Learning Propositional Horn Sentences
With Hints

Dana Angluin®, Yale University

YALEU/DCS/RR-590
December 1987

*Supported by the National Science Foundation, IRI-8404226

Learning Propositional Horn Sentences With Hints

Dana Angluin *
Yale University

December 1987

Abstract

We demonstrate a simple polynomial time algorithm for learning positive acyclic
propositional Horn sentences using equivalence queries and a new type of query called a
“request for a hint”. The basic algorithm is modified to be incremental, and to handle
the non-positive case. Suggestions for the cyclic case are offered. For the special case
of positive Horn sentences with two literals per clause, the learning problem is recast
as a problem of diagnosing “errors” in directed graphs.

1 Introduction

This paper is part of an effort to use reasonable kinds of additional information to construct
efficient learning algorithms. In [5] we introduced a classification of types of queries for
concept learning consisting of membership, equivalence, subset, superset, disjointness, and
exhaustiveness queries. It is an open problem whether there is a polynomial time algorithm
to learn concepts described by propositional Horn sentences, even if all of these types of
queries are available. In this paper we show that there is a simple polynomial time algorithm
to learn acyclic propositional Horn sentences if an additional type of information, called a
“hint”, is available.

A hint consists of an intermediate point in a derivation using the unknown sentence. It
may be interpreted as a partial explanation of why the result of the derivation follows from
the assumptions of the theory. The notion of a hint is described and defended at greater
length below.

We also argue that it is reasonable to let positive and negative examples be clauses rather
than truth-value assignments. In practice certain clauses are “meaningless”; we show how
our learning algorithm avoids them. In the case of positive Horn sentences with exactly two
literals per clause, we recast the problem as one of diagnosing “errors” in directed graphs.
For acyclic directed graphs there is an efficient debugging algorithm, described in [1].

*Supported by NSF grant IRI-8404226

2 Preliminaries

2.1 Propositional Horn sentences

Let V be a finite set of variables. A literal is an element of V' or the negation of an element
of V.. The negation of a is denoted —a.

A Horn clause is a disjunction of a set of literals that contains at most one positive
literal. We will use the term “clause” to mean Horn clause throughout the paper. A Horn
clause that contains a positive literal is called positive. A Horn clause that contains no
positive literal is called negative.

A Horn sentence is a conjunction of a set of Horn clauses. A Horn sentence is positive
if and only if it contains only positive clauses. The size of a Horn sentence is the number
of occurrences of literals in the sentence.

If ¢ and ¢' are Horn sentences, we use ¢ - ¢' to mean that ¢ logically implies ¢, that
is, there is no assignment of truth values to the variables V' such that ¢ is true and ¢’ is
false.

The following is a Horn sentence over the variables {a,b, c,d, e}:

(@)A(mav—-bVe)A(mecVd)A(-aV—dVe)A(-dV —e).

Note that this sentence is not positive, since it contains the negative clause (—d v —e). The
size of this sentence is 11.

By the usual rules of logic, the clause (—a Vv —b V ¢) is equivalent to the implication
(aAb— ¢). It is convenient to represent all the clauses as implications, so we introduce the
constant symbol T for the value true, and L for the value false. Then the clause (a) may
be rewritten as (T — a), and (—~d V —e) may be rewritten as (dAe —).

Thus we can rewrite the above formula as

(Toa)A(aAb—=c)A(c—od)A(and—>e)A(dAe— 1).

A positive Horn sentence can be rewritten as implications without using L.

If C is a Horn clause, the antecedents of C is the set of variables that occur negated in
C. If C is a positive Horn clause, the consequent of C is the (unique) variable that occurs
unnegated in C. In the clause (a A b — c), the antecedents are the variables a and b, and
the consequent is the variable c¢. In the clause (T — a) the antecedents are the empty set
and the consequent is a. If A is a set of variables and z is a variable, we denote the Horn
clause with antecedents A and consequent z by (A — 2).

We define the graph of a Horn sentence ¢ to be a directed graph whose nodes are the
variables appearing in ¢. There is an edge from variable a to variable b in the graph if and
only if there is a clause of ¢ in which a is among the antecedents, and b is the consequent.
A Horn sentence is acyclic if its graph of is acyclic, that is, contains no directed cycles.

If ¢ is an acyclic Horn sentence, the topological ordering of its graph is the ordering in
which a precedes b if and only if there is a directed path of one or more edges from a to b in
the graph. This ordering is transitive, anti-reflexive, and anti-symmetric. The depth of an
acyclic Horn sentence is the maximum number of edges in any directed path in its graph.

The graph of the sentence

(T—a)A(aAb—oc)A(c—d)A(aAd—e)A(dAe— 1).

has the edges
(a,¢), (b,¢),(c,d), (a,€),(d,€)

and is acyclic. In this graph, a precedes ¢, d, and e, but neither a nor b precedes the other.
The depth of this sentence is 3; the directed path from a to ¢ to d to e has three edges.

2.2 Molly’s problem

What good are propositional Horn sentences? They are a toy model of the language Prolog,
whose pure part consists of Horn clauses in the predicate logic. They are computationally
more tractable than general conjunctive normal form propositional sentences, in that there
are polynomial time sequential algorithms to decide the satisfiability and equivalence prob-
lems. (However, the satisfiability problem is log-space complete for polynomial time, so
there is unlikely to be a poly-log parallel time algorithm for either of these problems [20].)

We give an example of the use of propositional Horn sentences. Imagine that you have
become acquainted with an alien named Molly from the planet Orand, who is currently
employed in a daycare center. She is quite good at propositional logic, but a bit weak on
knowledge of Earth. So you decide to formulate the beginnings of a propositional theory to
help her label things in her immediate environment. The clauses you devise are as follows.

1. two_wheels A one_seat A pedals — bike.
two_wheels A no_seat — scooter.
three_wheels A one_seat A pedals — trike.
four_wheels A doors A few_seats — car.
four_wheels A doors A many_seats — bus.
four_wheels A handle A no_seats — wagon.
scooter — toy.

wagon — toy.

© ©® N o o h W N

trike — toy.

[y
o©

bike A small _size — toy.

-
[

. bike A medium_size — vehicle.

[y
[

. car — vehicle.

et
[

. bus — vehicle.

[y
>

. toy — object.
15. vehicle — object.

The conjunction of all these clauses is a Horn sentence, say ¢,,. It is acyclic and positive,
and has size 43 and depth 3. One clause logically implied by ¢,, is

(two_wheels A one_seat A pedals A small size — toy).
A clause that is not logically implied by ¢,, is
(two_wheels A one_seat — toy).

If you find that Molly calls motorcycles “toys”, it might be because her incorrect version of
the theory implies this clause.

It seems reasonable to present positive and negative exa.rnples of the theory ¢,, in terms
of clauses implied by and not implied by the theory, rather than by truth-value assignments
that do or do not satisfy the sentence ¢,. A further discussion of this issue appears in
Appendices A and B.

This little theory also illustrates the issue of “meaningfulness”. Suppose at some point
in acquiring the theory ¢, Molly asks you whether the clause

(two_wheels A three_wheels — toy)

is implied by the correct theory. Of course the correct answer is “no”, but such queries are
unsettling. The reason is that the conjunction of the antecedents,

(two_wheels A three_wheels),

is in practice always false, though nothing in the logical theory presented captures that.
In the abstract treatment we assume that the structure of “meaningful” situations is

specified by a collection of those sets of variables that can be simultaneously true in the

intended semantic domain. Given some reasonable conditions on that collection, we show

that our learning algorithm will stick to “meaningful” queries.

2.3 Deriving clauses from Horn sentences

We need a fairly detailed understanding of derivations.
The procedure Forward-Chain(¢, A)

Forward-Chain takes as input a positive Horn sentence ¢ and a set of variables A. The
output is the set of those variables z such that ¢ logically implies the clause (A — z).

1. Initialize T = A.

2. If there is any clause C' of ¢ whose antecedents are all in T and whose consequent is
not, add the consequent of C' to T and repeat this step.

3. Otherwise, stop and output T'.

Lemma 1 Let ¢ be any positive Horn sentence and let C = (A — z) be any positive Horn

clause. Then ¢ C if and only if z is in the set output by Forward-Chain on inputs ¢ and
A.

We first show by induction that every z placed in T has the property that ¢ logically
implies the clause (A — z). That is clearly true after the initialization of T', when it contains
just the variables of A.

Suppose it is true just before the variable z is added to T. Then there is a clause C'
in ¢ whose antecedents are in T' and whose consequent is z. Thus, whenever ¢ and the
variables in A are true, all the variables in T must be true, and so z must be true as well.
Thus, ¢ logically implies the clause (A — z), which completes the induction.

Conversely, let X denote the set of variables output when Forward-Chain is run with
inputs ¢ and A, and suppose z ¢ X. Consider the truth-value assignment that assigns true
to all the variables in X and false to all other variables in V. This assignment assigns true
to all the variables of A, and false to z, so it assigns false to the clause C. If C' is any
clause of ¢, then either all its antecedents are assigned true and its consequent is assigned
true, or some of its antecedents are assigned false. Thus, every clause of ¢ is assigned the
value true by this assignment, so ¢ is also assigned true. Thus ¢ I/ C, since this assignment
makes ¢ true and C false. Q.E.D.

It is clear that Forward-Chain can be implemented in a straightforward way to run in
time polynomial in the size of ¢ and |A|. A modification of this procedure takes a clause C
logically implied by ¢ and constructs a derivation-DAG of C from ¢, defined next.

A derivation-DAG of a clause C = (A — z2) from ¢ is a directed acyclic graph that
satisfies the following properties. Its nodes are a subset of V. The variable z is the unique
node of out-degree zero, called the sink. For every node z, there is a directed path from z to
z. The nodes of in-degree zero, called the sources, are a subset of A. For every non-source
node z, if the set of nodes with edges into z is S then the clause (S — z) is in ¢.

Note that for every node z in a derivation-DAG of C from ¢, ¢ logically implies the
clause (A — z). The condition that there be a directed path from any node z in the graph
to z means that all the intermediate nodes are actually used in the derivation of C.

Lemma 2 Suppose ¢ is a positive acyclic propositional Horn sentence, and C a clause such
that ¢ - C. Let D be a derivation-DAG of C from ¢. If there is a directed path of length
k> 1 from x toy in D, then there is a directed path of length k from x to y in the graph of
é.

This is proved by induction on the length of the path in D. If the path is of length one,
then there is a clause of ¢ with z in the set of antecedents and y as the consequent, so there
is an edge from z to y in the graph of ¢.

Assume that for any pair z and y such that there is a path of length n > 1 from z to
y in D, there is a path of length n from z to y in the graph of ¢. Suppose that there is a
path of length n + 1 from z to y in D.

In D there must be a node w such that there is a path of length n from z to w and an
edge from w to y. By the inductive assumption, there is a path of length n from z to w in
the graph of ¢. Also there must be a clause of ¢ such that w is in the set of antecedents
and the consequent is y. Thus, there is an edge from w to y in the graph of ¢, and a path
of length n + 1 from z to y in the graph of ¢, which completes the induction. Q.E.D.

2.4 M-equivalence -

We now introduce a modification of the notion of logical equivalence, to be used in formally
specifying “meaningfulness”. Let M be any collection of subsets of the set V' of variables.
A clause C is defined to be M-meaningful if and only if the set of antecedents of C is in M.
A clause is M-meaningless if it is not M-meaningful.

Two Horn sentences ¢; and ¢, are defined to be M-equivalent if and only if for every
M-meaningful clause C, ¢; - C if and only if ¢2 - C.

Clearly, if ¢1 and ¢ are logically equivalent, then they are M-equivalent for any M. If
M is the set of all subsets of V' and ¢; and ¢ are M-equivalent, then they are logically
equivalent. If M does not contain all subsets of V', then M-equivalence does not imply
logical equivalence, as the following example illustrates.

Let
M= {6, {a}, {6}9 {c}’ {a: b}}

Then (a — b) is M-equivalent to (a — b) A (b A c — a), although they are not logically
equivalent.

2.5 Meaning structures

We now describe the additional conditions a meaning structure must meet. A meaning
structure is defined with respect to a positive propositional Horn sentence ¢.

Let M be a collection of subsets of the set V' of variables. M is a meaning structure
for ¢ if and only if it is closed under subset and implication with respect to ¢. That is,
if S € M and S' is a subset of S, then S' € M. And if S € M and there is a clause C
implied by ¢ such that the antecedents of C are in S, then (S U {z}) € M, where z is the
consequent of C.

The intuition is that M specifies all the sets of variables that can be simultaneously true
in practice. Then the first condition just says that a subset of a set of variables that can
be simultaneously true can also be simultaneously true. The second condition says that if
all the antecedents of a clause implied by ¢ can be simultaneously true, then they can be
simultaneously true with the consequent.

In the example of Molly’s problem, the meaning structure would contain all the subsets
of {two_wheels, pedals, one_seat, small size, bike, toy, object}, together with other sets, but
would not contain any superset of {two_wheels, three_wheels}.

Lemma 3 Let ¢ be a positive propositional Horn sentence and M be a meaning structure
for ¢. If ¢' is obtained from ¢ by removing all the M-meaningless clauses, then ¢ and ¢'
are M-equivalent.

Clearly ¢ implies ¢, so assume that ¢ - C for some M-meaningful clause C = (A — 2).
Then there is a derivation-DAG D for C from ¢. We argue that each of the clauses of ¢
used in D is M-meaningful, and hence in ¢'.

We argue by induction on the topological ordering of D that the set of all its nodes
is M-meaningful. The sources are a subset of A, which is M-meaningful because C is a
meaningful clause and M is closed under subset.

Inductively assume S is the set of all nodes preceding z in the topological ordering of
D, and assume that S is M-meaningful. Then there is a clause C' of ¢ such that the
consequent of C' is z and the antecedents of C' are contained in S, so by closure of M
under implication with respect to ¢, S U {z} is also in M.

This completes the induction and shows that every clause used in D is M-meaningful,
and hence in ¢'. Thus D is also a derivation-DAG of C from ¢', so ¢' - C, as claimed. Thus,
for every M-meaningful clause, ¢ - C if and only if ¢' - C, so ¢ and ¢' are M-equivalent.
Q.E.D.

3 Formalization of the learning problem

We assume that there is an unknown propositional Horn sentence ¢, to be learned using
the information available from two types of queries: M-equivalence queries and requests for
a hint. We assume initially that ¢, is acyclic and positive, and show how to remove these
restrictions later. .

We assume also that there is a fixed meaning structure M associated with the sentence
¢. to be learned. The meaning structure is unknown to the learning algorithm. The goal
of the learning algorithm is to output a sentence ¢ that is M-equivalent to the unknown
sentence ¢,.

3.1 The two types of queries

M-equivalence queries. The first type of query is an M-equivalence query. The learning
algorithm proposes a positive Horn sentence ¢. If ¢ is M-equivalent to ¢., the answer to
this query is yes. Otherwise, the answer is no. In this case the answer also contains a
. counterezample, that is, an M-meaningful clause C that is implied by ¢. and not by ¢ or
vice versa. If C is implied by ¢., it is called a positive counterexample. If C is implied by
¢, it is called a negative counterexample. The choice of counterexample is arbitrary; the
learning algorithm must work no matter what counterexample is returned.

Request for hint queries. The second type of query is a request for a hint. In this case,
the learning algorithm proposes a positive clause C = (A4 — z). If C is M-meaningful, then
the query is answered as follows. If ¢, does not logically imply C, the reply is simply no. If
there is a clause C' of ¢, such that its consequent is z and its antecedents are a subset of A4,
the reply is one step. Finally, if neither of these conditions obtains, the reply is a variable z
which is neither in A nor equal to z and which occurs in some derivation-DAG for C from
¢.. In this last case, the variable z is called the hint returned by the query. The choice
of hint is arbitrary; the learning algorithm must work no matter what hint is returned. If
the clause C is not M-meaningful, then any answer is legal: no or one step or any variable
from V. Thus the reply is informative only in case C is a meaningful clause.

Comments. An M-equivalence query is simply an equivalence query in the sense of [5], if
Horn sentences are taken to denote the set of M-meaningful clauses they imply. However,
a request for a hint is a new type of query, intended to evoke a kind of partial explanation
of why some consequence z follows from some set of assumptions A in the theory ¢.. The

7

reply one step means that the implication follows in one step from the theory. Otherwise,
we are given a hint, that is, an intermediate point in the derivation of z from A using ¢..

A discussion of the relationship between equivalence queries and stochastic equivalence
may be found in [5]. Littlestone [26] shows the close relationship between bounds on equiv-
alence queries and errors of prediction.

4 The learning algorithm

4.1 A brute-force method

One simple approach to learning in this situation, which dispenses with the need for requests
for hints, is the following. Initially set the current hypothesis to the empty sentence, T. Do
an M-equivalence query with the current hypothesis. If the answer is yes, stop and output
the current hypothesis. Otherwise, there will be a positive counterexample C; conjoin C to
the current hypothesis and repeat. However, it is shown in [5] that such an approach may
take time exponential in the size of the unknown sentence ¢,.

Moreover, we show in Appendix B that if A is any algorithm that learns Horn sentences
from equivalence queries (with clauses as counterexamples), then A may be transformed
with little overhead to predict acyclic circuits. This makes it unlikely that any such A can
run in polynomial time.

4.2 The learning algorithm HL

The procedure we now describe, HL, uses M-equivalence queries and requests for hints to
find a sentence M-equivalent to ¢, in time polynomial in [V'| and the size of ¢,. We begin
by describing two useful subprocedures.

The procedure Reduce(C)

The input is an M-meaningful clause C = (A — z) such that a request for a hint with
C as input returns the answer one step. The output is a subset of C that is equal to a
clause of ¢,. The method is a greedy search for a minimal subset of the antecedents of C
which preserves the condition that the clause be derivable in one step using ¢..

1. Let T = A.

2. While there exists an element z € T such that a request for a hint query with the
clause ((T — {z}) — z) is answered one step, set T =T — {z}.

3. Return the clause (T — z).

Lemma 4 Suppose the input to Reduce is an M-meaningful clause C = (A — z) such that
a request for a hint with C as input returns the answer one step. Then the output of Reduce
18 an M-meaningful clause C' = (A’ — z) such that A’ is a subset of A and C' is a clause
of ¢.. Reduce runs in time bounded by a polynomial in the size of C, and every request for
a hint query it makes is with an M-meaningful clause.

T is initially A and remains a subset of A. Since C is M-meaningful and M is closed
under subset, every request for a hint is with an M-meaningful clause. Thus every request
for a hint is answered correctly.

Since every element of A is removed from T at most once, this procedure must terminate
after at most |A| iterations. The value returned is an M-meaningful clause C' = (T — z)
such that a request for a hint with this clause as input is answered one step, and if T" is
obtained from T by removing any element, then a request for a hint with (7% — z) is not
answered one step. Thus C' is equal to a clause of ¢,. A straightforward implementation
of Reduce clearly runs in time polynomial in the size of C. Q.E.D.

The procedure Find-Missing(C)

The procedure Find-Missing takes as input an M-meaningful clause C = (A — z) that
is implied by ¢. but not by ¢, and returns an M-meaningful clause C' that is in ¢, but not
implied by ¢.

1. Make a request for a hint with the clause C. If the reply is one step, then return
Reduce(C).

2. Otherwise, if the reply is a hint z, call Forward-Chain(¢, A), and let X denote the set
of variables returned.

3. If z is not in X, then let C' = (A — z), and return Find-Missing(C").
4. If z is in X, then let C' = ((AU {z}) — 2), and return Find-Missing(C').

Lemma 5 If the procedure Find-Missing is called with an M-meaningful clause C such that
¢. implies C and ¢ does not imply C, then it will return a clause C' in ¢, that is not implied
by ¢. Find-Missing runs in time bounded by a polynomial in |V| and the size of ¢. Every
request for a hint query made by Find-Missing is with an M-meaningful clause.

Assume that Find-Missing is called with an M-meaningful clause C = (A — 2) such
that ¢, - C and ¢ I/ C. Thus A is in M. We show that if there is a recursive call, it is with
an M-meaningful clause C' such that ¢, - C and ¢ I/ C.

Suppose the hint z is returned by the request for a hint in step (1). We know that ¢,
implies the clause (A — z). Since A is in M, AU {z} is in M by closure under implication
with respect to ¢.. Thus, both A and AU {z} are in M, so a recursive call in step (3) or
step (4) must be with an M-meaningful clause C'.

If a recursive call occurs from step (3), it is with the clause C' = (A — z). Clearly
é. F C'. However, z & X, so by the correctness of the Forward-Chain procedure, ¢ I/ C'.

If a recursive call occurs from step (4), then it is with the clause C' = ((AU {z}) — 2).
Clearly ¢, - C', since ¢, - C and C - C'. In this case, z € X, which means that ¢ implies
the clause (A — z). If ¢ also implied C' then ¢ would imply the clause (A — z), that is,
would imply C, contrary to hypothesis. Thus in this case also, ¢ If C'.

Since every recursive call is with an M-meaningful clause, every request for a hint query
made by Find-Missing is with an M-meaningful clause.

If Find-Missing halts, it is with the value Reduce(C), where the request for a hint with
input C in step (1) returns the value one step. By the correctness of the procedure Reduce,
Reduce(C) is a clause C' of ¢,. By the input conditions, ¢ If C, so ¢ If C' (since C' - C).
Hence if Find-Missing terminates, it returns a clause that is in ¢, but not implied by ¢.

We must establish that Find-Missing will terminate. Here we finally use the assumption
that ¢. is acyclic. When a hint z is returned, it is a node in some derivation-DAG of
C = (A — z) from ¢., so there is a directed path of positive length from z to z in the
derivation-DAG. Hence z precedes z in the graph of ¢, by Lemma 2. Then z becomes either
the consequent of the new clause C' or one of the antecedents of the new clause C’.

In either case, z cannot be returned as a hint again, since the set of antecedents is
non-decreasing (with respect to set inclusion) and the consequent is non-increasing (with
respect to the topological ordering of the graph of ¢,.) Hence each variable can be returned
as a hint at most once per top-level call of Find-Missing, so a top-level call of Find-Missing
must terminate after making at most |[V'| — 1 recursive calls.

It is clear that the procedure Find-Missing can be implemented to run in time polynomial
in |V|. Q.E.D.

Note that one call to Forward-Chasin suffices per top-level call of Find-Missing, since the
variables added to the antecedents are implied by the antecedents according to ¢. We now
come to the top-level learning algorithm.

The procedure HL
1. Initialize ¢ = T.
2. Make an M-equivalence query with ¢. If the reply is yes, output ¢ and halt.
3. Otherwise, the reply is an M-meaningful clause C implied by ¢, but not by ¢.
4. Let C' be the clause returned by Find-Missing(C), set ¢ = ¢ A C', and go to step 2.

Theorem 6 The procedure HL finds a positive Horn sentence ¢ that is M-equivalent to
#. and runs in time polynomial in the size of ¢, and the number of variables, |V|. Every
request for a hint query made by HL is with an M-meaningful clause.

We first show by induction that ¢ always consists of a conjunction of a subset of the
clauses of ¢,. This is clear when ¢ = T, since T is the conjunction of no clauses, which is
vacuously a subset of the clauses of ¢..

Assume ¢ is a conjunction of a subset of the clauses of ¢., and assume a counterexample
C is returned by the M-equivalence query in step (2). Then C must be M-meaningful and
implied by ¢. but not by ¢ (since ¢. - ¢.) Thus, by the correctness of the procedure
Find-Missing(C), the clause C' added to ¢ must be in ¢, but not in ¢. Hence ¢ remains a
conjunction of a subset of the clauses of ¢..

Once a clause is added to ¢, it is never removed, so new clauses can be added to ¢ at
most r times, where r is the number of clauses in ¢,. Hence, HL must terminate after at

10

most r M-equivalence queries and calls to Find-Missing, and when it terminates its output
must be M-equivalent to ¢..

Since Find-Missing runs in time polynomial in |[V'| and the size of ¢, and the size of ¢
is bounded above by the size of ¢, at all times, HL runs in time bounded by a polynomial
in |V| and the size of ¢..

Each subprocedure called by HL makes request for hint queries with M-meaningful
clauses only, so this is also true of HL. Q.E.D.

4.3 Example of HL

We give an example to illustrate how HL and its sub-procedures work. Imagine that Molly
is using the algorithm HL to acquire the theory ¢, from you, and the value of ¢ is currently
the conjunction of the following clauses.

1. three_wheels A oneseat A pedals — trike.
2. two_wheels A one_seat A pedals — bike.
3. trike — toy.

4. toy — object.

In response to an M-equivalence theory, you propose the following clause as a positive
counterexample, that is, implied by ¢,, but not by ¢.

two_wheels A oneseat A pedals A small size — object.

The procedure Find-Mzissing is invoked with this clause as input. A request for a hint is
made with this clause as input. Since the clause is derived from ¢,,, but not in one step, you
reply with “bike” as an intermediate point in the derivation. The Forward-Chain procedure
is used to derive from the antecedents

{two_wheels, one_seat, pedals, small size}
the consequences
{two_wheels, one_seat, pedals, small_size, bike}

according to the theory ¢. Since “bike” is already in this set, there is a request a hint with
the clause

two_wheels A one_seat A pedals A small_size A bike — object.

You reply with an intermediate point in the derivation of this clause, for example, “toy”.
Since this is not in the set returned by Forward-Chain, there is a request for a hint with
the clause

two_.wheels A one_seat A pedals A small size A bike — toy.

This is derived in one step using ¢., since it is subsumed by the clause

11

bike A small_size — toy.
Thus the reply is one step, and the sub-procedure Reduce is called with the clause
two_wheels A one_seat A pedals A small_size A bike — toy. '
The next request for a hint is with the clause
one_seat A pedals A small size A bike — toy.

This is answered one step.
The process of dropping variables from the antecedents continues until the clause

small_size A bike — toy

is returned by Reduce, then by Find-Mzissing, and finally is conjoined to the theory ¢.

5 Improvements to HL

In this section we discuss various methods to make HL more robust and to extend the scope
of its applicability.

5.1 Incremental learning

Imagine again that Molly is using the algorithm HL to learn the propositional Horn theory
¢w from you. Things are going along fine until you suddenly realize that you’ve made an
error in answering her queries, and she has mistakenly acquired the clause

(two_wheels A one_seat — toy).

How to get rid of the offending clause? There is no provision for removing clauses in the
algorithm HL, so you reluctantly tell her to forget all she’s learned about ¢,, and begin the
learning process from scratch again.

A realistic learning procedure needs to be incremental in the sense that if it is started
with a “nearly” correct theory, the amount of work to get to a correct theory is “small”.
Hence we add a new procedure to find incorrect clauses, analogous to Shapiro’s procedure
to find incorrect clauses in Prolog programs [35].

The procedure Find-Incorrect(C)

The input is an M-meaningful clause C that is implied by the current hypothesis ¢,
but not by ¢.. The output is an M-meaningful clause C' that is in ¢ but is not implied by
¢+. The method is to test the clauses in some derivation of C from ¢ one by one until an
incorrect clause is found.

1. Find a derivation-DAG D of C from ¢. Let T be the source nodes of D and G the
graph D with its source nodes removed.

2. Remove any source node z from G and let S; be the set of nodes of D with edges into
z.

12

3. Use a request for a hint query to determine whether ¢. - (S; — z).
4. If ¢, If (Sz — z), then return the clause (S; — z).

5. If ¢. I (Sz — z), then add z to T and continue at step (2) with the next element of
G.

Lemma 7 IfC is an M-meaningful clause implied by ¢ but not ¢., then Find-Incorrect(C)
returns an M-meaningful clause C' that is in ¢ but not implied by #.. The procedure runs
in time bounded by a polynomial in |V| and the size of ¢. Every request for a hint query
made by Find-Incorrect is with an M-meaningful clause.

Assume that C is an M-meaningful clause implied by ¢ and not by ¢,. A modification
of the procedure Forward-Chain will find a derivation-DAG D of C from ¢ in time bounded
by a polynomial in the |V| and the size of ¢. D contains at most |V'| nodes.

We show by induction that the set T is in M throughout the running of the procedure.
The source nodes of D are a subset of the antecedents of C, and since C is M-meaningful,
the set of source nodes of D isin M. Thus T is in M after the initialization in step (1).

Inductively assume that T is in M and suppose another element, z, is to be added to T
in step (5). Because the nodes are processed in topological order with respect to D, the set
S, of nodes with edges into z is a subset of T' at this point. Moreover, ¢, - (S; — z). Since
T is in M by the induction hypothesis, and M is closed under implication with respect to
#., (T U {z}) is also in M. Thus, T remains in M after the execution of step (5).

Since every request for a hint is made with a clause whose antecedents are a subset of T,
every request for a hint is made with an M-meaningful clause, so the answers are correct.

Each non-source node z of D is considered at most once. If z is considered, the clause
C' = (S, — z) is formed, where S; is the set of nodes of D with edges into z. This is
a clause of ¢ because D is a derivation-DAG with respect to ¢. C' is tested to see if it
is implied by ¢,. If it is not, then it is a clause of ¢ that is not implied by ¢., and it is
correctly returned in step (4).

Suppose this procedure tests all the non-source nodes of D and finds that every clause
tested is implied by ¢.. Then the clause C is implied by ¢,, contrary to the input conditions.
Thus, Find-Incorrect must eventually return a clause C' that is in ¢ but not implied by ¢..

Since each non-source node of D is considered at most once, there are at most |V | — 1
clauses tested before this procedure returns a clause C'. Hence the total running time of
this procedure is bounded by a polynomial in the size of ¢ and |V|. Q.E.D.

Note that Find-Incorrect uses the request for hint queries in a restricted way; in the
terminology of [5], restricted superset queries suffice in this procedure.

We now modify the procedure HL so that it takes as input a positive Horn sentence ¢
and uses M-equivalence queries and calls to Find-Missing and Find-Incorrect to “correct” ¢
until it is M-equivalent to ¢.. The modified procedure is called IHL, for Incremental Horn
Learner.

The procedure IHL(¢)

1. Make an M-equivalence query with ¢. If the reply is yes, output ¢ and halt.

13

2. Otherwise, the reply is an M-meaningful clause C that is a counterexample.

3. If C is a positive counterexample then let C’ be the clause returned by Find-Missing(C),
set ¢ = ¢ A C', and go to step 1.

4. If C is a negative counterexample then let C' be the clause returned by Find-Incorrect(C),
remove C' from ¢, and go to step 1.

We quantify the performance of this algorithm using a measure of how “close” the initial
theory ¢ is to the correct theory ¢..

Define a clause C to be incorrect if it is M-meaningful and not implied by ¢,. Clearly
no such clause may appear in ¢ if it is to be M-equivalent to ¢.. Let i(¢) be the number of
incorrect clauses in ¢. Define the correct part of ¢, denoted c(¢) to be the sentence which
is the conjunction of all the clauses C in ¢ that are not incorrect. Note that ¢ I ¢(¢).

Define a clause C to be missing with respect to ¢ if it is M-meaningful and implied by
&+ but not by ¢(¢). Let m(¢) be the number of clauses in ¢, that are missing with respect
to ¢. The reason for defining this with respect to just the correct part of ¢ is that there
may be some very “powerful” incorrect clauses in ¢, which would mask just how much is
missing from ¢.

The measure of how “close” ¢ is to the correct theory ¢, is

d(¢) = i(¢) + m(4).

The smaller this number is, the closer ¢ is to ¢,. In particular, if this number is zero, the
two theories are M-equivalent.

Lemma 8 If ¢ and §. are positive Horn sentences then d(¢) = O if and only if ¢ is M-
equivalent to ¢,.

If ¢ is M-equivalent to ¢., then for every M-meaningful clause C, ¢ - C if and only if
¢. - C. For every M-meaningful clause C in ¢, ¢, I C, so there are no incorrect clauses in
¢ and (@) = 0. Moreover, ¢(¢) = ¢, and for every M-meaningful clause C in ¢., ¢ - C, so
¢(@) F C and m(¢) =0. Thus, d(¢) =0.

Conversely, suppose ¢ is not M-equivalent to ¢,. Then there is an M-meaningful clause
C such that ¢, F C and ¢ I/ C, or vice versa.

If . - C and ¢ If C, then by the correctness of the Find-Missing procedure, if it is
called with C as input, the output is an M-meaningful clause C' in ¢, such that ¢ i/ C'.
Since ¢ I ¢(9), ¢(¢) i/ C', so m(¢) > 0.

If ¢. ¥ C and ¢ I C, then by the correctness of the Find-Incorrect procedure, if it is
called with C as input, the output is an M-meaningful clause C' in ¢ such that ¢, I/ C’, so
i(¢) > 0.

Thus in either case, d(¢) > 0. Hence if d(¢) = O then ¢ is M-equivalent to ¢,. Q.E.D.

Now we come to the analysis of IHL

14

Theorem 9 Suppose the correct sentence ¢, is a positive acyclic Horn sentence. Let the
tnput to JIHL be the positive Horn sentence ¢. The output will be a positive Horn sentence
M -equivalent to ¢.. IHL runs in time bounded by a polynomial in the sizes of ¢ and ¢, and
the number of variables, |V'|. IHL makes at most d(¢) + 1 M-equivalence queries. Every
request for a hint 18 with an M-meaningful clause.

If IHL ever halts, its output is a positive Horn sentence because ¢ is initially a positive
Horn sentence, and Find-Missing returns only clauses from ¢. to be added to ¢. It is clear
that if JHL ever halts, its output is M-equivalent to ¢,. Since IHL calls Find-Missing and
Find-Incorrect with M-meaningful clauses that satisfy their respective input conditions,
every request for a hint is with an M-meaningful query.

To bound the running time of IHL, note that for each M-equivalence query that is
answered no, there will be a call to Find-Incorrect or to Find-Missing.

A call to Find-Incorrect returns an M-meaningful clause C' that is in ¢ but not implied
by ¢., and C' is then removed from ¢. That is, an incorrect clause if removed from ¢. This
operation decreases i(¢) by one.

A call to Find-Missing returns an M-meaningful clause C' of ¢, that is not implied by
#, and this clause is added to ¢. This operation decreases the number of M-meaningful
clauses in ¢, that are not implied by c(¢) by at least one. That is, it decreases m(4) by at
least one.

Since no incorrect clause is ever added to ¢ by JHL, the number ¢(¢) can never increase.
The only clauses ever deleted from ¢ are incorrect, so the set of clauses in the correct
part of ¢ is monotonically non-decreasing with respect to set inclusion. Thus, once an
M-meaningful clause of ¢. is implied by ¢(¢), it will continue to be implied by ¢(¢) in
subsequent iterations. Hence m(¢) can never increase.

Thus, the quantity d(¢) can never increase, and is decreased by at least one for each
M-equivalence query that is answered no. Hence, after at most d(¢) calls to Find-Missing
and Find-Incorrect, the procedure IHL must arrive at formula ¢ that is M-equivalent to
#«. Thus there are a total of at most d(¢) + 1 M-equivalence queries made before IHL
terminates with a correct answer.

Each call to Find- Missing runs in time polynomial in |V'|, and each call to Find-Incorrect
runs in time polynomial in the size of ¢ and |V'|. Since m(¢) is bounded by the size of ¢,
and #(¢) is bounded by the size of ¢, it is clear that the total running time of IHL is bounded
by a polynomial in the sizes of ¢., ¢, and |V|. Q.E.D.

Note that in the case that the input sentence ¢ is the empty sentence, T, Find-Incorrect
is never called, and this procedure reduces to HL.

5.2 An example of IHL

A brief example will illustrate JHL and Find-Missing. Suppose the target theory is ¢,, and
the current value of ¢ is the conjunction of the following clauses.

1. three_wheels A one_seat A pedals — trike.

2. two_wheels A one_seat A pedals — bike.

15

3. trike — toy.
4. bike — toy.
5. toy — object.

Note that clause (4) is incorrect according to the theory ¢,. An M-equivalence query
with ¢ could return the following clause as a negative counterexample, that is, implied by
¢ but not ¢,,.

two_wheels A one_seat A pedals — toy.

Find-Incorrect is called with this clause, and uses a variant of Forward-Chain to find a
derivation-DAG of this clause from ¢. The DAG has nodes

two_wheels, one_seat, pedals, bike, toy
and edges
(two-wheels, bike), (one_seat, bike), (pedals, bike), (bike, toy).
The first query is a request for a hint with the clause
two_wheels A one_seat A pedals — bike.

‘The reply is one step, so ¢y implies this clause. The next query is a request for a hint with
the clause

bike — toy.

The reply is no, signifying that this clause is not implied by ¢,,, so this clause is returned
by Find-Incorrect and removed from ¢.

5.3 Non-positive Horn sentences

The algorithm IHL can be modified fairly naturally to learn acyclic Horn sentences that are
not positive. But first, what is the meaning of a negative Horn clause? A negative clause
such as

C = (two_wheels A three_wheels — 1)

stipulates that the variables “two.wheels” and “three_wheels” are never simultaneously true.

Recall that the meaning structure M is intended to designate those sets of variables
that can be simultaneously true. Hence in some sense, M is performing the same function
as negative clauses. However, the difference is that the meaning structure is implicit, while
the inclusion of negative clauses is explicit. That is, if the set containing the variables
“two_wheels” and “three_wheels” is omitted from M, then we don’t care how the final theory
¢ treats situations in which both of these variables are true. However, if we stipulate that
the final theory ¢ should contain or imply the clause C, then the theory must yield L when
both variables are true. The cost associated with this explicit treatment is an extra clause
included in the correct theory.

16

In the hypothetical situation of Molly the alien, we might know that her procedures
for counting wheels were a little shaky, so that she might mistakenly believe that both
“two_wheels” and “three_wheels” were true in some situation. In this case, we might want
to explicitly include the clause C, with the understanding that Molly would detect an error
and re-check her procedures if any actual situation yielded L. Thus, in practice, one might
want to be able to use both the meaning structure (for “don’t care” situations), and explicit
non-positive clauses (for error detection).

To do this, the meaning of the meaning structure must be changed a bit, to those sets
of variables such that we do “care” about the outcome of the theory if all the variables in
the set are true. Thus, in the above example, the meaning structure should include the set
consisting of the two variables “two_wheels” and “three.wheels”.

It turns out to be sufficient to expand the notion of a derivation-DAG in a controlled
way. Let ¢ be a not necessarily positive Horn sentence. If ¢ implies the non-positive clause
(A — 1), then for every variable z, ¢ implies the clause (A — 2). In some sense, these
latter clauses are “silly” consequences of the theory, analogous to the proposition:

If one equals two then the moon is made of green cheese.

Hence the following definition. Let C = (A — z) be any positive Horn clause. We say that
C is silly for ¢ if and only if ¢ implies (A — 1).

For a positive clause C such that ¢ F C, a derivation-DAG of C from ¢ will be just
what it was before. Note that if C is silly for ¢, a derivation-DAG of C from ¢ may not
exist.

If C = (A — 1) is a negative clause such that ¢ - C, then a derivation-DAG of C from
¢ will be a directed acyclic graph with the following properties. Its nodes are a subset of
the variables V' together with a special node, L, which is the unique sink node. There is a
directed path from every node of the graph to the sink node. The source nodes are a subset
of A. For each non-source node z in the graph, if S; is the set of nodes with edges into z,
then (S; — z) is a clause of ¢.

The key property of this definition is the following.

Lemma 10 Let ¢ be a Horn sentence. For any clause C, if there is a derivation-DAG of
C from ¢, then ¢ implies C. For any clause C that i3 negative or positive and not silly for
@, if implies C then there is a derivation-DAG of C from ¢.

Thus the proof procedure is still sound, although it may not be complete for silly clauses.
This is proved by modifying the Forward-Chain procedure to check negative as well as
positive clauses. As soon as the procedure detects that all the antecedents of some negative
clause of ¢ are in T, it returns the special value L. We omit the details.

A modification is required to the IHL procedure, to check whether a positive counterex-
ample C = (A — 2) is silly for ¢,. The check is done by using a request for a hint to
determine whether ¢, implies the clause C,, = (A — L). If so, the clause C is silly for ¢.,
and the clause C, is substituted for it in step (3) of the procedure. This guarantees that
there will be a derivation-DAG to use in the request for a hint in Find-Missing. The rest
of the procedure and sub-procedures are unchanged.

17

5.4 Cyclic Horn sentences

In contrast to non-positive sentences, a significant modification is necessary to deal with
cyclic Horn sentences. An example of a cyclic Horn sentence is

pr=(@—=2b)ADd—oc)A(c— a).

The import of this construct is that if any of a, b, or ¢ is true then they all are. This
meaning cannot be captured by any acyclic sentence. Thus it is useful to be able to deal
with cyclic Horn sentences.

The difficulty with JIHL for cyclic Horn sentences is that nothing prevents the request
for hint queries from cycling. As a concrete example, consider the Horn sentence

po=(z=yA(y—2a)A(y—=dA(a—-b)A(d—a)

For the hypothesis T an M-equivalence query could return the counterexample (z — a),
implied by ¢. but not by T.

Since (z — a) is not derived in one step from ¢., a request for a hint produces a hint,
say b. This is a legal hint, since there is a derivation

z—y—b—oa.

Now a request for a hint with (z — b) can legally be answered a, since it is not derived in
one step from ¢, and there is a derivation

z—y—a—b

And we are right back where we started, asking for a hint for (z — @). Thus an unsympa-
thetic teacher could keep IHL cycling forever in this situation.

One possible approach is to try to equip IHL to detect and correct for this situation;
I don’t know how to do that in general. Another approach, taken here, is to restrict the
malice of the teacher by placing additional constraints on how a request for a hint may be
answered.

The simplest restriction is to require that the hint come from a derivation-DAG with
the smallest possible depth for C from ¢. If C = (A — 2) is a clause implied by ¢., let
d(A, z) denote the minimum depth of any derivation-DAG of C from ¢. Note that this is
bounded by |V|.

To see that this restriction prevents cycling, consider the sequence of clauses tested
with request for hint queries in one top-level call to Find-Missing. If the hint z is returned
for the clause (A — z), then the next clause tested is either (AU {z} — 2) or (A — z).
‘Now d(A U {z},z) < d(A,z) and d(A,z) < d(A,z). Thus the antecedents form a non-
decreasing sequence (with respect to set containment) and the d(A,z) measure is non-
increasing. Moreover, either the set of antecedents increases or the d(A, z) measure decreases
with each hint. Hence there are fewer than 2|V| hints returned before the top-level call of
Find-Missing returns.

How onerous to the teacher is this restriction on hints? Forward-Chain, since it searches
breadth-first, will produce a derivation-DAG with the smallest possible depth, but other,

18

more practical, proof procedures are likely not to be guaranteed to produce a shallowest
derivation-DAG. Thus, this restriction is probably too severe.

It would be sufficient, and in some sense more reasonable, if the teacher simply stuck
to one derivation-DAG for the duration of one top-level call to Find-Missing, instead of
hopping between derivations as in the above example. We could ensure this by adding
another parameter to the request for a hint query which in effect specifies the derivation-
DAG to be used. A top-level call to Find-Missing then makes an initial request for a hint
query with no derivation-DAG specified, and if the answer is a hint z, then an identifier is
also returned to specify the derivation-DAG it came from. Further requests for hints made
before this top-level call terminated would then specify this identifier, constraining further
hints to come from the same derivation-DAG.

This would prevent cycling, since the successive hints must come from a monotonically
shrinking portion of the single derivation-DAG being used to produce them. This approach
guarantees that the number of hints needed is bounded by the number of nodes in the initial
derivation chosen by the teacher, which however need not be minimal. This modification
is not too unreasonable in the presence of a sympathetic teacher, since it amounts to being
able to name and refer to an explanation.

5.5 A closer look at complexity

The algorithms and analyses have been given above in their simplest form, for purposes of
exposition. Now it is time to look a little more closely at running times.

The procedure Forward-Chain is called to determine whether the current theory implies
a clause C, and to produce a derivation-DAG for C if so. As described, it uses a simple
breadth-first search, is not incremental, and is pretty unworkable for large theories. How-
ever, the problem of maintaining and drawing inferences from a theory in the presence of
incremental changes is beyond the scope of this paper. It suffices to use any method that
will produce a correct derivation-DAG if one exists. We examine the complexity of the
procedures that are specific to learning: Reduce, Find-Missing, and Find-Incorrect.

Reduce. The input to Reduce is a clause C = (A — z) that is derivable from ¢, in one
step. Without additional information, ¢, may consist of the single clause (A’ — z) for any
subset A' of A. Each request for a hint returns only one bit of information (“not implied”,
or “one step”), so at least |A| queries will be required. Since the search is a greedy search
for a minimal set A' such that (A’ — z) is derivable in one step from ¢., |A| queries are
also sufficient. Any substantial improvement to Reduce would probably have to make use
of additional information available from the structure or semantics of the domain under
consideration.

Find-Missing. Find-Missing is called with a clause C = (A — 2) that is implied by ¢,
and not by ¢. It makes calls to Forward-Chain to test whether ¢ implies (A — z) for each
hint z, but any proof procedure would suffice instead.

If requests for hints are answered in an unfavorable way, there may be many more
requests for hints than nodes in a derivation-DAG for C from ¢.. The reason for this is the

19

“derivation hopping” problem mentioned in the section on cyclic sentences. To show how
this can complicate even the acyclic case, consider the following example.

Let n > 1 and let ¢, be the conjunction of the clause (z — y) and the clauses (a — &)
and (yAb; — 2),for ¢ =1,...,n. There are n different derivation-DAGs with 5 nodes and
depth 2 for the clause (a Az — z). Suppose the current theory ¢ consists of the conjunction
of the clauses (a — &) for 1 = 1,...,n. Then an M-equivalence query might return the
positive counterexample (@ A z — 2z). A request for a hint might return b;. Since this is
derivable from a using ¢, the next request for a hint would be with (e A zA b — 2). A
legal answer to this is b;. Then a request for a hint with (a A z A b; A by — 2) could be
answered with b3, and so on, producing n hints, even though each possible derivation has
only 5 nodes.

Note that this problem affects even the version of the algorithm in which the hints are
restricted to come from a derivation of minimum depth. However, in the version in which
requests for hints can specify the derivation-DAG to be used, the maximum number of
requests for hints in one call to Find-Missing is bounded by the number of nodes in the
derivation-DAG chosen by the teacher, in this case, 5.

Find-Incorrect. Find-Incorrect is called with a clause C such that ¢ implies C but ¢,
does not. It constructs a derivation-DAG of C from ¢ and then systematically makes request
for hint queries for the clauses of ¢ used in the derivation-DAG until an incorrect one is
found. They are queried in topological order with respect to the derivation-DAG, since this
guarantees the M-meaningfulness of the clauses queried.

The analogous procedure of Shapiro [35] admits an improvement which consists of find-
ing a query that substantially reduces the number of clauses to be tested, instead of testing
them one at a time. Can we make use of this improvement?

Shapiro uses derivation trees instead of derivation-DAGs. His improvement is to check
a large subtree of the derivation tree for correctness, and thus to restrict further attention
to the subtree or the tree minus the subtree.

However, a derivation tree may be exponentially larger than the corresponding DAG.
As an example, let n > 1 and consider the sentence that is the conjunction of the clause
(an A by — 2), and the clauses (a; A b; — a;41) and (a; Ab; — bjy) fori =1,...,n - 1.
Then for each n > 1, a derivation-DAG for the clause (a3 A b; — z) from this sentence has
2n + 1 nodes, while the corresponding derivation tree has 2"+! — 1 nodes.

We prefer DAGs to tree for their conciseness, but Shapiro’s improvement is then not
directly applicable. We must generalize the notion of a subtree of a derivation tree into a
self-contained “piece” of a derivation-DAG. This is done using the notion of a closed subset
of a DAG, see Appendix C for more details.

6 A graph problem: debugging a DAG

For a different view of the learning algorithm presented above, we consider the special
case of positive Horn sentences with exactly two literals per clause, and recast the learning
problem as one of “debugging” a directed graph. If G is a directed graph, the assertion
that there is a directed path of length at least zero from z to y in G is denoted z ~» y in
G. The assertion that there is no path from z to y in G is denoted z % y in G.

20

6.1 Positive Horn 2-CNF sentences as directed graphs

Let ¢ be a positive Horn sentence with exactly two literals per clause. Every clause of ¢
is of the form (z — y). We define a related directed graph, G(¢), as follows. The nodes
are the variables appearing in ¢, and there is an edge (z,y) from z to y in ¢ if and only if
there is a clause (z — y) in ¢. The following lemma is immediate from the correctness of
Forward-Chain in this case.

Lemma 11 The sentence ¢ implies the clause (z — z) if and only if there is a directed
path from z to z in G(¢). That is, ¢ - (z — 2) if and only if z ~ y in G(¢).

Let G; and G be two directed graphs on the same set of nodes V. Then G} is transitively
equivalent to G2 if and only if for every pair z and y of elements of V', there is a directed
path from z to y in G; if and only if there is a directed path from z to y in G3. That is,
for all z,y € V, z ~ y in G if and only if z ~ y in G3.

Lemma 12 The sentences ¢; and ¢ are logically equivalent if and only if the graphs G(41)
and G(¢2) are transitively equivalent.

Suppose ¢; and @, are logically equivalent. Suppose z ~+ y in G(¢1). Then ¢, F (z —
y), so ¢2 F (z — y), and =z ~ y in G(¢2). Thus a path from z to y in G(¢;) implies a
path from z to y in G(¢2). By symmetry the converse holds, so if ¢; and ¢; are logically
equivalent, G(¢,) and G(¢2) are transitively equivalent.

Conversely, suppose G(¢1) and G(¢2) are transitively equivalent. Consider any clause
(z — y) in ¢;. Clearly ¢, F (z — y), so z ~ y in G(¢1). Thus z ~» y in G(¢2), and
¢2 F (z — y). Thus ¢, implies every clause of ¢;, and by symmetry, ¢, implies every clause
of ¢2. Hence ¢; and ¢, are logically equivalent. Q.E.D.

6.2 A “debugging” problem on directed graphs

Every directed graph is isomorphic to G(¢) for some positive Horn sentence with exactly
two literals per clause. If we omit the question of “meaningfulness”, the two lemmas in
the previous section allow us to interpret the learning problem in this restricted case as a
problem on directed graphs.

Let V be a known set of nodes. There is an unknown directed graph G. on the nodes
V. The problem is to find a directed graph G on the nodes V' that is transitively equivalent
to G, using equivalence queries and requests for hints.

What is an equivalence query in this setting? The learner proposes a directed graph
G. If G is transitively equivalent to G., the reply is yes; otherwise, the reply is no and a
counterexample.

In the general case, a counterexample is any Horn clause C implied by the correct
sentence but not by the proposed sentence, or vice versa. In terms of graphs, such a
counterexample would be a subset S of V and a node y € V such that there is a path
from some node of S to y in G, and no path from any node of S to y in G, or vice versa.
However, for the graph problem it seems more natural to restrict the counterexample to be
a pair of nodes z and y such that there is a path from z to y in G, but not in G, or vice
versa. The implications of this restriction are considered briefly in Appendix A.

Thus, for this problem, equivalence queries and requests for hints are defined as follows.

21

1. An equivalence query: propose a directed graph G. If G is transitively equivalent to
G. the answer is yes. Otherwise, the answer is no, and a counterexample is provided,
that is, an ordered pair of nodes (z,y) such that there is a path from z to y in G but
not in G, or vice versa.

2. A request for a hint: propose a pair of nodes (z,y). If there is no path from z to y in
G., the answer is no. If (z,y) is an edge of G., the answer is edge. If there is a path
but no edge from z to y in G, the answer is a node w that is not equal to z or y but
appears in some path from z to y in G..

One method is to make a request for a hint with every pair (z,y) of nodes, record which
ones are edges in G, and finally output G exactly equal to G,. This approach necessarily
uses [V'|(|]V'| — 1) queries in the worst case, even if G, is an extremely sparse graph. It also
is not “incremental” in the sense that if it is given a graph that is “close” to G., it does
not use that information to reduce the work of finding a graph exactly equivalent to G,.

However, if we restrict G and G, to be acyclic, then there is an efficient solution to this
debugging problem. In particular, there is an algorithm that runs in time polynomial in |V|
and uses equivalence queries and request for hint queries to find incorrect and missing edges
in an initial graph G in O(log [V'|) queries per edge found to be missing or incorrect. The
algorithm is based on the ideas of IHL, with some combinatorial optimizations. Further
description appears in [1].

7 Appendix A: Clauses versus assignments as examples

For clarity we ignore the issue of “meaningfulness” in this discussion. Equivalently, we could
take M to be all subsets of V.

In this paper a Horn sentence ¢ is taken to denote the set of Horn clauses logically
implied by ¢. An example consists of a clause C and an indication of whether it is implied
by the target sentence ¢. or not. Such a set of examples is sufficient in the sense of Laird
[25], since the set of Horn clauses implied by a Horn sentence characterize it up to logical
equivalence.

An alternative approach is to take a Horn sentence ¢ to denote the set of all those
assignments of truth values to the variables V' that satisfy ¢. (This is the approach taken
in [5].) In this case an example consists of an assignment of truth values to the variables
and an indication of whether this assignment makes the target sentence ¢, true or false.
Assignments seem less natural as examples than clauses in this domain. We examine the
interconvertibility of these two schemes below.

A third approach is to specialize the setting used by Shapiro [35] to the case of proposi-
tional Horn sentences. Then examples are literals and two theories are considered equivalent
if they imply the same set of literals. This notion of equivalence is weaker than the present
one; in particular, the empty sentence T is equivalent to the example sentence ¢,, in this
sense. This approach will not be considered further.

How inter-convertible are clauses and assignments as examples? We consider both the
non-Horn and Horn cases.

22

7.1 The general (non-Horn) case.

The sentences ¢, and ¢ are permitted to be general conjunctive normal form propositional
sentences, and clauses are permitted to be arbitrary disjunctions of literals.

Suppose t is an assignment of truth values to the variables that is a positive counterex-
ample, that is, satisfies ¢. but not ¢. Then by evaluating each clause of ¢ with ¢, we can
find a clause C in ¢ that is falsified by t. Thus ¢ - C and ¢, I/ C, so C is a negative
example in the clause scheme.

Suppose t is an assignment that is a negative counterexample, that is, ¢ falsifies ¢. and
satisfies ¢. We construct a (general) clause C by including the literal a if t(a) is false, and
the literal —a if t(a) is true. Then ¢ is the unique assignment that falsifies C, and ¢ also
falsifies ¢., so ¢, - C. Moreover, since t satisfies ¢ and falsifies C, ¢ I C. Thus C is a
positive counterexample in the clause scheme.

Hence in the non-Horn case, assignment counterexamples can be efficiently converted
into clause counterexamples. The reverse conversions seem to cause trouble, as we now see.

Suppose C is a (general) clause that is a positive counterexample, that is, ¢, - C
and ¢ I C. Then there is an assignment t that satisfies ¢ and not C. We can find this
assignment, though it entails the computational problem of testing general conjunctive
normal form sentences for satisfiability, which is an NP-complete problem. (In particular,
if the sentence ¢. is contradictory and the clause C is the empty clause, L, then finding
an assignment counterexample is precisely the problem of finding a satisfying instance of
#.) Then t is a negative counterexample in the assignment scheme, since ¢ falsifies ¢. and
satisfies ¢.

Suppose C is a clause that is a negative counterexample, that is, ¢, I/ C and ¢ C.
- Suppose we also have an oracle for logical implication, that is, each query “Does ¢. imply
C 7 will be correctly answered yes or no for any (general) clause C. If the variable a does
not occur in C then at least one of the two clauses (C V a) and (C V —a) must fail to be
implied by ¢., so by querying the oracle we can add either a or —a to C' and preserve the
conditions that ¢, I C and ¢ - C. Continuing in this way, we can find a clause C that
contains every variable or its negation and is such that ¢, I/ C and ¢ - C. There is a unique
truth value assignment ¢ that makes all the literals in C false. Then ¢t must satisfy ¢. but
not ¢, so it is a positive counter-example in the assignment scheme.

Thus, converting (general) clause counterexamples into assignment counterexamples is
an NP-complete problem in one case, and seems to require an oracle for logical implication
in the other.

7.2 The Horn case.

Now we consider what happens if the sentences and clauses are restricted to be Horn
sentences and clauses.

The method described above for converting an assignment ¢ that is a positive counterex-
ample into a clause that is a negative counterexample by searching for a clause of ¢ falsified
by t works in this case also.

Suppose C is a Horn clause that is a positive counterexample, that is, the target sentence
& implies C, but the current hypothesis ¢ does not. Then, using the (polynomial-time)
satisfiability procedure for Horn sentences, we can find an assignment ¢ of truth values to

23

the variables such that ¢ satisfies ¢ and falsifies C. Then ¢t must falsify ¢., so it is a negative
counterexample in the assignment scheme, that is, it falsifies ¢, and satisfies ¢.

Thus in the Horn case, a positive counterexample in either scheme can be efficiently
converted into a negative counterexample in the other scheme.

Now suppose we have an assignment ¢ that is a negative counterexample, that is, falsifies
&. and satisfies ¢. In the general case it was easy to convert ¢ into a (general) clause implied
by ¢. but not by ¢. However, that clause is not necessarily in Horn form. To solve this
problem, we assume the existence of an oracle for logical implication for Horn sentences,
that is, each query “Does ¢, imply C? will be correctly answered provided C is a Horn
clause.

Let A denote the set of variables assigned true by t. There must be a clause C of ¢. that
is falsified by ¢, that is, its antecedents are a subset of A and it either has no consequent
or a consequent z € V — A. We use the oracle to test each of the clauses (A — L), and
(A — z) for each z € V — A. Note that ¢ falsifies each of these clauses. At least one of
these clauses is subsumed by C, so there must be at least one of these clauses C' such that
&+ - C'. Since t falsifies C' and satisfies ¢, we know that ¢ I C'. Hence we have found a
clause C' that is a positive counterexample in the clause scheme.

In the last case, assume that we have a clause C that is a negative counterexample, that
is, ¢« I/ C and ¢ - C. The approach in the general case constructs an assignment that is
a positive counterexample by using queries to an oracle for (general) logical implication. It
does not seem that an oracle for (Horn) logical implication is sufficient in this case.

Summarizing, in the Horn case, assignment counterexamples can be converted into
clause counterexamples efficiently provided there is an oracle to test logical implication
of Horn clauses by ¢.. In the case when M is all subsets of V', a request for a hint can be
used to test whether ¢, implies an arbitrary Horn clause. Thus, the algorithms HL and
IHL could be modified to deal with assignments rather than clauses as counterexamples,
though the number of requests for hints would be increased somewhat.

7.3 Restricted sets of clauses as counterexamples

Consider the problem of learning a positive acyclic Horn sentence ¢, with exactly two
literals per clause. We could take ¢, to denote the set of all Horn clauses that it implies,
or we could take it to denote the set of all Horn clauses with exactly two literals that it
implies. The choice results in two different definitions of an equivalence query. In both,
the learner proposes a positive acyclic Horn sentence ¢ with exactly two literals per clause,
and if ¢ is logically equivalent to ¢. the reply is yes, and otherwise, the answer is no and
a counterexample. However, the definition of a counterexample differs in the two cases, as
follows.

1. The counterexample may be any Horn clause C that is implied by ¢. and not by ¢,
or vice versa.

2. The counterexample may be any Horn clause C with exactly two literals that is implied
by ¢. but not by ¢, or vice versa.

For the graph debugging problem stated above and considered in [1] we have chosen the
second alternative. However, the choice is not indifferent, as we now indicate.

24

There is a simple polynomial time learning algorithm for this problem that uses only
equivalence queries of type 2. The method is to begin with ¢ = T, and query ¢. The coun-
terexample will be a clause C with exactly two literals such that ¢, implies C, but ¢ does
not. Modify ¢ by conjoining C to it, and iterate. This must converge to a positive acyclic
Horn sentence ¢ with exactly two literals per clause after fewer than |V'|? iterations, since
this is a bound on the number of distinct clauses that can be returned as counterexamples.

However, if P # NP then there is no polynomial time learning algorithm for this
problem that uses only equivalence queries of type 1. The reason for this is the NP-
completeness of the following problem. Given two sets S and T of Horn clauses, determine
whether there is a positive acyclic Horn sentence ¢ with exactly two literals per clause such
that for every clause C € S, ¢ - C, and for every clause C € T, ¢ If C. Call this problem
constrained 2-Horn consistency. If there were a polynomial time exact learning algorithm
in this setting that used only equivalence queries of type 1, we could use it to solve the
constrained 2-Horn consistency problem in polynomial time, as follows.

Given S and T, run the learning algorithm until it makes an equivalence query with a
sentence ¢. Check to see whether ¢ - C for all C € S and ¢ If C for all C € T. (This
can be done in polynomial time because ¢ is a Horn sentence and each C is a Horn clause.)
If ¢ is consistent with all these requirements, halt and output ¢. Otherwise, if there is a
clause C € S such that ¢ |/ C, reply no to the equivalence query, and return C as the
counterexample. Similarly for the case of a clause C € T such that ¢ - C. If the learning
algorithm exceeds its running time bound (some polynomial in |V'|) without finding a ¢
agreeing with all the requirements, halt and output “no”.

The proof that the constrained 2-Horn consistency problem is NP-complete is via a
reduction from exact cover by 3-sets, and is omitted. (See [14] for a definition of X3C.)

8 Appendix B: A lower bound for learning Horn sentences

In this section we show that learning Horn sentences using equivalence queries with clauses
as counterexamples appears to be impossible with a polynomial time algorithm. This is an
application of the approach of Pitt and Warmuth to finding reductions between prediction
problems [29)].

8.1 Representing circuits by Horn sentences

Consider any acyclic boolean circuit x with n inputs zy,...,z, and one output, using AND,
OR, and NOT gates. The size of x is the number of gates in x; we assume that the size is
at least 1. We may construct an associated acyclic Horn sentence ¢, that “represents” x
as follows.

Let the inputs and gates of x be numbered 1 through M, and assume that 1 through n
represent z; through z, and n + 1 represents the gate whose output is the output of x. For
each 1 = 1,..., M, there are two variables: Y; and Z;, representing the value of the input
or gate numbered i. Y; is true if the value is 1, and Z; is true if the value is 0. For each
gate in k there are two or three clauses in ¢, as follows.

1. For each NOT gate in x, if the input is numbered ;7 and the output is numbered k

25

then there are two clauses:
(YJ - Zk)’

(Z; — Yu).

2. For each AND gate in «, if the inputs are numbered 7 and k, and the output is
numbered [, then there are three clauses:

(Y; AYe = 1),

(Z.i - Zl)’
(2 — 7).

3. For each OR gate in «, if the inputs are numbered j and k and the output is numbered
1, then there are three clauses:

(Zi A2 — Z),

(Y; = 1),
(Yi = V7).

This completely specifies @,; note that it is acyclic. Now we indicate how ¢, represents
k. Let a be any assignment to the variables z; for ¢ = 1,...,n. Define x(a) = 1 if and
only if the output of x is 1 when the values specified by a are applied as inputs. With a we
associate A,, a set of n variables defined as follows.

Ag = {Y; :a(z;) =1} U {Z; : a(z;) = 0}.
Then ¢, represents x in the following sense.

Lemma 13 For every assignment a to the variables z;, k(a) = 1 if and only if . implies
the clause (Ag — Ynt1).

We omit the simple inductive proof of this lemma. Note that the number of clauses in
¢« is bounded by three times the number of gates in x, and each clause has at most three
occurrences of literals. Thus size(@,) < 9 x size(x).

8.2 A reduction

Suppose A is an algorithm that learns propositional Horn sentences using equivalence queries
with clauses as counterexamples. We first use Littlestone’s result [26] to transform A into an
algorithm A’ that predicts whether a Horn clause is implied by an unknown Horn sentence.
We then use A’ to construct an algorithm A" to predict acyclic boolean circuits.

In a prediction setting, there is an unknown function f, mapping some domain X to
{0,1}. In one trial, the prediction algorithm is given an arbitrary element £ € X and
must predict whether f.(z) = 1 After the prediction is made, the correct value of f.(z) is
supplied. The prediction process consists of an indefinite number of trials.

26

Each time there is an incorrect prediction, it is counted as one error of prediction.
Littlestone [26] has shown that a polynomial time algorithm for exact identification using
equivalence queries can be transformed into a polynomial time prediction algorithm such
that the number of errors of prediction is bounded by the number of equivalence queries
used by the original algorithm. We make use of that transformation here to obtain A’ from
A.

Suppose that A is a polynomial time algorithm to identify propositional Horn sen-
tences using equivalence queries with clauses as counterexamples. In other words, suppose
that there is some (non-decreasing) polynomial p;(z) such that for any propositional Horn
sentence ¢, if A has access to equivalence queries about ¢ (returning clauses as counterex-
amples), then in time and queries bounded by pi(size(4)), A will halt and output a Horn
sentence logically equivalent to ¢.

Then Littlestone’s result shows that there is a polynomial time algorithm A’ to solve
the problem of predicting whether Horn clauses are implied by an unknown Horn sentence.
More specifically, for each propositional Horn sentence ¢ there is an associated prediction
problem fy defined on the set of all Horn clauses C over the variables of ¢ by

foC)=1if ¢+ C.

And there is a polynomial time algorithm A’ to solve these prediction problems. That
is, there is some (non-decreasing) polynomial ps(z,y) such that for any propositional Horn
sentence ¢, if we run A’ on the prediction problem f4, a trial with clause C will take time at
most pz(size(C), size(4)), and no more than p;(size(¢)) errors of prediction will be made.

From A' we obtain a polynomial time algorithm to predict boolean circuits. Given an
acyclic circuit x with n inputs z;,...,z,, the associated prediction problem is given by f,
defined on all assignments a to the variables z,,...,z, by

fx(a) =1iff k(a) = 1.

In the following algorithm, x. denotes the unknown circuit and n denotes the number of
inputs to ..

The circuit prediction algorithm A"

1. Run algorithm A’ until it requests a clause to predict.
2. Request the next assignment to predict; let a denote it.

3. Give A’ the clause (A; — Yn41) to predict. Output its prediction as the prediction
for a.

4. Request the correct value of x.(a). Give that reply to A’ and go to step (1).

We claim that A” must be a polynomial time algorithm to predict circuits. That is,
there are polynomials p3(z,y) and ps(z) such that for any acyclic circuit &, if A" is run
with the prediction problem f, then in any trial with assignment a the time used by A" is
bounded by ps(size(a), size(x)), and over all trials the total number of errors of prediction
is bounded by p4(size(x)).

27

To see this, note that when A" is run with the prediction problem fy, then it in effect
runs A' with the prediction problem f4.. Only a subset of the domain of fs, is used, but
the bound on errors of prediction holds for any sequence of trials.

If we consider a trial of A" with assignment a, then the trial of A’ is with the clause
C = (As — Yn41). The time for this trial of A’ is bounded by ps(size(C), size(¢,)).
Moreover, the size of C is bounded by a polynomial in the size of a, and the size of ¢,
is bounded by a polynomial in the size of k. Thus the time used by A” in this trial is
bounded by a polynomial in the sizes of a and «, as required. The total number of errors of
prediction for A” will be equal to the total number of errors of prediction for A’, which was
shown above to be bounded by p;(size(¢x)), which in turn is bounded by a polynomial in
the size of x, as required. Thus we have shown the following.

Lemma 14 If there were a polynomsial time algorithm to learn acyclic propositional Horn
sentences using equivalence queries with clauses as counterezamples, there would be a poly-
nomial time algorithm to predict acyclic circuits.

(Pitt and Warmuth [29] have given a formal treatment of reductions in the context of
prediction problems.)

What are we to make of this lemma? Work in cryptography suggests that some acyclic
circuits are very hard to predict indeed. For example, Goldreich, Goldwasser, and Micali
[15] have shown that the assumption that a polynomial time 1-way function exists implies
that there are pseudo-random functions with “small” (that is, polynomial size) circuits that
are very difficult to predict.

For a more concrete example, we consider the problem of testing whether a number z
is a square modulo a number N that is a product of two large (unknown) primes P and Q.
This problem, called “quadratic residuosity”, is the basis of several cryptographic schemes.

Define the prediction problem fx(z) for all z € [1, N—-1] by fx(z) = 1if and only if z is
a square modulo N. The size of the problem is n, the number of bits in N. If P and Q are
known, the problem reduces to testing whether z(P~1)/2 = 1 modulo P and z(@-1/2 = 1
modulo Q, which can easily be done with a circuit of size polynomial in n.

Blum [9] has shown that if quadratic residuosity could be predicted in polynomial time
with a polynomial number of errors of prediction, then quadratic residuosity could be com-
puted by a randomized polynomial time algorithm with a very high probability of correct-
ness. This suggests (though does not prove) that there is no such polynomial time algorithm
to predict quadratic residuosity.

Note that the problem of whether equivalence queries with assignments as counterex-
amples suffice for polynomial time identification of propositional Horn sentences is open.
Intuitively, assignments would provide “a lot more” information than clauses in the reduc-
tion above, namely, the output values of all the gates in the circuit in addition to the input
value and the final output value.

9 Appendix C: Closed sets and self-contained “pieces” of
derivations

We show that a closed subset of a derivation-DAG corresponds to a self-contained “piece”
of the derivation-DAG. Let D be any directed acyclic graph. Then S is a closed subset of

28

D if and only if S is a subset of the nodes of D such that for every node z in S, if (y, z)
is an edge of D, then y is also in S. Thus S is closed under the relation of predecessor in
D. A closed subset S of D is called nontrivial if it is not empty and does not contain all
the nodes of D. (An efficient algorithm for finding a closed subset of maximum weight in a
weighted DAG is given in [19].)

By induction, if there is a directed path from node y to an element z in S, then y must
also be in S. Hence if S is a nontrivial closed subset of D, then S must contain at least one
of the source nodes of D, and must omit at least one of the sink nodes of D.

If S is a closed subset of D, the boundary of S, denoted b(S), is the set of all those nodes
z in S such that there is an edge from z to some node of D that is not in S. Intuitively,
the boundary nodes are the only means of communication between the subset S and the
rest of the graph.

As an example, consider a rooted tree in which each edge is directed from child to parent.
Then each closed subset corresponds to a forest of subtrees of the tree, whose boundary is
the set of roots of the subtrees in the forest.

Suppose D is a derivation-DAG of a clause C = (A — z) from a Horn sentence ¢.
Suppose S is a nontrivial closed subset of D. Then S contains at least one source node of
D and omits the unique sink node, z. We argue that S specifies a “self-contained” portion
of the derivation-DAG.

Lemma 15 Let D be a derivation-DAG of C = (A — z) from ¢. Let S be a closed
nontrivial subset of D. Let D, denote the subgraph of D induced by the nodes S. Let
z € b(S), and consider the subgraph D;(z) induced by the set of nodes y such that there is
a directed path from y to = in Dy. Dy(z) is a derivation-DAG of the clause (A — z) from
®.

This means that every boundary node has a proof within D;. To see this, note that
the source nodes in D;(z) are a subset of the source nodes in D, that is, are a subset of A.
Moreover, by construction there is a unique sink node z in D;(z), and for every node y in
Dy (z) there is a directed path from y to z in D;(z). Finally, suppose y is any non-source
node of D;(z), and let P be the set of nodes in D with an edge into y and let P' be the set
of nodes in Dy(z) with an edge into y. Since D is a derivation-DAG, (P — z) is a clause of
¢. Clearly, P' is a subset of P, since Dy(z) is an induced subgraph of D. Moreover, P’ is
equal to P. If w has an edge into y in D, then since y isin S and S is closed, w is in S, and
moreover, since there is a directed path from y to z in D, there is a directed path from w
to z in D;, so w, and the edge from w to y, are part of D;(z). Thus (P' — y) is a clause
of ¢, concluding the proof that D;(z) is a derivation-DAG of (4 — z) from ¢. Q.E.D.

What about the rest of the graph D? Is the information contained in the boundary
nodes, together with A, enough to complete the proof of z from A? The following lemma
shows this is true.

Lemma 16 Let D be a derivation-DAG of C = (A — z) from ¢. Let S be a nontrivial
closed subset of D. Let D, denote the subgraph of D obtained by removing all the nodes in

S — b(S) and all their incident edges, and removing any edges between elements of b(S).
Then D3 is a derivation-DAG of ((AU b(S)) — 2) from ¢.

29

Note that every boundary node z € b(S) is a source node in D;. The reason for this is
that we have removed edges between the boundary nodes, and no node not in S can have
an edge into a node of S. The node z is in D, because S does not contain z.

Consider a node z in D;. If z is not in (S), there is a directed path in D to z, and
this path cannot contain any node of S, since otherwise z would be in S. Hence this path
from z to z also exists in the graph D,. If z is in 5(S), then there is an edge in D from z to
some node y not in S. This edge also exists in D, and we have already shown that there
must be a path from y to z in D,, so there is a path from z to z in Ds.

Let z be any source node of D,, and suppose z is not a source node in D. Then there
must be a node y in D such that there is an edge (y,z) in D, and this edge is not in D,.
Such an edge is only deleted if y is an element of S — b(S) or if y and z are both elements
of (S). If y is an element of S — b(S), then by the definition of a boundary node, y has no
edges into elements outside S, so z must be in 5(S). Thus, in either case, z € b(S), so the
source nodes are a subset of (A U b(S)).

Finally, suppose z is any non-source node of D;. Let P denote the set of nodes with
edges into z in D, and let P' denote the set of nodes with edges into z in D,. Because D is
a derivation-DAG with respect to ¢, (P — z) is a clause of ¢. Clearly, P' is a subset of P,
because D; is a subgraph of D. Morever, P’ is equal to P. To see this, note that since all
the nodes in b(S) are sources in D3, z must not be an element of S. Hence if y is any node
in P, y must be in b(S) or not in S, so the edge (y, z) is not removed in constructing D,.
Thus (P! — z) is a clause of ¢, which completes the proof that D, is a derivation-DAG of
((Aubd(S)) — 2). Q.E.D.

Suppose we have a derivation-DAG D for an M-meaningful incorrect clause C = (A —
z) from ¢, and we divide D into two pieces Dy and D; as above. For each z € b(S), we
determine whether ¢, implies the clause A — z, using a request for a hint query. Note that
A is in M, so each of these clauses is M-meaningful. If the query for (A — z) is answered
no, then we may recursively continue with the derivation-DAG D;(z). If none of these
queries is answered no, then by closure of M under implication with respect to ¢., the set
AUb(S) is in M, and we continue recursively with the derivation-DAG Dj.

Thus a reasonable generalization of Shapiro’s approach is to try to divide D using a
closed subset S such that b(S) is relatively small, and the pieces, D;(z) for each z € b(S)
and D,, are each substantially smaller than D. Of course, this may not always be possible,
but intuition suggests that any derivation in which it is not possible is pretty hard for a
human to understand.

For the example in Section 5.5, the derivation-DAG of (a; A b;) — z splits into the
subgraph D; induced on the nodes

al’bl’ az, b2) cer38nf2, bn/zx
and the subgraph D2 induced by the nodes
Qn/2, bn/z) ceeyQn, bns 1

with the boundary set {a,/3,b,/2}-
Further discussion of this problem will appear elsewhere.

30

10 Comments

As Mark Fulk independently observed, the approach of using hints can be applied to the
problem of identifying context-free grammars using equivalence and nonterminal member-
ship queries, defined in [2] In this case, a “hint” for the derivation of a terminal string
from a nonterminal is the name of an intermediate nonterminal in the derivation. “Cyeclic”
grammars are the rule rather than the exception, so it will be important to find a reasonable
way to deal with cyclicity.

In [2], there is the incorrect statement that Shapiro’s logarithmic improvement applied
to parse-DAGs instead of just to parse trees. Appendix C makes clear that the problem is
more complicated for DAGs than for trees.

In this paper we have demonstrated a simple incremental polynomial time algorithm for
learning acyclic propositional Horn sentences using two types of queries:

1. equivalence queries with clauses as counterexamples, and
2. requests for hints.

We have shown that the algorithm could be modified to use equivalence queries with as-
signments as counterexamples in place of queries of type (1).

We have shown that our learning algorithm restricts its queries to “meaningful” clauses,
assuming that the set of “meaningful” clauses is given implicitly and satisfies some reason-
able restrictions.

We emphasize that learning algorithms, to be practical, should be incremental in the
sense that if they are started with a hypothesis that is “close” to the final one, the total
learning time should be proportionately “small”. We have given one method of quantifying
this requirement in the domain of propositional Horn sentences.

We have shown how Pitt and Warmuth’s ideas for reductions between prediction prob-
lems can be used to show that learning acyclic propositional Horn sentences using just
equivalence queries with clauses as counterexamples is as hard (modulo a polynomially
bounded reduction) as predicting arbitrary acyclic circuits.

11 Acknowledgements

My thanks to the quartet in grey: Udi Shapiro, Bob Nix, Lenny Pitt, and Phil Laird, for
keeping me thinking all these years. Conversations with Manuel Blum and Lenny Pitt led

to the material in Appendix B. The support of the National Science Foundation, grant
IRI-8404226, is gratefully acknowledged.

References

(1] D. Angluin. Debugging a DAG efficiently. Technical Report, Yale University Computer
Science Dept., TR-591, 1987.

[2] D. Angluin. Learning k-bounded contezt-free grammars. Technical Report, Yale Uni-
versity Computer Science Dept., TR-557, 1987.

31

(3] D. Angluin. Learning k-term DNF formulas using queries and counterezamples. Tech-
nical Report, Yale University Computer Science Dept., TR-559, 1987.

[4] D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75:87-106, 1987. Preliminary version appeared as YALEU/DCS/RR-
464.

(5] D. Angluin. Types of queries for concept learning. Technical Report, Yale University
Computer Science Dept., TR-479, 1986. Revised version, Queries and concept learning,
submitted for publication.

[6] D. Angluin, W. Gasarch, and C. Smith. Training sequences. Technical Report, Univer-
sity of Maryland, CS-TR-1894, UMIACS-TR-87-37, 1987. Submitted for publication.

[7] D. Angluin and P. Laird. Identifying k-CNF formulas from noisy ezamples. Technical
Report, Yale University Computer Science Dept., TR-478, 1986. Revised version,
Learning from noisy examples, to appear in Machine Learning.

[8] P. Berman and R. Roos. Learning one-counter languages in polynomial time. In Proc.
28th IEEE Symposium on Foundations of Computer Science, pages 61-67, IEEE, 1987.

[9] M. Blum. Result on predicting quadratic residuosity. 1987. Personal communication.

(10] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Classifying learnable
geometric concepts with the Vapnik-Chervonenkis dimension. In Proc. 18th ACM
Symposium on Theory of Computing, pages 273-282, ACM, 1986.

[11] J. Cherniavsky and C. Smith. Using telltales in developing program test sets. Technical
Report, Georgetown University, Dept. of Computer Science, TR-4, 1986.

[12] J. Cherniavsky and R. Statman. Testing and inductive inference: abstract approaches.
1987. Preprint, Georgetown University.

[13] U. Feige and A. Shamir. Learning in permutation groups (extended abstract). 1987.
Preprint, Applied Mathematics Dept., The Weizmann Institute of Science.

[14] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, San Francisco, 1979.

[15] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J.
ACM, 33:792-807, 1986.

[16] D. Haussler. Learning conjunctive concepts in structural domains. Technical Report,
University of California at Santa Cruz, Dept. of Computer Science, UCSC-CRL-87-1,
1987.

(17] D. Haussler. Quantifying inductive bias in concept learning. Technical Report, Uni-
versity of California at Santa Cruz, Dept. of Computer Science, UCSC-CRL-86-25,
1986.

32

(18] D. Haussler, N. Littlestone, and M. Warmuth. Expected mistake bounds for on-line
learning algorithms. Preprint, University of California at Santa Cruz, April 1987.

[19] R. W. Irving, P. Leather, and D. Gusfield. An efficient algorithm for the optimal stable
marriage. J. ACM, 34:532-543, 1987.

[20] N. D. Jones and W. T. Laaser. Complete problems for deterministic polynomial time.
Theor. Comp. Sci., 3:107-113, 1977.

[21] M. Kearns and M. Li. Learning in the presence of malicious errors. Technical Report,
Harvard University, Center for Research in Computing Technology, TR-03-87, 1987.

[22] M. Kearns, M. Li, L. Pitt, and L. Valiant. On the learnability of boolean formulae. In
Proc. 19th ACM Symposium on Theory of Computing, pages 285-295, ACM, 1987.

[23] K. Kelly and C. Glymour. On convergence to the truth and nothing but the truth. Tech-

nical Report, Carnegie Mellon University, Laboratory for Computational Linguistics,
CMU-LCL-87-4, 1987.

[24] P. Laird. Inductive inference by refinement. In Proc. of AAAI-86, pages 472-476,
AAAI 1986.

[25] P. Laird. Learning From Good Data and Bad. PhD thesis, Yale University, 1987.
Computer Science Dept. TR-551.

[26] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-
threshold algorithm. In Proc. 28th IEEE Symposium on Foundations of Computer
Science, pages 68-77, IEEE, 1987.

[27] B. K. Natarajan. On learning boolean functions. In Proc. 19th ACM Symposium on
Theory of Computing, pages 296-304, ACM, 1987.

[28] L. Pitt and L. Valiant. Computational limitations on learning from ezamples. Technical
Report, Harvard University, Center for Research in Computing Technology, TR-05-86,
1986.

[29] L. Pitt and M. Warmuth. Reductions among prediction problems: on the difficulty of
predicting automata (extended abstract). 1987. Preprint.

[30] R. Rivest and R. Schapire. Diversity-based inference of finite automata. In Proc. 28th
IEEE Symposium on Foundations of Computer Science, pages 78-87, IEEE, 1987.

[31] R. Rivest and R. Schapire. Inference of visible simple assignment automata with
planned experiments. 1987. Preprint, MIT Laboratory for Computer Science.

[32] R. Rivest and R. Schapire. A new approach to unsupervised learning in determinis-
tic environments. In Proc. of the {th International Workshop on Machine Learning,
pages 364-375, Morgan Kaufmann Publishers, Inc., 1987.

[33] S. Rudich. Inferring the structure of a Markov chain from its output. In Proc. 26th
IEEE Symposium on Foundations of Computer Science, pages 321-326, IEEE, 1985.

33

[34] C. Sammut and R. Banerji. Learning concepts by asking questions. In Machine Learn-
ing, Vol. II, pages 167-191, Morgan Kaufmann Publishers, Inc., 1986.

[35] E. Shapiro. Algorithmic Program Debugging. PhD thesis, Yale University, 1982. Pub-
lished by MIT Press, 1983.

[36] L. Valiant. Learning disjunctions of conjunctions. In Proc. 9th IJCAI, pages 560-566,
IJCAI, 1985.

[37] L. G. Valiant. A theory of the learnable. C. ACM, 27:1134-1142, 1984.

34

