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Abstract

We consider a class of iterative algorithms for solving systems of
linear equations where the coefficient matrix is nonsymmetric with
positive—~definite symmetric part. The algorithms are modelled after the
conjugate gradient method, and are well-suited for large sparse systems.
They do not make use of any associated symmetrié problems. Convergence

results and error bounds are presented.




Page 2

1. Introduction

The conjugate gradient method (CG), first described by Hestemes and
Stiefel [8], is widely used for approximating the solutions of large sparse
systems of linear equations )

Ax=1f
where A is an N x N, real, symmetric, positive—definite matrix [1, 3,  5,
12]. CG can be viewed as a direct method that, in the absence of round-off
error, gives the exact solution in at most N steps; or as an iterafive
procedure that gives a good approximation to the solution in far fewer
steps (see [13]). A feature of the method that makes it particularly
suitable for 1large sparse systems is that all references to A are in the
form of a matrix—vector product Av, so that the storage requirements are
usually lower than for direct methods. Another attractive feature is that,
unlike most iterative methods, CG does not require any estimation of
parameters. In this paper, we discuss a class of conjugate—gradient—1like
descent methods that can be used to solve nonsymmetric systems of linear
equations, Numerical experiments with these methods are described in [6,

71.

A common technique [8] for solving nonsymmetric problems is to apply
the conjugate gradient method to the normal equations
ATa x = ATs
in which the coefficient matrix is symmetric and positive—-definite. On the
i'th iteration, CG computes an approximate solution that is in some sense
. . T T,,i-1 Thi
optimal in a Krylov subspace of the form {v,A Av,...,(A"A)" “v}. is

dependence on ATA tends to make the convergence of CG slow (see [1], [3]).
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Recently, Concus and Golub [4] and Widlund [18] devised a generalized
conjugate gradient algorithm (GCG) for nonsymmetric systems in which the
coefficient matrix has positive-definite symmetric part. Like the
conjugate gradient method, GCG gives the exact solution in at most N
iterations. Hoyever, on each iteration it requires the solution of an
"~ auxiliary system of equations in which the coefficient matrix is the
symmetric part of A. Also, if the nonsymmetric part is relatively 1large,

then convergence may be slow.

The methods we pfesent depend on a Krylov sequence b#sed on A rather
than ATA, and they do not require the solution of any auxiliary systems.
They do require that the symmetric part of A be positive-definite. In
Section 2, we present four variants that differ in their work and storage
requirements. In Sections 3 and 4, we present convergence results and
error bounds for each of the four variants. In Section 5, we discuss

several alternative formulations.

Notation
A+AT
The symmetric part of the coefficient matrix A is given by M := =3
and the skew-symmetric part by R := — é%éf. Thus A = M — R. The Jordan
canonical form of A is denoted by J := T 1A T.

For any square matrix X, let xmin(X) denote the eigenvalue of X of
smallest absolute value, and let Xmax(X) denote theieigenvalue of largest
absolute value. The spectral radius llmax(x)l of X is denoted by p(X).
The set of eigenvalues of X, also called the spectrum of X, is denoted by
o(X). If X is nonsingular, then the condition number of X, K(X), is

. -1
defined as ||X||2 l1x ||2.
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Finally, given a set of vectors {po,....pk}, let <p0,...,pk> denote

the space spanned by {po,....pk}.

2. Descent Methods for Nonsymmetric Systems

In this section, we present a class of descent methods for solving the
system of linear equations
(2.1) Ax=+f
where A is a nonsymmetric matrix of order N with fositive—definite
symmetric part. We consider four variants, all of which have the following

general form:

(2.2a) Choose x, .
(2.2b) Compute T, = £ - AxO .
(2.2¢) Set Py =Ty -

FOR i = 0 STEP 1 UNTIL Convergence DO

| (ri,Api)
(2.24) | a, = ?KB;:ZEET
(2.2e) X4 = xi + a.p,
(2.21) Tigq = T; ~ a;Ap,
(2.2g) Compute P .

The choice of a, in (2.2d) minimizes || ||2 = llf—A(xi+aPi)||2 as a

Tivl
function of a, so that the Euclidean norm of the residual decreases at each
step. The variants differ in the technique used to compute the new

direction vector pi+1.




Page 5

A good choice for Pii is one that results in a significant decrease
in the mnorm of the residual ||ri+1||2 but does not require a large amount
of work to compute. When A is symmetric and positive—definite, such a
vector can be computed by the simple recurrence relation
(2.3a) P.,, =,
where
(2.3b) Rt U s

i -(Kf).,Ap.) :

i i
The method defined by (2.2) and (2.3) is equivalent to a variant of CG
known as the conjugate residual method (CR) [16]. The direction vectors
produced are AIArorthogonal, that is
(2.4) (Api’Apj) =0 , for i #j ,
and X minimizes the functional
Ew := llf - avll,

over the affine space x, + (po,....pi>.

If A is nonsymmetric and the algorithm defined by (2.2) and (2.3) is
applied to (2.1), then the orthogonality relation (2.4) does not hold in
general. However, a set of ATArorthogonal directions can be generated by

. i .
using all the previous vectors {pj}j=0 to compute p, ., :

i
_ s (i)

(2.5a) Piyg = Tyuq t % bj L P

j=0
where

. (Ar. ’Ap.)
(i) _ _ i+1° 7750 c s

(2.5b) bj = —-(K-P;,APJ.) » J S 1 .

The iterate X;4q Bgenerated by (2.2) and (2.5) minimizes E(w) over

Xy + <Pgs...sp;> (see Theorem 3.1). We refer to this algorithm as the

generalized conjugate residual method (GCR). In the absence of roundoff
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error, GCR gives the exact solution to (2.1) in at most N iterations (see

Corollary 3.2).

The work and storage requirements per iteration of GCR 'may be
prohibitively high when N 1is large. Vinsomev[17] has proposéd a method
called Orthqmin that can be viewed as a modification of GCR that is
significantly less expensive per iteration. Instead of making Pis1
AIArorthogonal to all the preceding direction vectors {pj];=0’ one can make

Pin1 orthogonal to only the last k (> 0) vectors {Pj};=i—k+1:

: i
(2.6) P =r, .+ > v{dp .
i+l i+l jeicker J
with {b§i)}§=i—k+1 defined as in (2.5b).1 Only k direction vectors need be

saved. We refer to this method as Orthomin(k) (see [19]). Both GCR and
Orthomin(k) for k > 1 are equivalent to the conjugate residual method when

A is symmetric and positive—definite.

Another alternative is to restart GCR periodically: evefy k+1
iterations, the current iterate xj(k+1) is taken as the new starting
guess.2 At most k direction vectors have to be saved, so that the storage
costé are the same as for Orthomin(k). However, the cost per iteration is-
lower, since in general fewer than k direction vectors are used to compute

Piv1- We refer to this restarted method as GCR(k).

1The first k directions {pj}§=é are computed by (2.5a), as in GCR.

h

2Here j is a counter for the number of restarts. The jt® cycle of GCR(k)

. . j(k+1)
produces the sequence of approximate solutions {xi}i=(j-1)(k+1)+1'
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For the special case k = 0, Orthomin(k) and GCR(k) are identical, with
(2.7) Pisy1 = Tyuq .
This method, which we refer to as the minimum residual method (MR), has
very modest work and storage requirements, and in the symmetric case

resembles the method of steepest descent (see [10]). Because of its

simplicity, we consider it separately from Orthomin(k) and GCR(k).

In Table I, we summarize the work and storage costs (excluding storage

for A) of computing xi for each of the methods. The entries in this table

are determined as follows. For GCR, the storage cost includes space for

the vectors x., r., Ar, Pyse+-sPy_q» and Apy,...,Ap, ;. The

work/iteration includes two inner—products for 8, 4, two scalar—vector

(i-1),i-1

products for x, and T, i inner—products for {b }j=0’ i scalar—vector

J
products for Py i scalar-vector products to compute Api by
i-1
Ap, = Ar, + 3 v Day
i Sy j

and one matrix—vector product Ari. The total is thus (3i+4)N + 1 mv. The

entries for Orthomin(k) correspond to the requirements after the kth

th iteration of GCR. The

iteration, and are the same as those for the k
work given for GCR(k) is the average over k+1 iterations. The cost of MR

is the same as the cost of Orthomin(0) or GCR(O).3

3Several other implementations are possible. In Orthomin(k) or GCR(k), it
may be cheaper to compute Api by a matrix—vector product for large k. With

a third matrix—vector product, bgi) can be computed as

-(ATAIi+1,pj)/(Apj,Apj), and the previous {Apj} need not be saved.
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| GCR | Orthomin(k) | GCR(k) | MR |

| Work/ | (3i+4)N | (3k+4)N | ((3/2)x+4)N | 4N |

ITteration] + 1 mv | + 1 mv | + 1 mv | +1mv |

| Storage | (2i+3)N | (2k+3)N | (2k+3)N | 3N |
Table I Work per iteration (mv denotes a matrix—vector

product) and storage requirements.

3. Convergence of GCR and GCR(k

In this section, we show that GCR gives the exact solution in at most
N iterations and present error bounds for GCR and GCR(k). Ve first
establish a set of relations among the vectors generated by GCR. (See [8]

for an analogous result for the conjugate gradient method.)

Theorem 3.1. If {xi}, {ri}, and {pi} are the iterates gemerated by GCR in

solving the linear sy#tem (2.1), then the following relations hold:

(3.1a)‘ (Api,Apj) =0 , i#j ;

(3.1b) (ri,Apj) =0 ’ i>j ;

(3.1c) (ri,Api) = (ri,Ari) ;

(3.14) (ri,AIj) =0 B i3 ;

(3.1e) (ri,Apj) = (ro,Apj) ’ i<i

(3.1£) (Bgse-esDy> = <BgrADGs-e-sATP = (TgsreinTd
(3.1g) if ri'# 0, then p, #0

(3.1h) x,,q minimizes E(w) = ||f—-Aw||2 over the affine space

x, + <p0,...,pi> .

Proof. The directions {pi} are chosen so that (3.1a) holds.
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Relation (3.1b) is proved by induction on i. It is vacuously true fof
i = 0. Assume that it holds for i { t. Then, using (2.2f) and taking the
inner product with Apj’
(3.2) (rt+1,Apj) = (rt,Apj) - a, (Apt,Apj) .
If j < t, then the terms on the right-hand side are zero by the induction
hypothesis and (3.1a). If j = t, then the right—hand side is zero by the

definition of a,. Hence (3.1b) holds for i = t+l1.

For (3.1c), by premultiplying (2.5a) by A and taking the inmer product
with r,, |
i

(i-1)
j (ri.

| IV e
o

j._

(ri’Ari) 2

since all the terms in the sum are zero by (3.1b).

To prove (3.1d), we rewrite (2.5a) as
j-1
Ty =Py tzb biJ—l) P, .
Premultiplying by A and taking the inner product with T, (i> j),
j-1
(ri,Apj) - tzb bij“l)(ri,Apf)

.(ri’AIj)

=0 R

by (3.1b).

Relation (3.le) is proved by induction on i, for i £ j. It is
trivially true when i = 0, Assume that it holds for i = t ¢ j. Using

(3.2),

(rt+1,APj) = (rt;Apj) - at (Apt,Apj)
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= (IO’Apj) »

by the induction hypothesis and (3.1a).

Relation (3.1f) is proved by induction on i. The three spaces are
identical when i =0, Assume that they are identical for i { t. Then

t
{pj}j=0 C(ro,...,rt+1>. But by (2.5a),
t
3 4(t)
Pegg = Teg + 2 P3R5
j=0
so that <p,,...,p 1> is a subspace of <(rp,...,Tyyq). | By (3.1a), the

+
vectors {pj]§=é are linearly independent. Hence, the dimension of

+
(ro,...,rt+1> is greater than or equal to t+1, which implies that {rj}§=é
are linearly independent and (po....,pt+1> = (ro;...,rt+1>. Similarly, by

(2.2f),

{8 5

vl e

Pryg = Tg ~ aghpy +

. . . t t+1
By the induction hypothesis, r., Ap,, and {pj}j=0 e <pg»Apg,...,A" "Py>, so

+
t lp

that {Pgs++sPr41> 1is a subspace of <pg+Apgs++-,A 0> Again, the two

spaces are equal because the {Pj] are linearly independent.

The proof of (3.1g) depends on the fact that the symmetric part M of A
is positive-definite. If ;. # 0, then by (3.1c),
(ri,Api) = (ri’Ari) = (ri:Mri) >0 ’

so that (r,,Ap;) # 0, whence p; # 0.

For the proof of (3.1h), note that

Vi e
o

X, = Xn + 2 P o
i+ 70 7 5, 3

Thus, E(xi+1)2 is a quadratic functional in a = (aO”"’ai)T' Indeed,

using (3.1a) to simplify the quadratic term,
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i
2 _ . < 2
E(xi+1) = ||r0 .2 aj Apjl|2
j=0
i i
< - 2
= (r,,r,) =2 > a,(r,,Ap.,) + > a’(Ap,,Ap.) .

Thus, E(w) is minimized over x, + <po,...,pi> when

) (ro.Apj) ] (ri,Apj)
Ap.,Ap, Ap.,Ap, ’
i P, pJ) ( P, pJ)

a

by (3.1e).

Q.EID.

Corollary 3.2. GCR gives the exact solution to (2.1) in at most N

iterations.

P:oof. If r, = 0 for some i { N1, then Axi = f and the assertion is
proved. If r; # 0 for all i { N-1, then D, # 0 for all i { N-1 by (3.1g).

N-1 . _ N
By (3.1a), {pi}i=0 are linearly independent, so that <p0,...,pr1> = R.
Hence, by (3.1hn), Xy minimizes the functional E over RN, i.e., Xy is the

solution to the system.

Q.E.D.

This result does not give any insight into how close x, is to the
solution of (2.1) for i < N. We now derive an error bound for GCR that
proves that GCR converges as an iterative method. Let Pi denote the set of

real polynomials a; of degree less than or equal to i such that qi(O) =1.

Theorem 3.3. If {ri] is the sequence of residuals generated by GCR, then
2

(3.3) Il dl, ¢ min a1l Heyll <[1-fm—-—in(£43--]i’2n 1
. illg > min 9 2 Tolly & T To'ly -
q, ¢ P, A___(A"A)
1 max
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Hence, GCR converges. If A has a complete set of eigenvectors, then
where

M, := min max lqi(k)l .

i
q e Pi A & o(A)

Moreover, if A is normal, then

(3.5) Ilrill2 LM IIrOII2

Proof. By (3.1f), the residuals {ri} generated by GCR are of the form
r, = qi(A)r0 for some q © Pi' By (3.1h),
(3.6) ||ri||2 = min ||qi(A)r0||2 .
q. & P,
i i
The first inequality of (3.3) is an immediate consequence of (3.6). To

prove the second inequality of (3.3), note that for ql(z) =1+aze P,

1
min g, 1l < Ha, W, < e wlly .
q. ¢ P,
i i
But
g ()12 = max {{Treh)z.{Itah)x)
1 2 x#0 (x,x)
= (x,Ax) | 2 (Ax,Ax)
= max [1 + 2a (z,%) + a (z,x) ] .
x#0
Moreover,

(Ax,Ax) _ (x,ATAx)
(x,x) (x,x)

<a @ty
max

and, using the positive-definiteness of M,

(x,82) _(=¥x) » ) ap>o .
(x,x) (x,x) min

Hence, if a < O,
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2 Tyy 2
g 115 <1+ 20, (e + 2, (A A" .
min(M)
This expression is minimized by a = - R TV and with this choice of a,
A _(ATA)
max
2
A . (M)
o il ¢ [1 - 22 J/2
1 2 T
A _(ATA)
max

which concludes the proof of (3.3).

Recall that the Jordan canonical form of A is given by J = TrlA T. To

prove (3.4), we rewrite (3.6) as

. -1
||ri||2 = m1nP lT (DT r0||2
qi e P,
-1 . ;
< ||T||2 liT |l2 min llqi(I)||2 Ilro||2 .

9 & Py

Since A has a complete set of eigenvectors, J is diagonal, so that

min  llq (D], = min max  lq (M)
t 2 Ae o(A)

whence (3.4) follows.

If A is normal, then T can be chosen to be an orthonormal matrix,

which proves (3.5).

Q.E.D.

Since the symmetric part of A is positive—definite, the spectrum of A
lies in the open right half of the complex plane (see [9]). Thus, the

analysis of Manteuffel [11] shows that min Hqi(A)H2 and M, approach
q. ¢ P,
i i

zero as i goes to infinity, which also implies that GCR converges.
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Theorem 3.3 can also be used to establish an error bound for GCR(k).

Corollary 3.4. If {ri} is the sequence of residuals generated by GCR(k),

then
J' .
(3.7) s, oy, <] min Hag, 1L, P Tielt,
U1 ® Tx1
so that
2
‘ A (M)
(3.8) e L e A [ E [ P
' Mpag (A A '

Hence, GCR(k) converges. Moreover, if A has a - compléte set of

eigenvectors, then

J
(3.9) Hrg ey Hy € &M w7 gl

and if A is normal, then

(3.10) e, II < llr lI .

j(k+1) (My,p)?

Proof. Assertions (3.7), (3.9), and (3.10) follow from Theorem 3.3. To

prove (3.8), let i = jk + t where 0 { t < k. Then

2
AL (M)
i 2
TR [ Ry L [P
jk+t 2 = T k 2’
ApagAA)
by (3.3), and
2
A (DT .
P I PR Kl [ PV
e 2 A (ATA) 02
max

by (3.7) and the second inequality of (3.3).

Q.E.D..
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4. Convergence of Orthomin

In this section, we present convergence results for Orthomin(k) and an
alternative error bound for GCR and GCR(k). We also present an analysis of

Orthomin in the special case when the symmetric part of A is the identity.

The vectors gemerated by Orthomin(k) satisfy a set of relations
analogous to (3.1):
Theorem 4.1. The iterates {xi], {r;}, and {p;} generated bby Orthomin (k)

satisfy the relations:

(4.1a) (Api,Apj) =0, j=ik,...,i"1 ’ ik

(4.10b) (ri,Apj) =0, j=ik-1,...,i-1 ’ i) k+1 H
(4.1¢) (r;,Ap;) = (z;,Ar)

(4.14) (r,Ar,_) =0

(4.1e) (ri,Apj) = (rj_k,Apj) ’ i=jk,ee.,j1, i2k H
(4.1€) if T, # 0, then P, #F0

(4.1g) for i ) k, x,., minimizes E(w) over the affine space

xi—'k + <pi_k)occlpi> .

Corollary 3.4 with k = 0 implies that Orthomin(0) (MR) converges. Ve
now prove that Orthomin(k) converges for k > 0. Since the analysis applies
as well to GCR, GCR(k), and MR, we state the results in terms of all four
methods. Recalling that R is the skew-symmetric part of A, we first prove

two preliminary results:

Lemma 4.2. The direction vectors {pi} and the residuals {ri} generated by

GCR, Orthomin(k), GCR(k), and MR satisfy

(4.2) (Ap,,Ap,) < (Arj,Ar;)
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Proof. The direction vectors are given by

p. =1, + z bgi_l)pj ’

where the limits of the sum are defined as in (2.5) for GCR and GCR(k), and

(2.6) for Orthomin(k). Therefore, by the AIArorthogonality of the {pi} and

the definition of bg 1)
_ - . (i-1) - 4. (i-1),2
(Api.Api) = (Ari.Ari) +2 ) bj (Ari.Apj) + ) (bj ) (Apj,Apj)
_ (Ari,Api)z
= (Arg,Ar)) =2 (0 ap )
J J
< (Ari,Ari) .
Q.E.D.
Lemha 4,3. For any real x # 0,
(x,Ax) kmin(M)
’ A, (MA (M) + p(R)
min max
Proof. Letting y = Ax,
| Al T
(x,Ax) _ (Y.A~ly) - 5,73 ¥ S A (é_l"'A:.T)
(AxaAX) (Y:Y) (Y,Y) <= "min 2 ¢
AT
Thus, it suffices to bound Xmin(-——i——-). Consider the identity
(4.4) S SRl 006 75 M 3 N

which holds for any nonsingular matrices X and Y, provided that X+Y is

nonsingular. With X = 2A and Y = ZAi, (4.4) leads to

-1, .-T
A remT@n ™ enr™ = to- #H W - p1t




= (M + ROy g1

For any x # 0,

(x, (M + RN IR)x) =
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(x,Mx) + (Rx,M IRx) > 0

?

-1,,-T
so that M+ RINIR is positive—-definite. Therefore é>—§é;— is
positive—definite and
Al T 1
ApinG-37) = T
max
But - .
N Tylg) = max [{ZeM2) (x,RTM_lkx)]
max M * R el NE)) (x,x)
x#0
<M (M) + max (Rx,M—lkx) (Rx,Rx)
= "max £#0 , Rx#0 (Rx,Rx) (x,x)
-1 T
LA +a ™) [IRRII,
= A (M) + p(RZ/A_. ()
max p min .
Hence
Al T 1
2'min( 2 ) 2 A . 2/& o :
max( ) + p(R) min
Q.E'D.
The following result proves that Orthomin(k) converges and provides
another error bound for GCR, GCR(k), and MR.
Theorem 4.4. If {ri} is the sequence of residuals generated by GCR,

Orthomin(k), GCR(k), or MR, then
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a2
_ _min"" i/2
(4.58) 01, < [a - (ATA)] Hzgll, .
max
and
2

A . (M) ,

min i/2
(4.5b) e, i1, < 1 - S Mgl

lmin(M)xmax(M) + p(R)

Proof. By (2.2f),

2 - 2
llri"‘lllz = (I‘i,ri) - Zai(ri,Api) + ai(Api'Api)
. 2 2
ey 112 - Carted
T PR E T ik .
i 2 -(Kp],’Apl)
Therefore,
2
llri+1”2 1 (ri,Api) (ri,Api)
e 12 0 Gr) Wpy,Ap))
llri'lz 1°71 1 i
<1 (ri’Ari) (ri’Ari)

- - ‘(ri'ri) —(Ari’Ari) ’

by (3.1c)/(4.1¢c) and (4.2). But

(ri,AIi)

o) 2 man®™
and

(cyhey)  (rpr)  (phry)  aia(D

1=y = 7 (., r.) T ’

TAriaAri) (ri’ATAri) rl'rl) ;-max(A A)
so that

2
A (M)
e, 1, < [ =22 12 11e.01,
i+1'f2 2 [ Y (ATX)] itt2
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which proves (4.5a). By (4.3),

(Ar,,Ar.) <~ 2
i i Xmin(M)xmax(M) + p(R)
so that
2
A . (M) . :
min i/2
ey < 1 - 317 el

Apin(MAg, (M) + p(R)

which proves (4.5b).

Q.E.D.

.In general, the two error bounds given in Theorem 4.4 are not

cbmparable. They are equal when M = I and (4.5b) is stronger when R = 0.

[xmax(A)-xmin(A) ]1/2

A’max(A)

When R = 0, the constant in (4.5b) resembles the

lmax(A)-xmin(A)]llz

xmax(A)+xmin(A)

constant [ in the error bound for the steepest descent

method (see [10]). Thus, we believe that the bounds in Theorem 4.4 are not
strict for k > 1.

If A=I- R with R skew-symmetric, then Orthomin(1l) is equivalent to
GCR, and we can improve the error bounds of Theorem 3.3 and Theorem 4.4.

Theorem 4.5. If A=1I - R with R skewsymmetric, then Orthomin(l) is

equivalent to GCR. The residuals {r.} generated by Orthomin(1l) satisfy

o (1 + ArpRD*E TIRT
(1 + Ap®DH2t + p()2t 02

(4.6) ||rt|l2 {2

for even t.
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Proof. To prove that Orthomin(l) is equivalent to GCR, it suffices to show

that b;i) =0 in (2.5b) for j { i-1. But the numerator is

(Ari+1,Apj) = (ri+1,Apj) - (Rri+1,Apj) .
By (3.1b),
(ri+1’APj) = - (ri+1’Apj) =0 .
Hence, by the skew-symmetry of R,
(Ari+1'Apj) = - (ri+1,Apj) + (ri+1,RApj) = - (ri+1'A?Pj) .
But by (2.2f),
( 2

1 =
ri‘l'l’A pj) = ;:i' (ri+1aA(rj rj""l)) 0 »

for j £ i-1, by (3.1d).

For (4.6), observe that A= I — R is a normal matrix, so that (3.5)

holds. We prove (4.6) by bounding Mt’ Widlund [18] has shown that
(4.7) M, < [oosh(t logGgy (1 + Arp(AHNTT

for even t. Let n = B%Ey(l + V‘+p(R)2). Using

cosh(z) = % (eZ + e %)
(4.7) reduces to
t
M, { ~—5——x =2 L N
t -
at 4ot 2t + 1

from which (4.6) follows.

Q.E.D.
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5. Other Approaches

In this section, we discuss several methods that are mathematically

equivalent to GCR.

We derived GCR from CR by replacing the shoit recurrence for direction
vectors (2.3) with (2.5), which produces a set of AIA—orthogonal vectors
when A is nonsymmetric. Young and Jea [19] present an alternative,

Lanczos—1like method for computing AIArorthogonal direction vectors:

i
_ - (i),

(5.1a) pi+1 = Api + > bj pj ,

j=0
where

2
. (A°p',Ap’)
(i) _ _ 74’7757 .

(Sflb) bj (Apj'Apﬁ) , jgLi .

If {pi] is the set of direction vectors generated by GCR and p6 = Py then
p; = ¢;p; for some scalar c, (see [19]). Hence, this procedure can be used
to compute directions in place of (2.5). The resulting algorithm is
equivalent to GCR, but does not require the symmetric part of A to be

positive—definite.

Axelsson [2] takes a somewhat different approach. Let Xgr Tge and P,

be as in (2.2). Then one iteration of Axelsson’s method is given by:

i
< (1)
(5.2a) x =x, + ) a,
i+l i j=0 j j
(5.20) Bt S U
) ¢ i (Ap,,Ap,)
(5.24) Piy1 = Ti41 + bip1 s
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where the scalars {agi)}

This requires the solution of a symmetric system of equations of order i+l

i e e s
j=0 oT¢ computed so that ||ri+1||2 is minimized.

B 1(1) =g,
where Bst = (Aps,Apt) and g = (ri’Aps)' Thus, the solution update is more
complicated than in GCR, but the computation of a set of linearly
independent direction vectors is simpler. Although the direction vectors
T, . . (i-1),1i
are not all A A-orthogonal, (5.2d) and the choice of {aj }j=0 force

”rill2 = min ||qi(A)r0||2 .

qi e Pi

to be satisfied, so that this method is equivalent to GCR.

If these methods are restarted every k+l1 steps, then the resulting
methods are equivalent to GCR(k). Both methods can also be modified to
produce methods analogous to Orthomin(k): only the k previous vectors

{r };=i—k+1 are used in (5.1a), and only the k vectors {pj};=i—k+1 are used

1]
j
in (5.2a), with {3;1)};=i—k+1 computed to minimize ||ri+1||2. However,
both these truncated methods may fail to converge in some cases. (We have
encountered situations in which such failure occurs for the truncated
version of (5.1); see [2] for a discussion of the truncated version of

(5.2).) PFor this reason, we favor the formulation of GCR given in

Section 2.

In discussing the methods of this paper, we have emphasized their
variational property, i.e., that x, is such that llri||2 is minimized over
some subspace. Saad [14, 15] has developed a class of CG-like methods for
.nonsymmetric problems by restricting his attention to the properties of
projection and orthogonality. Let {vj};=0 and {w }% be two sets of

j*j=0
linearly independent vectors, and let Ki 1= <v0""’vi> and
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Li := (wo,...,wi>. Saad defines an oblique projection method as ome that
computes an approximate solution X418 X + Ki whose residual Tiiq is
orthogonal to Li’ For example, GCR is such a method with Ki = <p0,....pi)

and Li = <APO""’Api>’

Saad presents several oblique projection methods in [14, 15]. Omne of

these is in some sense an alternative formulation of GCR. Let

r
0 i
Vo = TT;;TT;’ and let {vt}t=1 be defined by

(5.3) h = Av, - > h..v ,

\4
+ + it j
t+l,t t+l =0 jt' 3

t
where {hjt}j=0 are chosen so that

(Vt+1’Avj) =0 , j £t s
and h is chosen so that llv_ . ll, = 1. Let a(i) be the solution of
t+l,t t+1''2 . 2
the system of equations
(i) _ T
(504) Hi&. = llrollz (1,0:...’0) ’

where Hi is the upper—-Hessenberg matrix whose nonzero elements are the hjt

defined above, and let

i
< (i)
(5.5) X, , =X, + > a, v, .
i+l 0 =0 i J
i o= = i
By construction, X..1 8 % + Ki’ where Ki : <vo,...,vi) <vo,Avo,...,A vo).
It can be shown that Viep 1S proportional to Tiv1® SO that Ti4q 18

orthogonal to Li := (Avo,...,Avi>. . It can also be shown that %41

s s s i .
minimizes Hri+1||2 over x, + <vo,Av0,....A v0>, so that X4 is equal to

the (i+l)'st iterate generated by GCR.
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Note that the approximate solution X is computed only after {vt}:=0
have been computed, so that this method 1lends itself naturally to
restarting, Several other heuristics can be used to cut expenses

(see [14, 15]1). In particular, the computation of the {vt} can be

truncated, so that at most k vectors are used to compute vt+1:

(R
b
<

(5.6) h Av_ -

t+1,tVt+1 T AVt

j=max(0,t-k+1) 9t J

This procedure can then be integrated into an algorithm with restarts every
i+l steps, for i > k. After {vt}:=0 have been computed By (5.6), X;4q is
computed as in (5.4) and (5.5), and the algorithm is restarted. The effect
of truncating the computation of the {vt} is to make Hi a banded

upper—-Hessenberg matrix with bandwidth k. We do not know when this method

converges.
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