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Abstract
This survey describes the recent explosion of results concerning rigorous proofs of the
security of encryption, signatures, pseudo-random number generators, coin flipping, the
oblivious transfer, and other cryptographic protocols, relative to assumptions on the
computational difficulty of certain problems. Background material is included for the

relevant number theoretic problems.
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1. Introduction

By now the proposal of Diffie and Hellman for public-key cryptography [24, 25], and
the encryption and signature systems of Rivest, Shamir, and Adleman [680] and of Merkle
and Hellman [47] are familiar to most readers. Lempel [42] gives an excellent survey of the

developments in this area circa 1978. Other useful references are (18, 23, 41, 48].

However, these early public-key cryptosystems had a significant theoretical drawback:
there was no proof of the security of the system. In the case of the Merkle-Hellman
knapsack scheme, Shamir [83] has given a polynomial time algorithm for breaking the
1-iteration version of the modular knapsack, casting doubt also on the more complex
versions. The RSA scheme is still believed to be secure, but while it secems that one would

have to be able to factor quickly to break it, there is no proof of this.

There are good reasons why it is difficult to give proofs of the security of public key
cryptosystems. As we shall detail below, for reasonable definitions of public key systems, a
proof of security would imply that P ¢ NP, a notoriously hard open problem in complexity
theory. Thus it is only prudent to attempt proofs of security relative to some plausible

assumption, e.g., that some problem like factoring is computationally difficult.

Another defect of the original proposals for public key cryptosystems is that even if
the problem of completely deciphering an encrypted message is difficult, there is no
guarantee of the security of partial information. For example, in a proposal to use a
cryptosystem to play poker over the telephone, the ability to identify correctly the color of
an opponent’s card might confer a significant advantage, even if the value of the card could
not be completely decrypted.

The work described below begins to provide more satisfactory solutions to these
problems and others. Relative to assumptions about the computational difficulty of certain
number theoretic problems, new cryptosystems have been proposed for which security of
even partial information can be rigorously stated and proved, and there are now elegant
schemes for generating pseudorandom bit sequences that are provably difficult to predict or
to distinguish from truly random bit sequences. There are the beginnings of a theory of the
adequacy and security of more complex cryptographic protocols, based on limited
assumptions about the underlying cryptosystem. New and subtle relationships between

complexity classes and the existence of one-way functions have been discovered.
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All of this suggests that there are deep and important connections between
computational complexity, security of communication, authentication, randomness, and

information, that challenge us to explore and elucidate them.
2. Preliminaries on complexity and number theory

2.1. Complexity

Ideas from computational complexity play an integral role in public-key cryptography |
and variants of it. In public-key encryption, each participant A has a published fast
encryption algorithm E , and a secret fast decryption algorithm D 4+ Given the encryption
of a message E (M), it is always possible to enumerate all possible messages, apply the
published algorithm E until the message is found that encrypts to E (M), and thereby
discover the message M. However, possibility does not equal feasibility, and the
effectiveness of a public-key system depends on the degree to which it is computationally
infeasible to retrieve a message or significant information about a message from its

encryption.

Two notions introduced by Diffie and Hellman [24] for the understanding of a public-
key cryptosystem are a one-way function and a trap-door function. Intuitively, a function
f(z) is a one-way function if it is one to one and “easy” to compute, while its inverse

f~Yy) is “hard” to compute.

A trap-door function is a somewhat more complex notion, since it is really a family of
functions f(k,z) for different values of k. It should have the following properties. For each
value of k, f(k,z) is a one to one function of z. It is “easy” to compute f(k,z) given k and

z. It is “hard” to compute z such that y = f(k,z) given y and k.

In addition, there should be a “trap-door”, which works as follows. There exists a
function d(k) and a function g(k’,y) such that whenever y = f(z,k) then z = g(d(k),y).
Moreover, g(k’,y) is “easy” to compute given k* and y. Thus, the information d(k) is a
“trap-door” making the inversion of f(z,k) easy. (Clearly, if this is to be true, the trap-
door information d(k) had better not be “easy” to compute from k.)

A one-way function would be useful for storing a password file; a trap-door function

(with some additional properties) would be suitable for constructing a public-key encryption
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system. Candidates for one-way and trap-door functions are described in the section on

number theoretic functions.

The usual distinction of “easy” and “hard” in computational complexity is between
problems that can be solved in time polynomial in the lengths of the inputs, and those that
cannot. (For formal definitions of these notions, see for example the text of Hopcroft and
Ullman [39].) However this distinction is not appropriate for cryptography for several

reasomns.

One difficulty is that a problem not solvable in polynomial time may be quite easy for
most of its inputs, whereas an encryption system that is easy to break for all but a
vanishing fraction of the message space is useless. Another is that an encryption system
that with high probability can be broken by a fast probabilistic algorithm is similarly
useless, even if there is no fast deterministic algorithm to break it. Still another difficulty
is that computational complexity has generally been concerned with the order of growth of
complexity of a uniform algorithm to solve the problem as a function of the length of the
input. Since an encryption system is likely to be used with one or a few particular key
lengths, a non-uniform attack requiring some modest built-in table of information might be
a serious threat, even if it could not be generalized to a uniform algorithm. Also, the
distinction of polynomial versus non-polynomial may be quite misleading, for example,
while an algorithm with complexity n177 is “faster” than one with complexity nloslos n the

. 177
crossover doesn't occur until n = 92",

As a concrete example of the pitfalls of computational complexity for cryptography,
see Lempel's illustration of a protocol that is provably NP-hard to break, but which can be
broken efficiently with high probability [42].

Thus, complexity notions must be applied with care in this field. Ideally, one would
like an approach that could yield practical answers to questions such as: what fraction of
messages of a given length can be broken by an adversary with certain computational
resources? While no comprehensive approach has been developed, some of the above
difficulties have been overcome by considering circuit complexity (a nonuniform measure)
and probabilistic algorithms. Rather than the distinction of polynomial versus non-
polynomial time (or circuit size), some authors have advocated proving general tradeoffs of

the resources used versus the probability of breaking the system, but most of the results we



describe are not of this kind.

(See the excellent paper of Gill [33] for definitions and results relevant to probabilistic

algorithms, including the definitions of the classes RP and BPP.)

2.2. Number theoretic problems

Many of the results we describe are based on properties of and assumptions about
number-theoretic problems. Niven and Zuckerman [51] present a useful exposition of
elementary number theory; for a treatment of the complexity of several number-theoretic
problems, see [3]. In order to make the survey relatively self-contained on this point, we

sketch some of the relevant facts.

" The terms “easy” and “hard” will be used below to distinguish problems for which
there are practically feasible algorithms yielding a high degree of confidence, from those for
which there is no such practically feasible method for even a significant fraction of
instances. Since these are not precisely defined terms, they will be left in quotes. More
precise statements of the degree of “hardness” assumed of some of these problems will be

given in subsequent sections describing specific results.

Primality testing and factoring

There is a probabilistic algorithm [57, 85] that takes a number N as input, runs in
time polynomial in the length of the binary representation of NV, and outputs 1 if N is
prime, and outputs O with probability at least 1/2 if IV is composite. This algorithm may
be re-run k times to increase the probability that it outputs 0 for a composite number to at
least- 1-(1/ 2)". Thus, testing a number for primality is generally taken to be an “easy”

problem.

By contrast, the fastest probabilistic algorithms known for factoring do not appear to
make it feasible to factor a number that is the product of two very large primes with any
reasonable probability of success, so it is plausible to assume that factoring such numbers
may be an intrinsically “hard” problem. (Of course, here we are generalizing from our own

ignorance, a potentially dangerous course, particularly in science.)
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Exponentiation and the discrete logarithm

For any number N, the set of numbers between 1 and N — 1 (inclusive) that are
relatively prime to N will be denoted Z;v. Z;v forms a group under multiplication modulo
N. Given an element a of Z;V and a positive integer z, the unique b in Z;v such that

b = a® (mod N)
may be computed quickly by the method of successive squaring. This problem is taken to
be “easy”.

If a and N are relatively prime, a variant of the greatest common divisor algorithm
yields integers ¢ and d such that
ca + dN = 1.

Thus, the unique b in Z;v congruent to ¢ modulo N has the property that ab = 1 (mod N).

Thus, the problem of finding inverses in Z;v is “easy” as well.

If p is prime, then Z; is a cyclic group of order p — 1, and the elements that generate
the group are called generators or primitive roots. Given a primitive root g of p and any
element b of Z;, there is a unique value of z between 1 and p — 1 such that

b = ¢° (mod p).
This value is called the indez or discrete logarithm of b with respect to p and g. Finding
the value of this z is the discrete logarithm problem. When p — 1 consists entirely of small
prime factors, there is a fast algorithm for the discrete logarithm problem [53], but
otherwise, no fast algorithm is known, even if the factorization of p — 1 is given. Thus,
like the factoring problem, the discrete logarithm problem may plausibly be assumed to be

computationally “hard”.

Thus, exponentiation of a primitive root modulo a prime is a candidate for a one-way

function, since it is “easy” and its inverse (the discrete logarithm) appears to be “hard”.

Testing quadratic residuosity

Ana in Z;V is said to be a square or quadratic residue modulo N if and only if the
equation
z° = a (mod N)

has some solution z. Any such solution is called a square root of @ modulo N. Otherwise,
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a is said to be a nonsquare or quadratic nonresidue modulo N. If p is a prime, then there
is an efficient test to determine whether or not 4 is a square modulo p, namely, a is a
square if and only if '

alP~1/2 = | (mod p).

Half the elements of Z; are squares, the other half are nonsquares.

By contrast, if IV is the product of two large prime numbers, say p and g, there is no
efficient algorithm known for determining whether a is a square modulo N, given a and N

as input, but not the factorization of V.

In fact, using the Chinese Remainder Theorem it may be seen that a is a square
modulo N if and only if it is a square modulo both p and q. Moreover, there is an easily
computed quantity, the Jacobi symbol of a with respect to N, that is 1 in case a is either a
square modulo both p and g or a nonsquare modulo both of them, while it is —1 in case a is
a square modulo one of them and a nonsquare modulo the other. We note that half the
elements of Z:V have Jacobi symbol 1, half have Jacobi symbol —1. Of elements of Z:v
with Jacobi symbol 1, half are squares modulo NV, and half are nonsquares.

The problem that would appear to be “hard” in this case is to distinguish squares
from nonsquares modulo /N among those a with Jacobi symbol 1 with respect to N. This is

called the problem of quadratic residuosity modulo a composite.

Note that this problem becomes “easy” if we are given the factorization of V; we
simply test whether a is a square modulo both p and q. Thus, this test has a “trap door”,

namely, the factorization of N.

Extracting square roots

What about the problem of actually finding the square roots of a quadratic residue
modulo N? If p is prime, every square modulo p has exactly two square roots, and there is
a probabilistic algorithm that runs in expected polynomial time to find them 1, 5].

However, if IV is the product of two distinct odd primes, say p and g, then every
square ¢ modulo NV has four square roots in Z:v: z,y, N—z,and N — y, where z is not

congruent to either y or —y modulo N. Thus,
a=2l=y° (mod N),



N|(@ -y = (2 +yXz—)
which implies that p divides (z + y) and g does not, or vice versa, since N == pq, and N
does not divide either (z + y) or (z — y). Hence, if we take the greatest common divisor of
N and (z + y), we will factor N. Thus, if we can find the four square roots of a square
modulo N, we can factor N. Conversely, if we are given the factorization of IV into p and
g, we can efficiently use the square root algorithm modulo the primes and the Chinese

remainder theorem to find the four square roots modulo N.

Thus, squaring modulo a composite N = pq is a candidate for a trap-door function.
Given z and N, it is “easy” to compute z° modulo N. (This is a four to one rather than a
one to one function; we must restrict the domain in some manner to make it one to one.)
Given N and z2 modulo N, it appears to be “hard” to find the four square roots of z2. (In
fact, it appears to be “hard” to find any of the square roots of 22, as will be shown in
section 2.3.) However, given z° and the factorization of N, it is “easy” to compute the four

square roots.

Finding other roots and the RSA function

How hard is the problem of finding other roots modulo N, in other words, solving
equations of the form z* = b (mod N) given k, b, and N? Let ¢(N) denote the number of

*
elements of Z N _

ks .
is one to one on ZN,

If k is relatively prime to ¢(N), then the mapping from z to z
and there exists an integer m such that km = 1 (mod ¢(N)). If z* = b (mod N), then
b™ = 7" = z (mod N)
so the desired solution is b™ (mod N). Thus, given a knowledge of the factorization of N,

or of ¢(N), it is “easy” to find m and, therefore, kth roots.

However, if the factorization and ¢(.N) are unknown, no efficient method is known for
finding kth roots. Thus, the mapping of z to z* (mod N) is a candidate for a trap-door
function, in which the trap door information is the factorization of N. The Rivest, Shamir,
and Adleman (RSA) encryption method [60] is precisely this function, where N = pq and &

are the public information, and the factorization of NV is kept secret.



2.3. Random self-reducibility

Why are these four problems: factoring, discrete logarithms, testing quadratic
residuosity modulo a composite, and the RSA function, particularly suitable as bases for the
cryptosystems to be described later? One reason is that the algebraic structure of this
domain gives rise to a class of properties one might term random sel f-reducibility, which in
turn can be used to show a problem is uniformly hard if it is hard at all. In particular,
these reductions generally consist of taking a particular input and mapping it uniformly
and randomly to other inputs in such a way that the answer for the original input can be

recovered from answers for the targets of the random mapping.

For comparison, we demonstrate simple forms of random self-reduction for each of

the problems discussed.

(The remainder of this subsection can be skipped without loss of continuity.)

Factoring

It was shown above that the ability to find the four square roots of a square modulo
N = pq allows us to find p and q. Suppose there exists an algorithm A(NV,a) that correctly
finds one square root of a modulo N for some fraction ¢ of the squares a modulo N, when
N = pq. We may construct another, probabilistic, algorithm B{N) to factor its input N

when N = pq as follows.

B on input N randomly chooses a number r in the interval [, N — 1]. If r is not
relatively prime to N, B halts and outputs the factorization of N. Otherwise (the typical
case), B computes b ¢ Z;v, where

b=1r? (mod N),
and calls A(NV,b). B then checks the answer z returned by A to see whether
=) (mod N), i.e., whether A’s answer is correct, and whether the greatest common
divisor of z + r and [V is a proper divisor of N. If it is a proper divisor, B halts and
outputs the factorization of N, otherwise it generates a new random number r and repeats

this process.

The algorithm B outputs a correct factorization of N. At each iteration, it has a

chance of at least (1/2)e of factoring N, so its expected running time is at most 2/¢ times
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the running time of A plus the overhead of checking the answer. Thus, if A is a fast
algorithm and e is large enough, B will be a reasonably fast algorithm for factoring N.
Intuitively this says that if the problem of factoring the product of two large primes is
“hard”; then it cannot be “easy” to find even one square root of a nontrivial fraction of

squares modulo such numbers. This proof is due to Rabin [56].

Discrete logarithm

Suppose there exists an algorithm A(p,g,a) that correctly computes the discrete
logarithm of a with respect to the prime p and the generator g for some fraction ¢ of the
values of a in Z;. We construct another, probabilistic, algorithm B(p,g,a) to compute the
discrete logarithm correctly for all a in Z;. B(p,g,a) calls A(p,9,b) where

b= g"a (mod p)
for a randomly chosen value of r between 1 and p — 1. (b ranges randomly over all of Z;.)
When B gets an answer z from A, it checks to see whether

b= g* (mod p).
If so, then this is one of the values where A works correctly, and B halts with output y,
where y is the unique number in the interval [1, p — 1] such that

y=z-—r (modp—-1).
Otherwise, B generates another random value of r and repeats this procedure. The output

is the correct discrete logarithm for a, because

g'a = g¢* (mod p),

a=g""" (mod p).

Thus, B is correct for all values of a, and the expected running time of B(p,g,a) is 1/e
times the running time of A(p,g,a) plus the overbead of checking the answers that A gives.
If Ais a “fast” algorithm, and ¢ is “large enough”, then B will be a relatively fast
algorithm too. This reduction shows that if the discrete logarithm problem is “hard”, it

cannot have a nontrivial fraction of “easy” instances for each p and g.
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The RSA function

This self-reduction is very similar to the one for the discrete logarithm, so it will only
be sketched. Suppose A(N,l:,b) is an algorithm that computes pl/k (mod N) for a fraction
e >00fbin Z;v when IV = pq and k is relatively prime to ¢(N). The algorithm B(N,k,b)
will repeatedly choose random numbers r in Z;v and call A(N,k,brk) until the value
returned, say z, is correct. Then the kth root of b is just rlz (mod N), so B outputs this
and halts.

Whenever k is relatively prime to ¢(\N), the mapping from r to r* (mod N) is one to
one, and the expected running time of B will be 1/¢ times the running time of A, plus the

calling overhead.

Testing quadratic residuosity modulo a composite

This problem is different from the preceding three in that the answers given by a
putative quadratic residuosity testing algorithm cannot be easily checked if the quadratic
residuosity problem is hard. Thus, the assumptions and approach must be somewhat
different. To simplify the exposition, we consider a slightly modified form of the quadratic

residuosity problem, in which a nonresidue is also given as input.

Suppose there exists an algorithm A(N,y,a) such that whenever NNV is the product of
two primes and y is a nonresidue with Jacobi symbol 1 with respect to N, A correctly
answers whether or not a is a quadratic residue modulo N for a fraction 1/2 + ¢ of the

possible values of a in Z;v that have Jacobi symbol 1 with respect to N.

We construct an algorithm B(V,y,a) for the quadratic residuosity problem as follows.
B chooses m random numbers r , r,, ..., r,. from the interval [I, N — 1]. (The value of m
will be specified later.) If any of the values r, is not relatively prime to NV, then B can split
N, and in the case that N = pq, B has the factorization of N, and can compute and output
whether a is a quadratic residue modulo N.

Otherwise (the typical case), B generates a random sequence of m bits: d,, dé, ey d

computes b, ¢ Z;v such that
b, = art.zydi (mod N),
and calls A(N,bi) for s = 1,2,...,m.
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Note that when y is a quadratic nonresidue, if d; == 0, then b, is a quadratic residue if
and only if a is, and if d; = 1, then b; is a quadratic residue if and only if a is not. Thus,
each answer from A can be interpreted as a “vote” for whether a is a residue or not,
depending on the value of d; and the answer from A. If a majority of the votes from A are
that a is a quadratic residue, then B outputs “quadratic residue”, otherwise it outputs

“quadratic nonresidue”.

Provided y is a nonresidue with Jacobi symbol 1, for each 4, every element of Z;v with
Jacobi symbol 1 is equally likely to be b,, so each call of A has a probability of 1/2 + € of
yielding a correct “vote” about the residuosity of a. By Chebyshev’s inequality, the
probability of a majority of the m calls yielding correct votes is at least 1 — § provided
m > 1/(46¢%).

Thus, by running for time proportional to 1 /(6(2) times the running time of A plus
the calling overhead, B(IV,y,a) can achieve a probability of 1 — § of being a correct
residuosity test whenever N = pq, y is a nonresidue with Jacobi symbol 1 modulo N, and a
in Z;V has Jacobi symbol 1. Hence, if the problem of testing residuosity given a nonresidue
of Jacobi symbol 1 is “hard”, then there is no fast algorithm that gives the correct answer

on 1/2 + ¢ of the values for a “nontrivial” fraction e.

2.4. Hard bits

Another significant property of these functions is the existence of “hard bits” for
them, that is, an efficient reduction of the problem of computing the function to deciding a
related boolean predicate. For example, inverting the RSA function is efficiently reducible

to deciding whether z is odd or even, given z* (mod N).

Such reductions have been used in the construction of pseudo-random number
generators as secure as the basic function, using the boolean predicate to generate the bits
of the sequence (see section 4). They may also be used in attacks on public-key systems
based on these functions, to show that a communication convention that leaks information
about the boolean predicate may be used to compromise the encryption system (see section
3.2).

We describe some of the results related to hard bits in the remainder of this

subsection.
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Blum and Micali [10] show that computing the discrete logarithm with respect to the
generator g modulo the prime p is efficiently reducible to the problem of deciding whether
the index of z modulo g and p is less than (p—1)/2. The reduction works as follows.

Given z, we may efficiently test whether z is a square modulo p by computing
2P 1/2 (mod p). If it is a square, then we know that the index of z is even, that is, the
low order bit of the index of z is 0. Otherwise, the low order bit is 1, and we may set it to

1

0 by multiplying z by ¢~! modulo p.

The resulting quantity, say y, is now a square in either case, and we may find its two
square roots 2 and —z in expected polynomial time (1, 5]. One of these, namely the one
whose index is less than (p—1)/2, has an index that is the index of y divided by 2. We use
the oracle to decide which of z and —z has index less than (p—1)/2, and repeat this
procedure with that square root to determine the next lowest order bit of the index of z,

and so on, until the quantity becomes 1, when all the bits of the index of z are determined.

In fact, Blum and Micali show a much stronger result, that if there is an oracle that
correctly answers the question of whether the index of z is less than (p—1)/2 for a fraction
1/2 + ¢ of the values of z in Z;, where ¢ > 0, for all p and g, then there is a probabilistic
algorithm that correctly computes the discrete logarithm for all p and ¢ and runs in

expected polynomial time.

Blum, Blum, and Shub [9] use a hard bit based on testing quadratic residuosity to
construct a pseudo-random sequence generator. Suppose N = pq where p and q are primes
congruent to 3 modulo 4, so that z and —z have the same Jacobi symbol modulo N. Then
any square modulo NV has four square roots, exactly one of which is itself a square modulo
N. Suppose there is an oracle that for any square modulo NV gives the parity of the unique
square root that is also a square modulo N. Then to test whether z with Jacobi symbol 1
is a square modulo N, we submit z° to the oracle. If its answer agrees with the parity of z,
then z is a square modulo N, otherwise, —z is. Blum, Blum, and Shub show that the
problem of testing quadratic residuosity modulo integers N of this form is efficiently
reducible to determining the parity of the unique square root of a square that is also a

square.

Goldwasser, Micali, and Tong (36] show that inverting the RSA function is efficiently
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reducible to deciding each of the following three properties of z, given z* (mod N).
1. the parity of z,

2. whether z < N/2,

3. the value of any of the m least significant bits of z, where the low-order m+1

bits of N are 011 .. 11.

Goldwasser, Micali, and Tong also show that factoring /N = pq (where p and q are
both congruent to 3 modulo 8 or both congruent to 7 modulo 8) is efficiently reducible to
deciding each of the following two properties, given z2 (mod N).

1. whether the parity of y is equal to the parity of z, where y and z in Z;v are the
two distinct square roots of z2 (mod N) that are less than N/2,

2. the parity of y, where y is the unique square root of 22 (mod N) that both is
less than N/2 and has Jacobi symbol 1 modulo N.

Ben-Or, Chor, and Shamir [4] show that inverting the RSA function is efficiently
reducible to an “interval oracle” that decides, given z* (mod N), whether z is in some
nonnegligible interval I of Z;v, (that is, the length of I divided by N is bounded below by ¢
and above by 1 — ¢, for some ¢ > 0.) They also show that an oracle that guesses the least
significant bit of z from z* (mod N) with an error probability of less than 1/4 — ¢ is
sufficient to construct a probabilistic algorithm that inverts the RSA function in expected
polynomial time. Other results are given for single RSA bits, and a bit as hard as

factoring.

Long and Wigderson [43] argue that if a one-way function f(z) exists, then there
must be more than O(log |z|) bits of z that are hard to compute from f(z). They consider
the problem of proving that a number of bits are “simultaneously hard” and show that
computing the discrete logarithm is efficiently reducible to computing any non-constant
boolean predicate of O(log |p|) bits of the index of z with respect to g and p, where [p| is
the length of the binary representation of p. They also consider the case of an oracle for

such a predicate that makes errors.
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3. Provable security of cryptographic systems

The beginnings of the current, more refined analysis of the security of cryptographic
systems were provided by Rabin [56] when he introduced a signature system based on
finding square roots modulo a composite number, and formally related its security to the
difficulty of factoring.

In Rabin's scheme, the signer publishes a composite number NN, a hashing function C,
and a number b. The factorization N = pq is kept secret. To sign the message M, the
signer randomly generates a string U of k bits, applies the hashing function C to MU to
obtain a number ¢ between 1 and XV, and checks to see whether the equation

¢ = z(z + b) (mod N)
has a solution. If so, the signed message consists of M, U, and z. Otherwise, the signer
repeats this procedure, choosing a new value of U. The signature is checked using the
equation

z(z + b) = C(MU) (mod N).

Rabin shows that solving ¢ = z(z + b) (mod N) is equivalent to extracting square
roots modulo N. Although the roles of C and U are not formally analyzed, Rabin shows
that the ability to extract square roots of 1/R of the squares modulo N in time F{N) allows
one to factor N in expected time RF{N) + 2log N steps. (This is essentially the argument

given in section 2.3.)

The guarantee that if the problem (in this case, forging signatures) is “easy” for a
substantial fraction of instances, then factoring is “easy” seems like a strong one, but
Goldwasser and Micali [34] point out that the ability to forge signatures on a vanishingly
small fraction of sti'ings of some length (e.g., ASCII representations of English sentences,
broken up into pieces of appropriate length) could be a security weakness if those strings

were the probable ones.

Lipton gives another objection to the kinds of arguments heretofore used concerning
cryptographic protocols. He shows that the scheme proposed by Shamir, Rivest, and
Adleman [84] for mental poker using the RSA encryption system may “leak” partial
information about the values of the cards, even though an adversary méy not be able to

invert the encryptions completely.
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3.1. Probabilistic encryption

The first solution to the problems of skewed distributions and partial information was
the encryption system proposed by Goldwasser and Micali [34, 35] based on the problem of
deciding whether a number is a quadratic residue modulo a composite. (See section 2.2 for

definitions.) Their encryption scheme works as follows.

For each user A there is public information consisting of a composite number N, that
is the product of two primes, and a number y , that is a quadratic nonresidue with Jacobi

symbol 1 modulo N,. A keeps secret the factorization of N ,.
A A

To send a message consisting of the bit string b,b,...b, to A, another user successively
encrypts the bits by choosing a random quadratic residue modulo N, if b;is 1, and a
random quadratic nonresidue with Jacobi symbol 1 otherwise. The encryption of the bit

string is the resulting sequence of residues and nonresidues.

Knowing the factorization of IV ,, A can efficiently test quadratic residuosity and thus
read the encrypted message. To produce a random quadratic residue, the other user simply
chooses a random number and squares it modulo N ,; to produce a random nonresidue, the
random square is multiplied by y , modulo N,. It is assumed that there is some fixed
polynomial bound on the length of messages that will be sent as a function of the length of

the composite NV ,.

Notice that this encryption scheme is probabilistic, that is, there are a large number
of different encryptions of a given message, and one is chosen at random by the sender to
represent the message. Thus it is reasonable to consider the encryption of a single bit
(which doesn't make sense if the encryption function is deterministic.) Goldwasser and
Micali show that under the appropriate assumption about the difficulty of testing quadratic

residuosity, this scheme is “polynomially secure” and also “semantically secure”.

The assumption made about testing quadratic residuosity is that if Cb, ¢ 18 the
minimum size of any circuit C(b,N) that correctly computes quadratic residuosity of b with
respect to N for all b € Z;v for a fraction at least ¢ of the composite numbers N = pg of
length k, then for any ¢ > 0, Ck, . is not bounded by any polynomial in k.

- The definition of polynomial security involves the notions of a line-tapper and a

message-finder. Intuitively, a line-tapper is a collection of circuits, one for each key length,
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that take as input NV, y, and an encryption of a message of suitable length and produce as
output a 0 or a 1. For a given line-tapper, a message-finder is a collection of circuits, one
for each key length, such that for every key length, for a nontrivial fraction of NV and y
corresponding to that key length, the message-finder circuit produces two messages such
that the line-tapper has detectably different acceptance percentages for encryptions of the
two messages. The definition of polynomial security is that for no polynomially bounded
line-tapper does there exist a polynomially-bounded message-finder.

The definition of semantic security concerns probability distributions on the messages
sent by the users. It is assumed that each user randomly generates messages according to a
fixed probability distribution specific to that user. A “meaning” is any function defined on
messages; the problem of the adversary is to guess the meaning f(m) of a message, given
some encryption of m. For a given user A, and for each key length and associated message
length, there is some “most probable” meaning value v, depending on the message

distribution of A. Let p i denote the probability of this value.

Roughly, semantic éecurity is the nonexistence of a polynomially bounded collection
of circuits { M, } that correctly compute the value f(m) from encryptions of m with
probability distinguishably greater than p, when m is drawn according to the distribution
for A, for a fixed fraction of keys of length k.

In [35], Goldwasser and Micali give general definitions of a cryptographically strong
predicate, the construction of a cryptographically strong public key encryptions system |
from such a predicate, and proofs that any cryptographically strong public key encryption
system is polynomially secure, and any polynomially secure public key encryption system is
semantically secure. In addition to the system described above based on the quadratic
residuosity problem, they also demonstrate a probabilistic encryption system based on the
second of the two bits as hard as factoring described in section 2.4. This is a polynomially
secure system under the appropriate assumption about the computational difficulty of

factoring.

Yao [87] also abstracts from the specific number theoretic problems used, and gives
very general definitions and theorems concerning ways in which secure public-key
encryption systems may be constructed from trapdoor functions which are only very

“weakly” one-way. A key lemma is that if there is enough uncertainty about a one-bit
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predicate on the inverse of a weakly one-way function, then by taking the exclusive-or of a
large but polynomially bounded number of instances of the predicate, the uncertainty may
be made nearly 1/2.

3.2. Adversaries other than passive eavesdroppers

The results above concern security against a passive eavesdropper, that is, an
adversary who is assumed to be able to intercept all the encrypted communications in the
system, and who has access to the published encryption algorithms. (Note that such an
adversary may generate pairs consisting of plaintext and cyphertext from chosen plaintext
for himself in a public-key scheme.) Goldwasser, Micali, and Tong [36] consider attacks by
adversaries with other kinds of capabilities. Malicious users are defined to be adversaries
that have the capabilities of passive eavesdroppers, and also are legitimate users of the
cryptosystem, so that they may read, store, and send encrypted messages. Meddlers are
defined to be adversaries with a great deal of control over the communication system - in
addition to the capabilities of malicious users, they may alter, delete, delay, and resend
messages between other users. (Dolev and Yao [27] consider security against meddlers, see

section 7.1.)

Goldwasser, Micali, and Tong demonstrate the vulnerability of the RSA, Rabin, and
Goldwasser and Micali cryptosystems to attacks by malicious users. For example, they
show that given an oracle to determine the parity of z from z° (mod N) it is
computationally easy to invert the RSA function. Such an oracle can be introduced by the
communication conventions, if for example, “yes” is represented by encoding an even
number, “no” is represented by encoding an odd number. Suppose A is a malicious user
who wants to determine the parity of z for some value z° (mod Ng). A waits until B asks
him a question, and then replies z° (mod Npg). From B's subsequent behavior, A
determines whether the answer was interpreted as “yes” or “no”, and concludes that z is
even or odd accordingly. Given enough of this kind of information, A can decrypt messages

sent to B.

Goldwasser, Micali, and Tong describe other single-bit oracles equivalent to inverting
RSA and to factoring, and show how they could be introduced by communication
conventions. A slightly different type of problem is exhibited for the Goldwasser and
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Micali probabilistic encryption scheme. Suppose that the communication system
occasionally garbles messages, and there is a provision for asking for a re-transmission in
this case. Then a malicious user A can get information about quadratic residuosity modulo
Np as follows. To test whether z is a residue modulo Np, A probabilistically encodes some
innocuous message, like “Shall we go to lunch now?”, using B’s published information.
Then, for a random collection of the quadratic residues in the encryption, A multiplies in
the value of z. The result will be either an unchanged message (if z is a quadratic residue
modulo Np), or a garbled message (if z is a nonresidue.) Then whether B asks for a re-
transmission or not allows A to conclude that z is a nonresidue modulo N p or not. Enough

of this kind of information allows A to decrypt messages sent to B.

Goldwasser, Micali, and Tong ascribe these problems to the fact that these are public-
key cryptosystems, that is, all the communications to B use the same key, so that the
communications between a malicious user A and a (non-malicious) user B can leak
information about communications between some other user C and B. They propose
instead a private key system (in which every pair of communicating users has a different

key) in which the private keys can be established publically.

The Goldwasser, Micali, Tong scheme works as follows. Each user A has a published
number N 4» a product of two primes, that he uses to authenticate his communications with
other users. A knows the factorization of N "4 but other users do not. When A and B wish
to communicate, they contact one another and make use of their primary keys N 4,and N B
to authenticate to each other their secondary keys S 4 3nd Sp4» which are each the
product of two primes. (The authentication procedure is described separately below.)
Initially, A knows the factorization of S 'ap 30d B does not. The two secondary keys are
congruent to 1 modulo 4 so that ~1 has Jacobi symbol 1.

Once they have authenticated their secondary keys to one another, A factors S ap for
B — this is done by B choosing a number y with a Jacobi symbol —1 modulo § '4p 30d
authenticating y® (mod S 'ap) 10 A. A replies by authenticating a square root of y? with
Jacobi symbol 1 modulo S '4p t0 B. The two roots B now has allow him to factor S g A
then sends the encryption of a seed for a cryptographically secure pseudo-random number
generator to be used to simulate a one-time pad. The symmetrical procedure is carried out
for Sp,. (The next section will decribe cryptographically secure pseudo-random number
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generators and their use to simulate one-time pads.)

The sub-protocol for A to authenticate a message X to B is as follows. They jointly
flip a coin to determine random numbers r until one is found such that rX is a square
modulo N, at which point A sends one square root, w, of this quantity to B. B checks
that w* = rX (mod N o). (The coin-flipping protocol is considered elsewhere; it is essential
that neither A nor B be able to influence the outcome.)

Goldwasser, Micali, and Tong claim that the resulting communication system is
provably secure against malicious users. They show that it is not secure against meddlers,
and pose as an open question whether there is any cryptosystem provably secure against
meddlers. An added bonus of their scheme is that since it is a simulated one-time pad, the
ratio of the number of bits transmitted to the number of bits encoded approaches one,
unlike the probabilistic encryption schemes described above, in which each bit is encoded

by a separate element of Z;v.

4. Pseudo-random number generators

The probabilistic encryption scheme of Goldwasser and Micali, and many other
cryptographic protocols that have been proposed, call for the generation of random
numbers. The customary way of simulating the generation of random numbers in an
implementation is to use a pseudo-random number generator, that is, a deterministic
algorithm that takes a small number of (ideally) truly random bits and “expands” them

into a longer sequence of bits that has some properties of randomness.

What properties of randomness are desirable? Knuth [40] gives several statistical tests
that can be used to judge the suitability of a proposed pseudo-random number generator.
However in the context of cryptography, a stronger requirement is necessary: an adversary
should find it difficult to predict missing terms in the sequence, given a substantial fraction

of the terms in the sequence.

As an example of this kind of requirement, consider the use of pseudo-random
sequences in the efficient simulation of a one-time pad, as described by Shamir [62]. Two
users, each with knowledge of a random seed k, and using the same pseudo-random number
generator, can encode and decode messages by computing the bitwise exclusive-or of the

cleartext or cyphertext with a given segment of the pseudo-random number sequence. It
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would be desirable to prove that no eavesdropper, even one who knows the cleartexts of
some of the messages and the structure of the pseudo-random number generator, can

“easily” infer the contents of unknown messages or the identity of the seed.

Plumstead [52] has shown that the traditional linear congruential pseudo-random
number generator is insecure in this sense. Suppose that a pseudo-random sequence is
generated according to the rule

X;= aX, | +b (mod N).
Suppose further that an adversary has access to the successive terms of the sequence as
they are generated, but does not know a, b, or N. Then there is an efficient algorithm that
will permit the adversary to predict the next term on the basis of the preceding terms with
a total of only 2 + log NN errors of prediction.

Shamir [62] was the first to propose a pseudo-random sequence generator that is
cryptographically strong, i.e., is such that an adversary given some subset of the numbers
does not find it materially easier to compute any of the missing ones. Shamir's pseudo-
random number generator is based on the difficulty of inverting the RSA encryption

scheme, and works as follows.

The originator of the sequence publishes N, S, and a sequence of keys which are
relatively prime to ¢(NV): K|, K,, .., K,. (A segment of odd primes, e.g., 3, 5, 7, 11, ... is
suggested for the keys.) The factorization N = pq is kept secret. Then, the sequence of
pseudo-random numbers is R, Ry, .., R, where R, = SVK; (mod N) for each .

Shamir shows that the problem of determining R, given .N and S is not substantially
harder than the problem of determining Ii’l given N, S, and Ry, Ry, ..., R, where ! and the
key sequence are fixed. In particular, there is a polynomial A{l,n) such that if Clln)is a
circuit that solves the second problem for a fraction g V) of the values of the seed modulo
each N of length n, then then there is a circuit of size Al,n) plus the size of C(I,n) to solve
the first problem for a fraction g{ V) of the seeds modulo each N of length n. Since the
first problem is the problem of inverting the RSA encryption scheme for the fixed value K "
this gives confidence in this scheme relative to the difficulty of inverting RSA encryption.

However, Shamir does not show that no adversary can easily compute, say, the parity

or approximate order of magnitude of missing numbers. In the use envisioned by Shamir of
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these numbers as a one-time pad, an eavesdropper could conceivably compute some useful
partial information about the relevant cleartexts, even though he could not invert the

cyphertexts.

A solution to the problem of partial information for pseudo-random sequence
generators was first found by Blum and Micali 10}, who propose a generator based on the
discrete logarithm problem. A simpler generator based on the quadratic residuosity
problem is given by Blum, Blum, and Shub [9]. Later work by Yao [87] gives a definition
of an abstract one-way function and a method of using any such function to construct a
pseudo-random sequence generator. Goldwasser, Micali and Tong describe a generator

based on the difficulty of factoring [36]. (This last reference contains errors in the proofs.)

Each of these generators may be understood as an instance of the following general

format for a pseudo-random sequence generator.

For each seed length n, a pseudo-random sequence generator is a state machine. It
consists of a set Y of states, each of which is represented by a string of length n, and two
functions, f and b. fis the next state function, and b is a function that computes the
output, either 0 or 1, from a given state. The randomly chosen seed y, of the generator
serves as the start state for the machine. Since the number of states is, in general,.
exponential in the length of the output, it is infeasible to represent the machine explicitly,

but it is enough to specify fand b. The length of the output is L = n for some fixed k.

The pseudo-random sequence corresponding to the seed y, is 60, bl’ ey bL-l where

b, = b(f(yy))-

It is assumed that the next state function fis the inverse of a one-way function and
that b is easy to compute. Thus, given a state y of the generator, it is easy to generate the
output, but hard to compute the next state. Because of this, the sequence is actually
generated in reverse order: randomly choose not the start state y,, but irather the last
state, y;_,. Then compute y;_, by applying f~! to y,, storing the bits b, == y;) as they
are computed, for 1 < § < L—1. (Since f is the inverse of a one-way function, f =1 s easy

to compute.) Finally, output the sequence by, b,, ..., §;_;.

The proofs of security involve showing that computing f reduces to the problem of
predicting the next output bit, given the current state of the generator. Thus, the ability
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to predict the next bit contradicts the assumption that fis hard to compute.

Notice that after one has output the first { bits, one can publish f, y,, and Y_p and
anyone can verify that the bits were indeed output according to the generator, although it
is still hard to compute the next output bit.

For the Blum and Micali generator, the states are of the form <z,p,g> where pis a
prime, ¢ is a generator for p, and z is in Z;. The value of f(z.p,9) is <w,p,g>, where w is
the discrete logarithm of z with respect to p and g. The predicate ¥z,p,9) is 1 if z < p/2
and 0 otherwise. Blum and Micali show that computing this predicate of the next state of
the generator, given the current state, with a significant statistical advantage is as hard as
computing the discrete logarithm; this result is described in the section on hard bits, section

2.4.

The Blum, Blum, and Shub generator is based on the problem of quadratic
residuosity. The states of the generator are of the form <z,N>, where N = pq, p and ¢
are primes congruent to 3 modulo 4, and z is an element of Z;v that is a square modulo N.
The value of the next state function f(z,N) is <y,N>, where y is the unique square root
of z that is also a square modulo N. The predicate z,NN) is the parity of z. Blum, Blum,
and Shub show that computing b applied to the next state, given the current state, with
any significant statistical advantage is as hard as computing quadratic residuosity modulo

N. (The proof in the deterministic case is given in the section on hard bits, section 2.4.)

The proofs in (9, 10] were extended by Yao [67], first to show that, given any set of
bits of either generator, one cannot hope to guess any missing bit (rather than just t:he last
bit). He then strengthened his result to show that, assuming the difficulty of the
underlying problem (discrete logarithm or quadratic residuosity), no random polynomial
time test can distinguish pseudo-random sequences from truly random ones. This property
seems to be the analog in the domain of feasible computation of Martin-Lof’s results [45] on

infinite sequences that pass all effective statistical tests.

A corollary of Yao's result is that as long as one keeps all information about the
states secret, one can output the bits in the order in which they were computed. In such a
case, the next state function can be a one-way function, rather than the inverse of a one-

way function. Another very interesting corollary of Yao's results is that if pseudo-random
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sequence generators exist, they may be used to simulate random polynomial time
computations in deterministic time 2" for any ¢ > 0. This surprising result is further

described in section 6.

The Blum, Blum, and Shub generator has the additional property that fiy)is
computable in time polynomial in the relevant parameters, including |¢| (even though ¢
itself may be exponentially large). In [9] it is suggested that the seed y can therefore be

used as a compact way of storing a table of passwords, where an account name can be used
b

as an index into the segence of bits, and its password can be the 25 bits bn ame’ = Oname+24:

However, it has not yet been proved that the generator remains secure when bits are given

to an adversary from exponentially distant sections of the sequence.

It would also be interesting to analyze how well the above technique does as a hash
code -- what are the chances of collisions, and how does it compare with the hash functions

studied by Carter and Wegman [15]?
5. Other cryptographic problems

5.1. Digital signatures

Both the Rabin [56] and RSA [60] schemes allow signatures of messages, so that a
user can not only encrypt a message to make it unreadable to all except one user, but can
also sign a message, so that any user can tell that only one user could have sent it. (The

Rabin scheme is described in section 3.)

Typically, a message is signed by applying a hard to compute but easy to invert
function f to the message. (These functions are generally the inverses of the easy to
compute but hard to invert functions used in encryption.) In this way, if f =1 is a trapdoor
function, only someone with knowledge of the trapdoor information could be expected to
compute the signature of a given message, but anyone could confirm that signature, merely

by computing f =1 on the signature.

As with encryption, f may be hard to compute in general, but easy to compute on
ASCII representations of English words or on some other sparse set of strings. Another
problem is that, even if fis everywhere hard to compute, anyone can produce signed
random numbers simply by picking the signature at random and then compuiing [ lof
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the signature to see what it is that has been signed. Many of the protocols discussed in
other sections require the ability to sign randomly chosen numbers, so this last problem can
not be avoided by the claim that the chance of finding the signature of an English sentence
is negligible. A third problem is that one must be able to prove that knowledge of some
(polynomially-bounded) number of previously signed messages does not help in forging a

new signed message.

Goldwasser, Micali, and Yao [37] propose two signature schemes that overcome these
problems, relative to assumptions of the difficulty of factoring or inverting the RSA
function. In the first scheme, the signer publicizes a composite N = pq where both p and ¢
are congruent to 3 modulo 4, a randomly chosen number y with Jacobi symbol —1 modulo

N, and a randomly chosen z, in Z;v. The factorization of N is kept secret.

To sign a message m consisting of k bits b, ... b, the signer computes a sequence of k
square roots as follows. If z is not a square, it is multiplied by the appropriate one of —1,
y, or —y to Amake it a square. Then, if b, is O, then z, is set to the unique square root of
this square that has Jacobi symbol 1 and is less than N/2. If b, is 1, then z, is set to the
unique square root of this square that has Jacobi symbol —1 and is less than N/2. This
process is repeated on z; and b, to obtain z,, and so on, until z, is obtained. The signed

message consists of m and z,.

The signer is able to compute the signature efficiently because he knows the
factorization of NV and can test quadra_tic residuosity and extract square roots modulo V.
Other users may verify the signature because they can compute squares and Jacobi symbols
modulo N without knowing the factorization of N. Actually, the scheme must be
somewhat modified in order to allow the signer to sign many messages. Rivest suggested
the following tree-structured scheme, with ¢ > 2. The signer initially signs (using z,) a list
of 2¢ random elements of Z;v, the first ¢ of which are used to sign messages as above (one
message per point), and each of the last ¢ of which is used to sign a list of 2¢ additional
random elements of Z;v, to be used in the same way. Some convention must be adopted to

prevent proper initial segments of signed messages from being legal signed messages.

The security that Goldwasser, Micali, and Yao prove for this scheme is that if there is
a polynomial time adversary that can produce one additional signed message, given the
published information of the signer and a polynomial quantity of signed messages, with
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probability at least some ¢ > 0, then there is a probabilistic algorithm to factor composites
of the above kind in expected time polynomial in the length of the composite and ¢, for any
probability distribution on the messages to be signed.

Note that the number of bits of overhead for signatures is quite reasonable in this
scheme, since it is essentially two numbers from Z;v per signed message, one to sign the

message, and one to sign a list of new signature points.

The second scheme described by Goldwasser, Micali, and Yao uses Shamir’s idea for a
pseudo-random number generator based on the difficulty of inverting the RSA encryption
function ( [62], see section 4.) The signer publishes a composite number N = pq, a number
t between N/2 and N, and a randomly chosen number z from Z;v. He keeps the

factorization of N secret.

The sequence of consecutive primes starting with ¢ is used for forming signatures. To
sign a message m consisting of k bits, the signer allocates the next 2k+9 unallocated
consecutive primes p, greater than ¢ for this message, and then computes and provides
Z/7: (mod N) for a certain set S of these primes according a coding scheme roughly as
follows. The first three and the last six primes in the block are used to form “begin” and
“end” markers. The remaining 2k primes are divided into k pairs, and each pair is used to
code a single bit of the message m. If the bit is 0, the first of the two primes in the pair is

included in S; if it is a 1, the second of the two primes is included.

Goldwasser, Micali, and Yao claim that this signature scheme is secure in a sense
similar to that for the first scheme, basically because to produce a new signature entails
producing a new value z1/7; (mod N), which Shamir has shown is essentially as difficult as
inverting the RSA scheme, even in the presence of a polynomial number of other such
values. Note that this scheme has considerably more signature overhead, since for each bit

of the signed message at least one number from Z;v is given.

5.2. Coin flipping and the oblivious transfer

A number of more complex protocols involve fair coin flips or oblivious transfers, for
example, the protocol for authentication of a message proposed by Goldwasser, Micali, and
Tong [36], described in section 3.2. A fair coin flip is a two-party protocol that determines
one of two equally likely outcomes, “heads” or “tails”. The outcome is known to both
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parties after the protocol is completed. There is some kind of guarantee that if either party
follows the protocol and the other does not then either “cheating” will be detectable or the
probabilities of the outcomes will not be significantly altered. An oblivious tranas fer is also
a protocol for two parties, A and B, which allows A to transfer a “secret” to B with
probability 1/2. After the completion of the protocol, B knows whether or not the secret
was successfully transferred to him, but A does not know. There is similarly some sort of

guarantee about the detection of “cheating”.

Rabin invented the concept bf the oblivious transfer, and proposed the following
implementation. A chooses a composite N == pg. The secret to be transferred (or not) is a
factor of N. A sends N to B, who chooses a number z and sends z* (mod N) to A. A finds
the four square roots z, —z, y, and —y of z° modulo N, picks one of the four at random
and sends it to B. The idea is that A has no way of knowing which of the square roots of
z° B has, and half of A’s choices will allow B to find a factor of N, while the other half

provide B no new information.

However, Fischer [31] has pointed out the following difficulty with this scheme. It is
conceivable that there is a “special” set of squares such that B can easily generate an
element of this set without knowing any of its square roots. Then the argument that in
half the cases A is providing no new information to B breaks down, since B now always
gets a square root he did not have previously. The informal correctness arguments failed to
eliminate this possibility. Micali and Rackoff [49] have proposed a modification of the basic
Rabin protocol that essentially entails an “interactive proof” by B that he knows one of the

roots of z2, without revealing any information about which one.

Blum [8] describes several applications of the ideas of Rabin's oblivious transfer to
coin-flipping, the exchange of secrets, and certified mail. He also describes a coin flip based
on factoring that appears to avoid the above problem, as follows. A chooses a composite
N = pq and sends N to B. B chooses z < N/2 and sends z* (mod N) to A, who replies
with a guess of “larger” or “smaller”. B then sends z to A, who replies with the
factorization of N. The outcome is “heads” if A guessed “larger” and z is in fact the larger
of the two square roots of z2 that are less than N/2, or if A guessed “smaller” and z is the
smaller of the two. Since A sends only a one bit guess to B, the claim that he is not
providing B with any new information may be formally justified. Note that B can
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influence whether z is “larger” or “smaller” and potentially take advantage of any bias in
A’s guesses. A variant of this coin flip is used by Goldwasser, Micali, and Tong in their

authentication procedure [36].

A coin flip based on quadratic residuosity may be obtained from Goldwasser and
Micali’s results on probabilistic encryption [34]. A chooses a composite N == pq and a
pumber z from Z:v with Jacobi symbol 1 with respect to NNV, and sends them both to B. B
guesses “residue” or “nonresidue”, and A replies with the factorization of N, allowing B to

verifly whether his guess was correct or not.

For each of the pseudo-random bit sequence generators that follow the “state”
paradigm of section 4, there is a related coin flip. In particular, A sends a choice of a state
y to B, who replies with a guess of the predicate b applied to the next state f(y). A then
reveals f(y) to B, who can verify the outcome since f~! and b are easily computed. (Since
fis in general hard to compute, A generates the pair <y,f(y)> by choosing z == f(y) at
random and letting y = f~)(z).) This leads to coin flips as secure as the discrete
logarithm, using the Blum and Micali generator [10], and as secure as quadratic residuosity,

using the Blum, Blum, and Shub generator [9)].

The problem of giving a general useful formal specification of the correctness of a
coin flip or oblivious transfer protocol appears to be a difficult one. (The reader will note
that we were studiedly vague in the introduction to this section.) Current axiomatic
approaches, for example that of Even, Goldreich, and Lempel [28], while appealing, seem to
be quite incomplete. For example, they give an abstract implementation of the oblivious
transfer assuming a secure public key cryptosystem and a secure conventional cryptosystem.
However, in their protocol, B can always arrange to get the secret if the public key
encryption and decryption functions happen to commute for different keys — an unlikely

possibility that is nonetheless not excluded in the axiomatic treatment.

DeMillo, Lynch, and Merritt [22] describe an abstract coin flip and prove its security

within their framework; this is further described in section 7.1.
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5.3. Protocols for other problems

Built on top of these basic systems are various more complex protocols, to accomplish
such tasks as signing contracts [7, 8, 11, 28, 30, 55, 56], establishing private keys [36, 48],
secret ballots [16, 22], mental poker [34, 84], protecting proprietary software [21], certified
mail [8, 11, 58], sharing a secret [81], exchanging secrets [7, 8, 44], computing f(4,7) without
revealing ¢ and j [66], computer system security [2, 20], database security [19, 59,
anonymity in the use of electronic mail (18], and monitoring arms treaties [17). There are a
number of interesting ideas in these more complex protocols, but they are beyond the scope

of this survey.

6. Relations to complexity theory

We do not know whether one-way or trap-door functions exist, but there Las been
progress in determining the consequences of their existence for complexity theory.
Intuitively speaking, a function fis one-way if fis easy to compute, but its inverse is

difficult to compute.

Brassard [12] has investigated one way of formalizing the definition of a one-way
function. A function ffrom strings to strings is defined to be nice if it is injective,
computable in polynomial time, has its domain in NP and range in co-NP, and is such that
there exists a polynomial p(n) such that whenever z is in the domain of f, |z| < p(|f(2))).
(This last condition insures that the output of f =1 is of length polynomial in the input.)

Examples of nice functions are exponentiation of a primitive root modulo a prime
(whose inverse is the discrete logarithm) and multiplication of primes (whose inverse is

factoring).

A nice function is defined to be weakly one-way if and only if its inverse f~! is not
computable in polynomial time. Brassard shows that if there exists a nice weakly one-way
function then P is a proper subclass of NP N co-NP, so in particular, P 3% NP. One
possible way to give evidence that a nice function might be weakly one-way would be to
show that f~! is NP-hard. However, Brassard also shows that if there exists a nice
function whose inverse is NP-hard, then NP = co-NP.

Even and Yacobi [29] extend this idea and show that an extension of the hypothesis
that NP 5 co-NP implies that if fis computable in polynomial time and is injective, then
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f~!is not NP-hard. In another paper [13], Brassard exhibits a recursive fsuch that f~ lis

hard to compute, even given an oracle for f.

Brassard [14] gives a setting for the asymptotic analysis of a variant of public-key
cryptography he calls transient key cryptography, in which the key and message are
guaranteed to be about the same length, and the key is only used once. He discusses the
need for results concerning general time bounds (instead of polynomial versus
nonpolynomial) and defines the notion of a transient key cryptosystem that achieves a level
of security #(n) — no randomized algorithm that runs in time #(n) can expect to decode
more than an exponentially vanishing fraction of encoded messages of a given length. He
defines transient key cryptosystems relative to an oracle, and demonstrates the existence of

a relativized transient key cryptosystem that achieves a level of “nearly” gn/log n gecurity.

Yao [67] considers two other definitions of a one-way function. One may be used to
construct a “perfect” pseudo-random number generator (see section 4); the other is a strong
one-way function. Roughly speaking, fis a strong one-way function if it is bijective on
some subset of {0,1}‘ and there exists a probabilistic polynomial time computable sequence
of probability distributions p,, p,, P, - , invariant with respect to f, such that the smallest
circuit C, that successfully inverts f with probability greater than 1/2 when the inputs are
drawn according to p, has size exceeding any polynomial in n for all sufficiently large n.

Yao then claims the following exciting theorem: if there exists a strong one-way
function, then

RP C N {DTIME(2") | ¢ > 0}.

(RP is the class of sets recognizable in random polynomial time, that is, by
polynomial time bounded probabilistic Turing machines that accept with probability at
least 1/2 if they accept at all. See Gill’s paper [33] for formal definitions and results.)

Thus, for example, the existence of a strong one-way function would imply the
existence of a better deterministic algorithm for testing primality than any currently

known, since the composites are in RP.

The idea of the proof is that any problem in RP would distinguish random from
pseudo-random sequences if it could be solved using true random bits but not pseudo-
random bits. Assuming that a strong one-way function exists, it may be used to construct
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a pseudo-random number generator that cannot be distinguished by any probabilistic
polynomial time algorithm from a truly random sequence. Thus, the pseudo-random
number generator can be used in place of true random numbers in the simulation of RP

computations with no difference in the outcomes.

What problems are candidates for being strong one-way functions? Yao claims that
the first of the following assumptions is enough to guarantee that factoring will yield a
strong one-way function, and the second is sufficient in the case of the discrete logarithm.
1. Let G(n) be the smallest size of any circuit to factor 4/5 of all 2n-bit numbers
that are the products of two n-bit primes. Assume that G(n) exceeds any
polynomial in n for all sufficiently large n.

2. Let I(n) = maz {Lp" | log(p+1) < n}, where LtM is the smallest size of any
circuit to compute the discrete logarithm with respect to generator g modulo
the prime p. Assume that L(n) exceeds any polynomial in n for all sufficiently
large n.

(Note that the second assumption concerns the worst-case complexity for circuits for

the discrete logarithm that have a knowledge of p and g “built in”.)

The above results point to the difficulty of proving the existence of one-way
functions, since it would entail stronger results about complexity classes than we currently
are able to prove. However, it might be reasonable to try to prove the existence of some
version of one-way functions relative to some plausible complexity assumption, for example,

that NP N co-NP contains sets that are not in BPP. No such results are known at present.

(BPP is the class of sets S such that there is some polynomial time bounded Turing
machine M that for every input either accepts with probability greater than 3/4 or accepts
with probability less than 1/4, and S is the set of inputs M accepts with probability greater
than 3/4. See Gill's paper [33] for definitions and results concerning BPP.)

7. Relative correctness of protocols

Protocols typically involve a sequence of message exchanges between two or more
parties using a particular cryptosystem. The correctness and security of a protocol may
involve protection against cheating by the parties, protection against passive eavesdroppers
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or active saboteurs, and may provide for arbitration procedures in the case of a dispute
between the parties about their adherence to the protocol or its outcome. Protocols are
generally no more secure than the underlying cryptosystem, and may be less so. One

approach to the analysis of more complex protocols is to attempt to prove their security

relative to appropriate assumptions about the security of the basic operations used.

7.1. Algebraic approaches to security

Dolev and Yao [27] have initiated a kind of algebraic approach to the security of
protocols relative to the security of the underlying cryptosystem. They consider adversaries
who are assumed to have the capabilities of legitimate users of the protocols, and also are
able to intercept messages between any two users of the protocols and possibly substitute

their own messages.

As an example of the kinds of problems they wish to detect, consider the following
protocol for A to send a message to B. A sends the triple (4, EB(A'!), B) to B, and B
replies with (B, E ,(M), A). An adversary Z can read the message M simply by
intercepting the message (A, Eg(M), B) and sending the message (Z, Eg(M), B) to B, who
will reply with (B, EJM), Z), allowing Z to read M. This is a case in which Z reads a
message supposed to be secret to him without cracking the underlying cryptosystem,
because of weaknesses introduced by the protocol.

One fix for this is to require signatures on the encrypted messages. The message M
signed by A is denoted MA. The new protocol is for A to send (A, EB(MA), B) to B, who
replies with (B, E (MB), A). This scheme is shown to be secure in the relative sense
defined by Dolev and Yao.

A further elaboration of this scheme is to encrypt the message before signing it, and
then to encrypt it again. Thus, A sends (A, Eg(Ep(M)A), B), and B replies with
(B, E (E(M)B), A). However, Dolev and Yao show this to be insecure as follows. Z
intercepts the message (A, Eg(Eg(M)A), B) and sends to B the message
(Z, E{Eg(M")Z), B), where M* = Eg(M)A B replies with (B, E‘Z(EZ(M’_)B), 2),
allowing Z to recover the encryption Eg(M) from M’. Z now sends to B the message
(Z, E{(Eg(M)Z), B), and B's reply allows him to read M.

Dolev and Yao define cascade protocols, which allow applications of encryption and
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decryption functions, and name-stamp protocols, which also allow the application and
removal of signatures. The notion of security they define for cascade protocols is essentially
whether a message M that is supposed to be secret is obtainable by some party from the
messages and operations available to him in the free algebra over the decryption and
encryption functions, with the cancellation rule that the product of A's encryption and
decryption functions may be cancelled if it occurs in either order. A similar setting is used

for name-stamp protocols.

Dolev and Yao give characterization results for the security of cascade protocols, and
an O(n®) algorithm to test the security of name-stamp protocols. Dolev, Even, and Karp

[26] improve the latter algorithm to O(n3).

This approach has been greatly extended and refined by DeMillo, Lynch, and
Merritt [22]. They give set-theoretic models of the information available to and the
capabilities of each party to a protocol. In their setting, the value of some predicate is
hidden from a party A if there exist two models, both consistent with the information

available to A, in one of which the predicate is true and in the other false.

The basic model is extended to cover stochastic protocols, in which replies are chosen
with certain probabilities. For a given user and a given set of outcomes S, the defensive
weight of S is defined to be the probability of arriving at any outcome from S if he follows
his stochastic protocol against an (omniscient) adversary who always chooses so as to
maximize the probability of arriving at an outcome from S. Thus, the stochastic and
“hidden knowledge” aspects of security are not fully integrated. For example, for the coin
flip they describe, the guarantee to one of the parties is that heads and tails each have
defensive weight 1/2, while for the other party the defensive weight of both outcomes is 1,
and the relevant guarantee is that the knowledge to influence the outcome is hidden from
the first party.

DeMillo, Lynch, and Merritt give formal definitions and proofs of the correctness and
security of protocols for secret ballots, signatures, coin flipping, and oblivious transfer.

They also show a certain problem cannot be solved, namely, totally safe hostage exchange.

These algebraically based definitions of security are useful for proving a minimal kind

of safety for more complex protocols, to avoid the kinds of pitfalls exemplified above.
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However, this approach gives a fairly weak notion of security, since the possible actions of
the eavesdropper or saboteur are restricted to composing known encryption and decryption
functions with known messages, or, in general, to performing one of a known, limited, set of
operations. Also, security in this sense does not rule out partial information about the

secret messages.

7.2. Random cypher models

Hellman, Karnin, and Reyneri [38] propose a model of a random cypher: the
encryption functions E, are random permutations of the message Space; and the
cryptanalyst has access to them by evaluating E(m) and D, (m) for chosen values of k and
m. In this model, the cryptanalyst’s chance of correctly guessing the key k even in a
chosen plaintext attack is very small unless he asks questions about a large fraction of all

possible keys.

A related model is described by Yao in [66], in which the encryption and decryption
functions are randomly chosen permutations of the set of all strings of length n, and each
party has access to an oracle for his own encryption and decryption permutations and the
encryption permutations of the others. Protocols are probabilistic algorithms, and the
number of oracle calls used by each party is bounded by a polynomial in n. Thus, each
party can only evaluate the permutations on a negligible portion of their domains.
Definitions and theorems are given relative to this model of a cryptosystem for the security
of protocols for two parties A (which has the secret value ) and B (which has the secret
value j) to cooperate to compute some function f(s,7) without revealing much more

information about § and j than the value of f(s,).

8. Remarks
The progress in provable security sketched in the preceding sections is truly exciting;

however, it is important to look as well at the problem areas that remain to be addressed.

One obvious point is the overwhelming reliance on number theoretic problems. For
example, if factoring should prove to be probabilistically solvable in polynomial time even
for a significant subset of composites of the form N = pq, the protocols based on the
difficulty of quadratic residuosity, the RSA function, and factoring may be severely or
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fatally compromised. On the other hand, there are practical objections to systems based on
arithmetic modulo very large numbers as too slow for applications involving very much

data.

Both considerations suggest that we should search for other types of computational
problems to serve as bases for cryptographic protocols. Yao [67] has made a start in this
direction by giving abstract constructions of secure pseudo-random sequence generators and
encryption systems from functions with certain properties. To gain some greater assurance
that the types of functions required actually exist, it would be desirable to prove their

existence relative to the weakest complexity assumption possible.

One problem area already mentioned is the attempt to move away from the
distinction of polynomial versus nonpolynomial toward more general resource/success

tradeoffs.

Another area that has not received very much theoretical attention is the larger
systems environment of the proposed protocols. What sorts of guarantees must there be on
provisions for establishing public keys, for disavowing compromised signatures, and various
other “meta-functions” in order for a particular protocol to remain secure? See

[8, 32, 50, 54] for some interesting criticisms and issues along these lines.

The last problem area is a related one, namely, a methodology for a modular
approach to the construction and verification of the correctness and security of more
complex protocols out of simpler ones. Most of the rigorous proofs of relative security that
have been given are for fairly simple protocols, but the proofs themselves are rather
complicated. Proofs about more complex protocols, or interacting systems of protocols, will
probably require a modular approach even to be feasible. As part of this effort, it would be
useful to have general formal specifications of the security and correctness of protocols for

various cryptographic problems.
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