Yale University
Department of Computer Science

DAMG: An Abstract Multilevel Solver

Craig C. Douglas

YALEU/DCS/TR-950
February 9, 1993

This work was supported in part by the Office of Naval Research (grant N00014-91-J-1576),
Yale University, and the Research Division of International Business Machines.

DAMG: AN ABSTRACT MULTILEVEL SOLVER*
CRAIG C. DOUGLAS!

Abstract. A fast solver (DAMG) for linear algebra problems or partial differential equations,
based on multgrid methods, is presented. DAMG can be used with boundary value problems defined
on uniform, tensor product, or arbitrary grids in any number of dimensions. The calling sequence is
described in detail. What the subroutine library does and returns is also described.

Key words. multigrid, partial differential equations, linear algebra
AMS(MOS) subject classifications. 65N20, 65F10, 65F05.

1. Introduction. Differential equations provide mathematical descriptions of nu-
merous physical phenomena. This field can be divided into numerous categories, the
main ones being ordinary (only one variable is differentiated) and partial (more than
one variable is differentiated).

Ordinary differential equations arise in the study of electrical circuits and oscillating
mechanical systems,

ay'(2) + by'() + ey(c) = f(2),
and cable suspension,
y'(2) = 2V/1+ (' (@)

They also arise when the technique of separation of variables is applied to a partial
differential equation:

d dy _

i (a0 2L) + oy = (o).
Partial differential equations can be characterized by
Lu(z) = f(z),

Bu(z) = g(),

where z is a vector. In (1), Lu(z) = f(z) represents the problem to be solved, subject
to the boundary and/or initial conditions Bu(z) = g(z). '

1)

* This work was supported in part by the Office of Naval Research, grant N00014-91-J-1576. Yale
University Department of Computer Science Research Report YALEU/DCS/TR-950, February, 1993.

! Department of Computer Science, Yale University, P. O. Box 208285, New Haven, CT 06520-8285
and Mathematical Sciences Department, IBM Research Division, Thomas J. Watson Research Center,
P. O. Box 218, Yorktown Heights, NY 10598. E-mail: na.cdouglas@na-net.ornl.gov

1

Some common partial differential equations are Poisson’s equation,
Use + Uyy = f(2,Y)
with the special case of f(x,y) = 0 (Laplace’s equation), the heat or diffusion equation,
Uy — a?ugy = 0.
and the wave equation,
Ugt — @ Uggy = 0,

These three equations are examples of elliptic, parabolic, and hyperbolic partial
differential equations respectively.

There are three common classes of boundary conditions. The first is known as a
Dirichlet condition: the value of u(z) is specified along the boundary. The second is
known as a Neumann condition: the value of the normal derivative du/dn is specified
along the boundary. The third is known as a mixed condition: yu(z) + 1du/dn. More
complicated conditions exist. _

These problems are converted into finite dimensional ones using finite element or
difference schemes, collocation, or box schemes (sometimes referred to as a finite volume
schemes). Numerous books exist on how to do this, when the problems are well posed,
and how to determine when the discretization is stable and consistent (see [2], [5], [6],

[9], and [11]).

2. Introduction to multigrid methods. Once a linear differential or integral
equation is discretized, we must solve

Az =0b, z e M,

where M is a vector space. We will solve this using an abstract multilevel (or multigrid)
iteration. An auxiliary set of equations are used which each approximate the original
one:

Ajz; =bj, levelf < j <levele, z; € M;,

where levelc and levelf be the coarsest and finest levels, respectively, Alevely = A,
Tievelf = T, and bieyerf = b. Neither symmetry nor definiteness (positive or negative) is
required in the A;’s.

Multigrid solvers frequently use particular features of an elliptic boundary value
problem and the domain. There are similar procedures, known as aggregation-
disaggregation methods, when A is not derived from partial differential equations; this
routine can be used with either of these procedures. The term multigrid is usually
applied only to problems based on grids, whereas the term multilevel is applied to
problems which may or may not be grid based. We want to apply this method
independent of the properties of the grid, domain, discretization, and differential
equation.

2

Multilevel methods combine scaled iterative methods (called smoothers or roughers)
with iterative residual correction on coarser levels to reduce the error on a given level.
Iteration : on some level j > levelc consists of a smoothing step (introducing an operator
SJ@), a correction step, and another smoothing step (introducing another operator Tj(i)).

There are y; of these iterations. On level j = levelc, just smoothing occurs (say, S J(i));
this may be an iterative or a direct procedure like (sparse) Gaussian elimination.
Common smoothers S J(i) and TJ-(i) are relaxation methods (e.g., Gauss-Seidel, SOR,
line or plane methods), preconditioned conjugate direction methods (e.g., conjugate
gradients, minimum residuals, Orthomin, CGS, CG-STAB), and the identity operator.
The correction step involves a two way transfer of information between levels. This
is accomplished using mappings between the solution spaces: '

RJ . M] - Mj+1 and .Pj+1 : Mj.|.1 — MJ

These are referred to as restriction and prolongation operators in the multigrid
literature. Typically, Pj;; is a standard interpolation operator and R; is its transpose.

There are two basic linear multilevel algorithms: correction ones and nested
iteration ones. Correction multilevel algorithms start on a fine grid and use the coarser
levels solely to correct the approximate solution on finer levels (we will define two such
algorithms shortly, namely, MGC and MGFAS). Nested iteration multilevel algorithms
start on a coarse level and work their way to some finer level, using the approximate
solution on coarser levels to produce initial guesses and corrections on the finer levels
(we will define two such algorithms shortly, namely, NIC and NIFAS).

Define a k-level correction multigrid algorithm by

ALGORITHM MGC(k, {pe}, zk, fk)
(1) If k = levelc, then solve Ayzy = fi exactly or iteratively
(2) If k # levelc, then repeat ¢ = 1,-- -, ug:
(2a) Smoothing: z; « S,(ci)(xk,fk)
(2b) Residual Correction: zj, « x3+
Prp1(MGC(k + 1, {pe}, 0, Re(Arzi + fr)))
(2¢) Smoothing: j «— T (zk, fi)
(3) Return x4
This definition requires that geyer. = 1. Examples of the flow of control between levels
for both of the correction algorithms are contained in Figure 1.
Define a k-level (standard) full approximation multigrid scheme by

ALGORITHM MGFAS(k, {pe}, zk, fx)
(1) If k = levelc, then solve Ayz, = fi exactly or iteratively
(2) If k # levelc, then repeat ¢ = 1,- -+, ug:
(2a) Smoothing: zj « S,(:)(xk,fk)
(2b) Residual Correction:
T — T + Pk+1(MGFAS(’C + 1, {M[},O,
Ry (Agzk + fi) — A1 Byar) —Rix)
(2¢) Smoothing: zj « T,S’) (zk, fx)
(3) Return z
This definition requires that eperc = 1. Examples are contained in Figure 1. Algo-
rithm MGFAS can be used to solve nonlinear problems by using nonlinear smoothers.
For linear problems, it is equivalent to Algorithm MGC.

Define a k-level nested iteration multigrid algorithm by
ALGORITHM NIC(k, {fe, ¢}, Ticveic, { fe})

(1) For j = levelc,levelc—1,-- -, k, do
(1a) If j # levelc, then z; « Pjy1741
(1b) Set p « p; and then p; « ;.
(lc) Zj ('—MGC(]a {Iul}a Ty, f])
(1d) Restore p; « p.
(2) Return zy
Alternatively, MGFAS can be substituted for MGC.
ALGORITHM NIFAS(k, {e, Y1}, Tievete, { fe})
(1) For j = levelc, levelc—1,-- -, k, do
(la) If j # levelc, then z; « Pji12;44
(1b) Set p « p; and then p; « ;.
(16) Z;j (—MGFAS(Ja {ﬂl}v Ty, fJ)
(1d) Restore p; « p.
(2) Return zi
An example of the flow of control between levels for both of the nested iteration
algorithms is contained in Figure 2.

3. Storage formats. Any collection of subroutines to solve partial differential
equations or integral equations must support a variety of matrix storage formats.
Discretizations of partial differential equations usually lead to large, sparse systems of
equations. This will result in diagonal matrices, ones with a nearly constant number of
nonzeros per row, or ones with a highly varying number of nonzeros per row. In all cases,
the nonzero structure of the resulting matrix is usually nearly symmetric even when
the matrix is not. On the other hand, integral equations and spectral discretizations of
partial differential equations usually lead to dense systems of equations.

Currently, one standard dense storage format is supported:

e “general matrix”

One standard sparse storage format plus one nonstandard one are supported:
o “storage by rows”
o “stencil storage mode”

level V cycle: p=(1,1,1,1)

> W N

level W cycle: p=(1,2,2,1)

W N

Fig. 1. Correction Algorithms (MGC and MGFAS) V and W cycles

level

=~ W N

F1G. 2. Nested Iteration Algorithms (NIC and NIFAS) V cycle

More formats should be supported at some point in the future.

3.1. General dense matrix. General dense matrices are stored in column major
form (i.e., Fortran’s standard method, not C’s). For a given dense matrix M, only one
matrix DM is required to store the elements.

e DM, a long precision matrix of dimension (ndm,n) with ndm > m, contains
the element M;; in DM(¢, 7).
Consider the following as an example of a 5 x 5 general dense matrix M:

11 0 13 0 0
21 22 0 0 25
(2) M = 0 033 0 O
0 0 00 O
51 52 0 0 55
which can be stored as a matrix as
DMma,tM'x =M
or as a vector as
DMvector = (117 21’ 07 0) 517
0, 22, 0, 0, 52,
13, 0, 33, 0, O,
0o, 0, 0, 0, O,
0, 25, 0, 0, 55)

For a symmetric matrix, obviously half of the storage could be eliminated. At this time,
this is not supported (stay tuned).

3.2. Storage by rows. For a general sparse matrix M, storage by rows uses three
vectors to define the matrix: IM, JM, and DM. Given the m X n sparse matrix M
having ne nonzero elements, the vectors are set up as follows:

e DM, a long precision vector of length at least ne, contains the ne nonzero
elements of the sparse matrix M stored contiguously. The rows of M are
stored in ascending order. The elements of each row in M are stored in any
order, but ascending order should be used if possible.

WARNING: Some of the iterative solvers actually require the rows to be stored
in ascending order.

e IM, an integer vector of length at least m + 1, contains the relative starting
position of each row of matrix M in vector DM. Hence, row i of M begins
at DM(IM(2)) and ends at DM(IM(:+ 1) — 1). If row j is all zero (i.e., an
empty row), IM(5) = IM(j + 1). The last element, IM(m + 1), indicates the
position after the last element in vector DM, which is ne + 1.

e JM, an integer vector of length at least ne, contains the corresponding column
numbers of each nonzero element M;; in matrix M.

6

Consider the example matrix M in (2) cast as a 5 X 5 general sparse matrix. This can
be stored as

DM = (11,13,21,22,25,33,51, 52, 55)
IM = (1,3,6,7,7,10)

JM =(1,3,1,2,5,3,1,2,5)

For a symmetric matrix, obviously half of the storage could be eliminated. At this time,
this is not supported (stay tuned).

3.3. Stencil storage mode. Interpolation between similar grids is an important
feature of multigrid algorithms when solving partial differential equations (see §2).
Suppose we have two grids G; and G,, with N; and N, grid points, respectively, and
N; > N,. For a d dimensional problem, N; ~ 2¢N, is common.

Suppose an N, X N; matrix R; is defined based on the grids G; and Gy, i.e.,

R, : RM™ — R™,

Then we can transfer information from G; to G5 or vice versa using the following
(sparse) matrix—vector multiplications:

y=Rz or z=RTy, zecRM yeR™.

Frequently, the rows of R; are similar to many other rows in R; except that the first
nonzero is in a different column. The matrix R; is really a collection of weighted sums
of values of some function or vector at grid points and a few of the values at neighboring
grid points.

We introduce a stencil storage mode which is very space efficient for regular grids.
Information about each stencil is stored in two vectors: one integer (fullword) and the
other real (long precision). The integer one is dimensioned N, larger than the real one.

This storage format is designed only to do the sparse-matrix vector multiplies using
little memory while still being fast. We calculate y = R, using the following algorithm:

(1) j=1
(2) Fori=1,---,N, do:
(2a) Let p be the stencil associated with y;.
2b) wi= > e Y T
teStencil, k€O ffsety,
(2¢) 7 =7+ Increment,.
Each stencil p has a set of multipliers ({r,}). Associated with each r; is a set of offsets
({Offset,,}) and an increment (Increment,). We will define all of these terms more
concretely shortly.
Suppose rows and ¢ and ¢ + 1 of some example R; are the following:

7

0O --- 01 2 4 21000 0
o --- 000124210 --- 0
Let stencil p encapsulate row :’s stencil (1,2,4,2,1). This is stored as part of vectors R
and JR:
R | JR | Description What
1.0 | 2 | 2 entries to multiply by 1.0 | Of fset,1
0 | offset =0
4 | offset =4
2.0 | 2 | 2 entries to multiply by 2.0 | Of fset,,
1 | offset =1
3 | offset =3
4.0 | 1 |1 entry to multiply by 4.0 | Of fset,3
2 | offset =2
0 | End of stencil indicator Increment,
2 | add 2 to jin (2¢)

The blank entries in R are never referenced, so they can be anything (zero is a safe
value, however). In the algorithm for computing y = Ry, there is an outer loop (the
¢ loop) in which y; is computed, one row at a time. However, the starting index for
z increases by a variable amount (which is rarely 1 in practice) in line (2c). Under
unusual circumstances, the increment can actually be zero or negative. This is what is
stored in Increment,.

In this example, row 2+ 1’s stencil is the same stencil as that for row ¢ if and only if
the increment is identical for the two rows. This anomaly results in very similar stencils
differing only in the increment.

Stencil storage mode matrices have three distinct components: two pointer sections

and the stencils’ section. The term pointer is used here to refer to an index into a
FORTRAN-77 style vector. Formally,

Index R|JR

1 * | Pointer to stencil pointers

2to K Stencils

K+1to K+ N, | Pointers to stencils to compute y;

Note that the R and JR vectors are of length K and K + N,, respectively, in the
description above.
This section is concluded with two real examples: both are for transferring data

from a grid (in two or three dimensions) to another. Let G; be a rectangular, uniform
grid with Ny = (2N, + 1) x (2N, + 1) points:

2N, +1=17

2N, +1=>5

Let G; C Gy correspond to the N; = N, x N, points singled out above:

Suppose we use a stencil that is a nine point weighting of nearby neighbors, centered
at the points where G; N Gy, of the form

111
4 2 4
1 1
2 1 2
1 1 1
4 2 4

The 1 entry corresponds to the the center of the stencil. Then R; : Gl — (, will have
two nearly identical stencils. The first will have an increment of 2, the second will have
an increment of N, + 3. Each stencil has length 14, so

JR(1) = 30.
Stencil 1 is stored in R and JR as
Index | R | JR Description
2 25 1 4 Offsetl,l
3 0
4 2
5 2N,
6 2N, + 2
7 .5 4 Offsetl,g
8 1
9 N,
10 Ny +2
11 2N, +1
12 1.01]1 Off36t1’3
13 Ny, +1
14 0 Increment;
15 2
Stencil 2 can be copied from stencil 1 using the following FORTRAN-77 code fragment:
DOI=214
R(I+14) = R(])
JR(I+14) = JR(])
ENDDO
JR(29) = N, +3 — The 1 change

9

Finally, we need to generate pointers to the correct stencils. This can be done using
the following FORTRAN-77 code fragment:
M =30
DO J =1,N,
DOI=1N, -1
JR(M) =2 — stencil 1
M=M+1
ENDDO
JR(M) =16 «— stencil 2
M=M+1
ENDDO
This completes the two dimensional example.
The three dimensional example is similar. In this case, grid G; has
Ny = (2N, +1) x (2N, + 1) X (2N, + 1) points and grid Gz has N; = N, x N, X N,
points where a point (z;,y;,2x) € G is the point (z2;,y2j, 22k) € G1. The weighting
used to construct R; has 27 entries (3%) in it. The stencil is a weighting of the 9 nearest
neighbors on the plane the stencil is centered on,

11 1
4 2 4
1 1
212’
111
4 2 4

and the 9 nearest neighbors on the planes directly above and below (using the same
weighting on each),

111
8 4 8
111
4 2 14
111
8 4 8

In this case, there are 3 stencils: ones with an increment of 2, N,+3, and N, N,+2N,+3.
Each stencil has four sets of offsets, one for each of the %, i, %,
offsets are as follows:

110,2,2N,, 2N, + 2, 2N,N,, 2N, N, + 2,
2(NyNy + Ny), 2(Ny;N, + N,) + 2

and 1 multipliers. The

211, Ny, Ny+2,2N, +1, N,N,, N,N, + 2,
N,N, +2N,, N,N, + 2N, + 2, 2N, N, + 1, 2N,N, + N,,
2N,N, + N, + 2, 2N, N, + 2N, + 1

2| Ny+1, NNy + 1, NyNy + Ny, NoNy + Ny + 2,

NN, + 2N, + 1, 2N, N, + N, + 1
1| N,N,+ N, +1

10

Each stencil is of length 33, so
JR(1) = 101.

The second and third stencils can be copied from the first, similarly to the two
dimensional example before. Finally, we need to generate the pointers to the correct
stencils. This can be done using the following FORTRAN-T77 code fragment:
M = 101
DO K = 1,N,
DOJ=1,N,—-1
DOI=1,N, -1
JR(M) =2 — stencil 1
M=M+1
ENDDO
JR(M) = 35 «— stencil 2
M=M+1
ENDDO
DOJ=1N,-1
JR(M) =2 «— stencil 1
M=M+1
ENDDO ,
JR(M) = 68 « stencil 3
M=M+1
ENDDO
This completes the three dimensional example.

We conclude this section by summarizing the savings in memory by using the stencil
storage mode instead of standard sparse matrix storage schemes. In the two and three
dimensional examples, we require the following amount of long precision real and integer
memory locations:

Stencil storage mode Storage by rows
Example | Real Integer Real Integer
2D 30 N,N,+30 9NN, 10N, N, +1
3D 100 N,NyN, +100 | 2TN,N,N, 28N,N,N,+1

To say that using stencil storage mode is a savings for this example is an understatement.
4. Subroutine DAMG. Algorithms MGC, MGFAS, NIC, and NIFAS have
all been encapsulated in the long precision subroutine DAMG. It calls the correct

multilevel algorithm subroutine(s), which in turn calls the appropriate matrix—vector
multiplication routines, direct or iterative solvers, and possibly user supplied routines.

11

4.1. Syntax of DAMG. DAMG can be called from either FORTRAN or C using
the following convention:

FORTRAN | CALL DAMG (subchl, subpre, subsmr,infalg,infm,

b, z,dm,im, jm, iparm,resid, auz, nauz)
C damg (subchl, subpre, subsmr,infalg,infm,

b, z,dm,im, jm,iparm,resid, auz, &nauzx)

4.2. On entry to DAMG. The arguments to DAMG have the following meaning;:
subchl

is an external subroutine for changing levels. This is used instead
of a call to the (sparse) matrix-vector multiply routine. It will
occur automatically if the entries in ¢nfm corresponding to
R;, Pj;1, and NIP;;, are zero for some level j. A routine
DAMGN which generates a “not implemented” message and
then terminates is provided in the library. For details, see §5.2.
Specified as: the name of a subroutine that is declared as
EXTERNAL in your calling program. It can be whatever name
you choose. »

subpre
is an external subroutine to be used as a preconditioner in the
smoothing routines, where applicable. A routine DAMGN which
just returns is provided in the library. For details, see §5.3.
Specified as: the name of a subroutine that is declared as
EXTERNAL in your calling program. It can be whatever name
you choose. .

subsmr
is a user supplied solver subroutine (and usually an iterative
one). A routine DAMGN which just returns is provided in the
library. For details, see 5.4.
Specified as: the name of a subroutine that is declared as
EXTERNAL in your calling program. It can be whatever name
you choose. '

12

infalg

is a 2 dimensional array which contains information about each
level. It is dimensioned (12, L), where L is at least as great as
the number of levels. The second index refers to a level (which
will be denoted by j in this description).

infalg(l,7) = Solver is which solver (see Table 1) to
use on level 7. See §4.5 for a description of the defaults.
infalg(2,7) = SolverItersis how many iterations to do
of the solver on level j each time smoothing is requested
by a multilevel algorithm. The default is 2, but any
value in the 1-4 range is typical.

infalg(3,5) = Precond is which preconditioner (see
Table 2) to use on level j. The default is 0 (no
preconditioner).

infalg(4,7) = MGlters is p; in multilevel algorithms.
The default is 1, but either 1 or 2 is typical.
infalg(b,7) = NIlters is v; in NIC or NIFAS. The
default is 1.

infalg(6,5) = IdeX B is where z; and b; start in the
z and b vectors. This is a FORTRAN-77 style vector
index. See §4.5 for a description of how to dimension b
and z and how to stack the b; and z; inside of b and «.
infalg(7,5) = NXB is the length of z; and b;. See §4.5
for a description of this.

infalg(8,7) = Colors is the number of col-
ors for the Gauss-Seidel red-black solver, where
0 < Colors < NXB(j). The default is 2.

infalg(9 — 12, 7) are reserved.

A summary of ¢nfalg is in Table 3.

13

TABLE 1

DAMG Solver Information

Solver | Symbolic name | Definition
0 NoSolver no solver used on this level
1 User user supplied routine subsmr
2 DSFactor Gaussian elimination factorization
3 DSSolve Gaussian elimination solution
4 SGS symmetric Gauss-Seidel
5 GSNat Gauss-Seidel, natural ordering
6 GSRedBlack Gauss-Seidel, red-black ordering
7 CG conjugate gradients
8 MR minimum residuals
9 CG-Squared conjugate gradients squared
10 CG-STAB variant of CG-squared
11 GMRES generalized minimum residuals
TABLE 2
DAMG Preconditioner Information
Preconditioner | Symbolic name | Definition
0 NoPrecond no preconditioner used on this level
1 User user supplied routine subpre
2 ILU incomplete factorization
3 Diag diagonal preconditioner
4 SGS symmetric Gauss-Seidel
5 SSOR successive over relaxation
TaBLE 3
Summary of infalg
infalg(s,) on level j
¢ | Symbolic name | Definition
1 | Solver Which solution method
2 | Solverlters Iterations of Solver
3 | Precond Which preconditioning method
4 | MGlters Iterations of Algorithm MGC or MGFAS
5 | Nllters Iterations of Algorithm NIC or NIFAS
6 |IdzXB Index of first element of b; or z; in b or =
T | NXB Number of elements in b; and z;
8 | Colors Number of colors in a multicolor ordering
9-12 | reserved

14

infm

is a 3 dimensional array which contains information about each
level. This is the mother of all arguments. No program should
be without one. It is dimensioned (10, [2in fm, L), where L is at
least as great as the number of levels (see iparm for a description
of 12infm). The third index refers to a level (which will be
denoted by j in this description).

This array contains information about all five types of matrices
that can be associated with each level. In all likelihood, only
two matrices will be associated with any given level, however.
The five possible matrices for level j are as follows:

A; The coefficient matrix used in solving a linear system on
level j.

R; The restriction matrix used to transfer data to level 5 + 1.
The transpose of R; may be used to transfer data from
level j + 1, too.

P; The prolongation matrix used to transfer data to level j — 1.
The transpose of R; may be used to transfer data from
level j — 1, too. '

NIP; The prolongation matrix used only in Algorithm NIC or
NIFAS to transfer data from level j — 1. Normally, P;
is used instead.

FASR; The injection or projection matrix used in Algorithm
MGFAS to transfer the approximate solution z; onto
level j + 1 as the initial guess to the approximate
solution ;4. '

All of these are optional.

infm is a very simple data structure actually: Consider
infm(i, k,j), where j is the level. The symbolic names are in
Table 4. The definitions of these variables are highly dependent
on the tables above. Instead of defining all of these variable
separately, we define them one row at a time, substituting a ?

for A;, R;, P;, NIP;, and FASR;:

15

TABLE 4
Symbolic names for infm entries

1 2 3 4 d

~.
—
O@OO\I@O’(»\BCO[\DF—‘Q

AType RType PType NIPType FASRType
ACols RCols PCols NIPCols FASRCols
ARows RRows PRows NIPRows FASRRows
ADiml RDiml PDiml NIPDiml FASRDiml
ADim2 RDwm2 PDim2 NIPDim2 FASRDim?2
IdzA IdzR IdzP IdzNIP IdzFASR
IdzIA IdzIR IdzIP IdzINIP IdzIFASR
IdzJA IdzJR IdzJP IdzJNIP IdzJFASR

reserved

reserved

?Type The matrix type. See Table 5.

?Cols The number of columns in the matrix.

?Rows The number of rows in the matrix.

?Dim1 The first dimension of the matrix stored in dm, as it
would be logically be defined in a dimension statement
in FORTRAN.

?Dim2 The second dimension of the matrix stored in dm,
as it would be logically be defined in a dimen-
sion statement in FORTRAN. This is ignored unless
?Type = MatrizDense.

Idz? A FORTRAN-T7 style 1 based index in dm for
the real part of the matrix. This is ignored if
Type = Matriz None or MatrizUser (see Table 6).

IdzI? A FORTRAN-T77 style 1 based index in im for one of the
integer descriptions of the matrix. This is ignored unless
Type = Matriz ByRow M atrizStencil (see Table 6).

IdzJ? A FORTRAN-TT style 1 based index in im for one of
the integer descriptions of the matrix. This is ignored
unless ?T'ype = Matriz By Row (see Table 6).

is a vector containing the right hand sides b;, stacked one after
the next. For a given b;, it starts at the location referenced by
infalg(Idz X B;). See §4.5 for a description of how to dimension
b.

Specified as: a vector of long precision real numbers.

16

TABLE 5
Matriz Type Information

Type | Symbolic name | Definition
0 MatrizNone No matrix specified
1 MatrizUser user supplied function used instead of matrix
2 Matriz By Row | “storage by rows” sparse matrix
3 MatrizStencil | stencil mode sparse matrix
4 MatrizDense | dense matrix

TABLE 6

Matriz Data Structure Correlation

Matrix DAMG’s 3 vectors
Type dm m Jm
MatrizNone - - -
MatrizUser - - -
Matriz ByRow | A(LNA) IA(LNA) JA(N+1)
MatrizStencil | A(JA(1)-1) | JA(JA(1)+N-1) | -
MatrizDense | A(LDA,N) | - -

Term Definition

N

LNA, LDA | Leading dimension

Number of rows

17

dm

m

jm

is a vector containing the approximate solutions or corrections
z;, stacked one after the next. For a given z;, it starts at
the location referenced by infalg(IdxXB;). See §4.5 for a
description of how to dimension z.

Specified as: a vector of long precision real numbers.

is a vector containing the matrices (A;, R;, P;, NIP;, and
F ASR;) stacked one after the next. For a given Aj, it starts at
the location referenced by infm(IdzA,1,5) (and similarly for
the remaining matrix types). Each matrix is stored in one of
the matrix formats (see §3). Its size is specified by Indm and
the last element in use is specified by lastdm (see tparm).
Specified as: a vector of long precision real numbers.

is a vector containing the vectors ¢m;, stacked one after the
next. For a given I'Aj, it starts at the location referenced by
infalg(IdzIA,1,j). Its size is specified by Inim and the last
element in use is specified by lastim (see iparm).

Specified as: a vector of integers.

is a vector containing the matrices JA;, stacked one after the
next. For a given JA;, it starts at the location referenced by
infm(IdzJA,1,7). Its size is specified by Injm and the last
element in use is specified by lastjm (see iparm).

Specified as: a vector of integers.

18

parm

is a vector of integer arguments.

iparm(1l) = mgfn determines which of the multilevel
algorithms to use:

1 MGC

2 MGFAS

3 NIC

4 NIFAS

iparm(2) = [2infm is the second dimension of ¢n fm.
This must be positive.

iparm(3) = bzsize is the size of b and z vectors. See
§4.5 for a description of how to dimension b and z.
tparm(4) = Indm is the size of dm vector. See §4.5 for
a description of how to dimension dm.

iparm(5) = Inim is the size of im vector. See §4.5 for
a description of how to dimension zm.

iparm(6) = Injm is the size of jm vector. See §4.5 for
a description of how to dimension jm. '

iparm(7) = levelf is the finest level number, where
levelf < levelec.

iparm(8) = levelc is the coarsest level number, where
levelc > levelf.

iparm(9) = startl is the index of the starting level
in the multigrid algorithm, where levelf < startl <
levelc. The default is level f for Algorithms MGC and
MGFAS. The default is levelc for Algorithms NIC and
NIFAS.

iparm(10) = presva is whether or not to preserve the
matrices on the coarsest level. If iparm(10) = 1, then
the coarsest level’s A, I A, and JA entries in dm, im,
and jm are destroyed during the direct solve phase of
the computation. Otherwise, these are preserved at the
expense of copying the relevant parts of the vectors to
the end of their respective vectors. The default is 0
(preserve).

iparm(11) = lastdm is the one based index of the last
element in dm which is used. So, the last Indm —
lastdm 4 1 elements can be used by DAMG.
iparm(12) = lastim is the one based index of the last

element in 2zm which is used. So, the last Inem—lastim+
1 elements can be used by DAMG.

19

o iparm(13) = lastjm is the one based index of the last
element in jm which is used. So, the last Injm —
lastym + 1 elements can be used by DAMG.

e iparm(14) = info controls how much information is
printed during a computation.

0 Print nothing.
1] Print flow control.
2 Print vectors as well as flow control.

e iparm(15) = restart is used to communicate to DAMG
that this is a continuation of a previous call or not. If
thisis 1, then DAMG can assume that it has been called
before. This should be used with care since it is not well
tested.

e iparm(16 — 19) are reserved for future use and should
be initialized to zero by the caller.

e iparm(20) = assist is for when all else fails. If this
is 5551212, then additional information will written to
unit 9.

See Table 7 for a summary.
Specified as: a vector of integers of length at least 20.

resid
is a vector where the residuals are stored. Its size is at least as
large as the maximum number of unknowns on the finest level.
Specified as: a vector of long precision real numbers.

auz ,
is the storage work area used by this subroutine. If restart =1
(see tparm), this must be the exact same work area that was
used before. Its size is specified by nauz.
Specified as: a vector of long precision real numbers of length
nauz.

naux
is the size of the floating point scratch storage.
WARNING: Do not pass a constant; use a variable.
Specified as: an integer.

4.3. On return from DAMG. The following arguments to DAMG may change
before it returns:
infalg
The one entry that specifies that the coarsest level should be
factored, is changed to indicate that this has been done and
only a solve need be done on this level. ‘

20

dm

m

TABLE 7
Summary of iparm

iparm(z)

? Symbolic name | Definition

1 mgfn Which multilevel algorithm

2 [2infm Second dimension of infm array

3 brsize Length of b and z arrays

4 Indm Length of dm array

5 Inim Length of :m array

6 Ingm Length of ym array

7 level f Index of the finest level

8 levelc Index of the coarsest level

9 startl Index of the starting level

10 | presva Preserve coarsest level’s matrices or not

11 | lastdm Index of last element in dm in use

12 | lastim Index of last element in ¢m in use

13 | lastym Index of last element in jm in use

14 |info Control of debugging information

15 | restart Continued computation indicator
16-19 | reserved

20 | assist When all else fails

contains the right hand side for level level f and is destroyed on
the other levels.

contains the approximate solution for level levelf and is de-
stroyed on the other levels.

If Solver(levelc) specifies a direct solve, then the factorization
of the coarsest level’s matrix will be returned. Additionally, the
coarsest level matrix, see Idz A(levelc), will have been destroyed
if presva = 0. See iparm and infm.

If Solver(levelc) specifies a direct solve, then the factorization
of the coarsest level’s matrix will be returned. Additionally,
the coarsest level matrix, see IdzIA(levelc), will have been
destroyed if presva = 0. See iparm and infm.

21

jm
If Solver(levelc) specifies a direct solve, then the factorization
of the coarsest level’s matrix will be returned. Additionally,
the coarsest level matrix, see IdxJA(levelc), will have been
destroyed if presva = 0. See tparm and infm.

restd
is a vector of length NXB(levelf) where the residuals for
level level f are stored.
auz
is destroyed. If you plan on restarting DAMG later (restart = 1,
see tparm), this must not be changed between calls to DAMG.
naux

is the estimate for what nauz ought to have been if the value
supplied in the call to DAMG is too small.

4.4. Errors associated with DAMG. There are three classes of errors: input,
input or computational, and computational ones.

4.4.1. Input errors.
Solver(y) is not in 0 — 11 range.
SolverlIters(j) < 0.
Precond(y) is not in 0 — 5 range.
Matrix type for level j, Precond(j) and Solver(j) are incompatible.
MGIters(y) < 0.
mgfn =3 or 4, but NIIters(j) is not positive.
Idz X B(j) is out of range.
NXB(j) is not positive.
9. Choice of Solver(j) requires that ACols(j) = ARows(j).
10. Matrix type is not 0, 1, 2, 3, or 4.
11. Number of columns in matrix is not positive.
12. Number of rows in matrix is not positive.
13. First dimension of matrix should be positive, but it is not.
14. Second dimension of matrix should be positive, but it is not.
15. Index into dm is out of range.
16. Index into im is out of range.
17. Index into ym is out of range.
18. [2infm is not positive.
19. mgfn isnot 1, 2, 3, or 4.
20. bzstze is not positive.
21. At least one of Indm, lnim, or Inym is not positive.
22. levelf is negative or levelf > 50.
23. levelc < levelf or levele > 50.
24. presva is not 0 or 1 or must be 1 and it is not.
25. At least one of Indm, Inim, or Injm is too small to factor coarse level matrix.

P NSO W=

22

26.

27.
28.
29.

At least one of lastdm, lastim, or lastjm is not positive or is greater than
Indm, lnim, or Inym, respectively.

infois not 0, 1, or 2.

startl < 0, startl > levelc, or startl < levelf.

Colors(j) is not positive or Colors(j) > NXB(j).

4.4.2. Input or Computational Errors.

1.

nauz is not large enough.

4.4.3. Computational Errors.

1.

Diagonal entry of coefficient matrix for level j is zero.

2. Coeflicient matrix is stored by rows, but column indices are not stored in

4.

ascending order in some row.

Error occurred in Minimum Residual solver due to an inappropriate coefficient
matrix. Re-run DAMG using one of the CGS, GMRES, or CGSTAB solvers
instead.

An error occurred in subchl, subpre, or subsmr.

4.5. Notes about DAMG.

1.
2.

The philosophy behind subroutine DAMG is found in [3] and [4].

A number of iterative procedures are supported as smoothers (see Table 1). For
a description of these procedures, see [1] for SGS, CG, MR, see [11] for GSNat
and GSRedBlack, see [8] for CG-squared, see [10] for CG-STAB, and see [7] for
GMRES. Solvers 2 and 3 are direct solvers which make no use of symmetry.
Solvers 4 to 7 require the matrix A; to be symmetric. Solvers 8 to 11 are used
when the matrix A; is nonsymmetric. Solver 1 has to be used when there is no
matrix A;. Solver 6 is really a multicolored Gauss-Seidel iteration. The number
of colors is determined by the Colors entry in infalg. The default is 2 which
is just the standard red-black ordering. The maximum allowed per level is the
number of unknowns, nzb(j), which corresponds to a reverse natural ordering.
If A; is not present, the user must provide an external subroutine (see subsmr)
to do solves.

. Normally, an iterative procedure is used as a smoother on all levels except the

coarsest one, where a direct solver may be substituted. However, smoothing
will be skipped on a level if NoSolver is specified as the solver for a level. This
corresponds to the Identity operator as a smoother in the definitions in §2.

23

5. The solvers, preconditioners, and matrix types must be compatible with each
other. The exact set of acceptable combinations is as follows:

Solver Preconditioner
None User ILU Diag SGS SSOR

NoSolver | x * * * * *
User any any * * * *
Factor RD * * * * *
Solve RD * * * *
SGS R * * * * *
GS RSD * * * *
GSRB RSD * * * *
CG RSD RSD R R R R
MR RSD RSD =« * R *
CGS R * R R * R
CGSTAB | R * R R * R
GMRES | R * R R * R

* = FError

R = MatrizByRow

S = MatrizStencil

D = MatrixDense

any = any format

The NoSolver case is invariably a mistake.

6. The right hand sides {b;} and approximate solutions {z;} are stored in
the b and = vectors. Each b; and z; is stored in locations IdzXB(j) to
IdzXB(j) + NXB(j) — 1 (see infalg). Suppose there are three levels with

levelf = 1 and levelc = 3 (see iparm). Then

Level Locations in b and
() | NXB IdzXB |z for bj and z;

1 289 1 1—289

2 81 290 290 — 370

3 25 371 371 — 395

The minimum for bzsize is 395 in this example. Each z; begins in z at the
same location as the corresponding b; in b.

7. When changing levels, it is very rare that R;, P;, NIP;, and FASR; will all
be defined. Usually only one or two these will be defined. These matrices
are typically related to each other in very particular ways mathematically. An
effort has been made to allow users of DAMG the option of generating only one
matrix when it can be re-used or is the transpose of another matrix. DAMG
determines which operation is wanted and then determines from information in

24

10.

11.

12.

the ¢n fm data structure how to change levels. The order of choice is determined
by which matrix is wanted:

Wanted | Order of selection

R; R;, Pﬁl, and NI Pf_}_l

P; P;, RY,,, and NIP;

NIP; NIP;, P;, and RY,

FASR; | FASR;, R;, PL,, and NIPEL

J+1° J+1°

The external subroutine (subchl) is the last choice unless the matrix type is
MatrizUser (see infm).
Algorithm MGFAS must inject or project the approximate solution z; as the
initial guess to z;4;. This is usually done by a restriction operator that is
different from the one used to project the residual onto the bbj+1. For a typical
application, this should be a matrix stored by rows with a single entry of 1 in
each row which just maps elements of level j onto the elements of level j + 1
(referred to as injection in the literature).
The coarse level coefficient matrix should be stored after all other matrices if
it is to be factored and not preserved (presva = 0 in iparm; see also infm).
This is becasue the call to direct solver to factor the coarse level matrix will
overwrite the matrix and space after the dm and jm parts of them. Hence,
space must be provided at the end of the dm, tm, and jm vectors for the
factorization and possibly a copy of the matrix.
For Algorithms MGFAS and NIFAS, presva = 1 must be assumed if a direct
solve is used on the coarsest level.
When presva = 1, the coarse level matrix is copied to end of the active part of
the dm, tm, and/or jm vectors (depending on matrix storage type). DAMG
uses lastdm, lastim, and lastym (see tparm) to determine the end of the active
areas. DAMG will use the remaining parts of these vectors for use with the
coarsest level’s computations.
The index variables (see tnfalg and infm) can be checked for simple “out of
range” errors. These include an index which is less than one or where the end
of the vector goes beyond the end of the storage area. No effort is made to
check for overlapping vectors inside of the storage areas (see dm, im, and jm).
Should DAMG abnormally end, tparm, infm, and infalg might be changed
from what the user expects.
In very special cases, the starting level (startl in iparm) cannot be either
levelf or levele, but a level in between, namely, levelf < startl < levele. An
example of this is when the multilevel solver is being used with an adaptive
grid refinement procedure: there is computing, followed by grid refinement to
produce a finer level, followed by more computing.
The default for startl is as follows:
NIC, NIFAS: startl = levelc
MGC, MGFAS: startl = levelc
25

13.

14.

WARNING: For both Algorithms NIC and NIFAS, if startl < levelc, the
first part of the algorithm will just prolong the approximate solution on level
startl+1, Tstarti41, ONLO Tsiqr4 as the initial guess to the solution on level startl.
This is fundamentally different from both Algorithms MGC and MGFAS, which
will simply start computing on level start! and will end computation on level
levelf.
This is a sufficiently complicated subroutine, that help must be provided
directly to the user. Setting info to either 1 or 2 provides this capability.
DAMG will run at full speed only when info = 0, however. info = 1 provides
information on what a multilevel algorithm is about to do, e.g.,

a SMOOTH ? ITERATIONS ON LEVEL 7 b

a PROLONG FROM LEVEL ? TO LEVEL ?

a RESTRICT FROM LEVEL ? TO LEVEL ?
where

? is a number,

a is one of MGC, MGFAS, NIC, or NIFAS,

b is the name of a solver.
info = 2 provides additional information. Certain vectors are printed on unit
6 after major operations:

Operation Vectors printed

Smooth on level j | z;, resid
Prolong to level j | z;
Restrict to level j | z;, b;

In addition, the values of various vectors will be printed on unit 9 when
iparm(20) = 5551212. Setting info = 2 for large problems will requires a
lot of disk space.

Calculating nauz is complex since it is dependent on the storage requirements
of the solver used on each level. Certain solver-preconditioner pairs introduce
a machine dependence to calculating nauz.

The solvers used by DAMG are partly home grown and partly from IBM’s
proprietary ESSL. The nauz requirements per level are determined from the

26

following table, where a blank entry means none:

Solver Preconditioner

None User ILU Diag SGS SSOR
NoPrecond
User
Factor a
Solve a
SGS b
GS c
GSRB c
CG d d h 1 e h
MR f f g
CGS 7 k l k
CGSTAB J k l k
GMRES m n 0 n

For level ¢, NZ(7) is the number of nonzeros in a matrix A; stored by rows.
(a) Space must be left for the Gaussian elimination routines. For dense
matrices, NX B(z)/2. For matrices stored by rows, this is unpredictable.

(b) (3/2)NXB(:)

(¢) NXB(v)

(d) 3NXB(7)

(e) (9/2)NX Bi)

(f) ANX B(z)

(&) (11/2)NXB()

(h) 3NZ(%) + (23/2)NX B(¢) + 61. See DSRIS for details.

(1) BNZ(¢) + 15NX B(t))/2 + 31. See DSRIS for details.

() BNZ(z) + 19NX B(z))/2 4 31. See DSRIS for details.

(k) BNZ(i) + 16 NX B(z) + 61. See DSRIS for details.

(1) BNZ(3) + 21NX B(z))/2 + 31. See DSRIS for details.

(m) For k = Solverlters(i), (3NZ(i) + BNXB(i))/2 + k(k + 4) + (k +
2)NXB(¢) + 32. See DSRIS for details.

(n) For k = Solverlters(i), (BN Z(:)+TNXB(7))/2+k(k+4)+(k+2)NX B(z)+
62. See DSRIS for details.

(o) For k = SolverIters(i),(BNZ(:)+7TNXB(2))/24+k(k+4)+(k+2)NX B(¢)+
32. See DSRIS for details.

So, nauz is the sum over each level of the requirements from the above table.
Obviously, it is easier to set nauz = 1 and get an error message back from
DAMG.

WARNING: A number of these formulas (a,h — 0) are based on ones in the
IBM ESSL manual. Some of these formulas do not require enough memory
to actually get IBM’s subroutine DSRIS to run. In these cases you need to
modify mgal.f in the neighborhood of lines 1210-1250. You should only have

27

to modify at most 2 lines of the code. Then send the author e-mail explaining
that you had a problem so that this can be fixed.

5. Programming considerations for external subroutine arguments.
Three of the arguments on entry to DAMG are for user defined subroutines. They
can be called whatever the user pleases, must be declared EXTERNAL in the user’s
program which calls DAMG, and must have a particular set of arguments themselves.
A default subroutine is defined in the library.

An example of a program which uses this feature of DAMG is the companion
program DPMG for solving Poisson’s equation in two or three dimensions. DPMG
provides its own smoothers and change level subroutines since it does not store any
matrices normally.

5.1. DAMGN: a stub-routine. Not everyone needs their own subroutine to
change levels, to act as a preconditioner, or be a smoother (arguments 1 to 3 of DAMG).
A subroutine is provided which terminates if it is ever called by DAMG, but alleviates
the user from having to code up to three dummy subroutines to use in the calling
sequence of DAMG.

To use this subroutine with subroutine DAMG, use the following FORTRAN-77
code fragment: '

EXTERNAL DAMGN

CALL DAMG (DAMGN, ...)
This can be used in any combination of the first 3 arguments of DAMG, e.g.,
EXTERNAL DAMGN, OOPS

CALL DAMG (DAMGN, OOPS, DAMGN, ...)

5.2. SUBCHL: changing levels. Normally, the grid transfers in the multigrid
algorithms occur by a call to a (sparse) matrix—vector multiply routine which computes
one of

(3) biy1 = Rirj, x;=Pincin, or z;=z;+ Piaci.

There are numerous reasons sometimes why doing this in this fashion is highly
inefficient, e.g., the grids are highly nonuniform. The user can bypass making a matrix

R; by supplying a subroutine to change between levels j and j + 1 (both directions
should be handled).

To use this subroutine with subroutine DAMG, use the following FORTRAN-77
code fragment:

28

EXTERNAL MYCHL

CALL DAMG (MYCHL, ...)

SUBROUTINE MYCHL (...)

ERR =1
RETURN
END

This declares the subroutine MYCHL to be an external address that is passed to DAMG
like an ordinary variable. If DAMG calls MYCHL, it will report an error occurred.
Normally, there is much more to MYCHL than this (and ERR=0).

DAMG will call SUBCHL assuming the following prologue:

FORTRAN

CALL SUBCHL (mgfn,dir,add,levl,lev2,zl,22,bf,nl,n2, err)

C

subchl (mgfn,dir,add,levl,lev2,z1,22,bf,nl, n2, err)

A subroutine DAMGN which generates a “not implemented” error message and then
terminates is included in the library.

Unpredictable results will occur if the user changes any of the arguments except
z2 and err. The user is responsible for providing any workspaces needed. Under no
circumstances should the aux area, passed to DAMG, be touched.

5.2.1. On entry to SUBCHL. The arguments to SUBCHL have the following

meaning:
mgfn

dir

This determines which of the multilevel algorithms is in use:

mgfn | Definition
1 MGC
2 MGFAS
3 NIC
4 NIFAS

Specified as: an integer.

determines which direction to change levels, either a restriction
or a prolongation operation.
dir | Definition
0 | fine to coarse (level j to j + 1)
1 | coarse to fine (level j + 1 to j)
Specified as: an integer.

29

add

levl

lev2

zl

2

bf

nl

n2

err

determines whether the vector z1 is added to 22 or not. If
add = 1, then the previous contents of z2 are added to z1. If
add = 0, then the previous contents of 22 are ignored.
Specified as: an integer.

is the “from” level.
Specified as: an integer.

is the “to” level.

Specified as: an integer.

is the z vector on “from” level.
Specified as: a vector of long precision real numbers of length
nl.

is the target vector on “to” level (see (3)).

Specified as: a vector of long precision real numbers of length
n2.

is the b vector on “finer” level. :
Specified as: a vector of long precision real numbers of length
maxnl,n2.

is the size of z1.
Specified as: an integer.

is the size of z2.
Specified as: an integer.

is 0.
Specified as: an integer.

5.2.2. On return from SUBCHL. The following arguments to SUBCHL may
change before it returns:

z2

err

is the updated vector on the “to” level (see (3)).

is nonzero if any problem arises that cannot be solved by the
user subroutine. DAMG terminates if this is nonzero; err is
printed as part of the message on your screen.

5.3. SUBPRE: preconditioning. Most of the time, the user will want to use the
iterative procedures included in the library. Occasionally, a user will be sophisticated

30

enough to want to use a very specific preconditioner (that is not included in the
library) to a specific iterative procedure. The SUBPRE subroutine allows the caller
this flexibility with certain of the smoothers.

Preconditioners typically come in one of three flavors: ones that modify the residual,
ones that modify the approximate solution, and ones that do both. Currently, DAMG
only supports preconditioners that modify the residual.

The external subroutine is provided with the level number (here referred to as
J), the matrix A;, z;, b;, and the residual b; — A;z;. Any of these can be modified.
Modifying A; can cause unexpected errors in the multigrid subroutines.

The user should remember that they are accelerating the solution to A;z; = b; with
their subroutine.

To use this subroutine with subroutine DAMG, use the following FORTRAN-77
code fragment:

EXTERNAL MYPRE
CALL DAMG (..., MYPRE, ...)

SUBROUTINE MYPRE (...)

ERR =1
RETURN
END

This declares the subroutine MYPRE to be an external address that is passed to DAMG
like an ordinary variable. If DAMG calls MYPRE, it will report an error occurred.
Normally, there is much more to MYPRE than this (and ERR=0).

DAMG will call SUBPRE assuming the following prologue:

FORTRAN | CALL SUBPRE (lev,atype,acols,arows,adiml, adim2,

a,ia,ja,z,b,resid, updat, err)

C subpre (lev, atype,acols,arows, adim1, adim2,
a,ta,ja,z,b,resid, updat, err)

A subroutine DAMGN which generates a “not implemented” error message and then
terminates is included in the library. ‘

The user is responsible for providing any workspaces needed. Under no circum-
stances should the aux area, passed to DAMG, be touched.

5.3.1. On entry to SUBPRE. The arguments to SUBPRE have the following
meaning:

31

lev

atype

acols

arows

adiml

adim?2

1a

ja

is the level one of the multilevel algorithms is currently comput-
ing on.
Specified as: an integer.

is the matrix storage type (see Table 5).
Specified as: an integer.

is the number of columns in A;.
Specified as: an integer.

is the number of rows in A;.
Specified as: an integer.

is used in the dimensions of A;. It may also be used in
dimensioning I A; and JAj; see Table 6.
Specified as: an integer.

is used in the dimensions of A;. It may also be used in
dimensioning I A; and JAj; see Table 6.
Specified as: an integer.

is A;, stored in some format determined by atype. Its dimensions
involve adiml and adim?2 according to Table 6.
Specified as: a vector or matrix of long precision real numbers.

is I Aj, stored in some format.
Specified as: a vector or matrix of integers.

is JA;, stored in some format.
Specified as: a vector or matrix of integers.

is the approximate solution z;.
Specified as: a vector of long precision real numbers of length
acols.

is the right hand side b;.
Specified as: a vector of long precision real numbers of length
arows.

32

restd
is the residual b; — A;z;.
Specified as: a vector of long precision real numbers of length

arows.
updat

is 0.

Specified as: an integer.
err

1s 0.
Specified as: an integer.

5.3.2. On return from SUBPRE. The following arguments to SUBPRE may
change before it returns:
restd
is the modified residual.
updat
is what changed during the call to SUBPRE.
Value | What changed
0 nothing
1 the residual
If it is 0, an error will be presumed to have occurred. Failure to
set this correctly will cause serious problems inside the iterative

solvers DAMG uses that can call SUBPRE.

err
is nonzero if any problem arises that cannot be solved by the
user subroutine. DAMG terminates if this is nonzero; err is
printed as part of the nasty message on your screen.

5.4. SUBSMR: a smoother or rougher. Most of the time, the user will want
to use the iterative procedures included in the library. Occasionally, a user will be
sophisticated enough to want to use a very specific iterative procedure that is not
included in the library. This can be combined with a user supplied preconditioner (see
§5.3). The SUBSMR subroutine allows the caller this flexibility.

The external subroutine is provided with the level number (here referred to as j),
the matrix A;, z;, and b;. Only z; should be modified. Modifying A; or b; can cause
unexpected errors in the multigrid subroutines.

Due to the fact that a matrix A; may not actually exist, it is required that the user
compute the residual, b; — A;jz; (even if A; is only symbolic here) before returning.

The user should remember that they are trying to solve Ajz; =b; with their
subroutine.

To use this subroutine with subroutine DAMG, use the following FORTRAN-77

code fragment:

EXTERNAL MYSMR

33

CALL DAMG (..., MYSMR, ...)

SUBROUTINE MYSMR (...)

ERR =1
RETURN
END

This declares the subroutine MYSMR to be an external address that is passed to DAMG
like an ordinary variable. If DAMG calls MYSMR, it will report an error occurred.
Normally, there is much more to MYSMR than this (and ERR=0).

DAMG will call SUBSMR assuming the following prologue:

FORTRAN | CALL SUBSMR (subpre,iters,lev, atype, acols,arows, adim]1,
adim2, a,ia,ja,z,b,resid, updat, err)
C subsmr (subpre,iters,lev, atype, acols,arows, adim]l,
adim2,a,1a,ja,z,b,resid, updat, err)

A subroutine DAMGN which generates a “not implemented” error message and then
terminates is included in the library. '

The user is responsible for providing their own workspaces themselves. Under no
circumstances should the aux area, passed to DAMG, be touched.

5.4.1. On entry to SUBSMR. The arguments to SUBSMR have the following
meaning:

subpre
is an external subroutine to be used as a preconditioner in the
smoothing routines, where applicable. For details, see §5.3. A
routine DAMGN which just returns is provided in the library.
Specified as: the name of a subroutine that is declared as
EXTERNAL in your calling program. It can be whatever name
you choose.

iters
is the maximum number of iterations.
Specified as: an integer.

lev
is the current computational level in one of the multilevel
algorithms. .
Specified as: an integer.

atype
is the matrix storage type (see Table 5).
Specified as: an integer.

34

acols

arows

adim]1

adim?2

a

ja

resid

updat

err

is the number of columns in A;.
Specified as: an integer.

is the number of rows in A;.
Specified as: an integer.

is used in the dimensions of A;. It may also be used in
dimensioning [/ A; and JA;; see Table 6.
Specified as: an integer.

is used in the dimensions of A;. It may also be used in
dimensioning I A; and JA;; see Table 6. ’
Specified as: an integer.

is A;, stored in some format determined by atype. Its dimensions
involve adim1 and adim?2 according to Table 6.
Specified as: a vector or matrix of long precision real numbers.

is I A;, stored in some format.
Specified as: a vector or matrix of integers.

is JA;, stored in some format.
Specified as: a vector or matrix of integers.

is the approximate solution z;. _
Specified as: a vector of long precision real numbers of length
acols.

is the right hand side b;.
Specified as: a vector of long precision real numbers of length
arows.

is the residual b; — A;z;.
Specified as: a vector of long precision real numbers of length
arows.

is 0.
Specified as: an integer.

1s 0.

Specified as: an integer.

35

5.

4.2. On return from SUBSMR. The following arguments to SUBSMR may

change before it returns:

[9]
(10]

[11]

T
is the approximate solution z;.
resid
is the residual b; — A;z;.
updat
is what changed during the call to SUBSMR.
Value | What changed
0 nothing
1 the residual
2 z;
3 | both z; and the residual
4 b;
If it is 0, an error will be presumed to have occurred. Failure
to set this correctly will cause serious problems inside DAMG.
The normal return value for updat is 3.
err
is nonzero if any problem arises that cannot be solved by the
user subroutine. DAMG terminates if this is nonzero; err is
printed as part of the nasty message on your screen.
REFERENCES
R. E. Bank anD C. C. DoucLas, An efficient implementation of the SSOR and ILU
preconditionings, Appl. Numer. Math., 1 (1985), pp. 489-492.
G. DHATT AND G. TouzoT, The Finite Element Method Displayed, John Wiley and Sons, Inc.,
New York, 1984. :
C. C. DouGLAS, Multi-grid algorithms with applications to elliptic boundary-value problems,
SIAM J. Numer. Anal., 21 (1984), pp. 236-254.
C. C. DoucGLAs AND J. DouGLAs, A unified convergence theory for abstract multigrid or
maultilevel algorithms, serial and parallel, SIAM J. Numer. Anal., 30 (1993), pp. 136-158.
G. E. ForsYTHE AND W. R. Wasow, Finite-Difference Methods for Partial Differential
Equations, John Wiley and Sons, Inc., New York, 1960.
C. JounsoN, Numerical Solution of Partial Differential Equations by the Finite Element Method,
Cambridge University Press, New York, 1987.
Y. SaaD AND M. H. ScuuLTZ, Gmres: a generalized minimum residual algorithm for solving

nonsymmetric linear systems, SIAM J. Sci. Stat. Comp., 7 (1986), pp. 856-869.

. SONNEVELD, CGS, a fast Lanczos—type solver for nonsymmetric linear systems, STAM J. Sci.
Stat. Comp., 10 (1989), pp. 36-52.

. STRANG AND G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, New
York, 1973.

. VAN DER VORST AND P. SONNEVELD, Cgstab: A more smoothly convergent variant of cg-s,
tech. report, Delft University of Technology, Delft, The Netherlands, 1990.

. S. VARGA, Matriz Iterative Analysis, Prentice—Hall, New York, 1962.

36

A. Examples of DAMG Usage. All runs in this section were on an IBM RISC
SYSTEM/6000™. In §A.1, a simple one dimensional problem is explored in depth.
Provided with the code are one, two, and three dimensional example problems. Rather
than duplicate the very lengthy set of comments at the beginning of DAMG, we refer
the reader to the code.

It is implicitly assumed that you have already made a working version of DAMG.
If you do not know how to do this, please see Appendix B.

A.1. Example 1: a one dimensional problem. The first example solves
Use =F in the unit line (0,1),
{ U(z) =0 forze{0,1}..
F is chosen so that the solution is
U(z) = zsin(zm)
or
F(z) = =27 cos(xm) + zn’sin(zT).

Algorithm NIC is used with the Gauss-Seidel smoother on all levels except the coarsest
where a direct solver is used. A uniform mesh, a central difference discretization, and
linear interpolation are used. "

A sample FORTRAN main program is presented here. The declarations section is
simply,

parameter (TAUX1 = 1000)

parameter (IDM1 = 1000)

parameter (IIM1 = 1000)

parameter (IJM1 = 1000)

parameter (IXB1 =100)

parameter (NFINE=T7)

parameter (INFM2 =2)

parameter (LEVELS =2)

external damgn

integer infalg(12,LEVELS), infm(10,INFM2,LEVELS),
* im(1IM1), iparm(20), jm(IJM1)

double precision aux(IAUX1), b(IXB1), dm(IDM1), resid(IXB1),
* res2, x(IXB1)

integer i, idm, iim, ijm, ibx, incdm, incim,

* j, k, lev, n, naux

DAMG'’s integer data structures are initialized to 0. Many of these entries have
default values if 0 is passed to DAMG. However, it never hurts to set all of the entries
to exactly what you want (which is done later in this example).

37

do j = 1,LEVELS
doi=1,12
infalg(i,j) = 0
enddo
enddo
do k = 1,LEVELS
do j = 1,INFM2
doi=1,10
infm(i,j,k) = 0
enddo
enddo
enddo
doi=1,20
iparm(i) = 0
enddo
Generate Ay, Tiey, and by, for 2 levels, starting with the fine grid problem. The
variable idm, ..., 1bz are indices into dm, ..., b/z where the next vector can be stored.
idm =1
im=1
ijm =1
ibx =1
n = NFINE
do lev = 1,LEVELS
First, information about A, is filled in, then gena is called to actually generate Aj,
(using a storage by rows format), then the indices into DM, IM, and JM are changed.

infm(1,1,lev) = 2 % Storage by rows
infm(2,1,lev) = n % Rows

infm(3,1,lev) = n % Columns
infm(6,1,lev) = idm % First location in dm
infm(7,1,lev) = iim % First location in im
infm(8,1,lev) = ijm % First location in jm

call gena (n, IDM1 - idm + 1, IIM1 - iim + 1,
IJM1 - ijm + 1, dm(idm), im(iim), jm(ijm),
infm(4,1,lev))
iim=1im+n + 1
ijm = ijm + infm(4,1,lev)
idm = idm + infm(4,1,lev)
Next, information about each level’s solver is filled in. Then a call to genbx produces
a right hand side b, and initial guess zj.,. Finally, the index into b and z is is incre-
mented.

38

if (lev .eq. LEVELS) then
infalg(1,lev) = 2
infalg(2,lev) = 1
else
infalg(1,lev) = 4
infalg(2,lev) = 2
endif
infalg(3,lev) = 0
infalg(4,lev) = 2
infalg(5,lev) =1
infalg(6,lev) = ibx -
infalg(7,lev) = n

Sparse Gaussian elimination
1 iteration of this

Symmetric Gauss Seidel
2 iterations of this

No preconditioner

2 iterations of algorithm MGC
1 iteration of algorithm NIC
First location in b and x
Number of unknowns

call genbx (n, IXB1 - ibx + 1, b(ibx), x(ibx), incbx)

ibx = ibx 4+ incbx

The loop is completed by generating the restriction matrix Rj., when lev< LEVELS. To
do this, the next coarser level’s number of unknowns n must be calculated in advance.
After calling genr, the indices into dm and ¢m are incremented.

n=(n-1)/2

if (lev .ne. LEVELS) then

infm(1,2,lev) = 3
infm(2,2,lev) = n
infm(3,2,lev) = infm(3,1,lev)
infm(4,2,lev) = 1
infm(6,2,lev) = idm
infm(7,2,lev) = iim

Stencil storage
Rows

Columns

Unused actually
First location in dm
First location in im

call genr (infm(2,2,lev), infm(3,2,lev),
IDMI - idm + 1, [IM1 - iim + 1,

dm(idm), im(iim), incdm, incim)

iim = 1im + incim
idm = idm 4+ incdm

endif

enddo

Next iparm is filled in.

39

iparm(1) = 3
iparm(2) = INFM2
iparm(3) = IXBI
iparm(4) = IDM1
iparm(5) = IIM1
iparm(6) = IJM1

iparm(7) =1
iparm(8) = LEVELS
iparm(9) =0

iparm(10) =1
iparm(11) = idm - 1
iparm(12) = ijim - 1
iparm(13) = ijm - 1
iparm(14) = 0
iparm(20) = 5551212

Algorithm NIC

Second dimension of infm
Length of b and x vectors
Length of dm vector

Length of im vector

Length of jm vector

Index of finest level

Index of coarsest level

Index of starting level (default)
Overwrite Acoarsest

Last element of dm in use
Last element of im in use
Last element of jm in use
Minimum normal information
Assistance requested

Finally, DAMG can be called and the 2 norm of the residual is printed afterwards.

naux = [AUX1

call damg(damgn, damgn, damgn, infalg, infm, b, x, dm, im, jm,

*
res2 = ddot(NFINE,

iparm, resid, aux, naux)

resid, 1, resid, 1)

res2 = sqrt(res2) / NFINE

write (*,*) ’2 Norm of residual = ’, res2

end

There are three subroutines used in the preceding main program:

Subroutine

Description

gena
genbx
genr

Generate Aje,
Generate by, and initial zj.,
Generate R,

Each of these routines demonstrates a slightly different technique. Gena is an example
of the storage by rows format. Genr is an example of the stencil storage format.
Gena produces a tridiagonal matrix of the form

20 -1.0
-1.0 2.0
—-1.0

Alev =

L

The program declaration section is

—1.0
20 -1.0

1.0 20 -1.0
~1.0 20

straight forward. The variable nzelts is the number

of nonzeroes in Aj., and is a return value.

40

subroutine gena (n, lendm, lenim, lenjm, dm, im, jm, nzelts)

integer lendm, lenim, lenjm, n, nzelts
integer im(*), jm(*)

double precision dm(*)

integer irow

First, a check is made to ensure that enough space still remains in the dm, tm, and jm

vectors to store the matrix.
nzelts = 0

if (lenim .le. n) return
irow =3 *n-2 ‘
if (lendm .1t. irow .or. lenjm .lt. irow) return
Then a tridiagonal matrix using storage by rows is generated.
do irow = 1,n
nzelts = nzelts + 1
im(irow) = nzelts
if (irow .gt. 1) then
jm(nzelts) = irow - 1
dm(nzelts) = -1.0d0
nzelts = nzelts + 1
endif
jm(nzelts) = irow
dm(nzelts) = 2.0d0
if (irow .1t. n) then
nzelts = nzelts + 1
jm(nzelts) = irow + 1
dm(nzelts) = -1.0d0
endif

enddo
Finally, the last entry in the ¢m vector is filled in with the index of of the last entry in
dm plus one, and then gena returns.

im(n+1) = nzelts + 1

return

end

Subroutine genbx sets the initial guess for the solution to 0 uniformly. The right
hand side is scaled by the square of the mesh spacing due to the discretization method
used in gena. The variable incbx is the number of nonzeroes in b, and is a return

value.
subroutine genbx (n, lenbx, b, x, incbx)

integer incbx, lenbx, n
double precision b(*), x(*)

integer irow

double precision h, h2, pi, pi2, t, tpi

First, a check is made to ensure that enough space still remains in the b and zvectors.

41

incbx = 0
if (lenbx .It. n) return
Finally, the heart of the code is quite simple.
call dcopy (n, 0.0d0, 0, x, 1)
h=1.0d0/ (n + 1)
h2=h*h
pi = 4.0d0 * datan(1.0d0)
tpi = 2.0d0 * pi
pi2 = pi * pi
do irow = 1,n
t = irow * h
b(irow) = h2 * ('t * pi2 * sin(t*pi) - tpi * cos(t*pi))
enddo
incbx = n
return
end

Subroutine genr generates Rje,, which has n rows and 2n + 1 columns. Each row
has 3 nonzeroes:

0.5 1.0 0.5
0.5 1.0 0.5
0.5 1.0 0.5

Notice how the stencil always shifts by 2 columns. Hence, there is only one stencil to
worry about. Its form is given by

Tndex | IM DM Description

1 9 Index of first stencil pointer
2 2 0.5 | 2 entries to multiply by 0.5
3 0 Offset 0

4 2 Offset 2

5 1 1.0 | 1 entry to multiply by 1.0

6 1 Offset 1

7 0 0.0 | End of stecil

8 2 Increment value is 2

9 2

Index of stencil for point p-8

8+n | 2
Notice that where DM is blank, any entry can be there since those elements are never
referenced. However, it is a good idea to set them to zero (as is done in this example).

The program declaration section is straight forward. The variables incdm and in-
cim are the amount of space used in dm and im to store Rj.,. Both are return values.
42

subroutine genr (nrows, ncols, lendm, lenim, dm, im,

* incdm, incim)
integer incdm, incim, lendm, lenim, ncols, nrows
integer im(*)
double precision dm(*)
integer irow
double precision desc4(7)
data desc4 / .50, 0., 0.,
1,0,
0.,0./

First, a check is made to ensure that enough space still remains in the dm and im vec-

tors to store the matrix.
if (lendm .lt. 8) return

if (lenim .It. 8 + nrows) return
Next, the real part of Ry, is generated.

dm(1) = 0.
doi=1,7
dm(1+i) = desc4(i)
enddo
incdm = 8
The integer part of Ry, is generated in five easy pieces.
im(1) =9 (1) Index to stencil indices
im(2) = 2 (2) Stencil 1: part for coefficient 0.5
im(3) = 0
im(4) = 2
im(5) =1 (3) Stencil 1: part for coefficient 1.0
im(6) = 1 |
im(7) =0 (4) Stencil 1: part for increment
im(8) = 2
incim = 8 (5) Stencil indices

do i = 1,nrows
incim = incim + 1
im(incim) = 2
enddo
return
end

Compiling, linking, and executing this set of programs results in output of the form.

DAMG INPUT ARGUMENTS

NAUX =
1000
L2INFM =

43

IPARM =

1000, 1000,

100,

1000,

26,

23,

34,

5551212

0,

INFALG =

N Y O N v 00 Mo O O o o

LN -~ LY LY

~ L U T T N .) ~
FNO N« MO O O O O

INFM =

, A:

1
2
3
3
7
0

SECOND INDEX =
1

28

SECOND INDEX =2, R:

O O O O O O o o o oo

A A A& & @a @& @& @« @« «

DM

44

2.0000D+00, -1.0000D+00, -1.0000D+00, 2.0000D+00, --1.0000D+00,

-1.0000D+00, 2.0000D+00, -1.0000D+00, -1.0000D+00, 2.0000D+00,
-1.0000D+00, -1.0000D+00, 2.0000D+00, -1.0000D+00, -1.0000D+00,
2.0000D+00, -1.0000D+00, -1.0000D+00, 2.0000D+00, 0.0000D+00,
5.0000D-01, 0.0000D+00, 0.0000D+00, 1.0000D+00, 0.0000D+00,
0.0000D+00, 0.0000D+00, 2.0000D+00, -1.0000D+00, -1.0000D+00,
2.0000D+00, -1.0000D+00, =-1.0000D+00, 2.0000D+00, 2.0000D+00,
-1.0000D+00, -1.0000D+00, 2.0000D+00, -1.0000D+00, -1.0000D+00,
2.0000D+00

IM =
1, 3, 6, 9, 12,
15, 18, 20, 9, 2,
0, 2, 1, 1, 0,
2, 2, 2, 2, 1,
3, 6, 8, 1, 3,
6, 8

IM =
1, 2, 1, 2, 3,
2, 3, 4, 3, 4,
5, 4, 5, 6, 5,
6, 7, 6, 7, 1,
2, 1, 2, 3, 2,
3, 1, 2, 1, 2,
3, 2, 3

X =

0.0000D+00, 0.0000D+00, 0.0000D+00, 0.0000D+00, 0.0000D+00,
0.0000D+00, 0.0000D+00, 0.0000D+00, 0.0000D+00, 0.0000D+00
B =
-8.3325D-02, -4.2159D-02, 1.5858D-02, 7.7106D-02, 1.2662D-01,
1.5120D-01, 1.4234D-01, -1.6864D-01, 3.0843D-01, 6.0481D-01

DAMG OUTPUT ARGUMENTS

X =

4.6857D-02, 1.7704D-01, 3.4932D-01, 5.0570D-01, 5.8503D-01,
5.3799D-01, 3.4001D-01, -7.7707D-05, 7.3776D-04, 1.9584D-03
RESID =

0.0000D+00, -5.8075D-05, -4.9091D-05, 6.1883D-05, 2.4495D-04,
2.6801D-04, 3.0220D-04

2 Norm of residual = 6.89231D-05

45

B. Making DAMG. The source code for DAMG can be found on the Internet.

Two possible anonymous ftp sites are the following:

Machine name IP address

software.watson.ibm.com
casper.cs.yale.edu 128.36.12.1

There are other machines with copies at this point, but these should do. Do not attempt
to get the files or unpack them directly on a mainframe unless it is running UNIX; use
a workstation initially if your target is a mainframe.
Before all else, make a new directory and change to it:

mkdir madpack4

cd madpack4
To retrieve information, from your Internet connected machine, run the ftp program
with one of the machine names as its argument, e.g.,

% ftp software.watson.ibm.com
where % is the prompt assuming you are using the c-shell. You will be prompted for an
account name and password: use the account name anonymous and use your e-mail
address as the password. Then change directory to one with the software and look at
the directory (the prompt for the ftp program is “ftp> ”):

ftp> cd pub/pdes

ftp> dir
You should see something like the following;:

total 888

drwxr-xr-x 512 Jul 22 1992

drwxr-xr-x 512 Dec 11 08:50 ..

-TW-T-T— 3691 Apr 28 1992 AGREE.damg

-TW-T-T— 3691 Apr 28 1992 AGREE.dpmg

-TW-T-T— 7229 Jul 16 1992 README.damg

-TW-r-1— 7997 Jun 03 1992 README.dpmg

-TW-T—T1— 182136 Jul 22 1992 damg.tar.Z ‘

-TW-T—T— 236555 Jul 16 1992 dpmg.tar.Z .
WARNING: you may find the codes in the directory mgnet/madpack4 instead of
pub/pdes.

You should get all of the Ascii files first:
ftp> prompt
ftp> mget *.damg

Read the AGREE.damg file since this is your software license for DAMG (a copy of
DAMG'’s license is Appendix C). Assuming there is nothing in the license that you find
objectionable, then get the software package and quit:

ftp> binary

ftp> get damg.tar.Z

ftp> quit

Now you are ready to unpack the files into their own directory:
46

% mkdir damg
% cd damg
% zcat ../damg.tar | tar xvf —
Both zcat and tar are standard utilities on workstations.
You are now in the damg directory. On a workstation, to make some examples
using DAMG, you merely have to run the command
% make
A number of library files (ones with an extension of “.a”) will be produced:

File Contains

libamg.a | Abstract multilevel solver
libdriv.a | Common routines used by the examples

Also, four executables will be made (bld, mld, m2d, and m3d).

You can type the examples from §A into your computer yourself or you can get
them from MGNet as part of mgnet/madpack4/doc.tar.Z. To unpack the document,
use the commands

% cd ..
% zcat doc.tar | tar xvf -
To compile and link the first example, use the commands
% cd doc
% xIf -c damg-ex1.f
% xIf -o damg-ex1 damg-ex1.o -ldamg -lessl
To execute the program,
% damg-ex1
To make all of the examples, use the command make.

47

C. DAMG'’s software license. DAMG was written while the author was an IBM
employee. As such, IBM owns the software. Be that as it may, IBM has a program for
releasing software to the public with very few strings attached. After the author filled
out a 17 page form (all answers to the really important questions were “not applicable”)
and collected signatures (only three), the software was made available to Internet users
in July, 1992. The author is indebted to Shmuel Winograd, Ashok Chandra, and Larry
Carter for signing this form and to Jim McGroddy for not killing this program.

Note that part of the license specifies that updates and bug notifications will be
provided through MGNet. The full text of the license agreement is the remainder of
this appendix.

— (C) Copyright International Business Machines Corporation 1992.
— All Rights Reserved.

— See the file USERAGREEMENT distributed with this software for full

— terms and conditions of use.

1. COPYRIGHT
Program Name: DAMG

(C) Copyright International Business Machines Corporation 1992. All
Rights Reserved.
2. RESEARCH SOFTWARE DISCLAIMER

As experimental, research software, this program is provided free
of charge on an "as is” basis without warranty of any kind, either
expressed or implied, including but not limited to implied warranties
of merchantability and fitness for a particular purpose. IBM does
not warrant that the functions contained in this program will meet
the user’s requirements or that the operation of this program will
be uninterrupted or error-free. Acceptance and use of this program
constitutes the user’s understanding that he will have no recourse to
IBM for any actual or consequential damages, including, but not limited
to, lost profits or savings, arising out of the use or inability to use
this program. Even if the user informs IBM of the possibility of such
damages, IBM expects the user of this program to accept the risk of
any harm arising out of the use of this program, or the user shall not
attempt to use this program for any purpose.

48

3. USER AGREEMENT
BY ACCEPTANCE AND USE OF THIS EXPERIMENTAL PRO-

GRAM THE USER AGREES TO THE FOLLOWING:

a. This program is provided for the user’s personal, non-commercial,
experimental use and the user is granted permission to copy this
program to the extent reasonably required for such use.

b. All title, ownership and rights to this program and any copies remain
with IBM, irrespective of the ownership of the media on which the
program resides.

c. The user is permitted to create derivative works to this program.
However, all copies of the program and its derivative works must
contain the IBM copyright notice, the EXPERIMENTAL SOFTWARE
DISCLAIMER and this USER AGREEMENT.

d. By furnishing this program to the user, IBM does NOT grant either
directly or by implication, estoppel, or otherwise any license under
any patents, patent applications, trademarks, copyrights or other rights
belonging to IBM or to any third party, except as expressly provided
herein.

e. The user understands and agrees that this program and any derivative
works are to be used solely for experimental uses and are not to be sold,
distributed to a commercial organization, or be commercially exploited
in any manner.

f. IBM requests that the user supply to IBM a copy of any changes,
enhancements, or derivative works which the user may create. The user
grants IBM and its subsidiaries an irrevocable, nonexclusive, worldwide
and royalty-free license to use, execute, reproduce, display, perform,
prepare derivative works based upon, and distribute, (INTERNALLY
AND EXTERNALLY) copies of any and all such materials and
derivative works thereof, and to sublicense others to do any, some, or
all of the foregoing, (including supporting documentation).

Copies of these modifications should be sent to:
software@yktvmv.bitnet or
na.cdouglas@na-net.ornl.gov

Announcements of updates will be made through the MGNet (multigrid network)
mailing list. To join MGNet, send a request to mgnet-requests@cs.yale.edu.

49

