3,5,7,9,11,13,15,...,z.

Next, starting from 3, the next prime in the above sequence, delete all the
multiples 3m of 3 such that 3 < 3m < z. The resulting sequence is

2,3,5,7,11,13,...,z.
In general, if the resulting sequence at the t—th stage is
2,3,5,7,11,13,...,p,..., 2,

where p is the t—th prime, then delete all the multiples pm of p such that
p < pm < z. Continue in this manner untill you exhaust all primes less than
or equal to z. If at some stage in the course of this procedure a number k
has dropped then k is composite, else it is prime. It is clear that the above
procedure will give a list of all the primes less than or equal to z.

With minor alterations in the above procedure, it is easy to see that in order
to get all the primes less than or equal to z one only needs to continue the
process up to the t-th stage, where if p is the t-th prime then p < |/z; moreover
at the t-stage one need only delete all multiples pm such that p® < pm < z.

3 Wilson’s Test

Theorem 8.1 For any positive integer n the following are equivalent
(1) n ts prime
(2) (n —1)! = -1 modn.

Proof: Without loss of generality it can be assumed that n > 2.

(1)=(2)

For each a € Z, the congruence az = 1 modn has a unique solution modulo
n, say a~! (here one uses the primality of n.) Since,

a? = 1 modn ¢ a = 1 modn or a = (n — 1) modn,

it follows that the only fixed points of the mapping a — a~?! are the numbers
1,n — 1. Thus, one can write all the factors of the product (n —1)! =1-2.
3-.-(n — 1) (except for 1,n — 1) in pairs a,a~!. It follows that (n — 1)! =
(n — 1) = —1 modn.

(2)=(1)

Assume on the contrary that n is composite. Let n = ab, where a,b > 1.
Then it is clear that a|(n — 1)!. Hence, by assumption a|(n — 1). But this is a
contradiction since a|ne.




It appears that Wilson’s test has only theoretical value. However it can be
used to obtain a list of all the primes. Indeed, for each integer n let r(n) =
the remainder in the division of (n — 1)! by n(n — 1)/2. It is clear that if n
is composite then r(n) = 0. On the other hand if n > 2 is prime then by
Wilson’s theorem n|(n — 1)! + 1. It follows that (n — 1)/2|r(n), n|r(n) + 1 and
r(n) < n(n—1)/2. Hence there exist s > 2 and t > 0 such that r(n) = s(n—1)/2
and r(n) + 1 = tn. It is now easy to see that 2tn = sn — s + 2. This in turn
implies n|s — 2 and hence r(n) = n — 1. Hence the following theorem has been
proved (see [Di] page 428.)

Theorem 3.2 (Barinaga) {r(n)+1: r(n) > 0} is ezactly the set of odd prime
numbers o

4 Lucas Test

Theorem 4.1 For any positive integer n the following are equivalent

(1) n is prime

(2{ There ezists g € Z;; such that g"~! = 1 modn, but for all primes p|(n—1),
g(»=1)/P £ 1 modn.

Proof: (1) = (2)

If n is prime then it follows from the theorem of Gauss that the multiplicative
group Z; is cyclic. Let g be a generator of this group. It can be verified easily
that the above g satisfies (2).

@)=

Let g satisfy (2) and let m be the order of g in the group Z; i.e. m = the
least ¢ such that g = 1 modn. Since, g"~! = 1 modn, it follows that m|(n — 1).
On the other hand, the second part of (2) implies that m cannot be a proper
divisor of n — 1. It follows that m = n — 1. Further, the theorem of Euler-
Fermat implies that g#(") = 1 modn. Hence, m = n — 1/(n) and consequently
n — 1= p(n). It follows that n is prime o

Lucas test like Wilson’s test does not provide any efficient algorthm to test
the primality of a given integer n. However the following Corollary shows that
if the factorization of n—1 is known then it can be used to test if a given g € Z;
generates the multiplicative group Z,;.

Theorem 4.2 For any positive integer n and any g € Z,; the following are
equtvalent

(1) g generates Z;,
(2) ¢"~! = 1 modn and for all primes p|(n — 1), g»~1)/? & 1 modn




5 Pratt’s Test

Pratt’s test is concerned with the number of steps needed to show that a
given integer n is prime. Call (a,n), where n is a positive integer and a € Z,
Fermat pair if and only if (a,n) = (1,2) or a > 2 and a®~! = 1 modn.

Example 5.1 (1) If p is prime then (a,p) is a Fermat pair, for all a € Z;.
(2) None of (5,12),(7,12),(11,12) ¢s a Fermat patr.
(3) (2,341) is a Fermat pair, while (3,341) is not (see [Scha], page 118.)

Define a partial ordering < on Fermat pairs by
(b,m) < (a,n) < m|(n - 1) and a(*~ /™ & 1 modn

It is clear from the above definition of < that there are no infinite < descending
sequences i.e. infinite sequences (a;, ny), (ag, n2),..., (@, nk),. .. such that

v < (akyng) < < (a1,n1)

For such a partial ordering it makes sense to define for each Fermat pair (a,n)
the rank of (a,n) by

rank(a, n) = sup{rank(b,m) + 1: (b, m) < (a,n)}.

Call a sequence (a3, ni),...,(ak,ng) of Fermat pairs, where k > 1, a Pratt
sequence for the Fermat pair (a, n) if and only if for eachi = 1,...,k, (a;, n;) <
(e,n)and n—1=n,---ng.
For any set (possibly empty) S of Fermat pairs, let I'(S) denote the set of
" Fermat pairs (@, n) such that either (a,n) has no < predecessor or else there
exists a Pratt sequence (aj,n;),...,(ak,nk) for (a,n) such that for all ¢+ =
1,...,k, (a;,n;) € S. Finally, for each t > 0 let the sets I'<* and I'"* of Fermat
pairs be defined by induction on ¢ as follows

I<*=|JI"and I* = I(I'<")
r<t :
In addition, let
re=|Jr.
t

It is an immediate consequence of the definition that the operator I is mono-
tone i.e. S C S’ = I'(S) C I'(S’). Using this, and < induction it can be shown
easily that the sequence I'! satisfies the following properties:

Lt<t'=>TtCTY.
2. For all ¢, Tt C T'(T*).




3. T(I'®) =T,

Theorem 5.1 (Pratt) For any Fermat pair (a,n) the following are equivalent
(1) (a,n) € T*.
(2) n is prime and a generates Z.

Proof: (1) = (2}
It will be shown by induction on ¢ that for all Fermat pairs (a, n)

(a,n) € T* = n is prime and a generates Z>.

If t = 0 then it will be shown that I'® = {(1,2)}. Indeed, let (a,n} € I°.
By definition of T, (a,n) does not have an < predecessor. ¥ m > 2, then
write n — 1 = p; ---pi, where p;,...,p, are primes. For each ¢ == 1,...,k,
let a, be a generator of Z; . Then it is clear that (a;,p;) < (a,n), whichis a
contradiction. Hence, (a,n) = (1,2). In the general case ¢t > 0, let {a,n) € I'.
By definition of I, (a,n) € T'({J,(,I'"). Hence, there exists an r < ¢ and
a Pratt sequence (al,nl), o (ak,nk) for (a,n) such that for all ¢ = 1,....,k,
(a;yn;) €T" and n — 1 = n; ---n;. It follows from the induction hypasifhesis
that for each ¢ = 1,...,k, n; is prime and a; generates Zy,- Moreover, each
(a., n,) < (a,n), and hence a®=1)/n¢ 2 1 modn. It follows from Lucas test hat
n is prime. In addition, a generates Z;.

2)=(1)

This direction will be proved by induction on the rank of the Fermat pair
(a,n). If rank(a,n) = O then (a,n) has no < predecessor. Hence, as in the
proof of (1) = (2) it can be shown that (e¢,n) = {§,2). In general, Hn>2
write n — 1 = p; ---pi, where p;,...,px are primes. For each ¢ == 1,...,&,
let a; be a generator of Z;.. It is then clear that (a;,p;) < (a,n), and heuse
rank(a;, p;) < rank(a, n), for all ¢ = 1,...,k. It follows from the imduction
hypothesis that for alli = 1,..., k, (a,, p,) E Te. Hence, (a,n) € I'({"™} =T,
and the proof of the theorem is complete °

Example 5.2 Consider the Fermat pair (6,971). Notice that 971 —1=2-5-97,
97 -1 =2%.3,5-1 =22 3-1 = 2. < predecessors of (&,971) are
(1,2),(2,5),(5,97); < predecessors of (5,97) are (£,2},{2,3); the wnly < pre-
decessor of (2,5) and (2,8) is (1,2). It is clear that rank({t,2) = 0, rank(2,3) =
rank(2,5) = 1, rank(5,97) = 2, rank(6,971) = 8. Moreover, (6,971} = I¥.

For each Fermat pair (a,n) € I'*® let
la,n|r = smallest t > 0 such that (a,n) € I'.

In the next result an upper bound of the quantity |a,n|r will be determined
which depends only on n. Let (a,n) € '™, Then there exists a Pratt sequence
(a1,n1),.. ., (ak, nk) for (a,n) such that n — 1 =n; ---n; and

layn|r = max{|a;,n;[r +1:1=1,...,k}.




It follows by induction that

la,n|r < max{logon; +1:i=1,...,k} <

logy(ny -+ -nx) =loga(n—1) <logy n

Thus, the following theorem has been proved
Theorem 5.2 For any prime n and any generator a of Z,, |a,n|r < log, ne
An immediate consequence of the above results-is also the following

Theorem 5.3 For any integer n > 1 the following statements are equivalent
(1) n is prime.
(2) 3a ((a,n) is a Fermat pair and (a, n) € T'll°s2"]) o

For each prime n let II(n) be the number of multiplications and exponenti-
ations needed to prove the primality of n. The above theorem implies that if n
is prime then (a,n) € I'*, where t = |log; n]|. To test the primality of n write
n—1=p; ---pi and verify the following two properties:

1. each p; is prime
2. a(®=1)/Pi & 1 modn, for i = 1,...,k.
It is now easy to show by induction that
k r
M(n) <1+2k+ Zn(p;) < 1+2k+2(—2+3loggp,~) < -2+ 3logy n.
i=1 =1

Hence it has been shown that

Theorem 5.4 For any prime n the number of multiplications and ezponentia-
tions needed to prove the primality of n is at most —2 + 3log, ne

6 Proth’s Test

This and the next two tests can be used to verify the primality of positive
integers of specific forms. Proth’s test is concerned with numbers of the form
k2™ + 1. Its proof requires the following lemma.

Lemma 6.1 (Pocklington) Letn=ab+1> 1, where 0 <a < b+1. Assume
that for any prime divisor p of b there ezists an integer = such that z"~! =

1 modn and z("=1)/? # 1 modn. Then n is prime.




Proof: Assume on the contrary that n is not prime and let ¢ be a prime
factor of n which is < \/n. By assumption, for every prime factor p of b there
exists an integer z, such that

n—1

ordery(z,)|(n — 1) and order,(z,) /

Let p* be the largest power of the prime p such that p¥|b. Then order, (zp) =
sp¥, for some integer s. Considering the prime factorization of b and using the
last assertion one can find an integer z such that ordery(z) = b. It follows that
¢ — 12> b and hence,

@?20b+1)°2>ab+1)=ab+a>n.

In particular, ¢> =n, a = 1 and a = b + 1, which is a contradiction e
It is now easy to prove Proth’s theorem.

Theorem 6.1 (Proth) Assume 3 fk, k < 2"+ 1 and 3 < 2™ + 1. Then the
following statements are equivalent

(1) k2" + 1 is prime.

(2) 3¥2"7" = —1 mod(k2" + 1).

Proof: (2) = (1)

This is immediate from the previous lemma, witha =k, b = 2" + 1.

(1) =(2)

Using Euler’s criterion, it is enough to show that 3 is a quadratic nonresidue
modulo k2™ + 1. Since 3 fk, k2" + 1 = 2 mod3. Hence,

(k2™ +1|3) = (2]3) = -1.

Using the law of quadratic reciprocity one easily obtains that

(3lk2™ +1) = (=1)%2"7" . (k2" + 1|3) = —1e

7 Pepin’s Test

Suppose that 2™ +1 is prime. It will be shown that n = 2™, for some integer
m 2 0. Indeed, assume on the contrary that n = k- 2™, where k is odd > 1.
Put a = 22", Then

" +1=aF+1=(a+1)(a* 1 —a* 24 a3 . 4 1),

which contradicts the primality of 2™ + 1.
For each n 2> 0, let the n—th Fermat number be defined by

F,=2""+1.

Pepin’s test is used to verify the primality of Fermat numbers, and is an
immediate consequence of Proth’s theorem.



Theorem 7.1 (Pepin) For each n 2 1, the following are equivalent
(1) F, ts prime.
(2) 3Fa=1)/2 = —1 modF,e

Remark: Since for all k > 0, Fi4; = Fo - - - Fy + 2, the Fermat numbers are
relatively prime to each other.

According to [Scha], page 80, [Wi], page 134, and [BLSTW|, Fy, F>, Fs, F,
are primes, but all of Fg,..., F1g, Fa; are composite. The status of Fyq is not
known. Other Fermat composites, for n > 23 are listed in [Wi] . Moreover no
other Fermat prime seems to be known.

8 Lucas-Lehmer Test

It is easy to show that if 2" — 1 is prime so is n. Indeed, assume on the
contrary that 2™ —~ 1 is prime but n is composite. Let n = ab be two nontrivial
factors of n and put £ = 2%. Then one can show that

M —1=2—1=(z-1)(2* 1 +2* 24 ... 42 +1),

which is a contradiction.

The Lucas-Lehmer test can be used to determine the primality of the so
called Mersenne integers i.e. integers of the form 2P ~ 1, where p is prime. For
each prime p, let the Mersenne number corresponding to p be defined by

Mp=2p-1-

The main result to be used in the proof of the Lucas-Lehmer test is the
following lemma.

Lemma 8.1 (H. W. Lenstra) Let A be a commutative ring with unit which
tncludes Z, as a subring. Let s > 0. Further assume that there ezists an a € A
such that o® =1 but for all prime q|s, a®/9 — 1 is invertible in A. If for some

tntegert > 0,
t—1

H (z - a"‘)

1=0 .

18 a polynomial with coefficients in Z, then for any r|s, there ezists an 1 such
that r = n* mods.

Proof: Assume that the hypothesis of the lemma is true. Let r be a divisor
of n. Without loss of generality it can be assumed that r is prime. Since r|n,
n = rk = 0 and hence r is a zero divisor in A. Clearly, I = {r€ A: zk =0}isan
ideal of A such that r € I. Let M be a maximal ideal containing r and consider
the field B = A/M. The hypothesis of the lemma implies that the multiplicative




order of f = a modM in B is exactly s (this is because no invertible element
can belong to a maximal ideal.) By assumption, the polynomial

t—-1

p@) =] (=- 6"

=0

has coefficients in Z,. Since, r = 0 modM and r|n, it can also be assumed
without loss of generality that p(z) € Z,[z]. Moreover, p(8) = 0. The mapping
z — z" is a homomorphism of B which leaves Z, fixed. It follows that p(8") = 0,
and hence 8" = 8" for some 0 < i < t. The rest of the proof follows from the
fact that the multiplicative order of 8 in B is exactly s o

Define the sequence e, by induction on k as follows

e; =4 and ex4g =ci—2.

Theorem 8.1 (Lucas-Lehmer) For all m > 2 the following statements are
equivalent

(1) M, = 2™ — 1 is prime.

(2) em-1 = 0 modM,,.

Proof: (H. W. Lenstra) If m = 2k is even then M,, = 2%¥ —1 = 3(4%-1 4
4+-2 4 ... 4 1) and hence M, is not prime. In addition, it can be shown by
induction on ¢t > 2 that ¢,_; = —1mod3. In particular, e,,—; # 0 modM,,
(since 3| My,.) Thus, without loss of generality it can be assumed that m is odd.

Put n = M,, and consider the element a = 2(™+1)/2 modn of Z2. It is then
clear that '

a®? =21 = (2™ — 1)+ (2™ + 1) = 2 modn.

Consider the quotient ring

Z, =]

A= (z2 - az-1)’

where (22 — az — 1) is the ideal generated from the polynomial z2 — az — 1 and
let o be the image of z in A. Since 22 — az — 1 is of degree 2 it is clear that

A={s+ta:st€Z;}, a’*=aa+1.

It follows that 8 = a—a = —a ™! is the other root of 22 —az—1 in A. Moreover,
a + f =a and af = —1. Using this and induction on k& > 1 it follows that

o + ﬂzk = e;x modn. (1)

Now the proof of the main theorem can be completed.

(1)=(2)



Assume n is prime. It follows easily from n = 2™ — 1 that n = 1 mod3
and n = —1 mod8. Using the last two congruences and quadratic reciprocity
it can be shown that (2|n) = —(3|n) = 1 and hence (6|n) = —1. Since the
discriminant of the polynomial 22 — az — 1 is equal to 6 it follows that A is a
quadratic field extension of Z;. Moreover, a, # are conjugate over Z}, being
roots of the same polynomial. Considering the automor?hism z — z" it follows
easily that a® = 8. Thus, a®*! = af = —1 and A2™ = a~2""". It follows
from equation (1) that

em—1 = " 4 ﬂzm—l =a?"" +072""" = 0 modn.
2)=(1)
Since €;,—; = 0 modn, it follows from equation (1) that
o™ = —1 modn and a2™"" =1 modn.

The idea is to apply lemma 8.1 to s = 2™*! and the ring A = Z,. The lemma
applies because a™ = f and hence 22 — az — 1 = (z — e)(z — a™). It follows
that for any r|s, there exists an ¢ such that r = n' mods. But n? = (2™ -1)2 =
1 mod2™*1. Hence, for every r|n, either r = 1 mod2™+! or r = n mod2™+1. It
follows that n is prime o

Remark 1: It is known that for all n,m, gcd(2" —1,2™ —1) = 28¢d(nm) 3
(see [Scha] theorem 10.) Hence, the Mersenne numbers {M, : p is prime } are
relatively prime to each other.

Remark 2: A different proof of the Lucas - Lehmer test can be given using
the so called Lucas - Lehmer functions, which for any two relatively prime
integers p, g are defined as follows:

n .
“n(pa q) = Ms vn(Pg Q) =a" + ",
a-p
where a, 8 are the two roots of the quadratic 22 — pz + ¢ and n > 0. Many of
the properties of the Lucas - Lehmer functions can be found in [Wi]. In section
4.5.4. of [Kn| the Lucas - Lehmer functions u, (4, 1), v, (4, 1) are used to derive
theorem 8.1 .

Remark 3: It is not known if there exist infinitely many Mersenne primes
or infinitely many Mersenne composites. Mz, Mg, Mg, M7, M13, My7, Mg are
primes. All the remaining Mersenne primes for p < 50,000 are given in the
table of Figure 1. In addition [BLSTW] states that for p = 86,243, 2P — 1 is
prime.

9 Extended Riemann Hypothesis

Let C* denote the multiplicative group of the field of complex numbers. A
character modulo n is a function x : Z; — C* which is a group homomorphism

10




p with 27 — 1 prime Discoverer Year | Machine
19 Cataldi 1588 -
31 Euler 1722 -
61 Pervushin 1883 -
89 Powers 1911 -
107 Powers 1914 -
127 Lucas 1876 -
521 607 1,279 2,203 2,281 | Lehmer — Robinson | 1952 | SWAC

[ 3,217 Riesel 1957 | BESK
4,253 4,423 Hurwitz — Selfridge | 1961 | IBM 7090
9,680 9,941 11,213 Gillies 1963 | ILIAC 2
19,937 Tuckerman 1971 | IBM 360

[ 21,701 Nickel — Noll 1978 | CYBER 174 |
23,209 Noll 1978 | CYBER 174
44, 497 Slowinsky — Nelson | 1979 | CRAY-1

Figure 1: Table of Mersenne Primes

between Z;,C*. For each modulo n, the trivial character x, is defined by
Xn(a) = 1, for all @ € Z;. Any character x can be extended to a function
x': Z* — C* as follows:

iy J x(amodn) if ged(a,n)=1
xa) = { 0 if ged(e,n) # 1,

where Z* = {n € Z : n > 0}. For simplicity the same symbol will be used for
X X'

For any character x modulo n the Dirichlet L function corresponding to x is
a function L, with a complex variable z defined by the following infinite series:

Ly(2) = Z m

n!
n=1

Notice that if x # x1 then by analytic continuation the function L, can be
extended to a unique analytic function defined on the half plane R(z) > 0 e.g.
see [KP] (R(z) is the real part of the complex number 2.) The Riemann
Hypothesis for the L function L,, abbreviated RH[L,] is the statement: all
the zeroes of the function L, in the critical strip 0 < R(z) < 1 must lie on the
line R(z) = 1/2. The Extended Riemann Hypothesis, abbreviated ERH
is the statement: for all n and all characters x modulo n, RH|L,] holds.

The following theorem will be essential in understanding the primality tests
that follow (see [Mont] theorems 13.1 and 13.2.)

11



Theorem 9.1 (Ankeny-Montgomery) There ezists a constant C > 0 such
that if x is a nontrivial character modulo n and RH|L,] holds then there ezists
a prime p < C - (logn)? for which x(p) # le

It is a well known result from the theory of finite abelian groups that every
finite abelian group G is the direct product of cyclic groups, say Gi,...,G, (see
[Ku], part II, chapter VI.) For each ¢ = 1,...,r, put ¢; = |G;| and let

be an e;-th root of unity. Clearly, each cyclic group G; is isomorphic to the cyclic
group {& : j = 0,...,¢; — 1}. It follows that the group G can be embedded
into the group C*.

Let f: Z; — G be a nontrivial abelian group homomorphism. The image
Im(Z%) of Z} under f is also an abelian group and as such it can be embedded
into C*; let g : Im(G) — C* be the embedding thus defined and let x be the
modulo n character g o f. It is then clear that for any a € Z, x(a) # 1 if and
only if f(a) # 1.

As an immediate consequence of the above remarks and theorem 9.1 it can
be shown that

Theorem 9.2 (Assume ERH) There ezists a constant C > 0 such that if x
ts a nontrivial homomorphism x : Z; — G between abelian groups then there
exists a prime p < C - (logn)? for which x(p) # le

10 Solovay-Strassen Deterministic Test

This test is based on the following theorem.

Theorem 10.1 For any odd integer n > 1 the following statements are equiv-
alent

(1) n is prime

(2) (Va € Z2)(a»~1)/2 = (a|n) modn)

Proof: (1) = (2) is an immediate consequence of Euler’s criterion. For
each a € Z7, let the order of a modulo m, abbreviated order,,(a), be the least
nonegative integer ¢ such that ¢ = 1 modm. Call n square free if (Vp)(p|n =
p? Jn). To prove (2) = (1) the following lemma will be used.

Lemma 10.1 If (Va € Z;)(a™~! = 1 modn) then n is square-free.

Proof of the lemma: Let p be a prime dividing n and let p* be the largest
power of p dividing n. Let g be a generator of Z7;. Use the Chinese remainder
theorem to find an a € Z;; such that

a = g modp’ and a = 1 mod(n/p*).
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It follows from the hypothesis that a"~! = g"~! = 1 modp'. Hence order,:(g) =
e(p') =p"~Y(p—1)|(n — 1). Thus, t = 1, as desired o

Proof of the main theorem:

The above lemma implies that if n is composite then it must be of the form
n = p; - - pr, Where p; ..., p, are distinct primes and r > 2. Let a be a quadratic
nonresidue modulo p;. Use the Chinese remainder theorem to find an z € Z;,
such that £ = a modp; and = = 1 mod(n/p;). Hypothesis (2) of the theorem
implies that

(zln) = (2lp1) -~ (zlpr) = (alp1) = =1 = 2*"D/2 modn.

However this contradicts £ = 1 modp, e
Using the above theorem and theorem 9.2 it can be shown that

Theorem 10.2 (Assume ERH) There exists a constant C > 0 such that for
any odd tnteger n > 1 the following statements are equivalent

(1) n is prime

(2) For all a € Z3 such that a < C - (logn)?, a{»~1)/2 = (a|n) modn.

Proof: (1) = (2) is trivial. To prove the converse assume (2) is true but n
is composite.-Let C > 0 be the constant of theorem 9.2. Consider the abelian
group G = {a®»"1/2. (a|n) modn : a € Z:} and the group homomorphism
X : Z% — G such that x(a) = a(®=1)/2. (g|n) modn. Theorem 10.1 implies that
X is nontrivial. A contradiction follows easily from theorem 9.2 o

11 A Variant of Solovay-Strassen’s Test

This test constitutes a simplification of the Solovay-Strassen deterministic
test because it makes no mention of the Jacobi symbol. It is based on the
following theorem.

Theorem 11.1 For any odd integer n > 1 the following statements are equiv-
alent

(1) n is prime

(2) (Va € Z2)(a(®~1)/2 =% 1 modn) and (3a € Z2)(a"~1)/2 = —1 modn)

Proof: (1) = (2)

This is an immediate consequence of of Euler’s criterion and the primality
of n.

(2)=(1)

It follows from lemma 10.1 that n is square free i.e. (¥3){pln = p? /n).
Hence without loss of generality it can be assumed that n is t:e product of the
distinct primes py,...,p,. The groups Z; and Z; X ---x Z; are isomporphic.
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Since there exists an a € Z, such that a(»=1)/2 = —1 modn, there exist a; € Z,,
such that ag""l)’ 2= modp;, for i = 1,...,r. Consider the characters

x(a) = a2 modn, xi(a) = a®" /2 modp;,

where ¢t = 1,...,r and let K, K;,..., K, be their respective kernels. It is then
clear that K is isomorphic to K; X --- X K, and hence

en) _ ey ele)  eler) _ eln)
o = |K| = K| || = £ 22 2
It follows that r = 1 and hence n is prime o

Using theorem 9.2 the following result can be proved.

Theorem 11.2 (Assume ERH) There ezists a constant C > O such that for
any odd integer n > 1 the following statements are equivalent
(1) n is prime
(2) (Va < C - (logn)? in Z2)(a("~1/2 =% 1 modn) and
(3a < C - (logn)? in Z2)(a(*~1)/2 = —1 modn).

Proof: (1) = (2)

Assume n is prime. The first part of (2) is an immediate consequence of
theorem 11.1. To prove the second part use theorem 11.1 to conclude that the
character x(a) = a{"~1)/2 modn is non trivial and use theorem 9.2 .

(2)=()

It is enough to prove that both conditions of part (2) of theorem 11.1 are
true. The second part is immediate. To prove the first part assume on the
contrary (Ja € Z2)a(®~1)/2 #* 1 modn. Consider the quotient group G/H,
where G = Z; and H = ?l,—l}. Let x : Z; — G/H be the character x(a) =
the equivalence class of a{®~1)/2 modn in the group G/H. Using theorem 9.2
one easily obtains an a < C - (logn)? such that x(a) # H (H is the unit of the
group G/H.) But this is a contradiction e

12 Miller’s Deterministic Test

Miller’s deterministic test is based on the following theorem.

Theorem 12.1 For any odd tnteger n > 1 write n—1 = 2°u, with u odd. Then
* the following statements are equivalent

(1) n is prime

(2) Va€ Z;)(a* # 1 modn = 3k < e(azk" = —1 modn))

Proof: (1) = (2) is an immediate consequence of the theorem of Euler-
Fermat and the primality of n. The converse (2) = (1) requires the following
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Lemma 12.1 Assume thatn = p’l“ -+ -pkr i3 the prime factorization of n, where

P1,...,Pr are distinct primes. Write n — 1 = 2°u, with u odd and put v =
min{va(pi —1): ¢ =1,...,r}. Then the following statements hold

(1) e2 v

(2)e=v & |{1<i<r:k;isodd and ve(p; — 1) = v}| is odd.

Proof of the lemma: Clearly e > v follows easily from

r—1
L k" r
n—1=(pf —1)+) (pF —1)plitt .- pkr. (2
=1

Without loss of generality it can be assumed that 1,...,h are the indices 7 for
which k; is odd and va(p; — 1) = v. It is easy to see that

(Vi 2 h+1)(2°*|pf — 1) and (Vi < R)(2° ! po¥i — 1)

Hence p:.“ = 1mod2"*!, for 1 > h+ 1. For ¢ < h, let s; be odd such that
pf" = 1+ 8;2". Substituting in equation (2) and multiplying out it is easy to
obtain
n—1= (s +---+8,)2" mod2**! (3)

It is now immediate from equation (3) that e = v < s; + --- + 8, is odd. The
result of the lemma follows easily e

Proof of the theorem: Assume that hypothesis (2) of the theorem is
true. Theorem 10.1 implies that it is enough to show (Va € Z2)(a("~1)/2 =
(aln) modn). Indeed, let a € Z:. If a* = 1 modn, then a(®=1/2 = 1 modn.
Moreover since u is odd

(aln) = (a|n)* = (a"|p) =1,

Hence without loss of generality it can be assumed that a* # 1 modn. Hypoth-
esis (2) of the theorem implies that there exists k < e such that

a?"* = —1 modn and a®*'* = 1 modn. (4)

Let n = p',‘1 ---pFr be the prime factorization of n, where p;,...,p, are distinct
primes. For each ¢ = 1,...,r let v; = vo(p; — 1); also let u; be odd such
that p; — 1 = 2%wu;. Then it is true that (a|p;) = (a|p;)* = a¥(Pi-1)/2 =
a2’ Tl modp;. Since both u, u; are odd it follows that

k=vi-1=(alp;)=-1, andk<vy; — 1= (a]p;) = 1. (5)

Assume on the contrary that k > v; — 1, for some ¢ = 1,...,r. Then (a|p;) =
a2 uiv modp;, and hence a2”*%* = 1 modp;, which contradicts congruences
(4). It follows that k < v—1 < e—1. If k < v —1 then equations (3) imply that
foralli =1,...,r, (a]p;) = 1 and hence also (a|n) = 1. Since k < e—1 it follows
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that a(®~1)/2 = 1 modn. Consequently to complete the proof of the theorem it
is enough to consider the case k = v — 1. Without loss of generality let 1,...,h
be the indices such that k; is odd and v; = v. It follows from equations (5)
that (a|n) = (—=1)k1++ks If v = e then the above lemma implies that h is
odd. Hence (a|n) = —1 and a("~V)/2 = a2"* = —1 modn. On the other hand if
v < e then h is even. Moreover, (a|n) = 1 and a("~1)/2 = a2** = 1 modn. This
completes the proof of the theorem o
The above theorem and theorem 9.2 can be used to show.

Theorem 12.2 (Assume ERH) There exists a constant C > 0 such that for
any odd tnteger n > 1 ¢f n — 1 = 2%u, with u odd, then the following statements
are equivalent

(1) n is prime

(2) For all a € Z;; such that a < C - (logn)?,

a* # 1 modn = 3k < e(a®"* = —1 modn).

Proof: (1) = (2) is trivial. To prove the converse assume (2) is true but
n is composite. Let C > 0 be the constant of theorem 9.2. Assume that for
some prime p, p?|n. Consider the abelian group G = {¢®*~! modp? : a € Z,}
and the group homomorphism X: Z;: — G such that x(a) = a®~! modp?. The
following lemma implies that x is nontnvm.l

Lemma 12.2 The congruence zP~! = 1 modp® has at most p— 1 solutions.

Proof of the lemma: Let g be a generator of ZJ;. Then it is easy to show
that the only solutions of the above congruence are

¢° modp?, g?° modp?, ..., g~ 1)? modp?e

It follows from theorem 9.2 that there exists an integer a < C - (log p?)? such
that a®~! # 1 modp?. It will be shown that in fact a®~! # 1 modp®. Indeed, if
a"~! = 1 modp? then order,,z (@)|(n — 1) and orderyz(a)|(p?) = p(p — 1) imply
that order,z(a)|p — 1, which is a contradiction. Hence a™~! # 1 modp?, which
contradicts the hypothesis of the theorem.
Thus it can be assumed that n is the product of distinct primes. In this case
let p,q be two distinct prime factors of n. Without loss of generality it can be
assumed that vo(p — 1) 2 v2(g — 1). Define an integer d = 1 mod4 by

d= {Pq if vo(p—1) =12(g—1)
p ifra(p—1)>va(g—1)

It follows from theorem 9.2 that there exists an a < C - (logd)? < C - (logn)?
such that (a|d) = —1. Put b = a*. Since u is odd it follows that (bu) = —1 and

hence b # 1 modd. It will be shown that for all § < e, b2’ # —1 modn. This
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clearly contradicts hypothesis (2) of the theorem. Indeed, assume otherwise and
let 5 < e be maximal such that b>° = —1 modn. Then order,(b) = order,(b) =
27%1, One can now distinguish two cases.

Case 1: vo(p—1) > vp(g—1)

In this case 27*!|g — 1 and hence 27+!|(p — 1)/2. Thus, on the one hand
(b]d) = (b]p) = —1 and on the other hand 5(*=1)/2 = 1 modp, which contradicts
the Euler-Fermat theorem.

Case 2: 2(p—1)=w3(g—-1)

In this case (b]d) = (blpgsb]q) = —1. Say, without loss of generality, (b|p) =
—(blg) = —1. Hence b(¢=1)/2 = 1 modg and order,(b) = ordery(b)|(g — 1)/2.
Since v2(p — 1) = vz(g — 1) this implies that order,(b)|(p — 1)/2 and hence
b(r=1)/2 = 1 modp, which is a contradiction e

13 An Improvement of Miller’s Test
The proof of theorem 12.2 requires the Riemann hypothesis for the characters
x(a) = a®~! modp?, p is prime and

x(a) = (ald),

where d = 1 mod4 and d is either a prime or the product of two primes. H.W.
Lenstra in [Len3] has observed that the Riemann hypothesis is not necessary
for the characters x(a) = a®~! modp?. In fact it can be shown that

Theorem 18.1 Assume that the Eztended Riemann Hypothesis holds for all
L— functions of the form Ly(z) = 3 ;5 ,(k|d)k~*, where d = 1 mod4 and d is
etther a prime or the product of two primes. Then there ezists a constant C > 0
such that for any odd integer n > 1 {ff n—1 = 2%u, with u odd, then the following
statements are equivalent

(1) n is prime

(2) For all a € Z; such that a < C - (logn)?,

(a* # 1 modn =3k < e(azk" = —1 modn)).

Proof: The proof of (2) = (1) is exactly as the proof of theorem 12.2.
However if for some prime p, p?|n then one does not use the ERH but instead
the following lemma (due to H. W. Lenstra)

Lemma 13.1 There ezists an odd prime a < 4(logp)? such that

a?~! # 1 modp®.

This completes the proof of the theorem o
Details of the proof of lemma 13.1 can be found in [Len3].
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14 Selfridge-Weinberger Test

For each prime p let F(p) = the least positive square free integer n such that
for all prime numbers ¢ < p, (g|n) = 1.

Theorem 14.1 Let n > 1 be an odd integer and suppose that p ts a prime such
that p < n < F(p). Then the following statements are equivalent
(1) n is prime
(2)(a) (Vg prime < p)ged(g,n)=1
(b) n {s not e nontrivial power of a prime
(¢) (Vg prime < p)(¢*~1)/2 =% 1 modn
(d) (3¢ prime < p)(¢t"~1/2 = —1modn)

Proof: (1) = (2)

This is an immediate consequence of Euler’s criterion, the primality of n and
the minimality of F(p).

2)=(Q)

Assume on the contrary that n is composite. Let n = p'f‘ ---pkr be the
prime factorization of n, where py,...,p, are distinct primes. By assumption
r>2 Fori=1,...,r, write n — 1 = 2°u,p;, — 1 = 2% y,, where u,u;,...,u,
are odd. The basic step in the proof is the following

Claim: v; = ¢, forall: =1,...,r.

Proof of the Claim: Consider an integer¢ = 1,...,r. Since p; < n < F(p)
there exists a prime ¢ < p such that (g|p;) = —1. Let d = order,,(g). By
Euler’s criterion ¢(Pi=1)/2 = —1 modp,. By assumption, ¢(*~1)/2 =% 1 modp;.
It follows that 2¥¢|d and d|n—1 and hence v; < e. It remains to show that v; > e.
By assumption there exists a prime ¢ < p such that ¢»~1/2 = —1 modp;. On
the other hand ¢P*~! = 1 modp;. It follows that v; > e and the proof of the
claim is complete.

It follows from the claim and lemma 12.1 that there exist two distinct primes
pi, p; such that p; - p; < n (assume for simplicity that ¢ = 1 and j = 2.) By
assumption there exists a prime ¢ < p such that (g|p; - p2) = —1. Without loss
of generality it can be assumed that (g|p1) = —(g|p2) = 1. Moreover it is true
that

g»~V/2 =% | modn. (6)

For : = 1,2 put d; = orderp,(g). Since ¢'?2=1)/2 = —1 modp,, 2°|d2 and hence
g™=1/2 = 1 modps,. (7)

Since ¢{P2=1)/2 = 1 modp,, d;|2°"'u;. It follows from congruence (6) that
d;|(n - 1)/2. Hence,
g™ /2 = 1 modp;. (8)

However congruences (6), (7), (8) give a contradiction e

18




Besides its theoretical value the Selfridge-Weinberger test has practical sig-
nificance as well. In applications one uses tables of values of the function F(p)
and tests the primality of an integer p < n < F(p) via theorem 14.1. Such a

table of values of F(p) can be found in [LLS}, from which the table in Figure 2
is extracted.

r_| Flp) p__| Flp)

3 |73 53 | 22,000, 801

7 | 1,009 67 | 175,244, 281

13 | 8,089 79 | 898,716, 289

19 | 53,881 101 | 10, 310, 263, 441
29 | 117,049 || 103 | 23,616,331, 489
37 | 1,083,289 || 127 | 196, 265, 095, 009

Figure 2: Table of Values of F(p)

In addition, Weinberger has shown (unpublished) that assuming ERH there
exist constants cy, c2,c3 > 0 such that for all n and all primes p,

p > (c1logn + czloglogn + ¢3)? = n < F(p).

15 Probabilistic Primality Tests

The main feature of a probabilistic primality test is the construction of a

family P = {P, : n 2 1} of sets of integers such that the following properties
hold:

1. Foreachn2>1, P, C Z;

2. Given b € Z; it is easy to check (i.e. in time polynomial in the length of
the integer n) if b€ P,

3. If n is prime then P, = @

4. There is a constant 0 < € < 1 which is indepedent of n such that for all
sufficiently large composite odd n> 1, Priz€ Z; : 2 ¢ P,| L e.

Remark: In practice property 4 above will be true for all n > ng, where ng
is small (e.g. no = 1 in the Solovay-Strassen test and no = 9 in the Rabin test.)

Such a family P = {P, : n > 1} will be called a primality sequence and
the constant e satisfying condition (4) above is called the primality constant
corresponding to the family P. To any primality sequence P one can associate
a primality test, denoted by Ap and defined as follows:

Input: n>1

19




Step 1: Choose an integer b € Z; at random.
Step 2: Check if b€ P,.
Output:

Ap(n) = PRIME ifbg P,
P =1 COMPOSITE ifbe P,

The following result is now an immediate consequence of the above defini-
tions.

Theorem 15.1 Let ¢ be a primality constant corresponding to the primality
sequence P. Then for any sufficiently large odd tnteger n 2> 1,

(1) n is prime = Ap(n) = PRIME.

(2) n is odd and composite = Pr[{Ap(n)= PRIME|<ce

In other words, if n is prime the test Ap will output the correct answer (i.e.
PRIME). However, if n is composite and odd the test Ap may not necessarily
output COMPOSITE; in fact it may very well output PRIME. However, the
probability of making such an error is less than or equal to ¢.

If the random choices of b are indepedent in successive runs of the algorithm
Ap then one can significantly improve the probability of error. In fact it is very
easy to show that

Theorem 15.2 Let ¢ be a primality constant corresponding to the primality
sequence P. Then for any tnteger m 2 1, aend any sufficiently large odd integer
n,

n 18 composite = Pr[Ap(n) = PRIME, mtimes| < e™e

The next two tests are probabilistic primality tests. In each case the primal-
ity sequence will be defined and the primality constant corresponding to this
sequence will be determined. The probabilistic primality test corresponding to
each such sequence P is Ap.

16 Solovay-Strassen Test

The following lemma will be essential for the present as well as the next
subsection.

Lemma 16.1 Let n = p’f‘ ---pkr be the prime factorization of an odd integer
n, where p;,...,p, are distinct primes. Put v = min{wz(p; — 1) : i =1,...,r}
and s =TJ;_, ged(m, ©(p¥)). Then it can be shown that

(1) z™ = 1 modn has ezactly s solutions.

(2) (3z)(z™ = —1 modn) & vo(m) < min{va(p; = 1):i=1,...,r}.

(8) If z™ = —1 modn has a solution then it must have ezactly s solutions.
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Proof: Foreachi=1,...,r let g; be a generator of Z;““', Taking the indices

of both sides of the congruence 2™ = a modn one obtains the congruences
m - indexy, (z) = indexy, (a) modp(p;), fori =1,...,r. (9)
If @ = 1 then index,, (1) = 0 and hence congruences (9) become
m - indexy, (z) = 0 modp(pf), fori =1,...,r (10)
If a = —1 then index,, (1) = ¢(p,*)/2 and hence congruences (9) become

e(pF)

m - index, (z) = —— —

modyp(p;*), fori=1,. (11)
Part (1) of the lemma follows from congruences (10) and the theorem on solv-
ing linear congruences. On the other hand the same theorem im Elxes that con-
gruences (11) have a solution if and only if gcd(m, p(p¥))|e(pF)/2, for each
it =1,...,r. However it is easy to see that this last equivalence holds exactly
when v, m) <min{vz(p; —1):i=1,...,r} e

The primality sequence of the Solovay-St.rassen test is defined by

= {be Z; : 5*=1/2 2 (b|n) modn}.

It follows from Euler’s criterion that P = {P, : n > 1} satisfies conditions
(1) — (3) of primality sequences. For each n consider the multiplicative group
automorphisms fp, gn, hy : Z;; — Z; defined by

Ja(a) = a"~1/2 modn, g,(a) = (a|n) modn, hy(a) = (a|n) - a®~1)/2 modn.

Let K,,,L,, M, denote the kernels of the homomorphisms f;,gn,hn respec-
tively. Put K, = {b € Z; : fo(b) = —1modn}, L, = {b € Z; : gn(b)
—1modn} and M, = {b € Z; : ha(b) = —1 modn}. It is clear that M,
Zy ~ P,. :

Theorem 16.1 (Monier) For all odd n, if p1,...,pr are the distinct prime
 Jactors of n then

12~ Bl =0 TLsed (252 m-1),

=1
where 8, has one of the values 1/2,1,2.
Proof: It is clear from the definition of K,, that

|Kan] = I:Igcd (n P — 1) .

=1
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On the other hand it is true that M, = (K, N L,) U (K}, N L},). Hence,

M, | = |KnnL,| ifK,NL,=6
"7 2|KnnLy| fK,NL,#0

(if K;, N L}, # 0 choose by € K|, N L, and consider the function b — bby to show
that K,NL, = K, NL;.) A similar argument using K, = (K,NL,)U(K,NLY})
is the kernel of the homomorphism g,, shows that

|Kn| if K,nL, =9

|K,,nLn|={ (1/2) - |Ka| if KnO L, #8.

Hence |M,| = 6,|Ky| as desired o
Now it is not very difficult to determine the primality constant.

Theorem 16.2 (Solovay-Strassen) For all composite odd tntegers n,

'Z; - Pﬂ' S l.
@(n) 2

Proof: Let p;,...,p, be the distinct prime factors of n and suppose that
pﬁ“ is the largest power of p; dividing n. It follows from Monier’s theorem and
the properties of the function ¢ that

* T n=1 . __
Pl _,, [petCrnc) (12)
©(n) w1 P (ei—1)

If for some ¢, t; > 2 then the righthand side of inequality (12) is < 6,/3 <
2/3. Hence, Z; — P, is a proper subgroup of Z; and as such it must be true
that |Z; — P,| £ (1/2)¢(n).

Thus, without loss of generality it can be assumed that for all ¢, ¢t; = 1.
In this case n = p; ---p,. Assume on the contrary that Z; = M,. Since n is
composite, r > 2. Let g be a generator of Z7 . Use the Chinese Remainder
theorem to find an @ € Z; such that @ = gmodp, and a = 1 mod(n/p;).
Since Z* = M, it is true that a(»~1)/2 = (a|n) modn. However, (a|n) =
(alp1) - - (alpr) = (a|p1) = (glp1) = —1. Hence, a(*~ /2 = —1 mod(n/p1),
which contradicts a = 1 mod(n/p,)e

As an immediate corollary of equality (12) one can also obtain that

Theorem 16.8 For all composite odd integers n, if (n — 1)/2 is odd and r is
the number of distinct prime factors of n then
Z-Pa) . 1,
p(n) ~ 2772

~
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17 Rabin Test
The Rabin primality sequence is defined by
Po={be Z; :b™=V/2 & 1 modn and (¥t > 0)(6™~1/2 % —1 modn},

where e = vz(n—1). It is easy to show that P = {P, : n > 1} satisfies conditions
(1 - 3) of primality sequences. It is clear that Z; — P, =

{b€ Z; :5(*=1/2° = 1 modn or (3t > 0)(B(»~1/2" = —1 modn)}, (18)
The following theorem determines the exact size of the above set.

Theorem 17.1 (Monier) Let n be a composite odd integer, with prime fac-
torization n = p‘l‘ ---plr, where p1,...,p, are distinct primes. Writen— 1 =
2°u,pi — 1 = 2%y, with u,u; odd and let v =min{y, : ¢ = 1,...,r}. Then the
following equality holds

. orv _ 1 T
|Z; — P,| = (1+ 7 —1 ) Egcd(u, u;)
Proof: Put s = []/_, gcd(u,u;). The leftmost congruence of the set in

(13) has exactly s solutions (see lemma 16.1.) For any given t > 0 the other
congruence has a solution if and only if vo((n — 1)/2¢) = e =t < v. Hence, for

each t > e — v the number of solutions of 5(*=1)/2" = —1 modn is
r
fn—-1
H ged (—2,—,1)& - 1) .
=1

It follows that

Z:-Pl=e+ 5 Tlect (25 hm-1).

e-v<tLei=1

The theorem now follows easily from

It remains to determine the primality constant of the Rabin sequence. Let
R, be the set

{b €Z;:b" % 1modnor(Ie>t> 0) [1 < ged (b(“'l)/?' - Ié,n) < n] } ,

where n — 1 = 2°u and u is odd. It is now easy to show that
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Theorem 17.2 (Miller-Rabin-Monier) For all odd tntegersn > 2, P, = Ry,

Proof: For each t such that 2'|n — 1 let

d(t) = n;— 1, z(t) = b4, g(t) = ged(z(t) — 1,n).

It is very easy to show that for all ¢ such that 2°|n — 1, the following hold
1. g(t)=n & z(t) = 1 modn
2.g()=n=>g(t-1)=n
3. z(t — 1) = z(t)2.

Proof of P, C R,

Assume on the contrary that b € P, but b &€ R,,. It follows that there exists
an integer k < e such that g(k) = n. Since b € P,, %) # modn and hence
g(e) # n. It follows that there exists k < e such that

9(0)=g(1)=---=g(k)=n>glk+1)=---=g(e) = L

But g(k) = n. Hence, z(k+1)? = 1 modn. Therefore n|(z(k+1)—1)(z(k+1)+1).
This and g(k + 1) = ged(z(k + 1) — 1,n) = 1 imply that z(k + 1) = —1 modn,
which in turn contradicts b € P,.

Proof of R, C P,

Assume that b € P,. Then either z(¢) = 1modn or 3t > 0(z(t) =
—1modn). In the first case b € R,. Thus without loss of generality it can
be assumed that z(e) # 1 modn. Choose k < e such that

z(0)=z(l)=---=z(k-1) =1, z(k) = —1 modn.

Using the fact that z(k) = z(k + j)*’ = —1 modn it follows that

2e—k

ek)—1=z(k+1)2-1=2(k+2)* -1=---=2(¢)* -1=-2modn.

However, for all j < e — k there exists an integer b, such that

ok +1)2" = 1= (a(k +7) = 1)b; = ~2 modn.

Since n is odd > 2 it follows that (V5 < e — k)(g(k + j) = 1). Since (V5 <
k)(g(5) = n) it follows that (Vt)(g(t) = 1 or n). Hence, b & R, e

It remains to determine the primality constant of the Rabin sequence. Let n
be an odd integer with py,...,p, its distinct prime factors. Let n = p’f‘ oo pke
be the prime factorization of n and put ¢; = pf‘, where ¢t = 1,...,r. Let t; =
ged(e(gi), n — 1) and m; = p(g;)/t;. In addition put ¢; = v(t;), a; = max{e; —
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e;:J =1,...,r}. It is clear that if ¢; is minimum among the {ej,...,e,} then
a; = 0. Consider the sets

I={1<i<r:a;>0},J={1<i<r:a; =0}

andputa =a;+---+a,, f=|J|. Itisclear that > 0 and a+ 8 > r.
The following result uses the above notation and is the main theorem of this
subsection.

Theorem 17.8 For any composite odd integer n > 2, if the number r of distinct
prime factors of n 18 > 2 then

Zi-Ral 1
¢(n) - 2a+3"1m1 ceem,

Proof: Let b € Z; — R,. Then b"~! = 1 modn. For each i = 1,...,r
let a; be a generator of Z;,. It follows that there exists an s; < (g;) such
that b = @} modg;. Thus, b*~! = a:‘("'l’ = 1 modg; and (g;)|si(n — 1).
Since ged(m;,n — 1) = 1 and m; = ©(q;)/ti|si(n — 1) it follows that m;|s; and
8; = m;h,, for some h; < p(g;)/m;. Soforalli =1,...,r,

b= a™* modg; (14)
and s;(n—1) = m;hi(n—1) = go(q;)h;ﬂﬁl. An essential step of the proof is the
following

Claim: For all ¢ = 1,...,r, 2%|h;.

Proof of the Claim: Without loss of generality it can be assumed that a; > 0.
Let 5 be an index such that a; = ¢; —e; > 0. Let f; > 0 be such that
va(n—1) = e + fi. Put 4, = ¢; —e; + fi. Then vo(d(v)) = e,. In addition,
tjld(~). Hence, p(g;) = t;m;|m;d(v). It follows from congruence (14) that
belr) = gmihid(n) 2 modg;. Hence, 1 < ¢; < gcd(b%(") —1,n). Since b € R,,,
ged(b4(7) =1, n) = n and hence %) = 1 modn. Using the last congruence, the
fact that a, generates Z; as well as congruence (14) it follows that t;|d(~;)h;.
But this easily implies that 2%~¢ = 2°|h,, which completes the proof of the
claim.

Using the above claim and congruence (14) it follows easily that

|25 - Ro| < olar)  eler) o eln)

T 2am, 29rm, ~ 2%my---m,

The above inequality shows that the proof of the theorem is complete if 8= 1.
Hence without loss of generality it can be assumed that 8 > 2. It follows from
the definition of J that for all ¢,5 € J, e; = e;; let ¢* be the common value of
the e;’s, for y € J. Put 4 = f; + 1 (where f; was defined above) and notice
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that for j € J the value of f;, and hence of 'y‘;, does not depend on j; let 4 be
the common value of the 1}’5, for j € J. It is now clear that

t .
?’ld('y) and t; Jd(v)
On the other hand using congruence (14 ) it is true that for all y € J,
54" = 1 modg; & ¢(g;)h;m;d() & t5lh;d(7).

However b € Z* — R, and hence gcd(b¥") — 1,n) = 1 or n. It follows that
either (V5 € J)(2|h;) or (V5 € J)(2 Ahj). Since (Vi € I)(2%|h;), the proof of
the theorem is complete o

As a first corollary it can be shown that

Theorem 17.4 (Rabin) For all odd composite integers n > 9,

%3~ Ra] 1

p(n) ~ 4
Proof: If r > 3 the theorem follows from theorem 17.3. If r = 2 then
a+8—12 1. Hence the theorem follows from theorem 17.3 if either m; = 2 or
mg = 2. Assume on the contrary that m; = mg = 1. This last statement implies
that n = pyp. Say p1 < p2. Then p2 — 1= p(p2)in—1=p1(p2— 1)+ (p1 - 1),
which is a contradiction. It remains to prove the theorem in the case r = 1. Let
n = p', some t > 2. But

|Zs — R.|<|{b€ Z; : " ' = 1 modn}| < ged(n—1,p—1)=p—1.
It follows that
|Z—Rn| . _p—-1 _ 1
p(n) ~pte-1) p?

Since n > 9 the proof of theorem is complete o
Another corollary is

Theorem 17.5 For all odd tntegers n > 2, if r i3 the number of distinct prime
factors of n then
12— Ral _ 1

o) T

18 Rumeley-Adleman Test

The Rumeley-Adleman algorithm (abbreviated by RA) is different from the
previously considered probabilistic primality tests. Given as input an odd inte-
ger n > 1, RA(n) may not converge; however if RA(n) converges then the test
gives the correct answer.
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Throughout the proof below n will be an odd integer > 1. For each prime
p let ¢, = exp(27¢/p) be a primitive p—th root of unity and consider the cyclic
group Gp = {¢ : 0 < i < p—1}. Let p,q be primes such that p|g — 1 and
consider a character xp,q = x : Z; — Gp of Z; onto Gp. Such characters exist
(e-g. let g be a generator of Z; and put x(g° modg) = ¢7), which is well defined
since p|g—1, and are called characters of order p and conductor g. Further,
consider the ring Z[¢,, ¢,].
- For each character x of order p and conductor g the generalized Gaussian
sum is defined by

q—1

G(a,x) = - Zx(i)s';", where a € Z;.

i=1
The Gaussian sum is defined by G(x) = G(1, x).
Now one can prove the following

Lemma 18.1 Let x : Z; — G, be a character of order p and conductor q,
where p|g — 1. Then for any odd integer r the following statements hold:

(1) G(a, x)_:_x—(ﬂ G(x), fora€ Z;.
(2) G(x)-G(x) =g-
(8) G(x)" = x(r)™" - G(x") mod(rZ[sp, ¢])

Proof: The proof of (1) is immediate from the equations below

Glax) = - 3 xlia)x(@* = X@G(x).

=1

To prove (2) notice that for a € Z;, by 6% = (29 —1)/(s¢ — 1) = 0. Hence,

q¢-1 q-1 q—1 3
GG = -G(x) Y X0 = =Y _7'Gl,x) = Y x(eliV =q.

=1 =1 f,9=1

It is easy to show that if congruence (3) holds for each of the integers r, s then
it must also hold for their product r - s. Hence without loss ¢f generality it is
enough to prove (3) when r is prime. Using the binomial theorem it can be

shown that ;
q=1 ] q-1 ]
G(x) =- (E x(i)s‘é) =-) x()q =
=1

=1

q—-1
—x(r)™" D x(ir) 6 = x(r) 7" G(x") mod(rZgp, i1} ©

i=1

The next lemma is basic for the proof of the Rumeley-Adieman test.
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Lemma 18.2 Let x : Z; — Gy be a character of order p and conductor g,
where plg— 1 and ged(pg,n) = 1. Then for any odd integer r one can show that
(1) If there exists an n(x) € Gp such that

G(x)" = n(x) " G(x") mod(rZlg, sq]) (15)
then n(x) = G(x)”" = mod(rZ[sp: &))-
(2) In particular,
x(r) = G()™ 71 mod(rZ{gp, so)-

Proof: Clearly (2) is an immediate consequence of (1) and part (3) of lemma
18.1. To prove part (1) apply the homomorphism of Z[¢,,¢,], which carries ¢,

to ¢ and ¢, to ¢, to congruence (15) above to obtain
D q q

G ) =) G(x™™) mod(rZsp, ¢))- (16)
Using this and induction on 1 it follows easily that
)™ = n(x)™" G(x") mod(rZlgp, &))- (17)

Now apply congruence (17) to ¢ = p — 1 and use G(x) - G(x) = ¢ to obtain the
desired result o

Let r|n be such that v, (r?~2=1) > vp(nP~1—1). Then (r*~1—1)/(n?~1-1)
is a fraction of the form (p¥a)/b, where a,b are relatively prime to p and k > 0.
Hence b is invertible in Z7 and it makes sense to define

rPmlo
£,,(r) = :1;:?-:_1 modp

It is clear that £,(n) = 1. If one uses
(re)P~l=1=(rP" = 1)(sP" = 1)+ (P71 = 1) + (s*"1 - 1)
then it can be shown easily that
Lemma 18.3 Assume that gcd(p,n) = 1 and that for all primes r|n,
vp(rP~1 = 1) 2 pp(n?~1 - 1). (18)
Then for all integers r, s|n, £p(rs) = €,(r) + €y(s) modp e

Lemma 18.4 Let p be a prime such that ged(p,n) = 1. Assume there exists a
character x : Z; — Gy of order p and conductor g such that gcd(pg,n) =1 and
plg— 1. If there ezists an n(x) € Gy such that n(x) # 1 end

G(x)" = n(x)""G(x™) mod(nZ[sp, &) (19)

28




then one can prove that for all rin,
(1) wp(rP=t = 1) 2 pp(n?1 - 1)
(2) x(r) = n(x)*") mod(rZ[s, ¢))
(3) x(n) =n(x) end x(r) = x(n)*) mod(rZ[¢, &)

Proof: It follows from lemma 18.2 (for r = n) that

n(x) = G(x)™" ~! mod(nZ]g, &)

Assume that r|n.

Let a be the order of G(x) in Z[¢p, ¢;]/nZ[¢p, ¢)- Since n(x) # 1,a fnP~1-1.
Since n(x)? = 1, a|p(n?~!~1). In addition lemma 18.2 implies that 1 = x(r)? =
G(x)P"" 1) mod(rZ¢, ¢,]). Hence it follows that a = vp(p(nP~t - 1)) <
vp(p(rP~1 — 1)) and the proof of (1) is complete.

To prove part (2) write (r?~! — 1)/(n?~! — 1) = a/b, where a,b > 0 and
b= 1modp. It is then clear that £,(r) = a modp and hence

X(r) = x(r)b = G(X)b(r"‘—l) = G(x)a(nr-l_l) =

n(x)* = n(x)") mod(nZg, &)
For each integer ¢ let

s(t) = H{q : ¢ — 1|t and ¢ is prime} > \/n.

To study the running time of the Rumeley-Adleman algorithm one needs the
following result from analytic number theory (see [APR].)

Theorem 18.1 (Odlyzko-Pomerance) There is a constant ¢ > 0 which s
effectively computable such that for all integers n > e, there is an tnteger

0<t< (log n)clogloglogn
(which is not actually constructed in the proof) such that s(t) > /n o

Now it is possible to state the Rumeley-Adleman algorithm.

Input: n odd > 1.

Step 1: Try the integers t = 0, 1,..., until you compute an integer t such
that s(t) > /n.

Step 2: Put s = s(t) and confirm ged(st,n) = 1.

Step 3: For any prime p|t do

1. If n”~1 # 1 modp? then go to Step 4.
2. If n?~1 = 1 modp? then do

(a) select g|s such that pjg—1
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(b) select a character x : Z; — G, of order p and conductor ¢ and
verify that G(x)" = n(x) "G(x") mod(nZ[¢p,¢,]) holds for some
n(x) € G = {1}.

If for each p|t either 1. holds or a g can be found such that 2. holds, then go
to Step 4.

Step 4: For each i =0,1,...,3 — 1 compute gcd(n’ mods, n).

Output:

RA(n) = PRIME if (Vi < s)(ged(n’ mods,n) = 1 orn)
") = 1 COMPOSITE if (3i < s)(1 < ged(n' mods, n) < n)

It is clear that the algorithm may not terminate but instead run forever in
Step 3. However it can be shown that

Theorem 18.2 (Rumeley-Adleman) For all odd tntegers n > 1, if RA(n)
terminates then the following statements are equivalent:

(1) n is prime.

(2) RA(n) = PRIME.

Moreover, if RA(n) terminates then the number of steps needed to output
the answer is O ((log n)closloglogn),

Proof: Assume on the contrary that RA(n) = PRIME but that n is com-
posite. Let r be a prime divisor of n such that r < \/n. Let t be an integer
such that s = s(t) > \/n and suppose that ged(st,n) = 1. Since RA(n) con-
verges the integer n passes the test in step 3. It follows from lemma 18.4 that
Vp(kP~1 = 1) > vp(nP~1 = 1), for all k|n. Hence £,(k) is defined for all k|n. Use
the Cinese Remainder theorem to find an integer £(r) € {0,1,...,8 — 1} such
that for all prime divisors p of t, £(r) = £,(r) modp. It follows from parts (2), (3)
of lemma 18.4 that for any character x : Z; — Gp of order p and conductor ¢

(such that p|g — 1),
x(r) = x(n®").

However, such characters generate the group Char(Z;) of characters modulo s
(which is isomorphic to Z;.) It follows from the duality theorem of the theory of
characters (see [KP], page 129 or [Cohn], page 24) that r = n®(") mods. But this
is a contradiction since 1 < r = ged(n¥") mods,n) < n. The other direction
is easy. If the test declares n composite (i.e. RA(n) = COMPOSITE) then n
must be composite o

Lenstra in [Len2] has observed that the integer s(t) used in the proof of the
Rumeley - Adleman algorithm can in fact be replaced with

e(t) =2- ]:[{Q"'(')'H : ¢ — 1|t and q is prime}.

Details of the proof (which is similar to the above proof) have been carried
out by H. Cohen in [Cohe]. In addition Lenstra has pointed out that condition
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e(t) > /n can in fact be replaced by e(t) > n/3. Although both of these
observations are useful for applications they do not alter the theoretical bound
O ((logn)clogloglosn)  In practice one need only form a table of values of e(t)?
(see [Cohe], page 31.)

t e(t)*
60 = 2435 4.64 £ 19
1,260 = 243457 1.31 E 62

10,080 = 253257 1.83 E 128
55,440 = 29325711 | 2.42 E 213
166,320 = 29355711 | 4.88 E 313

Figure 3: Table of Values of ¢(t)?

The table in Figure 3 shows that to test the primality of a 200 digit integer
one need only factor integers t < 55,440 (by all means an easy task) and then
use the Rumeley - Adleman algorithm. According to [SciCit] this algorithm can
be used to test the primality of an arbitrary 97 digit number in 78 seconds of
computer time.

19 Bibliographical Remarké

Eratosthenes developed the sieve method in the 3rd century BC. The ob-
servation that one need only run the algorithm for p < \/n is due to Pisano
(1202); this was also oserved by Ibn Albanna (end of 13th century.) For more
details see [Di]. A discussion of the limits of the sieve method can be found in
[Se]. In |Rad] a double sieve method is applied to show that Y {:/p+1/(p+2)}
converges, where the sum ranges over primes p such that p+ 2 i: also a prime.
The reader should also consult [Haw] for the notion of randor: sieve. In ad-
dition exercise 8 in section 4.5.4 of [Kn] is relevant. Barinaga’ theorem is an
immediate application of Wilson’s theorem and is stated in
Pratt’s test was first proved in [Pra]. For more information ses

Gauss was the first to state that Fermat’s assertion that eve:: 7, is prime is
false. It is not known if there exist infinitely many Fermat pri:ricz or infinitely
many Fermat composites. Fermat numbers play an importar: role in Gauss’
theorem: a regular polygon of m sides can be inscribed in a ¢ if and only
if m is the product of distinct Fermat primes and a power of =
present proof of the Lucas-Lehmer test is due to Lenstra (s
traditional proof uses Lucas functions and can be found in [k, page 391 or
better yet in [Wi]. In addition [Wi] gives an excellent survey of L.eiimer functions
and generalized Lehmer sequences.
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For more information on the Riemann Zeta function and the Extended Rie-
mann Hypothesis the reader should consult [KP], [Prac], [T}, [Da). The proof of
Ankeny-Montgomery’s theorem can be found in [Mont]. The idea of the proof
of the Solovay-Strassen deterministic test is from [SoSt]. The deterministic test
in subsection 11 is inspired from the Selfridge-Weinberger test and unlike the
Solovay-Strassen test it makes no mention of the Jacobi symbol. Miller was the
first to show that under the Extended Riemann Hypothesis there is a polyno-
mial time algorithm to test primality The original proof of Miller’s test uses
the Carmichael function (see [Mil], [An].) The present proof is from [Mig] and
[Len3]; the last reference also includes the proof of lemma 13.1.

The probabilistic Solovay-Strassen test comes from [SoSt] and Rabin’s test
from [Rab). Theorem 17.3 is from [Kran|. In addition Monier in [Moni] com-
pares the performance of the last two probabilistic tests. The first proof of the
Rumeley-Adleman test was published in [Ad]. The proof given here is essentially
due to Lenstra (see [Lenl], [Len2], [Cohe].)

An interesting history of the machines used since 1925 for factoring and
testing primality can be found in [BLSTW] .
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