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Abstract

Network operators must configure networks to accomplidiicatj complex, and often conflicting
requirements: they must ensure good performance whiletaiaing security, and satisfy contractual
obligations while ensuring profitable use of interdomainreections. Unfortunately, today they have no
choice but to implement these high-level goals by configuhinndreds of individual network devices.
These interact in complex and unexpected ways, often neguit misconfigurations or downtime. We
propose a new approach: rather than configure individualor&tdevices, operators shoyddbgramthe
network holistically, according to high-level policies.

Towards this goal, we present Nettle, a system for cleardlycamcisely expressing network require-
ments, together with mechanisms to control the network raldogly. At the lowest level, we rely on
OpenFlow switches for programmable network hardware. @rofahis layer, we build an extensible
family of embedded domain-specific languages (EDSLs), eankd at different operational concerns,
and provide convenient ways to sensibly combine expressiothese languages. We present a case
study demonstrating a DSL for networks that provides firergrd, dynamic access control policies.

LA version of this report was submitted to the Ninth ACM Workshop on Hotid@m Networks (HotNets-I1X).



1 Introduction

The behavior of a communications network depends on the configuratibomufreds to thousands of
switches, routers, firewalls, and other devices. For example, a carapusrk may have as many as 2,000
inter-operating network devices and about one million lines of configurattbether the network operates
correctly, and according to the network operator’s policy, dependfhéomost part on the configuration of
these devices. Operators configure these devices to perform comgitexaaging from provisioning and
access control to rate limiting and load balancing by independently adjustimgtiverk configurations of
these devices. The complexity of these tasks and the low-level at whichtopeinteract with network
devices make network configuration time-consuming, and easily one of thesigiiicant costs of running
a network today.

Despite its importance, network configuration remains primitive and erroregehi®]. According to
a recent study, human error accounts for as much as 80% of outdgdsvEh when an operator finally
manages to configure a collection of devices to achieve some high-levebritasiplement some policy,
the configuration itself remains extremely brittle: because the configurattsior the devices themselves
and also depends on various low-level details (e.g., where the deviceatedom the network topology,
software versions or vendor models of switches), a small change irgoaaiiion can result in an overall
network configuration that fails to achieve the desired policy and is difftoulix. Much previous work
has attempted to help network operators detect configuration errorgjthedatic configuration analysis
(e.g, [4,8]) or network-wide simulationg(g, [11,/12[17]). Unfortunately, these approaches do not make it
easier for network operators to configure network policies in the firseplaor do they guarantee that the
network’s behavior is correct.

The configurations of hundreds of individual network devices collelstidetermine the behavior of
the network. In other words, network configuration is effectively adatigtributed program, with today’s
network configuration languages effectively operating at the levessémbly language. This observation
leads us to the following question, which we explore in this rep@&n a communications network be
“programmed” with a high-level programming languagé&¥e believe the answer is yes; in this report, we
argue that advanced, high-level programming languages and tools alot @xpress the overall network
behavior as a single program expressed in a declarative style.

Of course, previous research has suggested that a high-leveblamfr configuring networks could
eradicate many configuration errors and problems in today’s netwadk€][2despite widespread agreement
on the need for such a language, however, a solution as not materiakpetlinately, there is a recent
emergence of network switches that expose a unified, flexible, dynaamately programmable interface
that allow network switches to be controlled from a logically centralized locggom, OpenFlow [[1]).
We leverage this interface to help us incorporate advanced programmgugplzm ideas to ensure that our
programming model is expressive, natural, concise, and designadglydor networking applications. In
particular, we borrow ideas from functional reactive programming ataptathe design methodology of
domain-specific language (DSL) research.

Our framework, which we calNettle radically refactors network configuration. Rather than configure
individual network devices, operators can npmgramthe network as a whole. This subtle shift offers
significant benefits. First, operators can easily define complex netwtidigs and behaviors, such as more
complicated business relationships, traffic load balance goals, andtgeclicies. They can also define the
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Figure 1: Nettle’s layered design.

network behavior such that it automatically adjusts to changing networkt@mrgisuch as traffic surges and
failures. With this perspective, we provide a more direct approach twfgimeg and implementing operator
intentions than is provided by static, distributed configurations.

This report presents the case for programming networks in a high-levglidge and illustrates our
approach by applying this framework to an example task in an enterprisenketWe describe the Nettle
approach in more detail and demonstrate our ideas through a DSL in thetooffiee-grained, dynamic
access control for an enterprise network. The Nettle programming frarkeés/broad and can apply to
many network operations tasks, ranging from specifying security polci@erformance requirements to
business relationships. We explore how Nettle may apply to these settings.

2 Approach

This section describes Nettle, our framework for programming networlkspiMsent an overview first and
then discuss two components—domain specific languages and functiaciegrogramming—in detail.

2.1 Overview

Figurell illustrates our layered architecture. At the bottom are OpenFialied switches, which make
programmable networks possible. One level up is Haskell, the languageweechosen to implement
Nettle in, for reasons explained shortly. Above that is the first layer weigee, HOpenFlow, a library for
constructing OpenFlow messages and marshalling between the requirgddsistacol.

The next layer in our stack is an instantiation of a language in the Functi@dtie Programming
(FRP) paradigm. FRP is a family of languages that provide an expremsi/enathematically sound ap-
proach to programming real-time interactive systems in a declarative martnemnaliles us to treat the
network as a dynamical system and network management as a feedbacilen Specifically, we define
FRP-based controllers that take a stream of OpenFlow messages amidgeinerate a stream of OpenFlow
messages as output.



The FRP layer is very flexible, but it does not contain any of the termsfapernetworking. Nettle’'s
highest-level consists of a family of domain specific languages (DSLsyfeatitors can use to encode con-
straints that relate to specific networking taskg( security, performance). These DSLs are implemented
in terms of the FRP and OpenFlow constructs of the lower layers.

2.2 Domain Specific Languages

Because there are many types of computer networks, it would be a mistaked@signing a single one-
size-fits-all language. Our approach is to instead desigextensible family of DSL.£ach capturing an
important network abstraction. For example, we may have one DSL foss@wmatrol policies, another
for traffic engineering strategies, and another for expressing inteanfocontracts. Because the family is
extensible, operators can easily add new abstractions and functions.

To avoid creating small, isolated DSLs, we rely on the techniquendfeddingeach DSL into a host
language. We choose Haskéll [15] as our host because of its rephaflexibility in supporting embedded
DSLs [6]. This approach allows our DSLs to share a common “look and tie@ugh the adoption of
the same language infrastructure, such as variable naming conventincisom definitions, primitive data
types, a powerful type system, and so on. This not only relieves ustfrernurden of implementing these
general features, allowing us to focus on domain-specific concepitmdre importantly allows the DSLs
to interoperate with one another.

2.3 Functional Reactive Programming

FRP-based languages have been used successfully in computer aninadtitics, control systems, GUIs,
interactive multimedia, and other areas in which there is a combination of botimwous and discrete
entities [3,18,14,16]. We now briefly introduce the key ideas of funeticeactive programming (FRR) [7].
The simplest way to understand FRP is to think of it as a language for ekpgeslectrical circuits. We
refer to the wires in a typical circuit diagram signals and the boxes (that convert one signal into another)
assignal functions For example, this very simple circuit has two signalsindy, and one signal function,

sigfun:
)

This is written as a code fragment in FRP simply as:
y < sigfun — x

The wires have values on them continuously so realpnd y are functions of time. Unlike normal
circuit diagrams, FRP seamlessly also handles streams of discrete ewenisténcey could be a stream
of host-join events, angigfun could output an event that modifies a flow table on each such input.

FRP has many built-in signal functions, including all of the obvious numerictfans, as well as ones
for integration and differentiation of signals. Of course one can alsmelefew signal functions. For
example, here is a definion feigfun above that simply returns a signal that always takes the sine of one
greater than its input:



sigfun :: SF' Float Float
sigfun = proc r — do
y<sin —<z+1
returnA — y
The first line in this program is a type signature that declaresstigfin is a signal function that converts
continuous values of typEloat to continuous values of typBloat.

We can use signals and signal functions to program controllers that altiéc ffow based on signals
that measure the traffic volume on particular links. In this report, howgeemphasize a different use:
we will use signals to represestreams of messagéewing to and from the networks OpenFlow switches;
each signali(e., wire) is effectively a stream of messages.

In FRP, signal processing is declarative (as opposed to callbaekbbake programmer thinks of, and
programs with, message streams as a whole. For example, the merger of segenstseams.s! andms2
is simplyms1.|.ms2. A message, of course, carries data, and sometimes we need to maniputkttime
each message of a message stream. We can apply a fufictioreach message in a message stream
with the expressiom.s => fn. Sometimes our chore is even simpler: we may want to simply replace each
message with a different one, say which can be writtenns —> m. We will use both of these operators
in later examples.

3 Fine-grained Dynamic Access Control Language

We demonstrate our ideas by presenting an overview of a domain-speuificige for fine-grained dynamic
access control, intended to securely control enterprise networkda@urage and implementation are based
directly on a prototype system Resonarice [10], and are intended toatizaehis prototype to apply to a
whole class of similar systems. Before presenting our DSL, we brieflywevie Resonance system.

3.1 Enterprise Access Control with Resonance

Resonance is an OpenFlow-based system, aimed at campus networkghrthelnetwork infrastructure
is actively involved in enforcing the security policies of the system, remowsgansibility from end hosts
or higher network layers for the enforcement of security policies. Rasce is designed to apply policies
dynamically, incorporating input from network monitoring devices, suckias scanners and intrusion
detection systems, and actively and dynamically control the network equipmessponse. For example,
a Resonance system might quarantine a host when a compromise or othréy $weach is detected.

A key notion of Resonance is to implemdirie-grained, dynamic access contrdlhis means that a
Resonance system allows or prevents users from gaining access éiwvtloeka and that it provides operators
fine-grained control over this functionality. The control is fine-graiimetivo ways: (1) users can be given
access to different resources on the network independently andghhése priveleges can be different for
different users. It is dynamic in the sense that a user’s privelegeshamge over time. Dynamic access
control is critical to security in order to, for example, quarantine a normalbtéxd user once he is known
to have become infected with a virus.



Web Portal

)

< INTERNET

— e

2. Authe-
ntication

1. DHCP
request/reply,

3. Scanning

Figure 2: System architecture for example system

3.2 Resonance in Nettle

In this section, we present an EDSL for describing fine-grained,dimaccess control policies, and show
how these can be used to control a network. This EDSL demonstrates migyideas of our approach;
(1) we can successfully tailor our host language to our domain and allevg ts clearly describe their
high-level ideas, (2) it relies critically on Haskell, our host language rtwige general features, such as
variable definitions, functions and datatypes, and (3) FRP plays a kraolgan in providing a declarative
approach to describing the reactive component of a Resonance system.

We will take a top-down approach, and demonstrate how we use the aiasifthe EDSL to describe
and implement a secure Enterprise network, that is very closely relateddoetgiven in Ankur et al [10].
In the process, we will introduce—by example—the underlying componéritedEDSL. Of course, we
will omit many details. The intent is to provide a flavor of the approach, andgps convey a sense of the
ability to describe a wide variety of fine-grained dynamic access controdiizdonk controllers.

As shown in Figur€l2, the network includes several basic componentsastDHCP and DNS servers.
A web portal provides a web-based authentication server. Uponssfatauthentication, the web portal
sends a message to the controller via its Messenger interface. A vulnerabditper monitors hosts for
know vulnerabilities and contacts the controller, again via its Messengefaictesibout the status of host
scans.

The security model for the infrastructure devices on the network, suitfeaveb portal and dhcp server
is very simple. For brevity, we focus here on the most interesting part gidhiey, namely the end host
configuration.

3.2.1 End Host Palicy

To begin with we define a state space—which is simply a pair of booleans modéietter the host has
been authenticated and whether it is not deemed to have vulnerabilities—eaenktit set—which captures
information about the hosts:



data HostState
= HostState { authenticated,
notVulnerable :: Bool }

data HostFEvent
= Authenticated
| ScanOK
| ScanFuailed

We then define a state machine for an end host. Initially our host shoulderentthenticated and should
be considered vulnerable, and our transition function maps is entirelyrgfaigard mapping of events to
state modifiers:
initialState
= HostState { authenticated = False,
notVulnerable = False }

nextState Authenticated hs
= hs { authenticated = True}

nextState ScanOK hs
= hs {notVulnerable = True}

nextState ScanFailed  hs
= hs { notVulnerable = False }

All this is plain Haskell so far. Now we use Nettle and define the event sfgnabsts:

eventSignal ethAddr
= proc hi — do

authE < authEventSF ethAddr — hi

ae <+ scanAcceptSF ethAddr — hi

re + scanRejectSF ethAddr — hi

returnA — (authE —> Authenticated .|.
ae —> ScanOK -
re —> ScanFailed)

This simple signal function converts the various messages receivedHmwarious devices in the network
into the events in our state machine model of a hoséd to explain what is happening to the return values
The function makes use of signal functiomsth EventSF, scanAcceptSF andscanRejectSF. The first of
these describes whether an authorization has been received fdicalpahost. The latter two are event
sources for successful and unsuccessful vulnerability scamsdarticular host.

We also have to define the dynamic security policy for our end hosts:

dynSecurityPolicy state pktin
| auth A notVuln state



= allow

| auth A pktInt arp \V dns vV dhcp
= flood

| = auth A pktint arp V dns \V dhep
= flood

| = auth A pktIn & http
= forwardTo webPortalMacAddr

| otherwise

= deny
where auth = authenticated state
notVuln = notVulnerable state

The dynamic security policy uses predicates for packet types to distingeiisieen DNS packets and DHCP
packets, for example.

We have a functiorecure Host which builds a host controller from a state machine, a signal containing
relevant events, and an appropriate dynamic security property. iMeusan specify a host controller for an
end host by defining:

endHost ethAddr =
secureHost
(initialState, nextState)
(eventSignal ethAddr)
dynSecurityPolicy

3.2.2 Dynamic Security Policy

Let’s look at the definition of the dynamic security policy in more detail. As theoRasce paper states,
“a policy effectively dictates what actions a switch should take on traffi;th feom a host that is of a
particular security class and state.” We therefore, represent a dysacucity policy as a mapping from
some state space to a static security policy:

type DynamicSecurityPolicy state
= state — SecurityPolicy

Values of typeDynamicSecurityPolicy state define, at each host state, the security policy applied while
the host is in that state.

There may be many choices for how to represent security policies; leech@ose a simple representa-
tion, as follows:



type SecurityPolicy
= PacketIn — ForwardingDecision

The semantics of the language implementation are that for each packey sembst, the security policy for
that host at that time - based on the state of the host then - is applied to deteowirteat packet will be
treated.

Note that this allows for non-symmetrical security policies, where one lamssend packets to another
host, but not vice versa. One could argue that this should be disalltwede have chosen not to do so for
this example.

We provide four forms of forwarding decisions:

deny, allow, flood :: ForwardingDecision

forwardTo :: EthernetAddress —
ForwardingDecision

The semantics are going to be specified as follows: fpu@etin value, deny drops the packetgllow
forwards the packet towards the destination as specified ipdtieetIn value, flood floods the packet, and
forwardTo ethAddr forwards the packet towards the hestAddr. For bothallow and forwardTo deci-
sions, the forwarding path is determined by the routing algorithm in use biaonguage implementation.

3.2.3 Executing the Nettle Controller

At the highest-level, a Resonance system is specified by associalingt&ontroller with each host, i.e.
by a mapping from hosts t&lostControllers. In the current system, we identify hosts with the Ethernet
addresses of their device, and thus, we define:

type NetworkController
= EthernetAddress — HostController

This representation allows for different hosts to be controlled by diitet& st Controllers, allowing,
for example, a different security policy to be applied to a trusted dhcestran to an untrusted end host.
We provide a function for running a network controller Resonance syste
runNetwork ::
ControlParameters —
NetworkController —
10 ()

The functionrunNetwork params ncontroller does the following:
e Start an OpenFlow controller, connecting to switches;

e React to packet-in events from OpenFlow switches, turning on hosiodlensras hosts become active
in the network, and controlling switches to satisfy host control policies;
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e Start a TCP server running a simple text-based protocol that can béyseinponents on the net-
work, such as an authentication server, to communicate with the controller.

The ControlParameters argument includes various configurable parameters which we omit here.

4 Conclusion

Communication networks have become increasingly large and complex, daseexpanding range of
purposes. At the same time, they have become more difficut to configuregmaand troubleshoot. De-
spite the fact that network configuration largely dictates the network lphaand hence, its correctness—
network configuration languages remain disconcertingly low-level.

Drawing on the observation that a network configuration essentially sgetiie behavior of a large dis-
tributed program, we propose developing technologyragramnetworks using higher-level programming
languages that are more tailored to the tasks that network operatorsiagedrperform.

We propose to develop a family of embedded domain-specific languadjes, dattle In Nettle, each
DSL captures a network abstraction, such as performance, traffidokdadce, security, and business re-
lationships. The underlying substrate, based on functional reactdigggmming, provides a flexible and
powerful language for programming real-time, interactive systems anddesoan appropriate base lan-
guage for the development of higher-level DSLs.

This report has shown an example of describing a network behavior iSlaithe Nettle family,
namely one for fine-grained, dynamic access control.

We are still in the early days with the design of Nettle and are discovering theaiggtractions for
programming networks—both data and control abstractions. Our appob&mbedding languages within
Haskell provides an excellent setting for lightweight experimentation withuages, and enables our ex-
ploration.

From the perspective of network configuration, this report has mecedyched the surface for what may
be possible in this new programming paradigm for networks. We envisioNtttle will allow operators
to configure networks to perform a much wider variety of tasks. In additican enterprise deployment
of Nettle on which we are testing the suitability of the access control DSL we batlined in this report,
we are working on deploying Nettle across GENI's multi-campus OpenFlalveedo test its suitability
for expressing interdomain routing policies. We hope Nettle may ultimately ssrteeafoundation for
expressing a variety of network configuration policies and tasks.

Finally, we are also in the early phases of discovering where the penficarattlenecks are. Clearly,
a key factor affecting performance in an OpenFlow system will be the atmaiyrackets transmitted to
the controller for processing. In effect, Nettle has a two-level execiatiompilation strategy, where some
decisions are cached at the switch, and others are made in the contrstEamsyltimately, we may need
to compile Nettle into a three-layer target, where we introduce a pro- gramn@ftimlccomponent to sit
right next to the switch, and automatically compile and distribute Nettle code to thtdaiger of the control
hierarchy.
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