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Abstract. Is it possible to combine the programmability of a shared object
memory with the hardware advantages of a scalable distributed-memory archi-
tecture? We argue that the answer is yes; we discuss the implementation and
performance of a Linda system for the Intel iPSC/2 hypercube. Our results
demonstrate that this system can be used to solve significant problems effec-
tively. Good efficiencies require coarser task granularities than lower-level mes-
sage passing systems can support, but these granularities are routinely achieved
in a variety of problems that are by no means “embarassingly parallel”, and
the programs we discuss lean heavily on the expressive power of Linda’s tuple
space.
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1 Introduction

We have argued at length that a global object memory is a more natural, more
powerful basis than message-passing for parallel programming [Gel85, CGLS6,
CG89]. Architects have demonstrated in the meantime that linking autonomous
nodes into a local-memory-only network constitutes a relatively simple, inexpen-
sive and scalable way to build a parallel computer. Message passing is the native
idiom on such a machine; its hardware provides no support for a shared object
memory. Is it possible to combine the programmability of a shared object mem-
_ory with the hardware advantages of distributed memory?—to build, in other
words, a shared object memory on top of distributed-memory hardware?




The answer is yes: we demonstrated this some time ago by implementing
Linda on Bell Lab’s experimental S/Net system [CG86]; recent work has also
shown that Linda can be used to support coarse-grained parallel applications
across local networks [WL88]. The significant number of Linda-on-Transputer
implementation projects now underway! make it plain that a a variety of groups
are convinced that Linda on distributed-memory machines is both useful and
feasible. But we have not demonstrated that Linda is practical on scalable
parallel architectures like the Intel iPSC/2 hypercube (the machine we focus on
here). At 64 nodes our iPSC/2 is substantially larger than the shared-memory
machines we have available; much larger hypercubes are possible, and it will be
clear from the discussion that our hypercube implementation is also designed
to be scalable. Unlike the earlier S/Net implementation, the hypercube system
can’t depend on reliable broadcast as an implementation tool; unlike the network
system, a hypercube system can’t be considered a success if it supports coarse-
grained applications only.

We asked a generic question about object memories on hypercubes, and pro-
posed one specific answer, in terms of Linda. Linda is a parallel programming
model that centers on a shared, associative object memory. Is it a good exemplar
of the “shared object memory” class? If we define an object memory as a mem-
ory that supports add-object, read-object and remove-object operations in such
a way that they can be executed safely by concurrent processes, Linda is one
of the only exemplars. It’s important to note that so-called concurrent object-
oriented languages tend to use either message-passing or remote-procedure-call
for inter-process communication: the object-space (the collection of all objects in
the program) is not the the communication medium, and it doesn’t constitute a
shared object memory in our sense. (The point is pursued in [CG89]; concurrent
object-oriented systems based on Linda, e.g. [MatKa88], are an obvious excep-
tion.) Actors [Agh86] and Dally’s CST [DC88] are two other systems that have
an object-based component but don’t meet the specific definition given above.
With respect to Linda in particular, the arguments that support its value have
been repeated too often to make them worth including here. In summarizing
them briefly, Stephen Zenith of Inmos writes that “Linda is elegant and easy to
use... [Linda supports] automatically scalable algorithms; ... the same model on
different parallel architectures; a unified process and communication model; an
integral persistent storage concept; Linda is easily added to existing sequential
languages to create parallel variants of the original languages?”. This paper is
accordingly premissed on the contention that Linda is a valuable alternative to
message passing.

lincluding commercial implementations (for example Cogent Research, Human Devices), a
variant called “Brenda” for the Trollius operating system (by M. Braner of the Cornell Theory
Center), and a number of independent academic research efforts.

2S.E. Zenith, “The simplicity of Linda”, posted to the comp.parallel bulletin board on the
Arpanet




Our goal in this paper is to describe an implementation of Linda on the
iPSC/2 and to demonstrate its effectiveness. Because of the sophistication and
“high-levelness” of its communication model, Linda does exact a performance
penalty relative to plain message-passing on the iPSC/2. But—as per the per-
formance penalty exacted by compilers as opposed to assemblers, or virtual as
opposed to static memory systems—the existence per se of this penalty is ir-
revelant. Here is the important question: is the penalty small enough and the
potential gains large enough to make the system worth using despite the ezistence
of lower-level alternatives? We’'ll argue that the answer is yes.

1. Nature of the penalty. A basic user-level message-send on the iPSC/2 takes
390 usec; a basic tuple-exchange in Linda (one process outs a singleton
tuple to tuple space and a second ins it) requires 1.47 msec, reflecting the
fact that, in the general case, one message transaction is required to add
and two to remove a tuple from tuple space. Having made this comparison,
the next thing to note is that it is largely meaningless: Linda operations
are different from and more powerful than messages passing; see (2).

2. Nature of the potential gain. Linda’s out operation.can mimic the fun-
tionality of a message-passing send, but it does more: it generates an
object and adds it to a global associative memory. As a consequence
Linda makes it easy to support a class of programs that are hard to think
about and hard to implement in message-passing terms—programs that
rely on shared data structures built out of global objects (so-called “dis-
tributed data structures” [CGL86]). These structures are important be-
cause, among other things, they make it easy to parcel work out dynam-
ically and adaptively at runtime, thus saving the conceptual overhead of
distributing shared data explicitly to participating nodes, or constructing
a static list of task assignments, and in some cases yielding major efficiency
gains as well. A global object memory has other advantages too: Linda
makes it natural (for example) to support a form of communication that
looks like message passing, but where the participating processes aren’t
known until runtime (we discuss an example); we’ve defended at length
the proposition that a global memory, which supports an “uncoupled”
programming style, is conceptually simpler than message-passing.

3. The bottom line We will discuss Linda programs that (a) solve “real”
problems posed by computing users (not by the systems community), (b)
rely heavily on the power of Linda-style communication, (¢) do non-trivial
communicating relative to computing, and (d) show good speedup through
64 nodes on the iPSC/2.

In section 2 we describe the implementation and in section 3, its performance.




2 Implementation

2.1 The current system

Our current iPSC system implements C-Linda—the Linda tuple space operators
added to C, yielding a parallel dialect. The structure of the runtime system is
unchanged when we move to other Linda language hosts: we have implemented
a prototype Fortran-Linda, and other groups have implemented, or are investi-
gating (as are we), a wide variety of other language hosts.

The system consists of the C-Linda precompiler [Car87] and the runtime
library. The precompiler (in outline) assembles information about all Linda
operations in the source; at linktime, analyzes all Linda operations, parcels
them into classes according to style of tuple space access, and maps them onto
appropriate calls to the runtime library. Linda’s in and rd operations support
general associative lookup, but our goal at runtime is to use a tuple space access
routine that supplies ezactly as much matching generality as this particular tuple
space access requires, and no more. Each basic Linda operation is accordingly
represented not by a single library routine but by a family of routines; the
precompiler implements each Linda operation in the user’s source by selecting
the most appropriate member of the family.

To do so, it separates all Linda operations into disjoint sets, such that an
in or rd in one set can only match outs and evals in the same set, and vice
versa. It then classifies each set based on its matching pattern—which fields are
used .as match keys and which as data fields, which fields are always constant,
or actual, or potentially formal. This analysis determines which library routine
is optimal for each class; it also determines the way in which the class is stored
on the hypercube.

For present purposes, the details of the precompiler’s classification scheme
aren’t important; the important point is that tuple classes fall into two cate-
gories. Every in or rd operation has been assigned to some class at linktime;
if this class is a first category class, a search key exists that will allow the in
or rd to select a matching tuple from the potentially matching tuples that will
occupy the class at any given moment during program execution. If the class is
a second category class, there is no guaranteed search key, and in or rd will ne-
cessitate (in the worst case) an exhaustive search through all tuples that happen
to occupy the class.

Runtime tuple storage. Tuple storage is based on a distributed table im-
plemented in terms of the precompiler’s tuple classification. Each first-category
class is implemented as a distributed hash table covering every node in the
network. The hash function accepts as input both the class identifier and the
search key. The most important criterion for the hash function is that the node




and the intra-node bucket be chosen independently. Both the set identifier and
the search key are likely to be small positive integers, and so the hash function
must discriminate well in this range.

Second-category classes are handled similarly, except that no search key is
guaranteed to be present, and accordingly only the class identifier can be used as
input to the hash function. Every second-category class is mapped in its entirety
to some arbitrary node. Within that node, data stuctures appropriate to the
particular class are chosen to optimize search times [Car87]. It is important
that the hash function scatter classes across the machine. In general, every
node serves both as a tuple-space server and as a computation host.

Tuple rendezvous—the assignment of a particular tuple (generated by out or
eval) to a particular tuple request (an in or a rd statement)—generally takes
place on a node where neither the tuple-generating nor the tuple-requesting
process is local. Both in and out, then, require the packaging and transmission
of a tuple. (In the case of in or rd, this “tuple” is simply the list of arguments
to the in or rd, precisely as for out — we refer to such a “anti-tuple” as a
template). On out or eval, a tuple is dispatched to the storage node dictated
by the hash scheme. It may find a matching template waiting for it; if so, it
proceeds onward to the matching template’s home node. If not, it is installed
in a local table. Likewise for in and rd: arriving templates will either match
a waiting tuple or be installed in the local table to wait hopefully for the right
tuple to come along.

An out or an eval, then, requires a message-send. in and rd each require
a message-send and a message-receive, where message-send and -receive are the
primitives provided by the native communication system.

A concerted effort was made to reduce the size of the data structure repre-
senting a tuple, to save memory (the iPSC/2 has no virtual memory) as well
as to reduce communication costs. The information pertaining to a single tuple
can be classified into three types: class, operation and tuple specific information.
Only tuple-specific information is actually stored in the tuple; included are val-
ues for the tuple fields, the hash value, and a tuple id. All other information
describing a particular tuple is identical for all tuples produced by a particu-
lar Linda statement in the source—this category covers, for example, number
and types of tuple fields and descriptive information for runtime debugging and
tracing. This information is stored once in a separate data structure.

Most fields can be stored directly in the tuple data structure (the header).
. Larger fields, for example strings or structures, are copied to dynamic storage
and pointed-to by the header. This strategy makes it possible to send the header
only at first. The receiving node determines the number and size of large fields
from the header. It allocates storage and then receive these larger fields directly
into the allocated storage area, thus minimizing copying requirements. The




disadvantage of storing large fields separately is that an extra message send is
required for each large tuple field, which is expensive on the iPSC/2. For very
large fields our strategy makes sense, but on balance shorter “long fields” should
be treated differently, and will be in future versions.

When large fields aren’t needed for tuple matching (most cases), they aren’t
sent to the rendezvous node. They remain at the outing node, and they are
eventually forwarded to the ining node when requested to do so by the ren-
dezvous node.

Implementation of eval. The Linda operation eval presents special prob-
lems on the iPSC/2. eval is identical to out, except that it adds an unevaluated
tuple to tuple space and creates a new process to evaluate it (concurrently with
the eval-executing process); once the tuple has been completely evaluated, it is
indistinguishable from a tuple created using out. Usually one field in an eval
is a procedure call; eval is Linda’s method for creating new processes.

eval is implemented entirely in terms of in and out3, using a very simple
scheduling strategy that does not attempt to multiplex processes over a single
node. Each node runs an evaluator loop that withdraws from tuple space (using
in) the description of an eval-created tuple for evaluation, evaluates it to com-
pletion, uses out to install the result tuple, and repeats. The eval operation
itself is implemented by out’ing “eval descriptors”, which contain procedure
pointers (the same image is loaded on every node) and the values of any vari-
ables mentioned explicitly within the eval statement. More complex scheduling
stategies are possible and we will experiment with them in later versions, but
the present simple scheme is well suited to existing applications.

2.2 Optimizations: bucket switching; updates in place

Tuple space is a general associative memory, but it’s desirable to use the least-
general matching routine that will do at runtime. Similarly, tuple space is a
general object store, but it would be desirable to notice cases in which a less
general (and therefore cheaper) implementation strategy would work as well.
We will discuss two examples here. The first involves a newly-implemented
optimization that hasn’t yet been fully tested; the second hasn’t yet been im-
plemented. We briefly describe these optimizations anyway because they form
an important and obvious extension of the system described above, and will be
completed in the near future.

Bucket switching. Some tuples are similar to messages in the sense that
they are intended not for reading, and not for consumption by any interested
process, but for consumption by one process in particular. When some process

3j.e., the evals in the user's source are translated by the precompiler to the appropriate
in and out operations.




A generates a collection of tuples that meet this restriction—i.e., they are all
intended for consumption by one other process B—we should be able to detect
this pattern. Instead of shipping these tuples to a rendezvous node, they should
be sent from A’s node directly to B’s.

We implement this scheme via a strategy called “bucket-switching”: the par-
tition of the distributed tuple table in which these particular tuples were stored
is remapped from some arbitrary rendezvous node to B’s node. To accomplish
remapping at the appropriate times, the rendezvous nodes keep track of the
tuples consumed by each process. When a rendezvous node notices that a par-
ticular type of tuple is consumed by only (or primary) one process, it designates
that process’s node as the new rendezvous point for that tuple, forwards any
remaining tuples of that type, and maintains a forwarding pointer. As new
tuples or templates of that type arrive at the old rendezvous node, they are for-
warded, and the sending process is told to amend its hash function. Eventually
all processes interested in this type will hash (and send) to the new rendezvous
node.

A similar tuple rehashing scheme was was first implemented by Lucco [Luc86],
who reported very significant performance improvements for point-to-point style
communication—but in the context of a much less efficient implementation that
our current one, and without support from the precompiler’s tuple classification.
Early results from tuple rehashing in our system are encouraging. As a prelim-
inary test, we ran a program that does repeated barrier synchronizations, using
a standard spanning tree algorithm and point-to-point communication. After
only a few sends, tuple mapping had been reconfigured in such a way that point-
to-point communication required only a single message send. With 16 nodes,
performing 5000 barriers took 51.1 seconds; with rehashing, 37.5 seconds. This
25% improvement represents a highly preliminary and untuned version of the
rehashing system. Further substantial improvement should be possible.

Updates in place. Another tuple-use pattern that lends itself to opti-
mization is the in(¢); out(#’) pattern: a tuple is removed from tuple space,
updated, and immediately re-installed. Because the objects in tuple space are
immutable, this pattern is required whenever existing tuples must be altered.
The precompiler can (but doesn’t yet) detect this pattern; when the necessary
extensions are in place, it will be possible in many cases to implement this pat-
tern by sending a “tuple update message” to the rendezvous node on which ¢ is
stored and performing the update in place and remotely, rather than carrying
out the entire in; out sequence.




3 Performance

The raw performance of this Linda system is an elusive idea. We noted at the
start that Linda operations are more costly than message sends and receives,
and that they are also more powerful. To measure the cost of using Linda, we
could take a Linda program, remove all Linda operations and substitute mes-
sage exchange, and then compare the behavior of the two versions. But this is a
poorly-defined experiment. A direct translation from Linda to message-passing
would require us to reproduce the Linda kernel, or some other storage scheme
for global shared objects, and then access the system by using messages instead
of Linda calls. This experiment merely reproduces the Linda implementation in
altered form, and tells us nothing. The real test would require our comparing
the Linda program not to a Linda-style program using message passing, but to
a “comparable” program written in idiomatic message-passing style. Superfi-
cially this calls to mind the procedure we follow in computing speedup figures:
we measure speedup relative to a “comparable” serial program, in essence the
program that served as our starting point when we built the parallel version.
But this procedure doesn’t carry over to a comparison between two parallel
programs; starting with a serial program, there is no canonical message-passing
parallelization, but rather (in most cases) a broad spectrum of possibilities.
Choosing one arbitrarily and comparing its performance to the Linda version’s
is of doubtful value. It might be argued that the correct procedure is to start
with some message passing program, translate it into Linda and compare these
two. But on reflection, this experiment suffers from the same basic problem with
which we started. Message-passing programs are not idiomatic Linda programs:
they ignore precisely those aspects of Linda that constitute the whole point of
the model.

It’s important nonetheless to make the attempt to establish the practical
granularity limit for Linda programs under this implementation. We used a
real application (rather than a synthetic test program) for this purpose; it uses
the Linda operations in an idiomatic way, but allows us to vary the granularity
of the task-step conveniently.

3.1 Measuring acceptable task granularity

The program we used is a prime number finder, designed specifically to find all
primes between 1 and some upper bound. The Linda program uses the master-
worker model. A task consists of checking the integers between n and n +
ChunkSize for primality. Tasks are distributed dynamically: a worker grabs a
task-descriptor using in, then immediately generates a new task-descriptor (i.e.,
“check the next chunk of integers after mine”) for some other worker to pick up.
It proceeds to check its own chunk, reports the new primes to the master using




out, and grabs another task. The master uses tuple content-addressing to pick
up the results in order (in essence, the workers write a distributed (FIFO) stream
of tuples, and the master reads it: this is a simple distributed data-structure
technique discussed in [CGL86]). The master uses the incoming results to con-
struct (using out) a table of primes in tuple-space (another simple distributed
data structure, also dependent on tuple content-addressing). A worker consults
the table (using rd) as necessary in extending its sieve. This program and its
development is discussed in detail in [CG89b].

By varying ChunkSize we can use this program to test the effect of task
granularity on program performance. The results must be approached with
caution in the sense that they apply (obviously) to one program only. But the
program is typical of existing Linda applications, insofar as (1) it distributes
tasks dynamically via tuple space, (2) it uses tuple space to store global data
objects and to return intermediate results as well, and (3) it is conservative in
its use of tuple-space operations: for example, workers use rd to consult the
global primes table, but as they do so they incrementally copy the table into
a local data structure, so that each entry in the global table is consulted only
once.

We ran the granularity test on 32 nodes of the iPSC/2, using 31 workers and
one master process; the task was to find all primes between 1 and three million.
The results are shown in figure 1. We tested chunk sizes down to an interval of
30. The computation involved in searching an interval for primes is dominated
by divisions performed; averaging over the entire range of 1 through 3 million,
an interval of 30 requires about 550 divisions at 3.7 usec each, so the smallest
task step we tested amounts to slightly more than 2 msec. At no point, even
at the relatively fine granularity of less than 5 msec per task, does the Linda
program fail to show speedup relative to a serial version running on a single node:
absolute running time for the serial version is shown in the dotted line on the
graph. Nonetheless some general characteristics are clear. Down to an interval
of 400, performance is essentially constant; there is minor degradation down to
an apparent knee at 300; speedup then falls off more rapidly but irregularly. So
the minimal grain size for near optimal performance on this program is around
300, corresponding to an average task step in the region 20 of msec.

Figure 2 shows speedup for this program as we vary participating nodes
upwards through 64. The chunk size here is 2000; smaller chunk sizes (within
bounds of the discussion above) would have given roughly comparable perfor-
mance. One processor of an Intel iPSC/2 hypercube requires about 421 seconds
to run the sequential C program; one master and 63 workers running on all 64
nodes of our machine require just under 8 seconds, for an efficiency of about
85%.




3.2 Measured performance on a related series of appli-
cations

The important question in measuring this system’s performance is the following:
can it be used to solve real problems efficiently? (Efficiency should be measured
in terms of absolute speedup of a Linda program relative to a conventional serial
program running on a single node.) We discuss this question in the context of

"a problem that lends itself to an interesting range of solutions with varying
communication requirements and task granularities.

The problem. Geneticists at Yale posed the following problem: when new
DNA sequences are discovered, it is of interest to determine which previously-
known sequences they resemble, where “resemblance” is a qualitative measure
that can be approximated using string-matching-like algorithms. Comparing
two long sequences can be computationally expensive (a current algorithm of
choice is O(mn), where m and n are the lengths of the two sequences); usually,
such comparisons will be performed against part or all of a large database of
sequences (“GenBank”).

Parallel sequence-to-sequence comparison. Comparing two long se-
quences is time-consuming, and such comparisons can be parallelized. The al-
gorithm requires computing a similarity matrix in such a way that all elements
along each counter-diagonal can be computed simultaneously once the previous
counter-diagonal has been filled in. We use the standard transformation from
a computation on matrix elements to a computation on matrix sub-blocks to
control granularity. We wrote a master-worker program: each of a collection of
identical workers performs tasks until no tasks remain; each task is the com-
putation of one block of the similarity matrix. Once the first sub-block (first
set of columns) in the first band is computed, work can begin on the second
band. (These task will have a staggered start, which means that this algo-
rithm cannot achieve ideal speedup.) Linda’s tuple-space operations come into
play when (1) the initial tasks are distributed, (2) boundary values are com-
municated between workers responsible for adjacent strips, and (3) each worker
returns its best value to the master at termination. In each case, the requisite
data is dropped into tuple space via Linda’s out operation and retrieved using
in. This represents an extremely simple use of Linda. (But note that, although
this form of communication looks like mere message passing—a band-k worker
must send a series of “messages” to the band-k + 1 worker—it isn’t. Processes
assume the band-j role dynamically as the computation proceeds; workers don’t
know a priori to whom they will be sending these “messages”.)

Figure 3 shows performance on two different comparisons involving two
sequences of 3389 and 6779 bases respectively. The dotted line shows ideal
speedup, relative to running time for a serial version, for this algorithm (recall
that the algorithm is incapable of perfect speedup because of start-up and shut-
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down). Task granularity drops as the number of workers increases. Consider
the longer comparison in figure 3: it shows linear speedup fairly close to ideal
until we reach fifty workers, where performance starts to deteriorate (although
countinuing to show large absolute speedups). For this run, the task step at
fifty workers required computing about 3500 entries in the comparison matrix,
which takes about 60 msec. At this task granularity, we would continue to
show linear speedup through all 64 nodes on a comparison of two roughly 8000-
base sequences. This is a fairly modest computation. (Currently the longest
sequences in Genbank are approximately 70,000 bases).

The cited performance figures predate the bucket-switching optimization.
Bucket-switching is designed to detect patterns exactly like the ones in this
program; preliminary data indicate that bucket switching will in fact cause
messages to be sent directly from band k’s node to band k + 1’s after the first
few message transactions.

Hybrid comparison sirategies. Although comparing two long sequences can
be expensive, geneticists usually require not a single comparison, but an exten-
sive series of comparisons in which the target is compared against all or a major
portion of a large database. It’s clear, then, that we should consider paralleliz-
ing not the sequence-to-sequence comparison, but the database search—that is,
have our program perform many sequential comparisons simultaneously. Such
an approach is attractive because, since it involves coarser-grained parallelism,
we expect a highly efficient program to result.

This approach does work well ([CG88])—except when we need to search a
database partition that includes very-long sequences. The sequence-to-sequence
comparison discussed above handles long sequences efficiently, but isn’t appro-
priate otherwise. We can combine the virtues of both programs in a new and
different approch that works as follows: we define as a task the computation
of of an i x j sub-block of the comparison matrix. When comparing a target
whose length is < 7 to a database sequence whose length is < j, the entire com-
parison matrix fits inside an ¢ x j block, and therefore constitutes a single task
by itself. When dealing with larger comparands, the comparison is partitioned
into a series of sub-block computations, which may be pursued by many workers
simultaneously.

We have tested two versions of this basic approach. In the first, once a
worker has chosen the first sub-block in a band, it will proceed to compute in
sequence all remaining sub-blocks in the same band. As soon as it completes
the first sub-block, it generates a task-descriptor tuple specifying computation
of the next band (the one immediately beneath this one) as an available task;
as it completes each sub-block, it generates a tuple describing that sub-block’s
bottom row. The performance of this program is shown in figure 4, which
involves a search of the Primate sub-section of Genbank (roughly 2 MBytes)
against a median-length sequence (around 500 bases) using a block size of 40,000.
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