Abstract

Given a prescribed order in which to introduce zeroes, and constraints on the architecture
it is shown how to develop a parallel QR factorisation based on fast Givens’ rotations for a rect-
angular array of processors, suitable to VLS! implementation. Unlike designs based on standard
Givens’ transformations, the present one requires no square root computations. Assuming each
processor performs the elementary operations (+, #, /), less than O(w?) processors can achieve the
decomposition of a w-banded, order n matrix in time O(n).

Application is made to a variant of Bareiss’ G-Algorithm for the solution of weighted multiple
linear least squares problems. Given k different right hand side vectors, (w? + kw) processors
compute the factorisation in O(n + k) steps.
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1. Introduction

Several recent papers, surveyed in [HI83], demonstrate that a QR decomposition based on
Givens’ rotations lends itself well to parallel implementation on a rectangular grid of processors
in silicon. In [HI83] it is shown how less than O(w?) processors accomplish the decomposition of
an order n matrix with bandwidth w in time en, ¢ a small constant. However, all extant designs
make use of standard Givens’ rotations. Their drawback is the need to compute a square root and
4w multiplications for each element to be removed. Muitiplication and even more so square root
still belong to the most expensive operations, in terms of both chip area and time; their avoidance
is desirable.

Fast Givens’ rotations are the remedy. Rather than to the original matrix A, they are applied
to a factored form A = DA, D being a nonsingular diagonal matrix. The square root is obviated
and the number of multiplications reduced by fifty percent.

Fast Givens’ rotations (their properties are summarised in {Ham74]), as they occur in the
context of QR decomposition, are used for

¢ updating of the solution of linear systems in unconstrained optimisation of homogeneous func-
tions [KK78],

e solution of linear systems in the revised simplex method for linear programming [HW79),
e solution to linear least squares problems [Gen73],

o similarity transformations in the Jacobi method, reduction to Hessenberg form and the QR
method for eigenvalue computations [Rat82).

The processor grid is easily extended to handle solutions of linear least squares problems as
in [Gen73] with multiple right hand sides. An interesting extension is possible, though. Slightly
modifying the processors to compute Bareiss’ G-Transformations of order 2, one obtains a processor
grid for the solution of weighted least squares problems.

As for the organisation of this paper, a brief description of standard and fast Givens’ rotations
is followed by some comments on the restrictions placed on parallel architectures by technology.
Thereafter the QR algorithm is presented, interconnections and data flow of the processor array
are determined and finally applied to the solution of weighted linear least squares problems. The
last section remarks on how to extend the design to lower triangular decompositions and matrices
the bandwidths of which disagree with the array size.

Householder’s notation will be used throughcut the paper.

2. Standard and Fast Givens’ Rotations

The Givens’ plane rotation is a computationally stable device for introducing zercs into a
matrix, and it will be illustrated how it inserts a zero in the (2,1) entry a 2 X n matrix, n > 1.
The standard Givens’ rotation [Wilk65), which alters the matrix proper, is a 2 x 2 transfor-

mation
P=(7 a), 7 +o? =1,
-0 7
so that
(ﬂh Pz - ﬂin)zp(ﬂn Pz ... ﬂxn)

0 f ... B, Bar P2z ... Pon
with

6=Vﬂf1+ﬁ§n 1=ﬂll/6’ 0=ﬂ21/6,
and

Bli = 1P1i + 0B, P = —0Pii + 1Pa.
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To do away with square roots and a major portion of the multiplications, fast Givens’ rotations
[Gen73, Ham74] modify the matrix in factored form

(ﬂu Bz ... ﬂln)=(61 0)(011 az ... am)
P21 Baz ... PBoa 0 b2/ \azn a2 ... a2 )"

Application of the standard transformation yields

6 0 ), ajp ... ai, =p 6 0 ap 012 ... G
0 & 0 ab ... ab, 0 6/ \azy a2 ... a/’

or
6 0\[fay app ... ol Y_f 1 o) fan az ... on
0 & 0 af ... a, ~-0ob; 48, Q2 G223 ... Q24 )
Now,
6 = \/6?0@, +6§a§,, N = 61011/5, o= 62021/6,
s0

b1al; = Y6105 + obsap;, 6305 = —0biay; + V6.

There are several choices [Hamm74] for §] and 6, which permit o}; and a); to be computed with
only two multiplications; among them two which - when properly combined - permit easy control

of element growth :
6; 0 _ 761 0
(0 65)’”(0 262 ()

(593 2),
Regarding case (a),

' ' ' 4
(au als ... a'm) _ ( 16 -—%‘., 2 ) (au Q12 ... Qi
] = .
0 ayp ... a —%ﬁ 1 @21 G2z ... Q2g

Square roots are avoided by observing that

and

obs _blan ob _an
6 6fay’ b an’

and thus one has

' ' ' 6302
(a“ ayg,; ... a,,,)___ 1 3%0—" (au ez ... am)
! In )=
0 ay; ... ay, 021 1 Q2 Q22 ... QG2q

(6; o)z(H&gag,)"‘(a, o)
0 & biad, 0 &)

and

Note, that



Similarly, one obtains for situation (b)

' ' ' §3an
au a'lz ee o a}“ = 325 1 (all alz R al“ ,
0 ajy; ... ay -1 eu azy @2 ... Q2

with

as well as

0 & 62al, 0 &/

61 0 Q4 . -
6 0Y(oy)_ (0 52)(026)’ f oz =0
0 6 )\ak;) ™ case (a), if 62a, < 6%a3,
case (b), otherwise.

Pivoting ensures stability :

8. Parallel Architecture

The following paragraphs will illustrate the development of a fast-Givens-QR method for a
parallel processor device to be implemented in silicon (VLSI for instance). Constraints imposed by
technology and fabrication demand regular (and if possible planar) processor interconnections as
well as processor communication on a nearest neighbour basis. The obvicus choice of structure is a
rectangular array of synchronously operating processors. Furthermore, to keep the chip area min-
imal, processors should perform no other than the elementary operations, addition, multiplication
and divsion.

The constraint of local data exchange suggests a combination of pipelining and multiprocessing
to achieve good processor utilisation and speed up in computation time. Pipelining is efficient for
long matrices, which often possess a narrow dense band. The hardware should reflect the features
of the matrix : a processor count proportional to the bandwidth, not the order of the matrix.
Consequently, I/O occurs by codiagonals rather than rows or columns.

A QR method, chosen with regard to the preceeding thoughts, is presented next; it will be
followed by a derivation of data flow and distribution of operations on the processor grid.

4. Parallel QR Decomposition
The QR decomposition of a matrix A determines a factorisation

A=QR,

into an upper triangular matrix R and an orthogonal matrix @, the product of Givens rotations.
For fast Givens’ transformations in particular, this takes the form

DA = QD'R,

given that A = DA, again R is upper triangular, Q orthogonal and D, D’ are nonsingular diagonal
matrices.



Matrices to be considered are square, of order n, with a (presumably narrow and dense) band
of width

w=p+g+l,

¢ 2 0 being the number of subdiagonals and p > 0 the number of superdiagonals.

(P1) The QR factorisation preserves the bandwidth w of a matrix A : elimination of agi;
causes fill-in ag4i-1,i4w-1-

Sameh and Kuck [SK78] proposed a simple elimination strategy which, subject to (P2) below,
adheres to regular data flow and local communication : banded matrices are reduced to triangular
(banded) form through annihilation of elements by subdiagonals, starting from without towards
the main diagonal, while proceeding from top to bottom within a subdiagonal. Formally, if ag41,1
is removed at time ¢t = 1 then ag_p4isisremoved at t =k +3,0<k<qg-1,1<s<n—-qg+k.
In the example below for ¢ = 2,p = 3,n = 6, matrix entry (k + ¢,s) contains the time of removal
of (subdiagonal) element (k + s,5).

=N
N WR R
W8 88

v KR 8 K
DK KKK
8 8 & 8§

(P2) Elements are removed by rotations in adjacent planes : elimination of a4;; takes place
by rotating planes k+¢ —1 and &k +3.

(P3) Each row, excepting the first and the last, is modified by two successive rotations.

To keep indexing in the algorithms consistent, it is presumed that rows affected by less than two
rotations participate in identity transformations. Under the temporary assumption that pivoting
is unnecessary, the above strategy leads to the following (still sequential) algorithm, implementing
case (a). For each subdiagonal k, ¢ 2 k > 1, the auxiliary variable A represents intermediate
values of diagonal elements between two rotations (and so do matrix elements with fractional
superscripts - remember (P3}); in the hardware implementation it will correspond to a register.
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DW =D AW = 4;
fOI' k=gq...1, A =6£§);
Jork=gq...1,
fori=1...n—k,
{determine FGR which removes ith element of kth subdiagonal, case (a)}

_ 2
a9 = aff), faloh) g6 o b9 GANIY

k4i-13?
(k.5)
1 x
P(ki") - 1 ,
(—ré""’ 1 )
T=1+4 ui"’a zré""),

{update ith element of (k — 1)st subdiagonal}

(k-l) — (k°%) k i i
Cppi-1,8 = T®hpim1,0 [k +1,i]
{update diagonal matriz}

5;5::.1)1 0 )= -1 (Ah 0 )
( o a7 \o &)

forg=1...w-1,
{apply FGR to ith element of (k — 5 — 1)st and (k - 5)th codiagonal}

(k-1) (k-3)
(ak-(l-;':ll,)i-l-l ) = P(k,t’) (ak-{:;l,iv{-j ) ; [k + i,i +,ﬂ
Cpriie; O otiits

D'=DO, R=A0O,

Hence,
DE=) A=) - oW p@ 4B g> k>,

and

QW = Qlbn=k)  qlk1)
where Q(%9 stands for the ‘proper embedding’ of P*) in the n x n identity matrix.

8. Processor Vector

All iterations of the innermost j-loop, expressed as equations [k + 5,5 + 5], could be executed
in parallel, if P(*) were to be globally broadcast to at least w processors. As this is to be
shunned, the iterations are performed successively in different processors through which P(*%)
is pipelined. Each codiagonal is input to a different processor, starting from the left with the
outermost subdiagonal entering processor 1. Thereby due to (P1), a vector of w processors suffices
to eliminate the outermost subdiagonal in 2n steps (a step is defined as the computation time of
the slowest processor).

Consider the example g = 2 during the first pass through the k-loop (k = ¢ = 2). The compu-
tation of D will be disregarded for a moment. Since at least w processors are available let processor
§ compute equation [2 + ¢, ¢ + j]. Thus, for processor 1 to remove aﬁ? by generating P(21) at time

1
t = ], it must also contain agf), see Figure 1. In the next time step A + 1, P31 is ready to be
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Figure 1: Derivation of Data Flow.
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)|
input into processor 2, together with agf ) and ag,). Processor 2 then computes equation [2,2),

)} 1
resulting in a:g; and agf ), According to (P3), ag}) has to participate in a second rotation for

the removal of aﬂ. Consequently, ag%, available at ¢ = X + 2, has to enter processor 1 together

with txf% for the determination of P22,

It is now possible to construct the processor vector, depicted in Figure 2. After having entered
a processor from below to participate in the first rotation, a matrix element enters the left neighbour
for the second rotation, and thereafter exits the top of that processor. Moreover, input to and
computation inside a processor occur only every other time step; hence, successive codiagonal
elements are separated by one time unit.

In detail, assuming input to the processor vector commences at ¢t = 1, then a sub- or maindi-
agonal element aﬁ)_‘-',- is input to the vector through processor g~k-+1 at ¢t = k+2i—1; it is output

from the vector as ag:-fg via processor ¢ — k at ¢ = & -+ 2¢, 0 € k < ¢. Similarly, a superdiagonal

element a,(-:',z 4 enters processor g+ k+ 1 at ¢ = k+ 24 ~ 1, while ag-f',:,_‘l-) leaves processor g -+ k at

t=k+ 2.

The computation of I remains to be discussed. Since 61(2.- and A, depend on the same values
as P(®) they can also be determined in processor 1, but do not have to be broadcast. A, now
denotes a register in processor 1; at the cutset it is initialised with 6, (§; is not affected by the
removal of subdiagenal 2). The contents of A, are determined during the computation of P(25)
and kept there till needed for the formation of P(3*+1), D enters processor 1 along with the 2nd
subdiagonal (6&‘;- and a(z"_?‘-; are input at the same time) and leaves with the, new outermost, 1st

' 1 2
subdiagonal (6;_12,- and “f}fe)-gi are output together). Note, that during the annihilation of subdizagonal

k,rows1...k— 1 of A® and D®) remain unaffected.

8. Processors

Only two different kinds of processors, sketched in Figure 3(a) and (b), will be employed for
the triangularisation. The leftmost, first, processor in a vector computes equations [& + 1, ¢}, while
to its right, processor 5 determines [k + ¢,4 + 5]. When idle or no input is available, processor 1
generates identity rotations. The default input for matrix elements is zero.

7. Processor Array

For the annihilation of ¢ subdiagonals, either a single processor vector is used repeatedly
(before the (g — k -+ 1)st pass register A, in processer 1 is initialised with 6z, ¢ > k > 1) or else a
g X w array, consisting of g ‘stacked’ processcr vectors, performs the reduction at once.

In the latter case, countiug from top to bottom, vector & is responsible for eliminating subdi-
agonal k. A and D are input to the bottom of the array, while R and D' are available at the top.
The matrix Q leaves the right side in factored form. Thus, denoting the sth processor from the
left in the kth vector by (k, 7), processor (k,1) computes equations [k + 1,¢] and processor (k, 7)
equations [k+¢,4+ 7). Figure 4 illustrates the data flow for a 2 X w array when g = 2. At the outsei
of the computation, register Ay in processor (k,1) contains ;. The computation time comes to
2(n—~1+gq).

8. Welghted Multiple Linear Lesst Squares Problems

With minor modifications the processor array is adjusted to solve multiple weighted linear
least squares problems for m x n matrices A with m > n and rank(A) = n,

(Az - 8)TW(Az — b)) = || D(Az - b)l|lz =min, D= W%, 1<i<h.
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The discussion will omit the backsubstitution and focus on the triangular decomposition.
The G-Transformations of Bareiss for weighted linear least squares problems [Bar82] are, like
Houscholder Transformations, intended to remove all elements in a column.
Let
BO) = [A, b;]

and Q¥ an orthogonsl transformation that eliminates the last n — k elements in column & of DA,
then
B+ = o) Blk)  g<c k<1,

and
R=Bt1 =@tV oW

With nonsingular diagonal matrices DU),
o® = (D(k«m)“ QWD®, 1<k<n-1,

so that
[ AR+ b§"“)] = pik+) gli+1) [A("), b§k)] , 0<k<n-—1,

if )]
[A("},b, ] =[A,b)].
The underling idea is to update () instead of D) and thus obviate square roots.
It turns out, however, that matrices Q(*) of order 2 are equal to standard Givens’ rotations.
Applying 2 x 2 matrices G(¥) to band matrices in the order prescribed by Sameh and Kuck [SK78),

one obtains a method of the same structure as before. The 2 x 2 transformations are determined
as follows. Let

we(“ 0 A=[on @2 ... omm A= a}; aj, ... aj,
= , = , = ] In},
0 we a2y Q22 ... Q2 0 a3 ... ay,

A'=QWiA,

and

where Q is a standard Givens’ rotation

@=(%3)

with
2 2
b = wiad, +wead,, 7=\/9—1-§31, a=\/ﬁ’2~7?—2—‘-.
Choose
W'z(s aow )a
thus vea v
g | 1 —13-11
G = (W') Iq;y!:(__%,_n 1 ),
~ 1
and

A= W)ica
1




Note, that
gy = 1.

Accordingly, the complete decomposition algorithm is written as

w@ =w, 40 =4

forl=1...h, B9 =4;

fork=gq...1, A4 =w£');

fork=gq...1,
fori=1l...n—k,
{determine G to remove ith element of kth subdiagonal}

2
[ & B \?
§=20,; (af,«,_,-ﬂ,.-) + wﬁ}; (aile,.-) )

(B-3) B (&

k) = ( A"“H—i«%l,i/ f) il .s,)

k (k- ’
”'“i-a)-;,s/ “&ﬁ-’-:,ﬁ 1

{update ith clement of {k — 1)st subdiegonal}

{k-1) _
@i = b

{update diagonal matriz}

(k—.l) ) 1]
(w"'x'i"' 2,,) B (o ofepnt) )

forg=1...w-1,
{epply G to ith element of (k — 3 - 1)st and (& - 5)th codiagonal}

(k=1) (k-1)
X pdim1, 45 (b,8) | Xhpiciiei | .
( (;_%)’ ’) =(,(M)( *?k) 1,a+:) ;

@ hgii4d Cpbiitj
forli=1...h,

(& +5,1]

[k +5,8+])

{apply G to (k + ¢ — 1)st and (k + s)th element of Ith right hand side vector}

il )z ‘(s’.k)( Buk )
(P ) =00 (4, )

Lk e
W=w® R=A0,

Lk

Again, if the defining elements of the transformation are zero precautions similar to the pre-

vious ones have to be taken.

The interconnections and the data flow of the processor array remain, only the processors
have to be slightly reprogrammed. In addition, A processor columns of g processors are appended
to the left of the array for the ccmputation of equations [[, k + ¢, resulting in 2 total of g{w + &)
processors. Now, processor (&, 1) transmits G5 to its left and right, so [k -+ ¢,4 + 5] and [i, k -+ 1]
are computed concurrently. The kth processor (from top) in the Ith column (from the right) has a
register Ay 4 which, like Ay, enforces (P2); compare Figure 3{(c). If the entry equal to one in G(*)
is implicitly assumed, the transformation can be represented and transmitted by three numbers.
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The processor array for A = p = q = 2 is depicted in Figure 4. In general, i enters g - {
steps before a;;; and succeeding elements of b; enter every two steps. ﬁg’ is output 7 steps after
aﬁ). Starting the input with £y, at ¢ = 1, the computation time comes to 2m + 3{q — 1) + A steps.

9. Remarks

The time to for the QR factorisation of a rectangular m X n matrix in ¢ X @ array is
2(max{m,n} + g ~ 1). The factorisation of full dense matrices requires m - 1 processor vectors of
length m + n — 1 and time 2(max{m,n} + m - 1); hence is less efficient.

A lower tringular, QL decomposition, i3 cbhtained by reversing the direction of the horizontal
interconnections and computing equations [k, ¢] in the rightmost processor, as in [HI83] for standard
Givens’ rotations.

Matrices, whose bandwidth exceeds the length of & processor vector, must be partitioned mnto
smaller submatrices of suitable size. They are then separately , in proper order, input to the
array. ‘Recycling’ of already computed rotations might be necessary. Matrices with too small a
bandwidth are input left bound.

13
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Figure 1: Processor Array for the Weighted Multiple Linear
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