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ABSTRACT

A linearized Fokker—Planck equation governing the particle loss rate from
large magnetic and potential square-well fields is solved using the
Rayleigh—Ritz finite element method with tensor—-product splines. The results
are compared with those obtained from an approximate analytical theory and

from previous numerical work.
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I. INTRODUCTION

A central problem in the study of magnetic—mirror controlled-fusion
devices is the determination of particle loss rates. When the joint
magnetic—electrostatic trap which provides confinement is deep, the particle
distribution function f is almost Maxwell-Boltzmann over most of the single
particle phase space. The exception is a boundary layer adjacent to that part
of the boundary C which separates trapped particles from untrapped particles.
In that region, f is approximated well by the solution of a linearized
Fokker—-Planck equation (FPE) which is elliptic and self-adjoint. The particle

loss rate is then given by an integral of f.

The boundary curve C and the coefficients in the Fokker—Planck equation
are sufficiently complex that no exact anmalytic solutions are known. For the
limiting case of a 'square-well’ trap, Pastukhov [1] found an approximate
solution by replacing the actual loss boundary by one that matched it locally
in the region which makes the dominant contribution to the loss rate. Cohen,
et al. [2] extended this approximate solution to apply to either ions or
electrons in arbitrary wells via a bounce—averaged Fokker—Planck equation.
Cohen, et al. [2] also solved the problem numerically for square—well fields
in order to ascertain the validity of the analytic approximate solutionmns,
solving the time—dependent linear Fokker-Planck equation with a source of

low-energy particles until a steady—state was reached.

In this paper we describe a finite element approach to the problem. We
present a mathematical description in Section II. In Section III, we describe
the Rayleigh-Ritz finite element method used to numerically solve the reduced

Fokker-Planck equation. Finally, in Section IV, we compare our results with

those obtained in [2].



Page 2
IT. THE PROBLEM

Cohen, et al. [2] have given the high velocity limit of the Fokker—Planck
equation for a single species of ions of mass m amd charge Z confined by a

large ambipolar potential, If F = f/fM, where f is the distribution function

/2 e—mv2/2T

and fM = N (m/ZnT)3 is the background Maxwellian corrésponding to

density N and temperature T, then the Fokker-Planck equation
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reduces to the quasi-static approximate equation

]
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L(F) X (p(X,Y) gi) + 3% (q(X,Y) EY) = 0 (2)

in a region D near the loss boundary as shown in Figure 1. Here
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q(X,Y) (3b)

X = mv2/2T is a dimensionless energy; Y = (v'B)/(vB) is the cosine of the

/2 /2 .,
is

pitch angle; Ve = (T/m)1 is the ion thermal speed; mp = (4nNZZe2/m)1

.the ion plasma frequency; and Ac is the Coulomb logarithm.
Equation (2) is subject to the following boundary conditions:
BC1: F(XO,Y) =1, for 0 Y 1;
BC2: gg(X,O) =0, for X, (X ;

BC3: F(X,1) < =, for X <X ¢ Xy s (4)
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1 X1 1/2
BC4: F(X,z(X)) =0, for X, < X, where z(X) = (1 - 2t §i) ;
-X
BCS: e F—>0, as X —=> o
Here X, = Ze¢/T is the difference in the confining potential between the

1

throat and the center, in units of the background temperature T, and

= (B at throat)/(B at center) is the mirror ratio at the throat. The
boundary condition BCl states that the distribution function in the region
near the loss boundary should asymptotically match the Maxwellian at low

velocities; the value of the dimensionless energy X where this matching

0
takes place is as yet undetermined. The boundary condition BC2 expresses the
symmetry of the distribution function about the velocity space midplane. The
boundary condition BC3 is a regularity condition forbthe distribution function
at low velocities #nd zero pitch angle. The boundary condition BC4 expresses
the vanishing of the distribution function at the loss boundary. Finally, the

boundary condition BC5 states that the distribution function should go to zero

at large velocities.

Equation (2) is the Euler equation of the variational integral

V(F) = f [p(aF 2, (92)2] dX dy . (5)

Any continuously differentiable function F(X,Y) which satisfies the essential
boundary conditions BCl, BC4, and BC5 and minimizes V(F) over the set of all

such functions also satisfies (2) and the natural boundary conditions BC2 and

BC3.
Finally the particle flux P across the loss boundary is given by
4
0y A -1 dF
P = ____P_C _ - + Y),Y) -2 dYl
372 3 [f a(X, z(x)) dX f p(z “(D,Y) 73

Q™" vy X (1-1/R) /2
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where the last equality is obtained by integrating (2) over the domain D.
Multiplying (2) by F, integrating by parts, and applying the boundary

conditions, one can show that
P = —B 20 V(F) (7)
i,e., the particle loss rate is proportional to the minimum of the variational

integral V(F) over the set of smooth functions satisfying the essential

boundary conditions,
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III. THE NUMERICAL METHOD

In this section, we describe a Rayleigh—-Ritz finite element method for
finding an approximate solution to (2)-(4). 1In contrast to a finite
difference method which would approximate the values of the solution F on some
grid, a finite element method finds an approximation to F from a
finite—dimensional affine subspace of the affine space S of smooth functions
which satisfy the essential boundary conditions. We begin with a general

discussion of the Rayleigh—-Ritz method.

Let g(X,Y) be any smooth function which satisfies the essential boundary

conditions BC1l, BC4, and BCS5; let Sg be a finite—dimensional linear space of

functions u(X,Y) satisfying BC4, BC5, and
BC1': N%J)=O, for 0 Y <1; (8)

and let {Bk(X,Y)} be a basis for Sh

0° Then the Rayleigh—Ritz approximation to

the solution of (2)—(4) from the affine subspace g+Sg is given by

Fh(X.Y) = g(X,Y) + 1 d

B, (X,Y) (9)
k k

k

where the coefficients dk are chosen to minimize V(Fh):

V(Fh) = MIN V(g+u) . (10)

u e Sg

Setting the first variation of V(Fh) to zero, we find that

s a,.,d, = r, (11a)

a.. = [ Ip —Ei -=j + q 731 g§j] dX dY (11b)
D



Page 6

and

9B, 25 , B, dg
; = 35l ax * 9 57l aY] dx dy . (11c)
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Note that Fh satisfies BC1, BC2, and BC5 exactly. Recalling that F
minimizes V(F) over the affine subspace S of all smooth functions which
satisfy these essential boundary conditiomns, it follows that V(Fh) 2 V(F),
i.e., that the estimate for the particle flux will be conservatively high.
Moreover, it can be shown that

V(F) - V(F) & K MIN . |F—(g+u)|i’2 , (12)

u e S0

where K is some constant independent of Sg and
2 9u,2 , (Ou,2
|u|1’2 = l{[(ax) + (P71 X aY , (13)

so that the error in the flux approximation is proportional to the square of
the error in the derivatives of the approximation [3]. Finally, since the
Rayleigh-Ritz approximation minimizes V over the affine subspace g+Sg, V(Fh)

decreases monotonically toward V(F) as Sg grows.

Problem (2)-(4) is posed on an infinite domain which introduces

complications for a numerical method. Thus we truncate the domain at some

sufficiently large X = X, and replace the boundary condition BC5 by

2

BC5 ' : gg(xz,y) =0, for 0<Y < z(X) (14)

(n.b., BC5' is not an essential boundary condition as was BC5).
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Finding basis functions which satisfy the essential boundary conditions
BC1l' and BC4 is made difficult by the curved loss boundary (cf. [2]). To

avoid this problem, we transform the domain into a rectangle by the mapping

x(X,Y) =

]
b4

y(X,Y) = . (15)
Y/z(X), X <X

Note that the transformation has discontinuous X-derivatives at X = Xl which
means that the solution to the transformed problem will have discontinuous

derivatives as well,

Having reduced the irregular, semi-infinite domain D to a rectangle, we

0

B-splines are a very flexible basis for univariate piecewise polynomials of

choose the functions in Sh to be products of piecewise polynomials. The

arbitrary order and continuity on a (nonuniform) mesh [4]. The particular
space is determined by the order (= degree/plus one) and a knot set which
specifies where the breaks between piecewise polynomials occur and (by their
multiplicity) the number of continuous derivatives at such points. Let the
space Sh be the span of all products of the form b? b? , where the {b?} and
{b?} are the univariate B-splines defined on the intervals [XO’X2] and [0,1]
respectively. We take Sg as the subspace of functions in Sh which satisfy the

essential boundary conditions BC1l' and BC4.

Recall that the solution to the transformed problem has a discontinuous
x—derivative at x = Xl' Thus we must include functions which satisfy this

condition in the subspace Sg. This is easily done by putting a multiple knot

at that point.
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Also F seems to have singular derivatives near the loss boundary vertex,
and we would like to grade the mesh nearby so as to achieve higher accuracy in
the approximate solution. But again non—uniform meshes are easily handled by

B-splines. We used a 'beta—graded’ mesh [5], e.g., the mesh

x(i) = (i/NB 0¢idN, \ (16)

on [0,1], where B is a positive constant., The proper choice of B ensures that
the rate of convergence for singular problems (as a function of the dimension

of Sg) is the same as for nonsingular problems [6].

Up to now, we have not specified g(X,Y) and have been somewhat vague on
how to find the subspace of Sh which satisfies the essential boundary
conditions BC1’' and BC4. Both of these problems can be handled in the same
fashion. We fix the coefficients of a basis for those functions in Sh which
do not satisfy BC1l' and BC4 by doing a least squares projection of the
boundary data; i.e., we let g be the least squares approximation to the

boundary conditions. This means solving the linear system

? ij dj = ti R (17a)
J
where
bij = éBi B. ds (17b)
and
t, = [ B, h(s) ds ; (17¢)
1 S 1

i and j run over the indices of those basis functions which do not satisfy

BC1' and BC4; S denotes that part of the boundary where the essential

boundary conditions are posed; and h denotes the value of the solution on S.
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Since the boundary values are constant, the corresponding g will satisfy the

boundary conditions exactly.

Instead of solving (17) separately and then forming and solving the
Rayleigh—-Ritz equations, we use a 'penalty method.’ First we form the
Rayleigh—Ritz equations as if there were no essential boundary conditioms,
using the entire space Sh. Then we add in a large multiple of the least
squares equations. A careful analysis shows that we are solving for g and the

Rayleigh—Ritz approximation g+Sg simultaneously.

The coefficient matrix of the linear system is symmetric and positive
definite, and the natural ordering of basis functions yields a ragged band of

nonzero entries. We use a profile Cholesky algorithm [7] to solve for Fh'

Up to now, we have formulated everything in terms of integrals, but in
practice such integrals must‘be computed numerically. We used a
tensor—-product Gauss—Legendre quadrature both to form the Rayleigh-Ritz
equations (see [8]) and to evaluate the flux, In small to medium—sized
problems, the cost of evaluating these integrals dominates the cost of solving
the linear system so that efficient assembly is crucial. By integrating first

in x and then in y, it is possible to significantly improve the efficiency of

the assembly phase (see [6]1,[9]).
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IV. RESULTS

The affine space Sh is determined by the input parameters Xo, Xl’ X2, R;
the number (NXL) of mesh intervals in x between XO and Xl; the number (NXU)

of mesh intervals in x between X1 and XZ; the number (NY) of mesh intervals
in y; the order (K) and continuity (C) of the basis functions; and the
beta—grading factors (Bx and ﬁy) in x and y. The numerical solution also
depends on the number of quadrature points per rectangular mesh element used
for setting up the Rayleigh-Ritz equations (NQS) and for evaluating the flux
(NQF). It is desirable to fix as many of these parameters as possible, and to

consider the codes as a ’'black box' returning a flux approximation P(Xl,R)

which depends only on the physical input parameters X1 and R.

We found parameter settings that were relatively imnsensitive to

perturbations for the particular case X, = 3 and R = 10 (see Table I).

1
Basically, the code uses Cz—bicubic splines which may have jumps in the
x—derivative at Xl‘ The B-spline break points for this case are given in
Table II (the last four mesh intervals in x were chosen to increase
geometrically by a factor of 3/2). Fortunately, we found these parameter
settings to be relatively insensitive to perturbations at other values of
interest for X, and R. Refining any of the parameters produced changes in the

1
particle flux of less than 1 part in 100,

For the problem as formulated in equations (2)-(4), the flux estimates
were somewhat higher than the flux estimates reported in [2]. When the
asymptotic Rosenbluth potentials appearing in the coefficients were replaced
by their isotropic counterparts, i,e., the coefficients in (2) were taken to

be
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p(XLY) = e--X (erf(Xllz) - Xllze—x) (18a)
and
2
WX,Y) = &% Qﬁ—l [(1- %i) erf(x1/2) %X—uze—x] , (18b)

agreement with the estimates in [2] was within a few percent for many values

of interest for Xl and R.

Results for selected confining potentials and mirror ratios are shown in
Figures 2 and 3, comparing estimates for the confinement time t (= N/P) to the
numerical estimates obtained by Cohen, et al. and the analytic approximation

due to Pastukhov [2].

Figure 2 is a plot of the confinement time versus the potential for a
single ion species of mass m = 2.5 amu, temperature T = 30 keV, Z =1, and
mirror ratio R = 10. For large potentials, the agreement with previous work
is good. The deviation at small potentials is probably due to the fact that

(2) is only valid for large potentials,

Figure 3 is a plot of the confinement time versus the mirror ratio for a
single ion species of mass m = 2.5 amu, temperature T = 30 keV, Z = 1, and
confining potential e$/T = 3. At small mirror ratios, the agreement with
previous work is again good. The deviation at large mirror ratios may be
attributed to the numerical treatment of the loss boundary by Cohen, et

al. [2].

The inability to satisfy essential boundary conditions exactly, which
could have been a nagging source of error, was avoided by mapping the original
domain into a rectangle. In contrast, Cohen, et al. [2] found possible 10%

errors in their estimates of the particle flux for a finite difference
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approach on the original domain with curved loss boundary, and attributed

these errors primarily to the positioning of the grid near the loss boundary.

The large—-potential, high-velocity reduced Fokker—Planck equation
exhibits many of the difficulties typically encountered in solving linear
elliptic boundary—value problems. Given a proper formulation, the use of
rectangular elements and tensor—product basis functions was confirmed as a
robust, efficient, and relatively simple numerical method for the solution of

such problems.



Parameter

Value

Table II: Typical Tensor—-product Mesh (X1 =3, R = 10)

Table I:

X0

X1/8

X—-axis Mesh

0.3750000
1.6190060
2.6889985
2.,9805624
3.0000000
3.0194376
3.3110015
4.3809940
5.6250000
7.4910090
10.2900220
14.4885430
20,7863230

'Black Box' Parameter Settings

NXL NXR NY K C

4

Y-axis Mesh

0.0000000
0.2369535
0.4739070
0.7107501
0.8815232
0.9625132
0.9925952
0.9995372
1.0000000
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