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Abstract

On Generalized Prolate Spheroidal Functions
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2019

In this dissertation, we introduce analytical tools and numerical machinery

for computing with certain classes of Generalized Prolate Spheroidal Functions

(GPSFs). Classical Prolate Spheroidal Wave Functions (PSWFs) are a natural

and effective tool for computing with bandlimited functions defined on the inter-

val. Slepian et al. demonstrated that GPSFs extend this apparatus to higher

dimensions. While the analytical and numerical machinery in one dimension is

fairly complete, the situation in higher dimensions is less satisfactory. In order

to adequately address the challenges of computing with GPSFs, it is first neces-

sary to efficiently and stably evaluate a certain class of Zernike polynomials, a

natural basis for representing smooth functions on the unit ball. Thus, we start

with developing the requisite preliminary analytical and numerical apparatus be-

fore constructing algorithms and analytical tools for computing with bandlimited

functions and GPSFs in higher dimensions. We present the theory and numerical

schemes constructed for both Zernike polynomials and GPSFs. In the process of

developing these tools, we observed that similar techniques could be used for the

evaluation of another family of special functions, Incomplete Gamma Functions.

The resulting algorithms (see [14]) are also included in this work.
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Chapter 1

Introduction

Classical Prolate spheroidal wave functions (PSWFs) provide a natural and effec-

tive tool for computing with bandlimited functions defined on an interval (see [25]).

As demonstrated by Slepian et al. in [26], certain classes of generalized prolate

spheroidal functions (GPSFs) extend this apparatus to higher dimensions. While

the analytical and numerical apparatus in one dimension is fairly complete (see, for

example, [31] and [22]), the situation in higher dimensions is less satisfactory. In or-

der to adequately address the challenges of computing with bandlimited functions

in higher dimensions, we first constructed numerical tools for stably and efficiently

evaluating Zernike polynomials, a basis used to represent smooth functions on the

unit ball. In Chapter 2, we describe algorithms for evaluating Zernike polynomi-

als as well as analysis and numerical tools for integrating and interpolating with

Zernike polynomials in two and higher dimensions.

Using the theory and numerical schemes involving Zernike polynomials from

Chapter 2, we introduce theory and numerical tools for computing with GPSFs

and bandlimited functions in Chapter 3. We present algorithms for evaluating

GPSFs and their corresponding eigenvalues. We also introduce numerical schemes

for integrating and interpolating bandlimited functions defined on the unit ball in

15



higher dimensions.

In constructing tools for Zernike polynomials and GPSFs, we observed that

similar techniques could be used for the evaluation of Incomplete Gamma Func-

tions, P (m,x) for m,x > 0. In the fourth and final chapter, we introduce these

algorithms. The number of operations required for evaluation is O(1) for all x and

m. Nearly full double and extended precision accuracies are achieved in their re-

spective environments and the performance of the scheme is illustrated via several

numerical examples.
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Chapter 2

Zernike Polynomials: Evaluation,

Quadrature, and Interpolation

2.1 Background

Zernike polynomials are a family of orthogonal polynomials that are a natural

basis for the approximation of smooth functions on the unit disk. Among other

applications, they are widely used in optics and atmospheric sciences and are the

natural basis for representing Generalized Prolate Spheroidal Functions (see [26]).

In this chapter, we provide a self-contained reference on Zernike polynomials,

including tables of properties, an algorithm for their evaluation, and what appear

to be new numerical schemes for quadrature and interpolation. We also introduce

properties of Zernike polynomials in higher dimensions and several classes of nu-

merical algorithms for Zernike polynomial discretization in Rn. The quadrature

and interpolation schemes provided use a tensor product of equispaced nodes in the

angular direction and roots of certain Jacobi polynomials in the radial direction.

An algorithm for the evaluation of these roots is also introduced.

The structure of this chapter is as follows. In Section 2.2 we introduce several

17



technical lemmas and provide basic mathematical background that will be used

in subsequent sections. In Section 2.3 we provide a recurrence relation for the

evaluation of Zernike polynomials. Section 2.4 describes a scheme for integrating

Zernike polynomials over the unit disk. Section 2.5 contains an algorithm for the

interpolation of Zernike polynomials. In Section 2.6 we give results of numerical

experiments with the quadrature and interpolation schemes introduced in the pre-

ceding sections. In Appendix A, we describe properies of Zernike polynomials in

R
n. Appendix B contains a description of an algorithm for the evaluation of Zernike

polynomials in Rn. Appendix C includes an description of Spherical Harmonics in

higher dimensions. In Appendix D, an overview is provided of the family of Jacobi

polynomials whose roots are used in numerical algorithms for high-dimensional

Zernike polynomial discretization. Appendix D also includes a description of an

algorithm for computing their roots. Appendix E contains notational conventions

for Zernike polynomials.

2.2 Mathematical Preliminaries

In this section, we introduce notation and several technical lemmas that will be

used in subsequent sections.

For notational convenience and ease of generalizing to higher dimensions, we

will be denoting by S`N(θ) : R→ R, the function defined by the formula

S`N(θ) =


(2π)−1/2 if N = 0,

sin(Nθ)/
√
π if ` = 0, N > 0,

cos(Nθ)/
√
π if ` = 1, N > 0.

(2.1)

where ` ∈ {0, 1}, and N is a non-negative integer. In accordance with standard

18



practice, we will denoting by δi,j the function defined by the formula

δi,j =

 1 if i = j,

0 if i 6= j.
(2.2)

The following lemma is a classical fact from elementary calculus.

Lemma 2.2.1 For all n ∈ {1, 2, ...} and for any integer k ≥ n+ 1,

1

k

k∑
i=1

sin(nθi) =

∫ 2π

0

sin(nθ)dθ = 0 (2.3)

and

1

k

k∑
i=1

cos(nθi) =

∫ 2π

0

cos(nθ)dθ = 0 (2.4)

where

θi = i
2π

k
(2.5)

for i = 1, 2, ..., k.

The following technical lemma will be used in Section 2.4.

Lemma 2.2.2 For all m ∈ {0, 1, 2, ...}, the set of all points (N, n, `) ∈ R3 such

that ` ∈ {0, 1}, N, n are non-negative integers, and N + 2n ≤ 2m − 1 contains

exactly 2m2 + 2m elements.

Proof. Lemma 2.2.2 follows immediately from the fact that the set of all pairs

of non-negative integers (N, n) satisfying N + 2n ≤ 2m− 1 has m2 + m elements

where m is a non-negative integer. �

19



The following is a classical fact from elementary functional analysis. A proof can

be found in, for example, [27].

Lemma 2.2.3 Let f1, ..., f2n−1 : [a, b]→ R be a set of orthonormal functions such

that for all k ∈ {1, 2, ..., 2n− 1},

∫ b

a

fk(x)dx =
n∑
i=1

fk(xi)ωidx (2.6)

where xi ∈ [a, b] and ωi ∈ R. Let φ : [a, b]→ R be defined by the formula

φ(x) = a1f1(x) + ...+ an−1fn−1(x). (2.7)

Then,

ak =

∫ b

a

φ(x)fk(x)dx =
n∑
i=1

φ(xi)fk(xi)ωi. (2.8)

for all k ∈ {1, 2, ..., n− 1}.

2.2.1 Jacobi Polynomials

In this section, we define Jacobi polynomials and summarize some of their prop-

erties.

Jacobi Polynomials, denoted P
(α,β)
n , are orthogonal polynomials on the interval

(−1, 1) with respect to weight function

w(x) = (1− x)α(1 + x)β. (2.9)
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Specifically, for all non-negative integers n,m with n 6= m and real numbers α, β >

−1,

∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)(1− x)α(1 + x)βdx = 0 (2.10)

The following lemma, provides a stable recurrence relation that can be used to

evaluate a particular class of Jacobi Polynomials (see, for example, [1]).

Lemma 2.2.4 For any integer n ≥ 1 and N ≥ 0,

P
(N,0)
n+1 (x) =

(2n+N + 1)N2 + (2n+N)(2n+N + 1)(2n+N + 2)x

2(n+ 1)(n+N + 1)(2n+N)
P (N,0)
n (x)

− 2(n+N)(n)(2n+N + 2)

2(n+ 1)(n+N + 1)(2n+N)
P

(N,0)
n−1 (x), (2.11)

where

P
(N,0)
0 (x) = 1 (2.12)

and

P
(N,0)
1 (x) =

N + (N + 2)x

2
. (2.13)

The Jacobi Polynomial P
(N,0)
n is defined in (2.10).

The following lemma provides a stable recurrence relation that can be used to

evaluate derivatives of a certain class of Jacobi Polynomials. It is readily obtained

by differentiating (2.11) with respect to x,
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Lemma 2.2.5 For any integer n ≥ 1 and N ≥ 0,

P
(N,0)′
n+1 (x) =

(2n+N + 1)N2 + (2n+N)(2n+N + 1)(2n+N + 2)x

2(n+ 1)(n+N + 1)(2n+N)
P (N,0)′
n (x)

− 2(n+N)(n)(2n+N + 2)

2(n+ 1)(n+N + 1)(2n+N)
P

(N,0)′
n−1 (x)

+
(2n+N)(2n+N + 1)(2n+N + 2)

2(n+ 1)(n+N + 1)(2n+N)
P (N,0)
n (x), (2.14)

where

P
(N,0)′
0 (x) = 0 (2.15)

and

P
(N,0)′
1 (x) =

(N + 2)

2
. (2.16)

The Jacobi Polynomial P
(N,0)
n is defined in (2.10) and P

(N,0)′
n (x) denotes the deriva-

tive of P
(N,0)
n (x) with respect to x.

The following lemma, which provides a differential equation for Jacobi polynomials,

can be found in [1]

Lemma 2.2.6 For any integer n,

(1−x2)P (k,0)′′
n (x) + (−k− (k+ 2)x)P (k,0)′

n (x) +n(n+k+ 1)P (k,0)
n (x) = 0 (2.17)

for all x ∈ [0, 1] where P
(N,0)
n is defined in (2.10).

Remark 2.2.1 We will be denoting by P̃n : [0, 1] → R the shifted Jacobi polyno-

mial defined for any non-negative integer n by the formula

P̃n(x) =
√

2n+ 2P (1,0)
n (1− 2x) (2.18)
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where P
(1,0)
n is defined in (2.10). The roots of P̃n will be used in Section 2.4

and Section 2.5 in the design of quadrature and interpolation schemes for Zernike

polynomials.

It follows immediately from the combination of (2.10) and (2.18) that the polyno-

mials P̃n are orthogonal on [0, 1] with respect to weight function

w(x) = x. (2.19)

That is, for any non-negative integers i, j,

∫ 1

0

P̃i(r)P̃j(r)rdr = δi,j. (2.20)

2.2.2 Gaussian Quadratures

In this section, we introduce Gaussian Quadratures.

Definition 2.2.1 A Gaussian Quadrature with respect to a set of functions

f1, ..., f2n−1 : [a, b]→ R (2.21)

and non-negative weight function w : [a, b] → R is a set of n nodes, x1, ..., xn ∈

[a, b], and n weights, ω1, ..., ωn ∈ R, such that, for any integer j ≤ 2n− 1,

∫ b

a

fj(x)w(x)dx =
n∑
i=0

ωifj(xi). (2.22)

The following is a well-known lemma from numerical analysis. A proof can be

found in, for example, [27].

Lemma 2.2.7 Suppose that p0, p1, ... : [a, b] → R is a set of orthonormal polyno-

mials with respect to some non-negative weight function w : [a, b] → R such that
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polynomial pi is of degree i. Then,

i) Polynomial pi has exactly i roots on [a, b].

ii) For any non-negative integer n and for i = 0, 1, ..., 2n− 1, we have

∫ b

a

pi(x)w(x)dx =
n∑
k=1

ωkpi(xk) (2.23)

where x1, ..., xn ∈ [a, b] are the n roots of pn and where weights ω1, ..., ωn ∈ R solve

the n× n system of linear equations

n∑
k=1

ωkpj(xk) =

∫ b

a

w(x)pj(x)dx (2.24)

with j = 0, 1, ..., n− 1.

iii) The weights, ωi, satisfy the identity,

ωi =

(
n−1∑
k=0

pk(xi)
2

)−1

(2.25)

for i = 1, 2, ..., n.

2.2.3 Zernike Polynomials

In this section, we define Zernike Polynomials and describe some of their basic

properties.

Zernike polynomials are a family of orthogonal polynomials defined on the

unit ball in R
n. In this chapter, we primarily discuss Zernike polynomials in

R
2, however nearly all of the theory and numerical machinery in two dimensions
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generalizes naturally to higher dimensions. The mathematical properties of Zernike

polynomials in Rn are included in Appendix A.

Zernike Polynomials are defined via the formula

Z`
N,n(x) = RN,n(r)S`N(θ) (2.26)

for all x ∈ R2 such that ‖x‖ ≤ 1, (r, θ) is the representation of x in polar co-

ordinates, N, n are non- negative integers, S`N is defined in (2.1), and RN,n are

polynomials of degree N + 2n defined by the formula

RN,n(x) = xN
n∑
k=0

(−1)k
(
n+N + p

2

k

)(
n

k

)
(x2)n−k(1− x2)k, (2.27)

for all 0 ≤ x ≤ 1. Furthermore, for any non-negative integers N, n,m,

∫ 1

0

RN,n(x)RN,m(x)x dx =
δn,m

2(2n+N + 1)
(2.28)

and

RN,n(1) = 1. (2.29)

We define the normalized polynomials RN,n via the formula

RN,n(x) =
√

2(2n+N + 1)RN,n(x), (2.30)

so that

∫ 1

0

(
RN,n(x)

)2
x dx = 1, (2.31)

where N and n are non-negative integers. We define the normalized Zernike poly-
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nomial, Z
`

N,n, by the formula

ZN,n(x) = RN,n(r)S`N(θ) (2.32)

where x ∈ R2 satisfies ‖x‖ ≤ 1, and N, n are non-negative integers. We observe

that Z
`

N,n has L2 norm of 1 on the unit disk.

In an abuse of notation, we use Z`
N,n(x) and Z`

N,n(r, θ) interchangeably where

(r, θ) is the polar coordinate representation of x ∈ R2.

2.3 Numerical Evaluation of Zernike Polynomi-

als

In this section, we provide a stable recurrence relation (see Lemma 2.3.1) that can

be used to evaluate Zernike Polynomials.

Lemma 2.3.1 The polynomials RN,n, defined in (2.27) satisfy the recurrence re-

lation

RN,n+1(x) =

− ((2n+N + 1)N2 + (2n+N)(2n+N + 1)(2n+N + 2)(1− 2x2))

2(n+ 1)(n+N + 1)(2n+N)
RN,n(x)

− 2(n+N)(n)(2n+N + 2)

2(n+ 1)(n+N + 1)(2n+N)
RN,n−1(x) (2.33)

where 0 ≤ x ≤ 1, N is a non-negative integer, n is a positive integer, and

RN,0(x) = xN (2.34)
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and

RN,1(x) = −xNN + (N + 2)(1− 2x2)

2
. (2.35)

Proof. According to [1], for any non-negative integers n and N ,

RN,n(x) = (−1)nxNP (N,0)
n (1− 2x2), (2.36)

where 0 ≤ x ≤ 1, N and n are nonnegative integers, and P
(N,0)
n denotes a Jacobi

polynomial (see (2.10)).

Identity (2.33) follows immediately from the combination of (2.36) and (2.11).

�

Remark 2.3.1 The algorithm for evaluating Zernike polynomials using the recur-

rence relation in Lemma 2.3.1 is known as Kintner’s method (see [16] and, for

example, [6]).

2.4 Quadrature for Zernike Polynomials

In this section, we provide a quadrature rule for Zernike Polynomials.

The following lemma follows immediately from applying Lemma 2.2.7 to the

polynomials P̃n defined in (2.18).

Lemma 2.4.1 Let {r1, ..., rm} be the m roots of P̃m (see (2.18)) and {ω1, ..., ωm}

the m weights of the Gaussian quadrature (see (2.22)) for the polynomials

P̃0, P̃1, ..., P̃2m−1 (2.37)
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where P̃n is defined in (2.18). Then, for any polynomial q of degree at most 2m−1,

∫ 1

0

q(x)xdx =
m∑
i=1

q(ri)ωi. (2.38)

The following theorem provides a quadrature rule for Zernike Polynomials.

Theorem 2.4.2 Let {r1, ..., rm} be the m roots of P̃m (see (2.18)) and {ω1, ..., ωm}

the m weights of the Gaussian quadrature (see (2.22)) for the polynomials

P̃0, P̃1, ..., P̃2m−2. (2.39)

Then, for all ` ∈ {0, 1} and for all N, n ∈ {0, 1, ...} such that N + 2n ≤ 2m− 1,

∫
D

Z`
N,n(x)dx =

m∑
i=1

RN,n(ri)ωi

2m∑
j=1

2π

2m
S`N(θj) (2.40)

where RN,n is defined in (2.27), θj is defined by the formula

θj = j
2π

2m
(2.41)

for j ∈ {1, 2, ..., 2m}, and D ⊆ R2 denotes the unit disk. Furthermore, there are

exactly 2m2 +m Zernike Polynomials of degree at most 2m− 1.

Proof. Applying a change of variables,

∫
D

Z`
N,n(x)dx =

∫ 1

0

∫ 2π

0

RN,n(r)S`N(θ)rdrdθ, (2.42)

where Z`
N,n is a Zernike polynomial (see (2.26)) and where RN,n is defined in (2.28).

Changing the order of integration of (2.42), we obtain

∫
D

Z`
N,n(x)dx =

∫ 1

0

rRN,n(r)dr

∫ 2π

0

S`N(θ)dθ. (2.43)
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Applying Lemma 2.2.1 and Lemma 2.4.1 to (2.43), we obtain

∫
D

Z`
N,n(x)dx =

m∑
i=1

RN,n(ri)ωi

2m∑
j=1

2π

2m
S`N(θj) (2.44)

for N+2n ≤ 2m−1. The fact that there are exactly 2m2 +m Zernike polynomials

of degree at most 2m − 1 follows immediately from the combination of Lemma

2.2.2 with the fact that there are exactly m Zernike polynomials of degree at most

2m− 1 that are of the form Z`
0,n. �

Remark 2.4.1 It follows immediately from Lemma 2.4.2 that for all m ∈ {1, 2, ...},

placing m nodes in the radial direction and 2m nodes in the angular direction (as

described in Lemma 2.4.2), integrates exactly the 2m2 +m Zernike polynomials on

the disk of degree at most 2m− 1.

Remark 2.4.2 The n roots of P̃n (see 2.20) can be found by using, for example,

the algorithm described in Section 2.10.3.

Remark 2.4.3 For Zernike polynomial discretization in Rk+1, roots of the poly-

nomials P̃ k
n are used, where P̃ k

n is defined by the formula

P̃ k
n (x) =

√
k + 2n+ 1P (k,0)

n (1− 2x). (2.45)

Properties of this class of Jacobi polynomials are provided in Appendix D in addi-

tion to an algorithm for finding their roots.

The following remark illustrates that the advantage of quadrature rule (2.40) is

especially noticeable in higher dimensions.

Remark 2.4.4 Quadrature rule (2.40) integrates all Zernike polynomials up to

order 2m− 1 using the m roots of P̃m (see (2.20)) as nodes in the radial direction.
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Using Guass-Legendre nodes instead of roots of P̃m would require using m+1 nodes

in the radial direction.

The equivalent of quadrature rule (2.40) in p + 2 dimensions uses the roots of

P̃ p+1
m (see (2.111)) as nodes in the radial direction. Using Gauss-Legendre nodes

instead of these nodes would require using an extra p+1 nodes in the radial direction

or approximately (p+ 1)mp+1 extra nodes total.

(−1, 0)

(0, 1)

(1, 0)

(0,−1)

Figure 2.1: An illustration of locations of Zernike polynomial quadrature nodes
with 20 radial nodes and 40 angular nodes.

The following remark shows that we can reduce the total number of nodes in

quadrature rule (2.40) while still integrating the same number of functions.

Remark 2.4.5 Quadrature rule (2.40) integrates all Zernike polynomials of order

up to 2m−1 using a tensor product of 2m equispaced nodes in the angular direction

and the m roots of P̃m (see 2.18) in the radial direction. However, for large enough

N and small enough j, ZN,n(rj) is of magnitude smaller than machine precision,
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node θ
1 0.0000000000000000
2 0.1570796326794897
3 0.3141592653589793
4 0.4712388980384690
5 0.6283185307179586
6 0.7853981633974483
7 0.9424777960769379
8 1.0995574287564280
9 1.2566370614359170
10 1.4137166941154070
11 1.5707963267948970
12 1.7278759594743860
13 1.8849555921538760
14 2.0420352248333660
15 2.1991148575128550
16 2.3561944901923450
17 2.5132741228718340
18 2.6703537555513240
19 2.8274333882308140
20 2.9845130209103030
21 3.1415926535897930
22 3.2986722862692830
23 3.4557519189487720
24 3.6128315516282620
25 3.7699111843077520
26 3.9269908169872410
27 4.0840704496667310
28 4.2411500823462210
29 4.3982297150257100
30 4.5553093477052000
31 4.7123889803846900
32 4.8694686130641790
33 5.0265482457436690
34 5.1836278784231590
35 5.3407075111026480
36 5.4977871437821380
37 5.6548667764616280
38 5.8119464091411170
39 5.9690260418206070
40 6.1261056745000970

node r
1 0.0083000442070672
2 0.0276430533525631
3 0.0575344576368137
4 0.0973041282065463
5 0.1460632469641095
6 0.2027224916634053
7 0.2660161417643405
8 0.3345303010944863
9 0.4067344665164935
10 0.4810157112964263
11 0.5557147130369888
12 0.6291628194156031
13 0.6997193231640498
14 0.7658081136864078
15 0.8259528873644578
16 0.8788101326763239
17 0.9231991629103781
18 0.9581285688822349
19 0.9828187818547442
20 0.9967238933309499

Table 2.1: Locations in the radial and angular directions of Zernike polynomial
quadrature nodes with 40 angular nodes and 20 radial nodes.

where rj denotes the jth smallest root of P̃m. As a result, in order to integrate

exactly ZN,n for large N , we can use fewer equispaced nodes in the angular direction
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at radius rj.

2.5 Approximation of Zernike Polynomials

In this section, we describe an interpolation scheme for Zernike Polynomials.

We will denote by r1, ..., rM the M roots of P̃M (see 2.18).

Theorem 2.5.1 Let M be a positive integer and f : D → R be a linear combina-

tion of Zernike polynomials of degree at most M − 1. That is,

f(r, θ) =
∑
i,j

α`i,jZ
`

i,j(r, θ) (2.46)

where i, j are non-negative integers satisfying

i+ 2j ≤M − 1 (2.47)

and where Z
`

i,j(r, θ) is defined by (2.32) and S`i is defined by (2.1). Then,

α`i,j =
M∑
k=1

[
Ri,j(rk)ωk

2M−1∑
l=1

2π

2M − 1
f(rk, θl)S

`
i (θl)

]
(2.48)

where r1, ..., rM denote the M roots of P̃M (see 2.18) and θl is defined by the formula

θl = l
2π

2M − 1
(2.49)

for l = 1, 2, ..., 2M − 1.

Proof. Clearly,

α`i,j =

∫
D

f(r, θ)Z
`

i,j =

∫ 2π

0

∫ 1

0

f(r, θ)Ri,j(r)S
`
i (θ)rdrdθ. (2.50)
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Changing the order of integration of (2.50) and applying Lemma 2.2.1 and Lemma

2.2.3, we obtain

α`i,j =

∫ 1

0

Ri,j(r)r

∫ 2π

0

f(r, θ)S`i (θ)dθdr

=

∫ 1

0

Ri,j(r)r
2M−1∑
l=1

2π

2M − 1
f(r, θl)S

`
i (θl)dr.

(2.51)

Applying Lemma 2.2.3 to (2.51), we obtain

α`i,j =
M∑
k=1

[
Ri,j(rk)ωk

2M−1∑
l=1

2π

2M − 1
f(rk, θl)S

`
i,j(θl)

]
. (2.52)

�

Remark 2.5.1 Suppose that f : D → R is a linear combination of Zernike poly-

nomials of degree at most M − 1. It follows immediately from Theorem 2.5.1

and Theorem 2.4.2 that we can recover exactly the M2/2 + M/2 coefficients of

the Zernike polynomial expanison of f by evaluation of f at 2M2 −M points via

(2.48).

Remark 2.5.2 Recovering the M2/2 + M/2 coefficients of a Zernike expansion

of degree at most M − 1 via (2.52) requires O(M3) operations by using a FFT to

compute the sum

2M−1∑
l=1

2π

2M − 1
f(r, θl)S

`
i,j(θl) (2.53)

and then naively computing the sum

α`i,j =
M∑
k=1

Ri,j(rk)ωk

2M−1∑
l=1

2π

2M − 1
f(rk, θl)S

`
i,j(θl). (2.54)
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Remark 2.5.3 Sum (2.54) can be computed using an FMM (see, for example, [2])

which would reduce the evaluation of sum (2.52) to a computational cost of

O(M2 log(M)).

Remark 2.5.4 Standard interpolation schemes on the unit disk often involve rep-

resenting smooth functions as expansions in non-smooth functions such as

Tn(r)S`N(θ) (2.55)

where n and N are non-negative integers, Tn is a Chebyshev polynomial, and S`N is

defined in (2.1). Such interpolation schemes are amenable to the use of an FFT in

both the angular and radial directions and thus have a computational cost of only

O(M2 log(M)) for the interpolation of an M-degree Zernike expansion.

However, interpolation scheme (2.48) has three main advantages over such a

scheme:

i) In order to represent a smooth function on the unit disk to full precision, a

Zernike expansion requires approximately half as many terms as an expansion into

functions of the form (2.55) (see Figure 2.3).

ii) Each function in the interpolated expansion is smooth on the disk.

iii) The expansion is amenable to filtering.

2.6 Numerical Experiments

The quadrature and interpolation formulas described in Sections 2.4 and 2.5 were

implemented in Fortran 77. We used the Lahey/Fujitsu compiler on a 2.9 GHz

Intel i7-3520M Lenovo laptop. All examples in this section were run in double

precision arithmetic.

In each table in this section, the column labeled “nodes” denotes the number
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of nodes in both the radial and angular direction using quadrature rule (2.40).

The column labeled “exact integral” denotes the true value of the integral being

tested. This number is computed using adaptive gaussian quadrature in extended

precision. The column labeled “integral via quadrature” denotes the integral ap-

proximation using quadrature rule (2.40).

We tested the performance of quadrature rule (2.40) in integrating three dif-

ferent functions over the unit disk. In Table 2.2 we approximated the integral over

the unit disk of the function f1 defined by the formula

f1(x, y) =
1

1 + 25(x2 + y2)
. (2.56)

In Table 2.3 we use quadrature rule (2.40) to approximate the integral over the

unit disk of the function f2 defined by the formula

f2(r, θ) = J100(150r) cos(100θ)). (2.57)

In Table 2.4, we use quadrature rule (2.40) to approximate the integral over the

unit disk of the function f3 defined by the formula

f3(r, θ) = P8(x)P12(y). (2.58)

We tested the performance of interpolation scheme (2.46) on two functions defined

on the unit disk.

In Figure 2.2 we plot the magnitude of the coefficients of the Zernike polyno-

mials R0,n for n = 0, 1, ..., 10 using interpolation scheme (2.46) with 21 nodes in

the radial direction and 41 in the angular direction on the function f1 defined in

(2.56). All coeficients of other terms were of magnitude smaller than 10−14. In

Table 2.5 we list the interpolated coefficients of the Zernike polynomial expansion
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of the function f4 defined by the formula

f4(x, y) = P2(x)P4(y) (2.59)

where Pi is the ith degree Legendre polynomial. Listed are the coefficients using

interpolation scheme (2.46) with 5 points in the radial direction and 9 points in

the angular direction of Zernike polynomials

RN,n cos(Nθ) (2.60)

where N = 0, 1, ..., 8 and n = 0, 1, 2, 3, 4. All other coefficients were of magnitude

smaller than 10−14. We interpolated the Bessel function

J10(10r)cos(10θ) (2.61)

using interpolation scheme (2.46) and plot the resulting coefficients of the Zernike

polynomials

R10,n cos(10θ) (2.62)

for n = 0, ..., 16 in Figure 2.3. All other coefficients were approximately 0 to ma-

chine precision. In Figure 2.3, we plot the coefficients of the Chebyshev expansion

obtained via Chebyshev interpolation of the radial component of (2.61).
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radial nodes angular nodes exact integral integral via quadrature relative error
5 10 0.4094244859413851 0.4097244673896003 0.732691× 10−3

10 20 0.4094244859413851 0.4094251051077367 0.151228× 10−5

15 30 0.4094244859413851 0.4094244870531256 0.271537× 10−8

20 40 0.4094244859413851 0.4094244859432513 0.455821× 10−11

25 50 0.4094244859413851 0.4094244859413883 0.791759× 10−14

30 60 0.4094244859413851 0.4094244859413848 0.630994× 10−15

35 70 0.4094244859413851 0.4094244859413850 0.142503× 10−15

40 80 0.4094244859413851 0.4094244859413858 0.181146× 10−14

Table 2.2: Quadratures for f1(x, y) = (1 + 25(x2 +y2))−1 over the unit disk several
different numbers of nodes
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radial nodes angular nodes exact integral integral via quadrature
5 10 0 0.2670074163846569× 10−1

10 20 0 0.2606355680939063× 10−2

15 30 0 0.3119143925398078× 10−15

20 40 0 0.0000000000000000× 100

25 50 0 0.3228321977714574× 10−1

30 60 0 0.4945592102178045× 10−16

35 70 0 0.1147861841710902× 10−16

40 80 0 0.8148891073315595× 10−16

45 90 0 −0.7432759692263743× 10−16

50 100 0 0.3207999037057322× 10−1

55 110 0 −0.1399753743762347× 10−15

60 120 0 0.3075136040459932× 10−16

65 130 0 −0.9458788981593222× 10−16

70 140 0 0.2045957446273746× 10−17

75 150 0 0.2416178317504225× 10−16

Table 2.3: Quadratures for f2(r, θ) = J100(150r) cos(100θ) using several different
numbers of nodes

38



radial nodes angular nodes integral via quadrature exact integral relative error
5 10 −0.8998055487754142× 10−2 −0.1527947805159123× 10−2 −0.830191× 100

10 20 0.1655201967553289× 10−1 −0.1527947805159123× 10−2 −0.109231× 101

15 30 −0.1527947805159138× 10−2 −0.1527947805159123× 10−2 −0.979221× 10−14

20 40 −0.1527947805159132× 10−2 −0.1527947805159123× 10−2 −0.567665× 10−14

25 50 −0.1527947805159108× 10−2 −0.1527947805159123× 10−2 0.102180× 10−13

30 60 −0.1527947805159144× 10−2 −0.1527947805159123× 10−2 −0.134820× 10−13

35 70 −0.1527947805159128× 10−2 −0.1527947805159123× 10−2 −0.269641× 10−14

40 80 −0.1527947805159155× 10−2 −0.1527947805159123× 10−2 −0.210036× 10−13

Table 2.4: Quadratures for f3(x, y) = P8(x)P12(y) (see (2.58)) using several differ-
ent numbers of nodes

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

coefficient

N = 0

Figure 2.2: Magnitudes of coefficients of interpolation of f1(x, y) = (1 + 25(x2 +
y2))−1 for N = 0
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N n = 0 n = 1 n = 2 n = 3 n = 4
0 0.02942 0.03297 −0.11998 0.01373 0.53776× 10−16

1 −0.48788× 10−16 0.76567× 10−17 0.99670× 10−18 0.22059× 10−16 -
2 0.02967 0.11495 −0.00647 −0.90206× 10−16 -
3 0.58217× 10−16 −0.73297× 10−16 0.19321× 10−17 - -
4 0.04926 −0.03238 −0.13010× 10−16 - -
5 0.77604× 10−16 0.10474× 10−15 - - -
6 0.09714 −0.11102× 10−15 - - -
7 −0.18100× 10−16 - - - -
8 0.77241× 10−16 - - - -

Table 2.5: Coefficients of the interpolation of the function f4(x, y) = P2(x)P4(y)
into Zernike polynomials of degree at most 8. The entry corresponding to N, n is
the coefficient of RN,n cos(Nθ).

1 5 10 15 20 25 30 35 40
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Figure 2.3: Coefficients of the Zernike expansion for N = 10 of J10(10r) cos(10θ)
using Chebyshev and Zernike interpolation in the radial direction with 81 points
in the angular direction and 41 points in the radial direction.
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2.7 Appendix A: Mathematical Properties of

Zernike Polynomials

In this appendix, we define Zernike polynomials in Rp+2 and describe some of their

basic properties. Zernike polynomials, denoted Z`
N,n, are a sequence of orthogonal

polynomials defined via the formula

Z`
N,n(x) = RN,n(‖x‖)S`N(x/‖x‖), (2.63)

for all x ∈ Rp+2 such that ‖x‖ ≤ 1, where N and n are nonnegative integers, S`N

are the orthonormal surface harmonics of degree N (see Appendix C), and RN,n

are polynomials of degree 2n+N defined via the formula

RN,n(x) = xN
n∑

m=0

(−1)m
(
n+N + p

2

m

)(
n

m

)
(x2)n−m(1− x2)m, (2.64)

for all 0 ≤ x ≤ 1. The polynomials RN,n satisfy the relation

RN,n(1) = 1, (2.65)

and are orthogonal with respect to the weight function w(x) = xp+1, so that

∫ 1

0

RN,n(x)RN,m(x)xp+1 dx =
δn,m

2(2n+N + p
2

+ 1)
, (2.66)

where

δn,m =

 1 if n = m,

0 if n 6= m.
(2.67)
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We define the polynomials RN,n via the formula

RN,n(x) =
√

2(2n+N + p/2 + 1)RN,n(x), (2.68)

so that

∫ 1

0

(
RN,n(x)

)2
xp+1 dx = 1, (2.69)

where N and n are nonnegative integers. We define the normalized Zernike poly-

nomial, Z
`

N,n, by the formula

ZN,n(x) = RN,n(‖x‖)S`N(x/‖x‖) (2.70)

for all x ∈ Rp+2 such that ‖x‖ ≤ 1, where N and n are nonnegative integers, S`N

are the orthonormal surface harmonics of degree N (see Appendix C), and RN,n is

defined in (2.64). We observe that Z
`

N,n has L2 norm of 1 on the unit ball in Rp+2.

In an abuse of notation, we refer to both the polynomials Z`
N,n and the radial

polynomials RN,n as Zernike polynomials where the meaning is obvious.

Remark 2.7.1 When p = −1, the Zernike polynomials take the form

Z1
0,n(x) = R0,n(|x|) = P2n(x), (2.71)

Z2
1,n(x) = sgn(x) ·R1,n(|x|) = P2n+1(x), (2.72)

for −1 ≤ x ≤ 1 and nonnegative integer n, where Pn denotes the Legendre polyno-
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mial of degree n and

sgn(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0,

(2.73)

for all real x.

Remark 2.7.2 When p = 0, the Zernike polynomials take the form

Z1
N,n(x1, x2) = RN,n(r) cos(Nθ)/

√
π, (2.74)

Z2
N,n(x1, x2) = RN,n(r) sin(Nθ)/

√
π, (2.75)

where x1 = r cos(θ), x2 = r sin(θ), and N and n are nonnegative integers.

2.7.1 Special Values

The following formulas are valid for all nonnegative integers N and n, and for all

0 ≤ x ≤ 1.

RN,0(x) = xN , (2.76)

RN,1(x) = xN
(
(N + p/2 + 2)x2 − (N + p/2 + 1)

)
, (2.77)

RN,n(1) = 1, (2.78)

R
(k)
N,n(0) = 0 for k = 0, 1, . . . , N − 1, (2.79)

R
(N)
N,n(0) = (−1)nN !

(
n+N + p

2

n

)
. (2.80)
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2.7.2 Hypergeometric Function

The polynomials RN,n are related to the hypergeometric function 2F1 (see [1]) by

the formula

RN,n(x) = (−1)n
(
n+N + p

2

n

)
xN 2F1

(
−n, n+N +

p

2
+ 1;N +

p

2
+ 1;x2

)
, (2.81)

where 0 ≤ x ≤ 1, and N and n are nonnegative integers.

2.7.3 Interrelations

The polynomials RN,n are related to the Jacobi polynomials via the formula

RN,n(x) = (−1)nxNP
(N+ p

2
,0)

n (1− 2x2), (2.82)

where 0 ≤ x ≤ 1, N and n are nonnegative integers, and P
(α,β)
n , α, β > −1, denotes

the Jacobi polynomials of degree n (see [1]).

When p = −1, the polynomials RN,n are related to the Legendre polynomials

via the formulas

R0,n(x) = P2n(x), (2.83)

R1,n(x) = P2n+1(x), (2.84)

where 0 ≤ x ≤ 1, n is a nonnegative integer, and Pn denotes the Legendre poly-

nomial of degree n (see [1]).
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2.7.4 Limit Relations

The asymptotic behavior of the Zernike polynomials near 0 as the index n tends

to infinity is described by the formula

lim
n→∞

(−1)nRN,n

(
x
2n

)
(2n)p/2

=
JN+p/2(x)

xp/2
, (2.85)

where 0 ≤ x ≤ 1, N is a nonnegative integer, and Jν denotes the Bessel functions

of the first kind (see [1]).

2.7.5 Zeros

The asymptotic behavior of the zeros of the polynomials RN,n as n tends to infinity

is described by the following relation. Let x
(n)
N,m be the mth positive zero of RN,n,

so that 0 < x
(n)
N,1 < x

(n)
N,2 < . . .. Likewise, let jν,m be the mth positive zero of Jν , so

that 0 < jν,1 < jν,2 < . . ., where Jν denotes the Bessel functions of the first kind

(see [1]). Then

lim
n→∞

2nx
(n)
N,m = jN+p/2,m, (2.86)

for any nonnegative integer N .

2.7.6 Inequalities

The inequality

|RN,n(x)| ≤
(
n+N + p

2

n

)
(2.87)

holds for 0 ≤ x ≤ 1 and nonnegative integer N and n.
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2.7.7 Integrals

The polynomials RN,n satify the relation

∫ 1

0

JN+p/2(xy)

(xy)p/2
RN,n(y)yp+1 dy =

(−1)nJN+p/2+2n+1(x)

xp/2+1
, (2.88)

where x ≥ 0, N and n are nonnegative integers, and Jν denotes the Bessel functions

of the first kind.

2.7.8 Generating Function

The generating function associated with the polynomials RN,n is given by the

formula

(
1 + z −

√
1 + 2z(1− 2x2) + z2

)N+p/2

(2zx)N+p/2xp/2
√

1 + 2z(1− 2x2) + z2
=
∞∑
n=0

RN,n(x)zn, (2.89)

where 0 ≤ x ≤ 1 is real, z is a complex number such that |z| ≤ 1, and N is a

nonnegative integer.

2.7.9 Differential Equation

The polynomials RN,n satisfy the differential equation

(1− x2)y′′(x)− 2xy′(x) +

(
χN,n +

1
4
− (N + p

2
)2

x2

)
y(x) = 0, (2.90)

where

χN,n = (N + p
2

+ 2n+ 1
2
)(N + p

2
+ 2n+ 3

2
), (2.91)
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and

y(x) = xp/2+1RN,n(x), (2.92)

for all 0 < x < 1 and nonnegative integers N and n.

2.7.10 Recurrence Relations

The polynomials RN,n satisfy the recurrence relation

2(n+ 1)(n+N + p
2

+ 1)(2n+N + p
2
)RN,n+1(x)

= −
(
(2n+N + p

2
+ 1)(N + p

2
)2 + (2n+N + p

2
)3(1− 2x2)

)
RN,n(x)

− 2n(n+N + p
2
)(2n+N + p

2
+ 2)RN,n−1(x), (2.93)

where 0 ≤ x ≤ 1, N is a nonnegative integer, n is a positive integer, and (·)n is

defined via the formula

(x)n = x(x+ 1)(x+ 2) . . . (x+ n− 1), (2.94)

for real x and nonnegative integer n. The polynomials RN,n also satisfy the recur-

rence relations

(2n+N + p
2

+ 2)xRN+1,n(x) = (n+N + p
2

+ 1)RN,n(x) + (n+ 1)RN,n+1(x),

(2.95)

for nonnegative integers N and n, and

(2n+N + p
2
)xRN−1,n(x) = (n+N + p

2
)RN,n(x) + nRN,n−1(x), (2.96)
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for integers N ≥ 1 and n ≥ 0, where 0 ≤ x ≤ 1.

2.7.11 Differential Relations

The Zernike polynomials satisfy the differential relation given by the formula

(2n+N + p
2
)x(1− x2)

d

dx
RN,n(x)

=
(
N(2n+N + p

2
) + 2n2 − (2n+N)(2n+N + p

2
)x2
)
RN,n(x)

+ 2n(n+N + p
2
)RN,n−1(x), (2.97)

where 0 < x < 1, N is a nonnegative integer, and n is a positive integer.

2.8 Appendix B: Numerical Evaluation of Zernike

Polynomials in Rp+2

The main analytical tool of this section is Lemma 2.8.1 which provides a recurrence

relation that can be used for the evaluation of radial Zernike Polynomials, RN,n.

According to [1], radial Zernike polynomials, RN,n, are related to Jacobi poly-

nomials via the formula

RN,n(x) = (−1)nxNP
(N+ p

2
,0)

n (1− 2x2), (2.98)

where 0 ≤ x ≤ 1, N and n are nonnegative integers, and P
(α,0)
n is defined in (2.10).

The following lemma provides a relation that can be used to evaluate the poly-

nomial RN,n.
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Lemma 2.8.1 The polynomials RN,n satisfy the recurrence relation

2(n+ 1)(n+N + p
2

+ 1)(2n+N + p
2
)RN,n+1(x)

= −
(
(2n+N + p

2
+ 1)(N + p

2
)2 + (2n+N + p

2
)3(1− 2x2)

)
RN,n(x)

− 2n(n+N + p
2
)(2n+N + p

2
+ 2)RN,n−1(x), (2.99)

where 0 ≤ x ≤ 1, N is a nonnegative integer, n is a positive integer, and (·)n is

defined via the formula

(x)n = x(x+ 1)(x+ 2) . . . (x+ n− 1), (2.100)

for real x and nonnegative integer n.

Proof. It is well known that the Jacobi polynomial P
(α,0)
n (x) satisfies the recur-

rence relation

a1nP
(α,0)
n+1 = (a2n + a3nx)P (α,0)

n (x)− a4nP
(α,0)
n−1 (x) (2.101)

where

a1n = 2(n+ 1)(n+ α + 1)(2n+ α)

a2n = (2n+ α + 1)α2

a3n = (2n+ α)(2n+ α + 1)(2n+ α + 2)

a4n = 2(n+ α)(n)(2n+ α + 2)

(2.102)

Identity (2.99) follows immediately from the combination of (2.101) and (2.102). �
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2.9 Appendix C: Spherical Harmonics in Rp+2

Suppose that Sp+1 denotes the unit sphere in R
p+2. The spherical harmonics

are a set of real-valued continuous functions on Sp+1, which are orthonormal and

complete in L2(Sp+1). The spherical harmonics of degree N ≥ 0 are denoted by

S1
N , S

2
N , . . . , S

`
N , . . . , S

h(N)
N : Sp+1 → R, where

h(N) = (2N + p)
(N + p− 1)!

p!N !
, (2.103)

for all nonnegative integers N .

The following theorem defines the spherical harmonics as the values of certain

harmonic, homogeneous polynomials on the sphere (see, for example, [3]).

Theorem 2.9.1 For each spherical harmonic S`N , where N ≥ 0 and 1 ≤ ` ≤ h(N)

are integers, there exists a polynomial K`
N : Rp+2 → R which is harmonic, i.e.

∇2K`
N(x) = 0, (2.104)

for all x ∈ Rp+2, and homogenous of degree N , i.e.

K`
N(λx) = λNK`

N(x), (2.105)

for all x ∈ Rp+2 and λ ∈ R, such that

S`N(ξ) = K`
N(ξ), (2.106)

for all ξ ∈ Sp+1.

The following theorem is proved in, for example, [3].
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Theorem 2.9.2 Suppose that N is a nonnegative integer. Then there are exactly

(2N + p)
(N + p− 1)!

p!N !
(2.107)

linearly independent, harmonic, homogenous polynomials of degree N in Rp+2.

The following theorem states that for any orthogonal matrix U , the function

S`N(Uξ) is expressible as a linear combination of S1
N(ξ), S2

N(ξ), . . . , S
h(N)
N (ξ) (see,

for example, [3]).

Theorem 2.9.3 Suppose that N is a nonnegative integer, and that

S1
N , S

2
N , . . . , S

h(N)
N : Sp+1 → R (2.108)

are a complete set of orthonormal spherical harmonics of degree N . Suppose further

that U is a real orthogonal matrix of dimension p+2×p+2. Then, for each integer

1 ≤ ` ≤ h(N), there exists real numbers v`,1, v`,2, . . . , v`,h(N) such that

S`N(Uξ) =

h(N)∑
k=1

v`,kS
k
N(ξ), (2.109)

for all ξ ∈ Sp+1. Furthermore, if V is the h(N)× h(N) real matrix with elements

vi,j for all 1 ≤ i, j ≤ h(N), then V is also orthogonal.

Remark 2.9.1 From Theorem (2.9.3), we observe that the space of linear combi-

nations of functions S`N is invariant under all rotations and reflections of Sp+1.

The following theorem states that if an integral operator acting on the space

of functions Sp+1 → R has a kernel depending only on the inner product, then the

spherical harmonics are eigenfunctions of that operator (see, for example, [3]).
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Theorem 2.9.4 (Funk-Hecke) Suppose that F : [−1, 1] → R is a continuous

function, and that SN : Sp+1 → R is any spherical harmonic of degree N . Then

∫
Ω

F (〈ξ, η〉)SN(ξ) dΩ(ξ) = λNSN(η), (2.110)

for all η ∈ Sp+1, where 〈·, ·〉 denotes the inner product in Rp+2, the integral is taken

over the whole area of the hypersphere Ω, and λN depends only on the function F .

2.10 Appendix D: The Shifted Jacobi Polynomi-

als P
(k,0)
n (2x− 1)

In this section, we introduce a class of Jacobi polynomials that can be used as

quadrature and interpolation nodes for Zernike polynomials in Rp+2.

We define P̃ k
n (x) to be the shifted Jacobi polynomials on the interval [0, 1]

defined by the formula

P̃ k
n (x) =

√
k + 2n+ 1P (k,0)

n (1− 2x) (2.111)

where k > −1 is a real number and where P
(k,0)
n is defined in (2.10). It follows

immediately from (2.111) that P̃ k
n (x) are orthogonal with respect to weight func-

tion xk. That is, for all non-negative integers n, the Jacobi polynomial P̃ k
n is a

polynomial of degree n such that

∫ 1

0

P̃ k
i (x)P̃ k

j (x)xkdx = δi,j (2.112)

for all non-negative integers i, j where k > −1.

The following lemma, which follows immediately from the combination of Lemma
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2.2.6 and (2.111), provides a differential equation satisfied by P̃ k
n .

Lemma 2.10.1 Let k > −1 be a real number and let n be a non-negative integer.

Then, P̃ k
n satisfies the differential equation,

r − r2P̃ k′′
n (r) + (k − rk + 1− 2r)P̃ k′

n (r) + n(n+ k + 1)P̃ k
n (r) = 0. (2.113)

for all r ∈ (0, 1).

The following recurrence for P̃ k
n follows readily from the combination of Lemma

2.111 and (2.11).

Lemma 2.10.2 For all non-negative integers n and for all real numbers k > −1,

P̃ k
n+1(r) =

(2n+N + 1)N2 + (2n+N)(2n+N + 1)(2n+N + 2)(1− 2r)

2(n+ 1)(n+N + 1)(2n+N)

·
√

2n+ k + 1√
2(n+ 1) + k + 1

P̃ k
n (r)

− 2(n+N)(n)(2n+N + 2)

2(n+ 1)(n+N + 1)(2n+N)

√
2(n− 1) + k + 1√
2(n+ 1) + k + 1

P̃ k
n−1(r)

(2.114)

2.10.1 Numerical Evaluation of the Shifted Jacobi Polyno-

mials

The following observations provide a way to evaluate P̃ k
n and its derivatives.

Observation 2.10.1 Combining (2.11) with (2.111), we observe that P̃ k
n (x) can

be evaluated by first evaluating P
(k,0)
n (1 − 2x) via recurrence relation (2.11) and

then multiplying the resulting number by

√
k + 2n+ 1. (2.115)
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Observation 2.10.2 Combining (2.14) with (2.111), we observe that the polyno-

mial P̃ k′
n (x) (see (2.111)), can be evaluated by first evaluating P

(k,0)′
n (1 − 2x) via

recurrence relation (2.14) and then multiplying the resulting number by

−2
√
k + 2n+ 1. (2.116)

2.10.2 Prüfer Transform

In this section, we describe the Prüfer Transform, which will be used in Section

2.10.3. A more detailed description of the Prüfer Transform can be found in [11].

Lemma 2.10.3 (Prüfer Transform) Suppose that the function φ : [a, b] → R

satisfies the differential equation

φ′′(x) + α(x)φ′(x) + β(x)φ(x) = 0, (2.117)

where α, β : (a, b)→ R are differential functions. Then,

dθ

dx
= −

√
β(x)−

(
β′(x)

4β(x)
+
α(x)

2

)
sin(2θ), (2.118)

where the function θ : [a, b]→ R is defined by the formula,

φ′(x)

φ(x)
=
√
β(x) tan(θ(x)). (2.119)

Proof. Introducing the notation

z(x) =
φ′(x)

φ(x)
(2.120)
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for all x ∈ [a, b], and differentiating (2.120) with respect to x, we obtain the identity

φ′′

φ
=
dz

dx
+ z2(x). (2.121)

Substituting (2.121) and (2.120) into (2.117), we obtain,

dz

dx
= −(z2(x) + α(x)z(x) + β(x)). (2.122)

Introducing the notation,

z(x) = γ(x) tan(θ(x)), (2.123)

with θ, γ two unknown functions, we differentiate (2.123) and observe that,

dz

dx
= γ(x)

θ′

cos2(θ)
+ γ′(x) tan(θ(x)) (2.124)

and squaring both sides of (2.123), we obtain

z(x)2 = tan2(θ(x))γ(x)2. (2.125)

Substituting (2.124) and (2.125) into (2.122) and choosing

γ(x) =
√
β(x) (2.126)

we obtain

dθ

dx
= −

√
β(x)−

(
β′(x)

4β(x)
+
α(x)

2

)
sin(2θ). (2.127)

�
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Remark 2.10.3 The Prüfer Transform is often used in algorithms for finding the

roots of oscillatory special functions. Suppose that φ : [a, b] → R is a special

function satisfying differential equation (2.117). It turns out that in most cases,

coefficient

β(x) (2.128)

in (2.117) is significantly larger than

β′(x)

4β(x)
+
α(x)

2
(2.129)

on the interval [a, b], where α and β are defined in (2.117).

Under these conditions, the function θ (see (2.119)), is monotone and its

derivative neither approaches infinity nor 0. Furthermore, finding the roots of

φ is equivalent to finding x ∈ [a, b] such that

θ(x) = π/2 + kπ (2.130)

for some integer k. Consequently, we can find the roots of φ by solving well-behaved

differential equation (2.127).

Remark 2.10.4 If for all x ∈ [a, b], the function
√
β(x) satisfies

√
β(x) >

β′(x)

4β(x)
+
α(x)

2
, (2.131)

then, for all x ∈ [a, b], we have dθ
dx
< 0 (see (2.118)) and we can view x : [−π, π]→
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R as a function of θ where x satisfies the first order differential equation

dx

dθ
=

(
−
√
β(x)−

(
β′(x)

4β(x)
+
α(x)

2

)
sin(2θ)

)−1

. (2.132)

2.10.3 Roots of the Shifted Jacobi Polynomials

The primary purpose of this section is to describe an algorithm for finding the

roots of the Jacobi polynomials P̃ k
n . These roots will be used in Section 2.4 for the

design of quadratures for Zernike Polynomials.

The following lemma follows immediately from applying the Prufer Transform (see

Lemma 2.10.3) to (2.113).

Lemma 2.10.4 For all non-negative integers n, real k > −1, and r ∈ (0, 1),

dθ

dr
= −

(
n(n+ k + 1)

r − r2

)1/2

−
(

1− 2r + 2k − 2kr

4(r − r2)

)
sin(2θ(r)). (2.133)

where the function θ : (0, 1)→ R is defined by the formula

P̃ k
n (r)

P̃ k′
n (r)

=

(
n(n+ k + 1)

r − r2

)1/2

tan(θ(r)), (2.134)

where P̃ k
n is defined in (2.112).

Remark 2.10.5 For any non-negative integer n,

dθ

dr
< 0 (2.135)

for all r ∈ (0, 1). Therefore, applying Remark 2.10.4 to (2.133), we can view r as

a function of θ where r satisfies the differential equation

dr

dθ
=

(
−
(
n(n+ k + 1)

r − r2

)1/2

−
(

1− 2r + 2k − 2kr

4(r − r2)

)
sin(2θ(r))

)−1

. (2.136)
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Algorithm

In this section, we describe an algorithm for the evaluation of the n roots of P̃ k
n .

We denote the n roots of P̃ k
n by r1 < r2 < ... < rn.

Step 1. Choose a point, x0 ∈ (0, 1), that is greater than the largest root of P̃ k
n .

For example, for all k ≥ 1, the following choice of x0 will be sufficient:

x0 =


1− 10−6 if n < 103,

1− 10−8 if 103 ≤ n < 104,

1− 10−10 if 104 ≤ n < 105.

(2.137)

Step 2. Defining θ0 by the formula

θ0 = θ(x0), (2.138)

where θ is defined in (2.134), solve the ordinary differential equation dr
dθ

(see (2.136))

on the interval (π/2, θ0), with the initial condition r(θ0) = x0. To solve the dif-

ferential equation, it is sufficient to use, for example, second order Runge Kutta

with 100 steps (independent of n). We denote by r̃n the approximation to r(π/2)

obtained by this process. It follows immediately from (2.130) that r̃n is an approx-

imation to rn, the largest root of P̃ k
n .

Step 3. Use Newton’s method with r̃n as an initial guess to find rn to high pre-

cision. The polynomials P̃ k
n and P̃ k′

n can be evaluated via Observation 2.10.1 and

Observation 2.10.2.
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Step 4. With initial condition

x(π/2) = rn, (2.139)

solve differential equation dr
dθ

(see (2.136)) on the interval

(−π/2, π/2) (2.140)

using, for example, second order Runge Kuta with 100 steps. We denote by r̃n−1

the approximation to

r(−π/2) (2.141)

obtained by this process.

Step 5. Use Newton’s method, with initial guess r̃n−1, to find to high precision the

second largest root, rn−1.

Step 6. For k = {1, 2, ..., n− 1}, repeat Step 4 on the interval

(−π/2− kπ,−π/2− (k − 1)π) (2.142)

with intial condition

x(−π/2− (k − 1)π) = rn−k+1 (2.143)

and repeat Step 5 on r̃n−k.
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2.11 Appendix E: Notational Conventions for

Zernike Polynomials

In two dimensions, the Zernike polynomials are usually indexed by their azimuthal

order and radial order. In this section, we use a slightly different indexing scheme,

which leads to simpler formulas and generalizes easily to higher dimensions (see

Section 2.2.3 for our definition of the Zernike polynomials Z`
N,n and the radial

polynomials RN,n). However, for the sake of completeness, we describe in this

section the standard two dimensional indexing scheme, as well as other widely

used notational conventions.

If |m| denotes the azimuthal order and n the radial order, then the Zernike

polynomials in standard two index notation (using asterisks to differentiate them

from the polynomials Z`
N,n and RN,n) are

∗
Zm
n (ρ, θ) =

∗
R|m|n (ρ) ·


sin(|m|θ) if m < 0,

cos(|m|θ) if m > 0,

1 if m = 0,

(2.144)

where

∗
R|m|n (ρ) =

n−|m|
2∑

k=0

(−1)k(n− k)!

k!
(n+|m|

2
− k
)
!
(n−|m|

2
− k
)
!
ρn−2k, (2.145)

for all m = 0,±1,±2, . . . and n = |m|, |m|+ 2, |m|+ 4, . . . (see Figure 2.144); they

are normalized so that

∗
R|m|n (1) = 1, (2.146)
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for all m = 0,±1,±2, . . . and n = |m|, |m|+ 2, |m|+ 4, . . . . We note that

∗
R|m|n (ρ) = R|m|,n−|m|

2

(ρ), (2.147)

for all m = 0,±1,±2, . . . and n = |m|, |m| + 2, |m| + 4, . . ., where R is defined

by (2.27) (see Figure 2.6); equivalently,

RN,n(ρ) =
∗
RN
N+2n(ρ), (2.148)

for all nonnegative integers N and n.

Remark 2.11.1 The quantity n + |m| is sometimes referred to as the “spacial

frequency” of the Zernike polynomial
∗
Zm
n (ρ, θ). It roughly corresponds to the fre-

quency of the polynomial on the disc, as opposed to the azimuthal frequency |m| or

the order of the polynomial n.

2.11.1 Zernike Fringe Polynomials

The Zernike Fringe Polynomials are the standard Zernike polynomials, normalized

to have L2 norm equal to π on the unit disc and ordered by their spacial frequency

n+ |m| (see Table 2.6 and Figure 2.7). This ordering is sometimes called the “Air

Force” or “University of Arizona” ordering.

2.11.2 ANSI Standard Zernike Polynomials

The ANSI Standard Zernike polynomials, also referred to as OSA Standard Zernike

polynomials or Noll Zernike polynomials, are the standard Zernike polynomials,

normalized to have L2 norm π on the unit disc and ordered by n (the order of the

polynomial on the disc; see Table 2.7 and Figure 2.8).
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2.11.3 Wyant and Creath Notation

In [30], James Wyant and Katherine Creath observe that it is sometimes convie-

nient to factor the radial polynomial
∗
R
|m|
2n−|m| into

∗
R
|m|
2n−|m|(ρ) = Q|m|n (ρ)ρ|m|, (2.149)

for all m = 0,±1,±2, . . . and n = |m|, |m| + 1, |m| + 2, . . ., where the polynomial

Q
|m|
n is of order 2(n− |m|) (see Figure 2.4). Equivalently, the factorization can be

written as

∗
R|m|n (ρ) = Q

|m|
n+|m|

2

(ρ)ρ|m|, (2.150)

for all m = 0,±1,±2, . . . and n = |m|, |m|+ 2, |m|+ 4, . . . .
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index n m
spacial
frequency

polynomial� name†

0 0 0 0 1 piston

1 1 1 2 R1,0(ρ) cos(θ) tilt in x-direction

2 1 -1 2 R1,0(ρ) sin(θ) tilt in y-direction

3 2 0 2 R0,1(ρ) defocus (power)

4 2 2 4 R2,0(ρ) cos(2θ) defocus + astigmatism 45◦/135◦

5 2 -2 4 R2,0(ρ) sin(2θ) defocus + astigmatism 90◦/180◦

6 3 1 4 R1,1(ρ) cos(θ) tilt + horiz. coma along x-axis

7 3 -1 4 R1,1(ρ) sin(θ) tilt + vert. coma along y-axis

8 4 0 4 R0,2(ρ) defocus + spherical aberration

9 3 3 6 R3,0(ρ) cos(3θ) trefoil in x-direction

10 3 -3 6 R3,0(ρ) sin(3θ) trefoil in y-direction

11 4 2 6 R2,1(ρ) cos(2θ)

12 4 -2 6 R2,1(ρ) sin(2θ)

13 5 1 6 R1,2(ρ) cos(θ)

14 5 -1 6 R1,2(ρ) sin(θ)

15 6 0 6 R0,3(ρ)

16 4 4 8 R4,0(ρ) cos(4θ)

17 4 -4 8 R4,0(ρ) sin(4θ)

18 5 3 8 R3,1(ρ) cos(3θ)

19 5 -3 8 R3,1(ρ) sin(3θ)

20 6 2 8 R2,2(ρ) cos(2θ)

21 6 -2 8 R2,2(ρ) sin(2θ)

22 7 1 8 R1,3(ρ) cos(θ)

23 7 -1 8 R1,3(ρ) sin(θ)

24 8 0 8 R0,4(ρ)

Table 2.6: Zernike Fringe Polynomials. This table lists the first 24 Zernike poly-
nomials in what is sometimes called the “Fringe”, “Air Force”, or “University of
Arizona” ordering (see, for example [23], p. 198, or [30], p. 31). They are often
also denoted by Z`(ρ, θ), where ` is the index.
� See formulas (2.27) and (2.30).
† See, for example, [15]. More complex aberrations are usually not named.
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index n m
spacial
frequency

polynomial� name†

0 0 0 0 1 piston

1 1 -1 2 R1,0(ρ) sin(θ) tilt in y-direction

2 1 1 2 R1,0(ρ) cos(θ) tilt in x-direction

3 2 -2 4 R2,0(ρ) sin(2θ) defocus + astigmatism 90◦/180◦

4 2 0 2 R0,1(ρ) defocus (power)

5 2 2 4 R2,0(ρ) cos(2θ) defocus + astigmatism 45◦/135◦

6 3 -3 6 R3,0(ρ) sin(3θ) trefoil in y-direction

7 3 -1 4 R1,1(ρ) sin(θ) tilt + vert. coma along y-axis

8 3 1 4 R1,1(ρ) cos(θ) tilt + horiz. coma along x-axis

9 3 3 6 R3,0(ρ) cos(3θ) trefoil in x-direction

10 4 -4 8 R4,0(ρ) sin(4θ)

11 4 -2 6 R2,1(ρ) sin(2θ)

12 4 0 4 R0,2(ρ)

13 4 2 6 R2,1(ρ) cos(2θ)

14 4 4 8 R4,0(ρ) cos(4θ)

15 5 -5 10 R5,0(ρ) sin(5θ)

16 5 -3 8 R3,1(ρ) sin(3θ)

17 5 -1 6 R1,2(ρ) sin(θ)

18 5 1 6 R1,2(ρ) cos(θ)

19 5 3 8 R3,1(ρ) cos(3θ)

20 5 5 10 R5,0(ρ) cos(5θ)

21 6 -6 12 R6,0(ρ) sin(6θ)

22 6 -4 10 R4,1(ρ) sin(4θ)

23 6 -2 8 R2,2(ρ) sin(2θ)

24 6 0 6 R0,3(ρ)

Table 2.7: ANSI Standard Zernike Polynomials. This table lists the first 24 Zernike
polynomials in the ANSI Standard ordering, also referred to as the “OSA Stan-
dard” or “Noll” ordering (see, for example [23], p. 201, or [20]). They are often
also denoted by Z`(ρ, θ), where ` is the index.
� See formulas (2.27) and (2.30).
† See, for example, [15]. More complex aberrations are usually not named.
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Chapter 3

GPSFs

3.1 Background

Generalized Prolate Spheroidal Functions (GPSFs) are functions ψj : Rn → C

satisfying

λjψj(x) =

∫
B

ψj(t)e
ic〈x,t〉dt (3.1)

for some λj ∈ C where B denotes the unit ball in Rn. A function f : Rn → C is

referred to as bandlimited with bandlimit c > 0 if

f(x) =

∫
B

σ(t)eic〈x,t〉dt (3.2)

where B denotes the unit ball in Rn and σ is a square-integrable function defined

on B. Bandlimited functions are encountered in a variety of applications including

in signal processing, antenna design, radar, etc.

Much of the theory and numerical machinery of GPSFs in two dimensions

is described in [24]. In this chapter, we provide analytical and numerical tools
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for GPSFs in Rn for all n > 0. We introduce algorithms for evaluating GPSFs,

quadrature rules for integrating bandlimited functions, and numerical interpolation

schemes for representing bandlimited functions in GPSF expansions. We also

provide numerical machinery for efficient evaluation of eigenvalues λj (see (3.1)).

The structure of this chapter is as follows. In Section 3.2 we provide basic

mathematical background that will be used throughout the remainder of the chap-

ter. Section 3.3 contains analytical facts related to the numerical evaluation of

GPSFs that will be used in subsequent sections. In Section 3.4, we describe a

numerical scheme for evaluating GPSFs. Section 3.5 contains a quadrature rule

for integrating bandlimited functions. Section 3.6 includes a numerical scheme

for expanding bandlimited functions into GPSFs. In Section 3.7, we provide the

numerical results of implementing the quadrature and interpolation schemes as

well as plots of GPSFs and their eigenvalues. In Section 3.8 we provide certain

miscellaneous properties of GPSFs.

3.2 Mathematical and Numerical Preliminaries

In this section, we introduce notation and elementary mathematical and numerical

facts which will be used in subsequent sections.

In accordance with standard practice, we define the Gamma function, Γ(x), by

the formula

Γ(x) =

∫ ∞
0

tx−1e−tdt (3.3)

where e will denote the base of the natural logarithm. We will be denoting by δi,j
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the function defined by the formula

δi,j =

 1 if i = j,

0 if i 6= j.
(3.4)

The following is a well-known technical lemma that will be used in Section 3.3.2.

Lemma 3.2.1 For any real number a > 0 and for any integer n > ae,

an
√
n

Γ(n+ 1)
< 1 (3.5)

where Γ(n) is defined in (3.3).

The following lemma follows immediately from Formula 9.1.10 in [1].

Lemma 3.2.2 For all real numbers x ∈ [0, 1], and for all real numbers ν ≥ −1/2,

|Jν(x)| ≤ |x/2|ν

Γ(ν + 1)
(3.6)

where Jν is a Bessel function of the first kind and Γ(ν) is defined in (3.3).

3.2.1 Jacobi Polynomials

In this section, we summarize some properties Jacobi polynomials.

Jacobi Polynomials, denoted P
(α,β)
n , are orthogonal polynomials on the interval

(−1, 1) with respect to weight function

w(x) = (1− x)α(1 + x)β. (3.7)
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Specifically, for all non-negative integers n,m with n 6= m and real numbers α, β >

−1,

∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)(1− x)α(1 + x)βdx = 0 (3.8)

The following lemma, provides a stable recurrence relation that can be used to

evaluate a particular class of Jacobi Polynomials (see, for example, [1]).

Lemma 3.2.3 For any integer n ≥ 1 and α > −1,

P
(α,0)
n+1 (x) =

(2n+ α + 1)α2 + (2n+ α)(2n+ α + 1)(2n+ α + 2)x

2(n+ 1)(n+ α + 1)(2n+ α)
P (α,0)
n (x)

− 2(n+ α)(n)(2n+ α + 2)

2(n+ 1)(n+ α + 1)(2n+ α)
P

(α,0)
n−1 (x), (3.9)

where

P
(α,0)
0 (x) = 1 (3.10)

and

P
(α,0)
1 (x) =

α + (α + 2)x

2
. (3.11)

The Jacobi Polynomial P
(α,0)
n is defined in (3.8).

The following lemma provides a stable recurrence relation that can be used to

evaluate derivatives of a certain class of Jacobi Polynomials. It is readily obtained

by differentiating (3.9) with respect to x,
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Lemma 3.2.4 For any integer n ≥ 1 and α > −1,

P
(α,0)′
n+1 (x) =

(2n+ α + 1)α2 + (2n+ α)(2n+ α + 1)(2n+ α + 2)x

2(n+ 1)(n+ α + 1)(2n+ α)
P (α,0)′
n (x)

− 2(n+ α)(n)(2n+ α + 2)

2(n+ 1)(n+ α + 1)(2n+ α)
P

(α,0)′
n−1 (x)

+
(2n+ α)(2n+ α + 1)(2n+ α + 2)

2(n+ 1)(n+ α + 1)(2n+ α)
P (α,0)
n (x), (3.12)

where

P
(α,0)′
0 (x) = 0 (3.13)

and

P
(α,0)′
1 (x) =

α + 2

2
. (3.14)

The Jacobi Polynomial P
(α,0)
n is defined in (3.8) and P

(α,0)′
n (x) denotes the deriva-

tive of P
(α,0)
n (x) with respect to x.

The following two lemmas, which provide a differential equation and a recurrence

relation for Jacobi polynomials, can be found in, for example, [1].

Lemma 3.2.5 For any integer n ≥ 2 and α > −1,

(1−x2)P (α,0)′′
n (x)+(−α− (α+2)x)P (α,0)′

n (x)+n(n+α+1)P (α,0)
n (x) = 0 (3.15)

for all x ∈ [0, 1] where P
(α,0)
n is defined in (3.8).

Lemma 3.2.6 For all α > −1, x ∈ (0, 1), and any integer n ≥ 2,

a1nP
(α,0)
n+1 = (a2n + a3nx)P (α,0)

n (x)− a4nP
(α,0)
n−1 (x) (3.16)
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where

a1n = 2(n+ 1)(n+ α + 1)(2n+ α)

a2n = (2n+ α + 1)α2

a3n = (2n+ α)(2n+ α + 1)(2n+ α + 2)

a4n = 2(n+ α)(n)(2n+ α + 2)

(3.17)

and

P
(α,0)
0 (x) = 1

P
(α,0)
1 (x) =

α + (α + 2)x

2
.

(3.18)

3.2.2 Zernike Polynomials

In this section, we describe properties of Zernike polynomials, which are a family

of orthogonal polynomials on the unit ball in Rp+2. They are the natural basis for

representing GPFS.

Zernike polynomials are defined via the formula

Z`
N,n(x) = RN,n(‖x‖)S`N(x/‖x‖), (3.19)

for all x ∈ Rp+2 such that ‖x‖ ≤ 1, where N and n are nonnegative integers, S`N

are the orthonormal surface harmonics of degree N (see Section 3.2.7), and RN,n

are polynomials of degree 2n+N defined via the formula

RN,n(x) = xN
n∑

m=0

(−1)m
(
n+N + p

2

m

)(
n

m

)
(x2)n−m(1− x2)m, (3.20)
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for all 0 ≤ x ≤ 1. The polynomials RN,n satisfy the relation

RN,n(1) = 1, (3.21)

and are orthogonal with respect to the weight function w(x) = xp+1, so that

∫ 1

0

RN,n(x)RN,m(x)xp+1 dx =
δn,m

2(2n+N + p
2

+ 1)
. (3.22)

We define the polynomials RN,n via the formula

RN,n(x) =
√

2(2n+N + p/2 + 1)RN,n(x), (3.23)

so that

∫ 1

0

(
RN,n(x)

)2
xp+1 dx = 1, (3.24)

where N and n are nonnegative integers. In an abuse of notation, we refer to both

the polynomials Z`
N,n and the radial polynomials RN,n as Zernike polynomials

where the meaning is obvious.

Remark 3.2.1 When p = −1, Zernike polynomials take the form

Z1
0,n(x) = R0,n(|x|) = P2n(x),

Z2
1,n(x) = sgn(x) ·R1,n(|x|) = P2n+1(x),

(3.25)

for −1 ≤ x ≤ 1 and nonnegative integer n, where Pn denotes the Legendre polyno-
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mial of degree n and

sgn(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0,

(3.26)

for all real x.

Remark 3.2.2 When p = 0, Zernike polynomials take the form

Z1
N,n(x1, x2) = RN,n(r) cos(Nθ), (3.27)

Z2
N,n(x1, x2) = RN,n(r) sin(Nθ), (3.28)

where x1 = r cos(θ), x2 = r sin(θ), and N and n are nonnegative integers.

The following lemma, which can be found in, for example, [1], shows how Zernike

polynomials are related to Jacobi polynomials.

Lemma 3.2.7 For all non-negative integers N, n,

RN,n(x) = (−1)nxNP
(N+ p

2
,0)

n (1− 2x2), (3.29)

where 0 ≤ x ≤ 1, and P
(α,0)
n , α > −1, is defined in (3.20).

3.2.3 Numerical Evaluation of Zernike Polynomials

In this section, we provide a stable recurrence relation (see Lemma 3.2.8) that can

be used to evaluate Zernike Polynomials.

The following lemma follows immediately from applying Lemma 3.2.7 to (3.16).
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Lemma 3.2.8 The polynomials RN,n, defined in (3.20) satisfy the recurrence re-

lation

RN,n+1(x) =

− ((2n+N + 1)N2 + (2n+N)(2n+N + 1)(2n+N + 2)(1− 2x2))

2(n+ 1)(n+N + 1)(2n+N)
RN,n(x)

− 2(n+N)(n)(2n+N + 2)

2(n+ 1)(n+N + 1)(2n+N)
RN,n−1(x) (3.30)

where 0 ≤ x ≤ 1, N is a non-negative integer, n is a positive integer, and

RN,0(x) = xN (3.31)

and

RN,1(x) = −xNN + (N + 2)(1− 2x2)

2
. (3.32)

Remark 3.2.3 The algorithm for evaluating Zernike polynomials using the recur-

rence relation in Lemma 3.2.8 is known as Kintner’s method (see [16] and, for

example, [6]).

3.2.4 Modified Zernike polynomials, TN,n

In this section, we define the modified Zernike polynomials, TN,n and provide

some of their properties. This family of functions will be used in Section 3.4 for

the numerical evaluation of GPSFs.

We define the function TN,n by the formula

TN,n(r) = r
p+1
2 RN,n(r) (3.33)
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where N, n are non-negative integers. We define TN,n : [0, 1]→ R by the formula,

TN,n(r) = r
p+1
2 RN,n(r) (3.34)

where N, n are non-negative integers and RN,n is a normalized Zernike polynomial

defined in (3.23), so that

∫ 1

0

(TN,n(r))2dr = 1. (3.35)

Lemma 3.2.9 The functions TN,n are orthonormal on the interval (0, 1) with re-

spect to weight function w(x) = 1. That is,

∫ 1

0

TN,n(r)TN,m(r)dr = δn,m. (3.36)

Proof. Using (3.34), (3.22) and (3.24), for all non-negative integers N, n,m,

∫ 1

0

TN,n(r)TN,m(r)dr =

∫ 1

0

r
p+1
2 RN,n(r)r

p+1
2 RN,m(r)dr

=

∫ 1

0

RN,n(r)RN,m(r)rp+1dr

= δn,m

(3.37)

�

The following identity follows immediately from the combination of (3.34),(3.29),

and (3.23).

Lemma 3.2.10 For all non-negative integers N, n,

TN,n(r) = P (N+p/2,0)
n (1− 2r2)(−1)n

√
2(2n+N + p/2 + 1)r

p+1
2 (3.38)

where TN,n is defined in (3.34) and P
(N+p/2,0)
n is a Zernike polynomial defined in
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(3.8).

The following lemma, which provides a differential equation for TN,n, follows im-

mediately from substituting (3.38) into Lemma 3.40.

Lemma 3.2.11 For all r ∈ [0, 1], non-negative integers N, n and real p ≥ −1,

(1− r2)T
′′
N,n(r)− 2rT

′
N,n(r) +

(
χN,n +

1
4
− (N + p

2
)2

r2

)
TN,n(r) = 0 (3.39)

where χN,n is defined by the formula

χN,n = (N + p/2 + 2n+ 1/2)(N + p/2 + 2n+ 3/2). (3.40)

The following lemma provides a recurrence relation satisfied by TN,n. It follows

immediately from the combination of Lemma 3.2.10 and (3.9).

Lemma 3.2.12 For any non-negative integers N, n and for all r ∈ [0, 1],

r2TN,n(r) =

√
2(2n+N + p/2 + 1)√

2(2(n− 1) +N + p/2 + 1)

a4n

2a3n

TN,n−1(r)

+
a2n + a3n

2a3n

TN,n(r)

+

√
2(2n+N + p/2 + 1)√

2(2(n+ 1) +N + p/2 + 1)

a1n

2a3n

TN,n+1(r)

(3.41)

where TN,n is defined in (3.34) and

a1n = 2(n+ 1)(n+N + p/2 + 1)(2n+N + p/2)

a2n = (2n+N + p/2 + 1)N + p/22

a3n = (2n+N + p/2)(2n+N + p/2 + 1)(2n+N + p/2 + 2)

a4n = 2(n+N + p/2)(n)(2n+N + p/2 + 2).

(3.42)
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Proof. Applying the change of variables 1 − 2r2 = x to (3.16) and setting α =

N + p/2, we obtain

r2P (N+p/2,0)
n (1− 2r2) =

a2n

2a3n
P (N+p/2,0)
n (1− 2r2) +

1

2
P (N+p/2,0)
n (1− 2r2)

− a4n

2a3n
P

(N+p/2,0)
n−1 (1− 2r2)− a1n

2a3n
P

(N+p/2,0)
n+1 (1− 2r2).

(3.43)

Identity (3.41) follows immediately m the combination of (3.43) with Lemma

3.2.10. �

The following observation provides a scheme for computing TN,n.

Observation 3.2.4 Combining (3.34), Lemma 3.2.8, and (3.23), we observe that

the modified Zernike polynomial TN,n(r) can be evaluated by first computing

P (N+p/2,0)
n (1− 2r2) (3.44)

via recurrence relation (3.16) and then multiplying the resulting number by

rN(−1)n
√

2(2n+N + p/2 + 1)r
p+1
2 . (3.45)

We define the function T
∗
N,n by the formula

T
∗
N,n(r) =

TN,n(r)

rN+ p+1
2

. (3.46)

where N, n are non-negative integers and r ∈ (0, 1). The following technical lemma

involving T
∗
N,n will be used in Section 3.3.3.
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Lemma 3.2.13 For all non-negative integers N, n,

T
∗
N,n(0) =

√
2(2n+N + p/2 + 1)(−1)n

(
n+N + p/2

n

)
. (3.47)

Proof. Combining (3.34) and (3.20), we observe that

TN,n(r) =
n∑
k=0

aN+kr
N+ p+1

2
+2k (3.48)

where aN+k is some real number for k = 0, 1, ..., n. In particular, using (3.20),

aN =
√

2(2n+N + p/2 + 1)(−1)n
(
n+N + p/2

n

)
. (3.49)

Combining (3.46) and (3.49), we obtain (3.47). �

The following lemma provides a relation that will be used in section 3.4.1 for the

evaluation of certain eigenvalues.

Lemma 3.2.14 Suppose that N is a nonnegative integer and that n ≥ 1 is an

integer. Then

ãnxT
′
N,n+1(x)− b̃nxTN,n+1(x) + c̃nxT

′
N,n−1(x)

= anTN,n+1(x)− bnTN,n(x) + cnTN,n−1(x),

(3.50)
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for all 0 ≤ x ≤ 1, where

ãn = 2(n+N + 1)(2n+N),

b̃n = 2N(2n+N + 1),

c̃n = −2n(2n+N + 2),

an = (2N + 4n+ 5)(n+N + 1)(2n+N),

bn = N(2n+N + 1)− 2(2n+N)3,

cn = n(2N + 4n− 1)(2n+N + 2),

(3.51)

with (·)k denoting the Pochhammer symbol or rising factorial.

3.2.5 Prüfer Transform

In this section, we describe the Prüfer Transform, which will be used in Section

3.5.1 in an algorithm for finding the roots of GPSFs. A more detailed description

of the Prüfer Transform can be found in [11].

Lemma 3.2.15 (Prüfer Transform) Suppose that the function φ : [a, b] → R

satisfies the differential equation

φ′′(x) + α(x)φ′(x) + β(x)φ(x) = 0, (3.52)

where α, β : (a, b)→ R are differential functions. Then,

dθ

dx
= −

√
β(x)−

(
β′(x)

4β(x)
+
α(x)

2

)
sin(2θ), (3.53)

where the function θ : [a, b]→ R is defined by the formula,

φ′(x)

φ(x)
=
√
β(x) tan(θ(x)). (3.54)
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Proof. Introducing the notation

z(x) =
φ′(x)

φ(x)
(3.55)

for all x ∈ [a, b], and differentiating (3.55) with respect to x, we obtain the identity

φ′′

φ
=
dz

dx
+ z2(x). (3.56)

Substituting (3.56) and (3.55) into (3.52), we obtain,

dz

dx
= −(z2(x) + α(x)z(x) + β(x)). (3.57)

Introducing the notation,

z(x) = γ(x) tan(θ(x)), (3.58)

with θ, γ two unknown functions, we differentiate (3.58) and observe that,

dz

dx
= γ(x)

θ′

cos2(θ)
+ γ′(x) tan(θ(x)) (3.59)

and squaring both sides of (3.58), we obtain

z(x)2 = tan2(θ(x))γ(x)2. (3.60)

Substituting (3.59) and (3.60) into (3.57) and choosing

γ(x) =
√
β(x) (3.61)
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we obtain

dθ

dx
= −

√
β(x)−

(
β′(x)

4β(x)
+
α(x)

2

)
sin(2θ). (3.62)

�

Remark 3.2.5 The Prüfer Transform is often used in algorithms for finding the

roots of oscillatory special functions. Suppose that φ : [a, b] → R is a special

function satisfying differential equation (3.34). It turns out that in most cases,

coefficient

β(x) (3.63)

in (3.52) is significantly larger than

β′(x)

4β(x)
+
α(x)

2
(3.64)

on the interval [a, b], where α and β are defined in (3.52).

Under these conditions, the function θ (see (3.54)), is monotone and its deriva-

tive neither approaches infinity nor 0. Furthermore, finding the roots of φ is equiv-

alent to finding x ∈ [a, b] such that

θ(x) = π/2 + kπ (3.65)

for some integer k. Consequently, we can find the roots of ϕ by solving (3.62), a

well-behaved differential equation.
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Remark 3.2.6 If for all x ∈ [a, b], the function
√
β(x) satisfies

√
β(x) >

β′(x)

4β(x)
+
α(x)

2
, (3.66)

then, for all x ∈ [a, b], we have dθ
dx
< 0 (see (3.53)) and we can view x : [−π, π]→ R

as a function of θ where x satisfies the first order differential equation

dx

dθ
=

(
−
√
β(x)−

(
β′(x)

4β(x)
+
α(x)

2

)
sin(2θ)

)−1

. (3.67)

3.2.6 Miscellaneous Analytical Facts

In this section, we provide several facts from analysis that will by used in subse-

quent sections.

The following theorem is an identity involving the incomplete beta function.

Theorem 3.2.16 Suppose that a, b > 0 are real numbers and n is a nonnegative

integer. Then

Bx(a+ n, b) =

Γ(a+ n)

Γ(a+ b+ n)

(
Γ(a+ b)

Γ(a)
Bx(a, b)− (1− x)b

n∑
k=1

Γ(a+ b+ k − 1)

Γ(a+ k)
xa+k−1

)
(3.68)

for all 0 ≤ x ≤ 1, where Bx(a, b) denotes the incomplete beta function.

The following lemma is an identity involving the gamma function.

Lemma 3.2.17 Suppose that n is a nonnegative integer. Then

√
π +

n∑
k=1

Γ(k + 1
2
)

Γ(k + 1)
=

2Γ(n+ 3
2
)

Γ(n+ 1)
. (3.69)
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The following two lemmas are identities involving the incomplete beta function.

Lemma 3.2.18 Suppose that 0 ≤ r ≤ 1. Then

B1−r2(1,
1
2
) = 2(1− r). (3.70)

Lemma 3.2.19 Suppose that 0 ≤ r ≤ 1. Then

B1−r2(
1
2
, 1

2
) = 2 arccos(r). (3.71)

Bessel Functions

The primary analytical tool of this subsection is Theorem 3.2.25.

The following lemmas 3.2.20, 3.2.21, 3.2.22, 3.2.23, 3.2.24 describe the limiting

behavior of certain integrals involving Bessel functions.

Lemma 3.2.20 Suppose that ν > 0. Then

∫ 1

0

(Jν(2cr))
2 1

r
dr =

1

2ν
+O

(1

c

)
, (3.72)

as c→∞.

Lemma 3.2.21 Suppose that ν > 0. Then

∫ 1

0

(Jν(2cr))
2 dr =

1

2π

log(c)

c
+ o
( log(c)

c

)
, (3.73)

as c→∞.

Lemma 3.2.22 Suppose that ν > 0 is real and k is a positive integer. Then

∫ 1

0

(Jν(2cr))
2rk dr = O

(1

c

)
, (3.74)
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as c→∞.

Lemma 3.2.23 Suppose that n is a positive integer. Then

∫ 1

0

(Jn(2cr))2

r
arccos(r) dr =

π

4n
− 1

2π

log(c)

c
+ o
( log(c)

c

)
, (3.75)

as c→∞.

Lemma 3.2.24 Suppose that n and k are positive integers. Then

∫ 1

0

(Jn(2cr))2(1− r2)k−
1
2 dr =

1

2π

log(c)

c
+ o
( log(c)

c

)
, (3.76)

as c→∞.

The following theorem describes the limiting behavior of a certain integral

involving a Bessel function and the incomplete beta function.

Theorem 3.2.25 Suppose that p ≥ −1 is an integer. Then

∫ 1

0

(Jp/2+1(2cr))2

r
B1−r2(

p
2

+ 3
2
, 1

2
) dr =

√
π Γ(p

2
+ 3

2
)

(p+ 2)Γ(p
2

+ 2)
− 1

π

log(c)

c
+ o
( log(c)

c

)
(3.77)

as c→∞, where Bx(a, b) denotes the incomplete beta function.

Proof. Suppose that p ≥ −1 is an odd integer, and let n = p
2

+ 1
2
. Then

∫ 1

0

(
Jp/2+1(2cr)

)2

r
B1−r2(

p
2

+ 3
2
, 1

2
) dr =

∫ 1

0

(
Jn+1/2(2cr)

)2

r
B1−r2(1 + n, 1

2
) dr.

(3.78)
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By Theorem 3.2.16 and Lemma 3.2.18, we observe that

∫ 1

0

(
Jn+1/2(2cr)

)2

r
B1−r2(1 + n, 1

2
) dr

=
Γ(n+ 1)

Γ(n+ 3
2
)

∫ 1

0

(
Jn+1/2(2cr)

)2

r

(√π
2
B1−r2(1,

1
2
)− r

n∑
k=1

Γ(k + 1
2
)

Γ(k + 1)
(1− r2)k

)
dr

=
Γ(n+ 1)

Γ(n+ 3
2
)

∫ 1

0

(
Jn+1/2(2cr)

)2

r

(√
π(1− r)− r

n∑
k=1

Γ(k + 1
2
)

Γ(k + 1)
(1− r2)k

)
dr,

(3.79)

where 0 ≤ r ≤ 1 and n is a nonnegative integer. By lemmas 3.2.20, 3.2.21, and

3.2.22, it follows that

∫ 1

0

(
Jn+1/2(2cr)

)2

r
B1−r2(1 + n, 1

2
) dr

=
Γ(n+ 1)

Γ(n+ 3
2
)

( √
π

2n+ 1
− 1

2π

(√
π +

n∑
k=1

Γ(k + 1
2
)

Γ(k + 1)

) log(c)

c

)
+ o
( log(c)

c

)
,

(3.80)

as c→∞, where 0 ≤ r ≤ 1 and n is a nonnegative integer. Applying Lemma 3.2.17,

∫ 1

0

(Jn+1/2(2cr))2B1−r2(1 + n, 1
2
) dr

=
Γ(n+ 1)

Γ(n+ 3
2
)

( √
π

2n+ 1
− 1

π

Γ(n+ 3
2
)

Γ(n+ 1)

log(c)

c

)
+ o
( log(c)

c

)
=

√
π Γ(n+ 1)

2(n+ 1
2
)Γ(n+ 3

2
)
− 1

π

log(c)

c
+ o
( log(c)

c

)
, (3.81)

as c→∞, where 0 ≤ r ≤ 1 and n is a nonnegative integer. Therefore,

∫ 1

0

(Jp/2+1(2cr))2

r
B1−r2(

p
2

+ 3
2
, 1

2
) dr =

√
π Γ(p

2
+ 3

2
)

(p+ 2)Γ(p
2

+ 2)
− 1

π

log(c)

c
+ o
( log(c)

c

)
,

(3.82)
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as c→∞, for all 0 ≤ r ≤ 1 and odd integers p ≥ −1.

The proof in the case when p ≥ 0 is an even integer is essentially identical.

�

The Area and Volume of a Hypersphere

The following theorem provides well-known formulas for the volume and area of a

(p+ 2)-dimensional hypersphere. The formulas can be found in, for example, [17].

Theorem 3.2.26 Suppose that Sp+2(r) = {x ∈ R
p+2 : ‖x‖ = r} denotes the

(p + 2)-dimensional hypersphere of radius r > 0. Suppose further that Ap+2(r)

denotes the area of Sp+2(r) and Vp+2(r) denotes the volume enclosed by Sp+2(r).

Then

Ap+2(r) =
2πp/2+1

Γ(p
2

+ 1)
rp+1, (3.83)

and

Vp+2(r) =
πp/2+1

Γ(p
2

+ 2)
rp+2. (3.84)

The following theorem provides a formula for the volume of the intersection of

two (p+ 2)-dimensional hyperspheres (see, for example, [17]).

Theorem 3.2.27 Suppose that p ≥ −1 is an integer, let B denote the closed unit

ball in Rp+2, and let B(c) denote the set {x ∈ Rp+2 : ‖x‖ ≤ c}, where c > 0. Then

∫
RD

1B(u− t)1B(t) dt = Vp+2(1)
B1−‖u‖2/4(p

2
+ 3

2
, 1

2
)

B(p
2

+ 3
2
, 1

2
)

, (3.85)
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for all u ∈ B(2), where B(a, b) denotes the beta function, Bx(a, b) denotes the in-

complete beta function, Vp+2 is defined by (3.84), and 1A is defined via the formula

1A(x) =

 1 if x ∈ A,

0 if x 6∈ A.
(3.86)

3.2.7 Spherical Harmonics in Rp+2

Suppose that Sp+1 denotes the unit sphere in R
p+2. The spherical harmonics

are a set of real-valued continuous functions on Sp+1, which are orthonormal and

complete in L2(Sp+1). The spherical harmonics of degree N ≥ 0 are denoted by

S1
N , S

2
N , . . . , S

`
N , . . . , S

h(N)
N : Sp+1 → R, where

h(N) = (2N + p)
(N + p− 1)!

p!N !
, (3.87)

for all nonnegative integers N .

The following theorem defines the spherical harmonics as the values of certain

harmonic, homogeneous polynomials on the sphere (see, for example, [3]).

Theorem 3.2.28 For each spherical harmonic S`N , where N ≥ 0 and 1 ≤ ` ≤

h(N) are integers, there exists a polynomial K`
N : Rp+2 → R which is harmonic,

i.e.

∇2K`
N(x) = 0, (3.88)

for all x ∈ Rp+2, and homogenous of degree N , i.e.

K`
N(λx) = λNK`

N(x), (3.89)
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for all x ∈ Rp+2 and λ ∈ R, such that

S`N(ξ) = K`
N(ξ), (3.90)

for all ξ ∈ Sp+1.

The following lemma follows immediately from the orthonormality of spherical

harmonics and Theorem 3.2.28.

Lemma 3.2.29 For all N > 0 and for all 1 ≤ ` ≤ h(N),

∫
Sp+1

S`N(x)dx = 0. (3.91)

For N = 0 and ` = 1, S`N is the constant function defined by the formula

S1
0(x) = Ap+2(1)(−1/2) (3.92)

where Ap+2 is defined in (3.83).

The following theorem is proved in, for example, [3].

Theorem 3.2.30 Suppose that N is a nonnegative integer. Then there are exactly

(2N + p)
(N + p− 1)!

p!N !
(3.93)

linearly independent, harmonic, homogenous polynomials of degree N in Rp+2.

The following theorem states that for any orthogonal matrix U , the function

S`N(Uξ) is expressible as a linear combination of S1
N(ξ), S2

N(ξ), . . . , S
h(N)
N (ξ) (see,

for example, [3]).
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Theorem 3.2.31 Suppose that N is a nonnegative integer, and that

S1
N , S

2
N , . . . , S

h(N)
N : Sp+1 → R (3.94)

are a complete set of orthonormal spherical harmonics of degree N . Suppose further

that U is a real orthogonal matrix of dimension p+2×p+2. Then, for each integer

1 ≤ ` ≤ h(N), there exist real numbers v`,1, v`,2, . . . , v`,h(N) such that

S`N(Uξ) =

h(N)∑
k=1

v`,kS
k
N(ξ), (3.95)

for all ξ ∈ Sp+1. Furthermore, if V is the h(N)× h(N) real matrix with elements

vi,j for all 1 ≤ i, j ≤ h(N), then V is also orthogonal.

Remark 3.2.7 From Theorem (3.2.31), we observe that the space of linear com-

binations of functions S`N is invariant under all rotations and reflections of Sp+1.

The following theorem states that if an integral operator acting on the space

of functions Sp+1 → R has a kernel depending only on the inner product, then the

spherical harmonics are eigenfunctions of that operator (see, for example, [3]).

Theorem 3.2.32 (Funk-Hecke) Suppose that F : [−1, 1] → R is a continuous

function, and that SN : Sp+1 → R is any spherical harmonic of degree N . Then

∫
Ω

F (〈ξ, η〉)SN(ξ) dΩ(ξ) = λNSN(η), (3.96)

for all η ∈ Sp+1, where 〈·, ·〉 denotes the inner product in Rp+2, the integral is taken

over the whole area of the hypersphere Ω, and λN depends only on the function F .
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3.2.8 Generalized Prolate Spheroidal Functions

Basic Facts

In this section, we summarize several facts about generalized prolate spheroidal

functions (GPSFs). Let B denote the closed unit ball in R
p+2. Given a real

number c > 0, we define the operator Fc : L2(B)→ L2(B) via the formula

Fc[ψ](x) =

∫
B

ψ(t)eic〈x,t〉 dt, (3.97)

for all x ∈ B, where 〈·, ·〉 denotes the inner product onRp+2. Clearly, Fc is compact.

Obviously, Fc is also normal, but not self-adjoint. We denote the eigenvalues of Fc

by λ0, λ1, . . . , λn, . . ., and assume that |λj| ≥ |λj+1| for each non-negative integer j.

For each non-negative integer j, we denote by ψj the eigenfunction corresponding

to λj, so that

λjψj(x) =

∫
B

ψj(t)e
ic〈x,t〉 dt, (3.98)

for all x ∈ B. We assume that ‖ψj‖L2(B) = 1 for each j. The following theorem is

proved in [26] and describes the eigenfunctions and eigenvalues of Fc.

Theorem 3.2.33 Suppose that c > 0 is a real number and that Fc is defined

by (3.97). Then the eigenfunctions ψ0, ψ1, . . . , ψn, . . . of Fc are real, orthonormal,

and complete in L2(B). For each j, the eigenfunction ψj is either even, in the sense

that ψj(−x) = ψj(x) for all x ∈ B, or odd, in the sense that ψj(−x) = −ψj(x) for

all x ∈ B. The eigenvalues corresponding to even eigenfunctions are real, and the

eigenvalues corresponding to odd eigenfunctions are purely imaginary. The domain

on which the eigenfunctions are defined can be extended from B to Rp+2 by requiring

that (3.98) hold for all x ∈ Rp+2; the eigenfunctions will then be orthogonal on
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R
p+2 and complete in the class of band-limited functions with bandlimit c.

We define the self-adjoint operator Qc : L2(B)→ L2(B) via the formula

Qc =
( c

2π

)p+2

F ∗c · Fc. (3.99)

Since Fc is normal, it follows that Qc has the same eigenfunctions as Fc, and that

the jth eigenvalue µj of Qc is connected to λj via the formula

µj =
( c

2π

)p+2

|λj|2. (3.100)

We also observe that

Qc[ψ](x) =
( c

2π

)p/2+1
∫
B

Jp/2+1

(
c‖x− t‖

)
‖x− t‖p/2+1

ψ(t) dt, (3.101)

for all x ∈ Rp+2, where Jν denotes the Bessel functions of the first kind and ‖ · ‖

denotes Euclidean distance in Rp+2 (see Appendix A for a proof).

We observe that

Qc[ψ](x) = 1B(x) · F−1
[
1B(c)(t) · F [ψ](t)

]
(x), (3.102)

where F : L2(Rp+2)→ L2(Rp+2) is the (p+2)-dimensional Fourier transform, B(c)

denotes the set {x ∈ Rp+2 : ‖x‖ ≤ c }, and 1A is defined via the formula

1A(x) =

 1 if x ∈ A,

0 if x 6∈ A.
(3.103)

From (3.102) it follows that µj < 1 for all j.

We observe further that Qc is closely related to the operator Pc : L2(Rp+2) →
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L2(Rp+2), defined via the formula

Pc[ψ](x) =
( c

2π

)p/2+1
∫
Rp+2

Jp/2+1

(
c‖x− t‖

)
‖x− t‖p/2+1

ψ(t) dt, (3.104)

which is the orthogonal projection onto the space of bandlimited functions on Rp+2

with bandlimit c > 0.

Eigenfunctions and Eigenvalues of Fc

In this section we describe the eigenvectors and eigenvalues of the operator Fc,

defined in (3.97). Suppose that ψ is some eigenfunction of the integral operator

Fc, with corresponding complex eigenvalue λ, so that

λψ(x) =

∫
B

ψ(t)eic〈x,t〉 dt, (3.105)

for all x ∈ B (see Theorem 3.2.33).

Observation 3.2.8 The operator Fc, defined by (3.97), is spherically symmetric

in the sense that, for any (p+ 2)× (p+ 2) orthogonal matrix U , Fc commutes with

the operator Û : L2(B)→ L2(B), defined via the formula

Û [ψ](x) = ψ(Ux), (3.106)

for all x ∈ B. Hence, the problem of finding the eigenfunctions and eigenvalues of

Fc is amenable to the separation of variables.

Suppose that

ψ(x) = Φ`
N(‖x‖)S`N(x/‖x‖), (3.107)
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where S`N , ` = 0, 1, . . . , h(N, p) denotes the spherical harmonics of degree N (see

Section 3.2.7), and Φ`
N(r) is a real-valued function defined on the interval [0, 1].

We observe that

eic〈x,t〉 =
∞∑
N=0

h(N,p)∑
`=1

iN(2π)p/2+1JN+p/2(c‖x‖‖t‖)
(c‖x‖‖t‖)p/2

S`N(x/‖x‖)S`N(t/‖t‖), (3.108)

where x, t ∈ B, and where Jν denotes the Bessel functions of the first kind (see

Section VII of [26] for a proof). Substituting (3.107) and (3.108) into (3.105), we

find that

λΦ`
N(r) = iN(2π)p/2+1

∫ 1

0

JN+p/2(crρ)

(crρ)p/2
Φ`
N(ρ)ρp+1 dρ, (3.109)

for all 0 ≤ r ≤ 1. We define the operatorHN,c : L2
(
[0, 1], ρp+1 dρ

)
→ L2

(
[0, 1], ρp+1 dρ

)
via the formula

HN,c[Φ](r) =

∫ 1

0

JN+p/2(crρ)

(crρ)p/2
Φ(ρ)ρp+1 dρ, (3.110)

where 0 ≤ r ≤ 1, and observe that HN,c is clearly compact and self-adjoint, and

does not depend on `. Dropping the index `, we denote by βN,0, βN,1, . . . , βN,n, . . .

the eigenvalues of HN,c, and assume that |βN,n| ≥ |βN,n+1| for each nonnegative

integer n. For each nonnegative integer n, we let ΦN,n denote the eigenvector

corresponding to eigenvalue βN,n, so that

βN,nΦN,n(r) =

∫ 1

0

JN+p/2(crρ)

(crρ)p/2
ΦN,n(ρ)ρp+1 dρ, (3.111)

for all 0 ≤ r ≤ 1. Clearly, the eigenfunctions ΦN,n are purely real. We assume that

‖ΦN,n‖L2([0,1],ρp+1 dρ) = 1 and that ΦN,n(1) > 0 for each nonnegative integer N and

n (see Theorem 3.8.6). It follows from (3.111) and (3.109) that the eigenvectors
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and eigenvalues of Fc are given by the formulas

ψ`N,n(x) = ΦN,n(‖x‖)S`N(x/‖x‖), (3.112)

and

λ`N,n = iN(2π)p/2+1βN,n, (3.113)

respectively, where x ∈ B, N and n are nonnegative integers, and ` is an integer so

that 1 ≤ ` ≤ h(N, p) (see Section 3.2.7). We note in formula (3.113) the expected

degeneracy of eigenvalues due to the spherical symmetry of the integral operator

Fc (see Observation 3.2.8); we denote λ`N,n by λN,n where the meaning is clear. We

also make the following observation.

Observation 3.2.9 The domain on which the functions ΦN,n are defined may be

extended from the interval [0, 1] to the complex plane C by requiring that (3.105)

hold for all r ∈ C. Moreover, the functions ΦN,n, extended in this way, are entire.

The Dual Nature of GPSFs

In this section, we observe that the eigenfunctions ΦN,0,ΦN,1, . . . ,ΦN,n, . . . of the

integral operator HN,c, defined in (3.110), are also the eigenfunctions of a certain

differential operator.

Let βN,n denote the eigenvalue corresponding to the eigenfunction ΦN,n, for all

nonnegative integers N and n, so that

βN,nΦN,n(r) =

∫ 1

0

JN+p/2(crρ)

(crρ)p/2
ΦN,n(ρ)ρp+1 dρ, (3.114)

where 0 ≤ r ≤ 1, N and n are nonnegative integers, and Jν denotes the Bessel
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functions of the first kind (see (3.111)). Making the substitutions

ϕN,n(r) = r(p+1)/2ΦN,n(r), (3.115)

and

γN,n = c(p+1)/2βN,n, (3.116)

we observe that

γN,nϕN,n(r) =

∫ 1

0

JN+p/2(crρ)
√
crρ ϕN,n(ρ) dρ, (3.117)

where 0 ≤ r ≤ 1, and N and n are arbitrary nonnegative integers. We define the

operator MN,c : L2([0, 1])→ L2([0, 1]) via the formula

MN,c[ϕ](r) =

∫ 1

0

JN+p/2(crρ)
√
crρ ϕ(ρ) dρ, (3.118)

where 0 ≤ r ≤ 1, and N is an arbitrary nonnegative integer. Obviously, MN,c is

compact and self-adjoint. Clearly, the eigenvalues ofMN,c are γN,0, γN,1, . . . , γN,n, . . .,

and ϕN,n is the eigenfunction corresponding to eigenvalue γN,n, for each nonnega-

tive integer n.

We define the differential operator LN,c via the formula

LN,c[ϕ](x) =
d

dx

(
(1− x2)

dϕ

dx
(x)

)
+

( 1
4
− (N + p

2
)2

x2
− c2x2

)
ϕ(x), (3.119)

where 0 < x < 1, N is a nonnegative integer, and ϕ is twice continuously differen-

tiable. Let C be the class of functions ϕ which are bounded and twice continuously

differentiable on the interval (0, 1), such that ϕ′(0) = 0 if p = −1 and N = 0, and
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ϕ(0) = 0 otherwise. Then it is easy to show that, operating on functions in class

C, LN,c is self-adjoint. From Sturmian theory we obtain the following theorem

(see [26]).

Theorem 3.2.34 Suppose that c > 0, N is a nonnegative integer, and LN,c is

defined via (3.119). Then there exists a strictly increasing unbounded sequence of

positive numbers χN,0 < χN,1 < . . . such that for each nonnegative integer n, the

differential equation

LN,c[ϕ](x) + χN,nϕ(x) = 0 (3.120)

has a solution which is bounded and twice continuously differentiable on the interval

(0, 1), so that ϕ′(0) = 0 if p = −1 and N = 0, and ϕ(0) = 0 otherwise.

The following theorem is proved in [26].

Theorem 3.2.35 Suppose that c > 0, N is a nonnegative integer, and the opera-

tors MN,c and LN,c are defined via (3.118) and (3.119) respectively. Suppose also

that ϕ : (0, 1) → R is in L2([0, 1]), is twice differentiable, and that ϕ′(0) = 0 if

p = −1 and N = 0, and ϕ(0) = 0 otherwise. Then

LN,c
[
MN,c[ϕ]

]
(x) = MN,c

[
LN,c[ϕ]

]
(x), (3.121)

for all 0 < x < 1.

Remark 3.2.10 Since Theorem 3.2.34 shows that the eigenvalues of LN,c are not

degenerate, Theorem 3.2.35 implies that LN,c and MN,c have the same eigenfunc-

tions.
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Zernike Polynomials and GPSFs

In this section we describe the relationship between Zernike polynomials and

GPSFs. We use ϕcN,n, where c > 0 and N and n are arbitrary nonnegative in-

tegers, to denote the nth eigenfunction of LN,c, defined in (3.119); we denote by

χN,n(c) the eigenvalue corresponding to eigenfunction ϕcN,n.

For c = 0, the eigenfunctions and eigenvalues of the differential operator LN,c,

defined in (3.119), are

TN,n(x) (3.122)

and

χN,n(0) = (N + p
2

+ 2n+ 1
2
)(N + p

2
+ 2n+ 3

2
), (3.123)

respectively, where 0 ≤ x ≤ 1, N and n are arbitrary nonnegative integers, and

TN,n is defined in (3.34).

For small c > 0, the connection between Zernike polynomials and GPSFs is

given by the formulas

ϕcN,n(x) = TN,n(x) + o(c2), (3.124)

and

χN,n(c) = χN,n(0) + o(c2), (3.125)

as c → 0, where 0 ≤ x ≤ 1 and N and n are arbitrary nonnegative integers
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(see [26]).

For c > 0, the functions TN,n are also related to the integral operator MN,c,

defined in (3.118), via the formula

MN,c

[
TN,n

]
(x) =

∫ 1

0

JN+p/2(cxy)
√
cxy TN,n(y) dy =

(−1)nJN+p/2+2n+1(cx)√
cx

,

(3.126)

where x ≥ 0 and N and n are arbitrary nonnegative integers (see Equation (85)

in [13]).

3.3 Analytical Apparatus

In this section, we provide analytical apparatus relating to GPSFs that will be

used in numerical schemes in subsequent sections.

3.3.1 Properties of GPSFs

The following theorem provides a formula for ratios of eigenvalues βN,n (see (3.111)),

and finds use in the numerical evaluation of βN,n. A proof follows immediately from

Theorem 7.1 of [22].

Theorem 3.3.1 Suppose that N is a nonnegative integer. Then

βN,m
βN,n

=

∫ 1

0
xΦ′N,n(x)ΦN,m(x)xp+1 dx∫ 1

0
xΦ′N,m(x)ΦN,n(x)xp+1 dx

, (3.127)

for each nonnegative integers n and m.
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3.3.2 Decay of the Expansion Coefficients of GPSFs in

Zernike Polynomials

Since the functions ΦN,n are analytic on C for all nonnegative integers N and n (see

Observation 3.2.9), and Φ
(k)
N,n(0) = 0 for k = 0, 1, . . . , N − 1 (see Theorem 3.8.5),

the functions ΦN,n are representable by a series of Zernike polynomials of the form

ΦN,n(r) =
∞∑
k=0

an,kRN,k(r), (3.128)

for all 0 ≤ r ≤ 1, where an,0, an,1, . . . satisfy

an,k =

∫ 1

0

RN,k(r)ΦN,n(r)dr (3.129)

where RN,n is defined in (3.23). The following technical lemma will be used in the

proof of Theorem 3.3.3.

Lemma 3.3.2 For any integer p ≥ −1, for all c > 0, and for all ρ ∈ [0, 1],

∣∣∣∣∫ 1

0

JN+p/2(crρ)

(crρ)p/2
RN,k(r)r

p+1dr

∣∣∣∣ < (1

2

)N+p/2+2k+1

(3.130)

for any non-negative integers N, k such that N + 2k ≥ ec where RN,n is defined in

(3.23) and JN+p/2 is a Bessel function of the first kind.

Proof. According to equation (85) in [13],

∫ 1

0

JN+p/2(crρ)

(crρ)p/2
RN,k(r)r

p+1dr =
(−1)nJN+p/2+2k+1(cρ)

(cρ)p/2+1
, (3.131)
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where JN+p/2 is a Bessel function of the first kind. Applying Lemma 3.2.2 to

(3.131), we obtain

∣∣∣∣∫ 1

0

JN+p/2(crρ)

(crρ)p/2
RN,k(r)r

p+1dr

∣∣∣∣ ≤ (cρ/2)N+p/2+2k+1

(cρ)p/2+1

√
2(N + p/2 + 2k + 1)

Γ(N + p/2 + 2k + 2)
.

(3.132)

Combining Lemma 3.2.1 and (3.132), we have

∣∣∣∣∫ 1

0

JN+p/2(crρ)

(crρ)p/2
RN,k(r)r

p+1dr

∣∣∣∣ ≤ (1

2

)N+p/2+2k+1

(cρ)N+2k

√
2(2k +N)

Γ(2k +N + 1)

≤
(

1

2

)N+p/2+2k+1

(3.133)

for N + 2k ≥ ec. �

The following theorem shows that the coefficients aN,k of GPSFs in a Zernike

polynomial basis decay exponentially and establishes a bound for the decay rate.

Theorem 3.3.3 For all non-negative integers N, n, k and for all c > 0,

∫ 1

0

ΦN,n(r)RN,kr
p+1dr < (p+ 2)−1/2(βN,n)−1

(
1

2

)N+p/2+2k+1

(3.134)

where N + 2k ≥ ec.

Proof. Combining (3.114) and (3.129),

∫ 1

0

ΦN,n(r)RN,kr
p+1

=

∫ 1

0

(βN,n)−1

(∫ 1

0

JN+p/2(crρ)

(crρ)p/2
ΦN,n(ρ)ρp+1dρ

)
RN,k(r)r

p+1dr.

(3.135)
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Changing the order of integration of (3.135),

∫ 1

0

ΦN,n(r)RN,kr
p+1

= (βN,n)−1

∫ 1

0

ΦN,n(ρ)ρp+1

∫ 1

0

JN+p/2(crρ)

(crρ)p/2
RN,k(r)r

p+1drdρ.

(3.136)

Applying Lemma 3.3.2 to (3.136) and applying Cauchy-Schwarz, we obtain

∫ 1

0

ΦN,n(r)RN,kr
p+1 ≤ (βN,n)−1

(
1

2

)N+p/2+2k+1 ∫ 1

0

ΦN,n(ρ)ρp+1dρ

≤ (p+ 2)−1/2(βN,n)−1

(
1

2

)N+p/2+2k+1

.

(3.137)

for N + 2k ≥ ec. �

3.3.3 Tridiagonal Nature of LN,c

In this section, we show that in the basis of TN,n (see (3.34)), the matrix repre-

senting differential operator LN,c (see (3.119)) is symmetric and tridiagonal.

The following lemma provides an identity relating the differential operator LN,c

to TN,n.

Lemma 3.3.4 For all non-negative integers N, n and real numbers c > 0

LN,c[TN,n] = −χN,nTN,n(x)− c2x2TN,n(x) (3.138)

for all x ∈ [0, 1] where χN,n is defined in (3.40) and LN,c is defined in (3.119).

Proof. Applying LN,c to TN,n, we obtain

LN,c[TN,n](x) = (1−x2)T
′′
N,n(x)−2xTN,n(x)+

( 1
4
− (N + p

2
)2

x2
− c2x2

)
TN,n(x).

102



(3.139)

Identity (3.138) follows immediately from the combination of (3.39) and (3.139).

�

The following theorem follows readily from the combination of Lemma 3.3.4 and

Lemma 3.2.12.

Theorem 3.3.5 For any non-negative integer N , any integer n ≥ 1, and for all

r ∈ (0, 1),

LN,c[TN,n] = anTN,n−1(r) + bnTN,n(r) + cnTN,n+1(r) (3.140)

where

an =
−c2(n+N + p/2)n

(2n+N + p/2)
√

2n+N + p/2 + 1
√

2n+N + p/2− 1

bn =
−c2(N + p/2)2

2(2n+N + p/2)(2n+N + p/2 + 2)
− c2

2
+ χN,n

cn =
−c2(n+ 1 +N + p/2)(n+ 1)

(2n+N + p/2 + 2)
√

2n+N + p/2 + 3
√

2n+N + p/2 + 1

(3.141)

and χN,n is defined in (3.40).

Observation 3.3.1 It follows immediately from Theorem 3.3.5 that the matrix

corresponding to the differential operator LN,c acting on the TN,n basis is symmetric
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and tridiagonal. Specifically, for any positive integer n and for all r ∈ (0, 1),



b0 c0 0

c0 b1 c1

c1 b2 c2

. . . . . . . . .

cn−2 bn−1 cn−1

0 cn−1 bn





TN,0(r)

...

TN,n(r)


+



0

...

0

cnTN,n+1(r)


=



TN,0(r)

...

TN,n(r)


(3.142)

where bk and ck are defined in (3.141) and TN,k is defined in (3.34).

Observation 3.3.2 Let A be the infinite symmetric tridiagonal matrix satisfying

A1,1 = b0, A1,2 = c0 and for all integers k ≥ 2,

Ak,k−1 = ck−1

Ak,k = bk

Ak,k+1 = ck,

(3.143)

where bk, ck are defined in (3.141). That is,

A =



b0 c0

c0 b1 c1

c1 b2 c2

. . . . . . . . .


. (3.144)

Suppose further that we define the infinite vector αn by the equation

an = (an,0, an,1, ...)
T , (3.145)

where an,k is defined in (3.129). By the combination of Theorem 3.2.35 and Remark
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3.23, we know that ϕN,n is the eigenfunction corresponding to χN,n(c), the nth

smallest eigenvalue of differential operator LN,c. Therefore,

Aαn = χN,n(c)αn. (3.146)

Furthermore, the an,k decay exponentially fast in k (see Theorem 3.3.3).

Remark 3.3.3 The eigenvalues χN,n of differential operator LN,c and the coeffi-

cients in the Zernike expansion of the eigenfunctions ΦN,n can be computed nu-

merically to high relative precision by the following process. First, we reduce the

infinite dimensional matrix A (see (3.144)) to AK, its upperleft K ×K submatrix

where K is chosen, using Theorem 3.3.3, so that an,K−1 is smaller than machine

precision and is in the regime of exponential decay. We then use standard algo-

rithms to find the eigenvalues and eigenvectors of matrix AK. See Algorithm 3.4.1

for a more detailed description of the algorithm.

3.4 Numerical Evaluation of GPSFs

In this section, we describe an algorithm (Algorithm 3.4.1) for the evaluation of

ΦN,n(r) (see (3.111)) for all r ∈ [0, 1].

Algorithm 3.4.1

Step 1. Use Theorem 3.3.3 to determine how many terms are needed in a Zernike

expansion of ΦN,n. We assume that we want a K term expansion.

Step 2. Generate AK , the symmetric, tri-diagonal, upper-left K ×K sub-matrix of

A (see (3.144)).
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Step 3. Use an eigensolver to find the eigenvector, ãn, corresponding to the n+ 1th

largest eigenvalue, χ̃N,n. That is, find ãn and χ̃N,n such that

AK ãn = χ̃N,nãn (3.147)

where we define the components of ãN,n by the formula,

ãn = (an,0, an,1, ..., an,K−1). (3.148)

Step 4. Evaluate ΦN,n(r) by the expansion

ΦN,n(r) =

k∑
i=0

an,iRN,i(r) (3.149)

where, RN,i is evaluated via Lemma 3.2.8 and an,i are the components of eigenvector

(3.148) recovered in Step 3.

Remark 3.4.1 It turns out that because of the structure of AK, standard numer-

ical algorithms will compute the components of eigenvector ãn (see 3.148)), and

thus the coefficients of a GPSF in a Zernike expansion, to high relative precision.

In particular, the components of ãn that are of magnitude far less than machine

precision, are computed to high relative precision. For example, when using double-

precision arithmetic, a component of ãn of magnitude 10−100 will be computed in

absolute precision to 116 digits. This fact is proved in a more general setting in

[21].

3.4.1 Numerical Evaluation of the Single Eigenvalue βN,i

In this section, we describe a sum that can be used to evaluate the eigenvalue βN,n

(see Theorem 3.111) for fixed n to high relative precision.

The following is a technical lemma will be used in the proof of Theorem 3.4.3.
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Lemma 3.4.1 For all non-negative integers N, k,

∫ 1

0

ρNϕN,k(ρ)ρ
p+1
2 dρ =

ak,0√
2N + p+ 2

(3.150)

where ϕN,k is defined in (3.115) and p ≥ −1 is an integer.

Proof. Using (3.20),

∫ 1

0

ρNϕN,k(ρ)ρ
p+1
2 dρ =

∫ 1

0

RN,0(ρ)ϕN,k(ρ)ρ
p+1
2 dρ (3.151)

Applying (3.129) and (3.34) to (3.151), we obtain

∫ 1

0

ρNϕN,k(ρ)ρ
p+1
2 dρ =

1√
2N + p+ 2

∫ 1

0

TN,0(ρ)ϕN,k(ρ)dρ =
ak,0√

2N + p+ 2
.

(3.152)

�

We will denote by ϕ∗N,n(r) the function on [0, 1] defined by the formula

ϕ∗N,n(r) =
ϕN,n(r)

rN+ p
2

(3.153)

where N, n are non-negative integers.

The following identity will be used in the proof of Theorem 3.4.3.

Lemma 3.4.2 For all non-negative integers N, k,

ϕ∗N,k(0) =
∞∑
i=0

ak,i
√

2(2i+N + p/2 + 1)(−1)i
(
i+N + p/2

i

)
. (3.154)

where ϕ∗N,k is defined in (3.153) and ak,i is defined in (3.129).
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Proof. Combining (3.153) and (3.46), we have

ϕ∗N,k(r) =
ϕN,k(r)

rN+ p
2

=
∞∑
i=0

ak,i
TN,i(r)

rN+ p
2

=
∞∑
i=0

ak,iT
∗
N,i(r) (3.155)

where T
∗
N,n is defined in (3.46) and TN,n is defined in (3.34). Identity (3.154)

follows immediately from applying Lemma 3.2.13 to (3.155) and setting r = 0. �

The following theorem provides a formula that can be used to compute βN,n (see

(3.116)), an eigenvalue of integral operator HN,c (see (3.110).

Theorem 3.4.3 For all non-negative integers N, k,

βN,k =
ak,0c

N(2N+p/2Γ(N + p/2 + 1)
√

2N + p+ 2)−1

∞∑
i=0

ak,i
√

2(2i+N + p/2 + 1)(−1)i
(
i+N + p/2

i

)
(3.156)

where βN,k is defined in (3.114) and ak,i are defined in (3.129).

Proof. It is well known that JN+p/2, a Bessel Function of the first kind, satisfies

the identity

JN+p/2 =
(crρ

2

)N+p/2
∞∑
k=0

(−(crρ)2/4)k

k!Γ(N + p/2 + k + 1)
(3.157)

where Γ(n) is the gamma function. Dividing both sides of (3.117) by rN+
(p+1)

2 , we

obtain the equation

γN,kϕ
∗
N,k(r) =

∫ 1

0

JN+p/2(crρ)

rN+ p
2

√
cρϕN,k(ρ)dρ (3.158)

where ϕ∗N,k is defined in (3.153). Setting r = 0, in (3.158) and subsituting in
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(3.154) and (3.157), we obtain

γN,k =

∫ 1

0

(cρ
2

)
N+p/2 (cρ)1/2

Γ(N + p/2 + 1)
ϕN,k(ρ)dρ(

∞∑
i=0

ak,i
√

2(2i+N + p/2 + 1)(−1)i
(
i+N + p/2

i

))−1

.

(3.159)

Equation (3.156) follows immediately from applying Lemma 3.4.1 and (3.116) to

(3.159). �

Remark 3.4.2 For any non-negative integers N, k, the eigenvalue βN,k can be

evaluated stably by first using Algorithm 3.4.1 to compute the eigenvector ãk (see

(3.148)), and then evaluating βN,k via sum (3.156) where ãk are approximations

to ak. In (3.156), the sum

∞∑
i=0

ak,i
√

2(2i+N + p/2 + 1)(−1)i
(
i+N + p/2

i

)
(3.160)

can be computed to high relative precision by truncating the sum at a point when

the partial sum up to that point is a factor of machine precision larger than the

next term.

3.4.2 Numerical Evaluation of Eigenvalues βN,0, βN,1, ..., βN,k

In this section, we describe an algorithm for numerically evaluating the eigenvalues

βN,0, βN,1, ..., βN,k (see (3.111)) for any non-negative integers N, k (see Algorithm

3.4.2).

In Observation 3.4.3, we describe a stable numerical scheme for converting an
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expansion of the form

K∑
i=0

xirT
′
N,i(r), (3.161)

where x0, ..., xK are real numbers, into an expansion of the form

K∑
i=0

αiTN,i(r) (3.162)

where α0, ..., αK are real numbers, TN,n(r) is defined in (3.34), and T
′
N,n(r) denotes

the derivative of TN,n(r) with respect to r.

Observation 3.4.3 Fix ε > 0 and let x0, ..., xK be a sequence of real numbers such

that

K∑
i=K1+1

|xk| < ε (3.163)

where 0 ≤ K1 ≤ K. Using (3.34), we have

K∑
i=0

xiTN,n(r) =
K∑
i=0

αiTN,n(r) (3.164)

where x0, ..., xK are real numbers and αi is defined by the formula

αi = xi
√

2(2i+N + p/2 + 1). (3.165)

Scaling both sides of (3.50), we obtain

α0rT
′
N,0(r)− α0b̃1

ã1

rT ′N,1(r) +
α0c̃1

ã1

rT ′N,2(r)

=
α0a1

ã1

TN,0(r)− α0b1

ã1

TN,1(r) +
α0c1

ã1

TN,2(r).

(3.166)
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where ai, bi, ci, ãi, b̃i, c̃i are defined in Lemma 3.2.14. Scaling (3.50) and adding the

resulting equation to (3.166), we obtain

α0rT
′
N,0(r)− α0b̃1

ã1

rT ′N,1(r) +
α0c̃1

ã1

rT ′N,2(r)

+

((
α0b̃1

ã1

+ α1

)
ã−1

2

)(
ã2rT

′
N,1(r)− b̃2rT

′
N,2(r) + c̃2rT

′
N,3(r)

)
=
α0a1

ã1

TN,0(r)− α0b1

ã1

TN,1(r) +
α0c1

ã1

TN,2(r)

+

((
α0b̃1

ã1

+ α1

)
ã−1

2

)
(a2TN,1(r)− b2TN,2(r) + c2TN,3(r)) .

(3.167)

Simplying the left hand side of (3.167), we have

α0rT
′
N,0(r) + α1rT

′
N,1(r) +

(
α0c̃1

ã1

− b̃2

ã2

(
α0b̃1

ã1

+ α1

))
rT ′N,2(r)

+

((
α0b̃1

ã1

+ α1

)
ã−1

2

)(
c̃2rT

′
N,3(r)

)
.

(3.168)

We continue by adding scaled versions of (3.50) to (3.167) until the expansion on

the left hand side of (3.167) approximates (3.164). After K1 + 1 steps, the new

expansion will be accurate to approximately ε precision. Specifically, at the start of

step k, for 2 ≤ k ≤ K1 + 1, we have

α0rT
′
N,0(r) + α1rT

′
N,1(r) + ...+ αk−2rT

′
N,k−2(r) + xk−1rT

′
N,k−1(r) + xkrT

′
N,k(r)

= y0TN,0 + y1TN,1 + ...+ ykTN,k

(3.169)

where xk−1, xk, xk+1, y0, y1, ..., yk are some real numbers. Scaling both sides of
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(3.50) and adding the resulting equation to (3.169), we obtain

α0rT
′
N,0(r) + α1rT

′
N,1(r) + ...+ αk−2rT

′
N,k−2(r) + xk−1rT

′
N,k−1(r) + xkrT

′
N,k(r)

+

(
−xk−1 + αk−1

ãk

)(
ãkrT

′
N,k−1(r)− b̃krT ′N,k(r) + c̃krT

′
N,k+1(r)

)
= y0TN,0 + y1TN,1 + ...+ ykTN,k

+

(
−xk−1 + αk−1

ãk

)
(akTN,k−1(r)− bkTN,k(r) + ckTN,k+1(r)) .

(3.170)

Simplifying both sides of (3.170), we have

α0rT
′
N,0(r) + α1rT

′
N,1(r) + ...+ αk−2rT

′
N,k−2(r) + αk−1rT

′
N,k−1(r)

+

(
−xk−1 + αk−1

ãk
(−b̃k) + xk

)
rT ′N,k(r) +

(
−xk−1 + αk−1

ãk
c̃k

)
rT ′N,k+1(r)

= y0TN,0 + y1TN,1 + ...+

(
−xk−1 + αk−1

ãk
ak + yk−1

)
TN,k−1(r)

+

(
−xk−1 + αk−1

ãk
(−bk) + yk

)
TN,k(r) +

(
−xk−1 + αk−1

ãk
ck

)
TN,k+1(r).

(3.171)

We then scale back each term in the new expansion in TN,n to get an expansion in

TN,n. That is, we scale the ith term in the new expansion by

(2(2i+N + p/2 + 1))−(1/2). (3.172)

The following observation, when combined with Observation 3.4.3, provides a nu-

merical scheme for evaluating integrals of the form

∫ 1

0

rΦ′N,n(r)ΦN,m(r)rp+1dr. (3.173)

This scheme will be used in Algorithm 3.4.2.
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Observation 3.4.4 Suppose that

rΦ′N,n(r) =
K∑
i=0

xiRN,i(r) (3.174)

and

ΦN,m(r) =
K∑
i=0

yiRN,i(r). (3.175)

where xi, yi are real numbers. Then, combining (3.22) with (3.24), we have,

∫ 1

0

rΦ′N,n(r)ΦN,m(r)rp+1dr =

∫ 1

0

K∑
i=0

xiRN,i(r)
K∑
i=0

yiRN,i(r)r
p+1dr =

K∑
i=0

xiyi.

(3.176)

We now describe an algorithm for evaluating the eigenvalues βN,0, βN,1, ..., βN,k for

any non-negative integers N, k.

Algorithm 3.4.2

Step 1. Use Algorithm 3.4.1 to recover the Zernike expansions of the GPSFs

ΦN,0,ΦN,1, ...,ΦN,n. (3.177)

Step 2. Compute the eigenvalue βN,0 (see (3.111)) using Remark 3.4.2.

Step 3. Use Observation 3.4.3 to evaluate the RN,n expansion of rΦ′N,0 and rΦ′N,1.

Step 4. Use Observation 3.4.4 to compute the integrals

∫ 1

0
rΦ′N,1(r)ΦN,0(r)rp+1dr (3.178)
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and

∫ 1

0
rΦ′N,0(r)ΦN,1(r)rp+1dr (3.179)

where the Zernike expansions of ΦN,0(r),ΦN,1(r) were computed in Step 1 and the

Zernike expansions of rΦ′N,0(r),Φ′N,1(r) were computed in Step 3.

Step 5. Using Theorem 3.3.1, evaluate βN,1 using the formula

βN,1 = βN,0

∫ 1
0 rΦ

′
N,1(r)ΦN,0(r)rp+1 dr∫ 1

0 rΦ
′
N,0(r)ΦN,1(r)rp+1 dr

. (3.180)

where βN,0 was obtained in Step 2 and the numerator and denominator of (3.180) were

evaluated in Step 4.

Step 6. Repeat Steps 3-5 k times, each time computing the next eigenvalue, βN,i+1

via the formula

βN,i+1 = βN,i

∫ 1
0 rΦ

′
N,i+1(r)ΦN,i(r)r

p+1 dr∫ 1
0 rΦ

′
N,i(r)ΦN,i+1(r)rp+1 dr

. (3.181)

3.5 Quadratures for Band-limited Functions

In this section, we describe a quadrature scheme for bandlimited functions using

nodes that are a tensor product of roots of GPSFs in the radial direction and nodes

that integrate spherical harmonics in the angular direction.

The following lemma shows that a quadrature rule that accurately integrates

complex exponentials, also integrates bandlimited functions accurately.
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Lemma 3.5.1 Let ξ1, ..., ξn ∈ B and w1, ..., wn ∈ R weights such that

∣∣∣∣∣
∫
B

eic〈x,t〉dt−
n∑
i=1

wie
ic〈x,ξi〉

∣∣∣∣∣ < ε (3.182)

for all x ∈ B where B denotes the unit ball in Rn for any non-negative integer n

and ε > 0 is fixed. Then, for all f : B → C such that

f(x) =

∫
B

σ(t)eic〈x,t〉dt (3.183)

where σ ∈ L2(B), we have

∣∣∣∣∣
∫
B

f(x)dx−
n∑
i=1

wif(ξi)

∣∣∣∣∣ < ε

∫
B

|σ(t)|dt (3.184)

Proof. Clearly,

∣∣∣∣∣
∫
B

f(t)dt−
n∑
i=1

wif(ξi)

∣∣∣∣∣ =

∣∣∣∣∣
∫
B

∫
B

σ(t)eic〈x,t〉dtdx−
n∑
i=0

wi

∫
B

σ(t)eic〈ξi,t〉dt

∣∣∣∣∣
=

∣∣∣∣∣
∫
B

σ(t)

(∫
B

eic〈x,t〉dx−
n∑
i=0

wie
ic〈ξi,t〉

)
dt

∣∣∣∣∣ .
(3.185)

Applying (3.182) to (3.185), we obtain

∣∣∣∣∣
∫
B

f(t)dt−
n∑
i=1

wif(ξi)

∣∣∣∣∣ ≤
∫
B

|σ(t)|

∣∣∣∣∣
∫
B

eic〈x,t〉dx−
n∑
i=0

wie
ic〈ξi,t〉

∣∣∣∣∣ dt
< ε

∫
B

|σ(t)|dt.
(3.186)

�

The following technical lemma will be used in the construction of quadratures for

bandlimited functions.
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Lemma 3.5.2 For any positive integer K and any integer p ≥ −1,

∣∣∣∣∫
B

eic〈x,t〉dt−
∫
B

K∑
N=0

h(N,p)∑
`=1

iN(2π)p/2+1JN+p/2(c‖x‖‖t‖)
(c‖x‖‖t‖)p/2

S`N(x/‖x‖)S`N(t/‖t‖)dt
∣∣∣∣

≤ (2π)p/2+1

∞∑
N=K+1

c2N(1/2)2N+p

Γ(N + p/2 + 1)2

πp/2+1

Γ(p/2 + 2)

h(N,p)∑
`=1

|S`N(x/‖x‖)|


(3.187)

for all x ∈ B and c > 0.

Proof. It follows immediately from (3.108) that for any integer p ≥ −1 and for

all x ∈ Rp+2,

∣∣∣∣∣
∫
B

eic〈x,t〉dt−
∫
B

K∑
N=0

h(N,p)∑
`=1

iN(2π)p/2+1JN+p/2(c‖x‖‖t‖)
(c‖x‖‖t‖)p/2

S`N(x/‖x‖)S`N(t/‖t‖)dt

∣∣∣∣∣
≤ (2π)p/2+1

∞∑
N=K+1

h(N,p)∑
`=1

∣∣S`N(x/‖x‖)
∣∣ ∫

B

∣∣∣∣JN+p/2(c‖x‖‖t‖)
(c‖x‖‖t‖)p/2

S`N(t/‖t‖)
∣∣∣∣ dt
(3.188)

where r = ‖x‖, B denotes the unit ball in R
p+1, and S`N is defined in (3.90).

Applying Cauchy-Schwarz and Lemma 3.2.2 to (3.188) and using the fact that

Spherical Harmonics have L2 norm of 1, we obtain,

∣∣∣∣∣
∫
B

eic〈x,t〉dt−
∫
B

K∑
N=0

h(N,p)∑
`=1

iN(2π)p/2+1JN+p/2(c‖x‖‖t‖)
(c‖x‖‖t‖)p/2

S`N(x/‖x‖)S`N(t/‖t‖)dt

∣∣∣∣∣
≤ (2π)p/2+1

∞∑
N=K+1

h(N,p)∑
`=1

∣∣S`N(x/‖x‖)
∣∣ ∫

B

∣∣∣∣(c‖x‖‖t‖)N(1/2)N+p/2

Γ(N + p/2 + 1)

∣∣∣∣2 dt.
(3.189)

Equation (3.187) follows immediately from applying (3.84) and (3.87) to (3.189). �
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Remark 3.5.1 Lemma 3.5.2 shows that a complex exponential on the unit ball is

well approximated by a function of the form

K∑
N=0

h(N,p)∑
`=1

iN(2π)p/2+1JN+p/2(c‖x‖‖t‖)
(c‖x‖‖t‖)p/2

S`N(x/‖x‖)S`N(t/‖t‖)dt (3.190)

where the error of the approximation decays super-exponentially in K. Further-

more, the spherical harmonics S`N integrate to 0 for all N ≥ 1 (see Lemma 3.5.3).

Combining these facts, we observe that in order to integrate a complex exponential

on the unit ball, it is sufficient to use a quadrature rule that is the tensor product

of nodes in the angular direction that integrate all spherical harmonics S`N for suf-

ficiently large N and nodes in the radial direction that integrate functions of the

form

Jp/2(crρ)

(crρ)p/2
ρp+1. (3.191)

We will show in Remark 3.5.2 that accurately computing functions of the form of

(3.191) can be done using a quadrature rule that integrates GPSFs.

The following lemma shows that (3.191) is well represented by an expansion in

GPSFs. This lemma will be used to construct quadrature nodes for bandlimited

functions.

Lemma 3.5.3 For all real numbers r, ρ ∈ (0, 1),

Jp/2(crρ)

(crρ)p/2
ρp+1 =

∞∑
i=0

β0,iΦ0,i(r)Φ0,i(ρ) (3.192)

where Jp/2 is a Bessel function, Φ0,n is defined in (3.111) and β0,i is defined in

(3.114).

117



Proof. Since Φ0,i are complete in L2[0, 1]rp+1 ,

Jp/2(crρ)

(crρ)p/2
ρp+1 =

∞∑
i=0

∞∑
j=0

αi,jΦ0,i(r)Φ0,j(ρ) (3.193)

where αi,j is defined by the formula

αi,j =

∫ 1

0

∫ 1

0

Jp/2(crρ)

(crρ)p/2
rp+1Φ0,i(r)Φ0,j(ρ)drρp+1dρ. (3.194)

Changing the order of integration of (3.194) and substituting in (3.114), we obtain,

αi,j =

∫ 1

0

Φ0,j(r)

∫ 1

0

Jp/2(crρ)

(crρ)p/2
ρp+1Φ0,i(ρ)dρrp+1dr

= β0,i

∫ 1

0

Φ0,j(r)Φ0,i(r)r
p+1dr

= δi,jβ0,i

(3.195)

where β0,i is defined in (3.114). Identity (3.192) follows immediately from the

combination of (3.193) and (3.195). �

The following remark shows that a quadrature rule that correctly integrates certain

GPSFs also integrates certain Bessel functions.

Remark 3.5.2 Let ρ1, ..., ρn be the n roots of Φ0,n and w1, ..., wn ∈ R the n weights

such that

∫ 1

0

Φ0,k(r)r
p+1dr =

n∑
i=0

Φ0,k(ρi)wi (3.196)
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for k = 0, 1, ..., K. By Lemma 3.5.3,

∣∣∣∣∣
∫ 1

0

Jp/2(crρ)

(crρ)p/2
ρp+1dρ−

n∑
i=1

Jp/2(crρi)

(crρi)p/2
wi

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

(
∞∑
j=0

β0,jΦ0,j(r)Φ0,j(ρ)

)
dρ−

n∑
i=1

wi

(
∞∑
j=0

β0,jΦ0,j(r)Φ0,j(ρi)

)∣∣∣∣∣
(3.197)

where β0,j is defined in (3.114). Applying (3.196) to (3.197), we obtain

∣∣∣∣∣
∫ 1

0

Jp/2(crρ)

(crρ)p/2
ρp+1dρ−

n∑
i=1

Jp/2(crρi)

(crρi)p/2
ρp+1
i wi

∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

(
∞∑

j=K+1

β0,jΦ0,j(r)Φ0,j(ρ)

)
dρ−

n∑
i=1

wi

(
∞∑

j=K+1

β0,jΦ0,j(r)Φ0,j(ρi)

)∣∣∣∣∣ .
(3.198)

Clearly, as long as β0,K+1 is in the regime of exponential decay, (3.198) is of

magnitude approximately β0,K+1.

We now describe a quadrature rule that correctly integrates functions of the

form of (3.190). This quadrature rule uses nodes that are a tensor product of roots

of Φ0,n in the radial direction and nodes that integrate spherical harmonics in the

angular direction.

Observation 3.5.3 Suppose that r1, ..., rn ∈ (0, 1) and weights w1, ..., wn ∈ R

satisfy

∫ 1

0

Φ0,k(r)r
p+1dr =

n∑
i=1

wiΦ0,k(ri) (3.199)

for k = 0, 1, ..., K1. Suppose further that x1, ..., xm ∈ Sp+1 are nodes and v1, ..., vm ∈
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R are weights such that

∫
Sp+1

S`N(x)dx =
m∑
i=1

viS
`
N(xi) (3.200)

for all N ≤ K2 and for all ` ∈ {1, 2, ..., h(N, p)}. Then it follows immediately from

Remark 3.5.1 and Remark 3.5.2 that

∣∣∣∣∣
∫
B

eic〈x,t〉dt−
m∑
i=0

vi

n∑
j=1

wje
ic〈x,rjxi〉

∣∣∣∣∣ (3.201)

will be exponentially small for large enough n,m. Lemma 3.5.1 shows that quadra-

ture (3.201) will also accurately integrate functions of the form

∫
B

σ(t)eic〈x,t〉dt (3.202)

where σ is in L2(B).

Remark 3.5.4 A Chebyshev quadrature of the form (3.5.1) can be generated by

first computing the n roots of Φ0,n (see Section 3.5.1) and then solving the n × n

linear system of equations

∫ 1

0

Φ0,k(r)r
p+1dr =

n∑
i=1

wiΦ0,k(ri) (3.203)

for w1, ..., wn where r1, ..., rn are the n roots of Φ0,n. Section 3.5.2 contains a

description of an algorithm for generating Gaussian quadratures for GPSFs.

3.5.1 Roots of Φ0,n

In this section, we describe an algorithm for finding the roots of ΦN,n. These roots

will be used in the design of quadratures for GPSFs.

120



The following lemma provides a differential equation satisfied by ϕ0,n. It will

be used in the evaluation of roots of ϕ0,n later in this section.

Lemma 3.5.4 For all non-negative integers n,

ϕ′′0,n(r) + α(r)ϕ′0,n(r) + β(r)ϕ0,n(r) = 0, (3.204)

where

α(r) =
−2r

1− r2
(3.205)

and

β(r) =
1/4− (N + p/2)2

(1− r2)r2
− c2r2 + χN,n

1− r2
(3.206)

where ϕ0,n is defined in (3.115) and χN,n is defined in (3.120).

The following lemma is obtained by applying the Prufer Transform (see Lemma

3.2.15) to (3.204).

Lemma 3.5.5 For all non-negative integers n, real numbers k > −1, and r ∈

(0, 1),

dθ

dr
= −

√
β(r)−

(
β′(r)

4β(r)
+
α(r)

2

)
sin(2θ(r)), (3.207)

where the function θ : (0, 1)→ R is defined by the formula

ϕN,n(r)

ϕ′N,n(r)
=
√
β(r) tan(θ(r)), (3.208)
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and β′(r), the derivative of β(r) with respect to r, is defined by the formula

β′(r) =
−2(1/4− (N + p/2)2)(1− 2r2)

(1− r2)r3
+
−2rc2(1− r2) + 2r(−c2r2 − χN,n)

(1− r2)2

(3.209)

and where α(r), β(r) are defined in (3.205) and (3.206), ϕN,n is defined in (3.115)

and χN,n is defined in (3.120).

Remark 3.5.5 For any non-negative integer n,

dθ

dr
< 0 (3.210)

for all r ∈ (r1, rn) where r1 and rn are the smallest and largest roots of ϕN,n

respectively. Therefore, applying Remark 3.2.6 to (3.207), we can view r as a

function of θ where r satisfies the differential equation

dr

dθ
=

(
−
√
β(r)−

(
β′(r)

4β(r)
+
α(r)

2

)
sin(2θ(r))

)−1

(3.211)

where α, β, and β′ are defined in (3.205), (3.206) and (3.209).

The following is a description of an algorithm for the evaluation of the n roots of

ΦN,n. We denote the n roots of ΦN,n by r1 < r2 < ... < rn.

Algorithm 3.5.1

Step 0. Compute the TN,n expansion of ϕN,n using Algorithm 3.4.1.

Step 1. Use bisection to find the root in x0 ∈ (0, 1) of β(r) where β(r) is defined in

(3.206). If β has no root on (0, 1), then set x0 = 1.
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Step 2. If χ0,n(c) > 1/
√
c, place Chebyshev nodes (order 5n, for example) on the

interval (0, x0) and check, starting at x0 and moving in the negative direction, for a sign

change. Once a sign change has occured, use Newton to find an accurate approximation

to the root.

If χ0,n(c) ≤ 1/
√
c, then use three steps of Mueller’s method starting at x0, using the

first and second derivatives of ϕ0,n followed by Newton’s method.

Step 3. Defining θ0 by the formula

θ0 = θ(x0), (3.212)

where θ is defined in (3.139), solve the ordinary differential equation dr
dθ (see (3.211))

on the interval (π/2, θ0), with the initial condition r(θ0) = x0. To solve the differential

equation, it is sufficient to use, for example, second order Runge Kutta with 100 steps

(independent of n). We denote by r̃n the approximation to r(π/2) obtained by this pro-

cess. It follows immediately from (3.65) that r̃n is an approximation to rn, the largest

root of ϕN,n.

Step 4. Use Newton’s method with r̃n as an initial guess to find rn to high precision.

The GPSF ϕN,n and its derivative ϕ′N,n can be evaluated using the expansion evaluated

in Step 0.

Step 5. With initial condition

x(π/2) = rn, (3.213)
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solve differential equation dr
dθ (see (3.211)) on the interval

(−π/2, π/2) (3.214)

using, for example, second order Runge Kuta with 100 steps. We denote by r̃n−1 the

approximation to

r(−π/2) (3.215)

obtained by this process.

Step 6. Use Newton’s method, with initial guess r̃n−1, to find to high precision the

second largest root, rn−1.

Step 7. For k = {1, 2, ..., n− 1}, repeat Step 4 on the interval

(−π/2− kπ,−π/2− (k − 1)π) (3.216)

with intial condition

x(−π/2− (k − 1)π) = rn−k+1 (3.217)

and repeat Step 5 on r̃n−k.

3.5.2 Gaussian Quadratures for Φ0,n

In this section, we describe an algorithm for generating Gaussian quadratures for

the GPSFs Φ0,0,Φ0,1, ...,Φ0,n.
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Definition 3.5.1 A Gaussian Quadrature with respect to a set of functions

f1, ..., f2n−1 : [a, b]→ R (3.218)

and non-negative weight function w : [a, b] → R is a set of n nodes, x1, ..., xn ∈

[a, b], and n weights, ω1, ..., ωn ∈ R, such that, for any integer j ≤ 2n− 1,

∫ b

a

fj(x)w(x)dx =
n∑
i=0

ωifj(xi). (3.219)

Remark 3.5.6 In order to generate a Gaussian quadrature for GPSFs with ban-

dlimit c > 0, we first generate a Chebyshev quadrature for GPSFs with bandlimit

c/2 and then, using those nodes and weights as a starting point, we use Newton’s

method with step-length control to find nodes and weights that form a Gaussian

quadrature for GPSFs with bandlimit c.

The following is a description of an algorithm for generating Gaussian quadratures

for the GPSFs

Φc
0,0, ...,Φ

c
0,2n−1. (3.220)

Algorithm 3.5.2

Step 1. Using Algorithm 3.5.1, generate a Chebyshev quadrature for the functions

Φ
c/2
0,0 , ...,Φ

c/2
0,n−1. (3.221)

That is, find, r1, ..., rn, the n roots of Φ0,n and weights w1, ..., wn such that

∫ 1

0
Φ
c/2
0,k (r)dr =

n∑
i=1

wiΦ
c/2
0,k (ri) (3.222)

for k = 0, 1, ..., n− 1.
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Step 2. Evaluate the vector d = (d0, d1, ..., d2n−1) of discrepencies where dk is defined

by the formula

dk =

∫ 1

0
Φc

0,k(r)dr −
n∑
i=1

wiΦ
c
0,k(ri) (3.223)

for k = 0, 1, ..., 2n− 1.

Step 3. Generate A, the 2n × 2n matrix of partial derivatives of d the n nodes and

and n weights. Specifically, for i = 1, ..., 2n, the matrix A is defined by the formula

Ai,j =


Φc

0,j(ri) for i = 1, ..., n,

wiΦ
c′
0,j(ri) for i = n+ 1, ..., 2n.

(3.224)

where Φc′
0,k(r) denotes the derivative of Φc

0,k(r) with respect to r.

Step 4. Solve for x ∈ R2n the 2n× 2n linear system of equations

Ax = −d (3.225)

where A is defined in (3.224) and d is defined in (3.223).

Step 5. Update nodes and weights correspondingly. That is, defining r ∈ R2n to be

the vector of nodes and weights

r = (r1, r2, ..., rn, w1, w2, ..., wn)T , (3.226)
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we construct the updated vector of nodes and weights r̃ so that

r̃ = r + 〈r, x〉r (3.227)

Step 6. Check that the l2 norm of r̃ is less than the l2 norm of r. If now, then go

back to Step 5 and divide the steplength by 2. That is, define r̃ by the formula,

r̃ = r +
1

2
〈r, x〉r. (3.228)

Continue dividing the steplength by 2 until ‖r̃‖2 < ‖r‖2.

Step 7. Repeat steps 2-6 until the discrepencies, di for i = 0, 1, ..., 2n−1 (see (3.223))

are approximately machine precision.

3.6 Interpolation via GPSFs

In this section, we describe a numerical scheme for representing a bandlimited

function as an expansion in GPSFs.

In general, the interpolation problem is formulated as follows. Suppose that f

is defined by the formula

f(x) = a1g1(x) + a2g2(x) + ...+ angn(x) (3.229)

where g1, ..., gn are some fixed basis functions. The interpolation problem is to

recover the coefficients a1, ..., an. This is generally done by solving the n×n linear

system of equations obtained from evaluating f at certain interpolation nodes. As

long as f is well-represented by the interpolation nodes, then the procedure is

accurate.

As shown in the context of quadrature (see Section 3.5), GPSFs are a natu-

ral basis for representing bandlimited functions. We formulate the interpolation
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problem for GPSFs as recovering the coefficients of a bandlimited function f in its

GPSF expansion. That is, suppose that f is of the form

f(x) =

∫
B

σ(t)eic〈x,t〉dt. (3.230)

where σ ∈ L2(B). Then, f is representable in the form

f(x) =
N∑
i=1

aiψi(x) (3.231)

where ψj(x) is a GPSF defined in (3.98) and ai satisfies

ai =

∫
B

ψi(t)f(t)dt. (3.232)

The problem is the recover the coefficients aj.

The following lemma shows that a quadrature rule that recovers the coefficients

of the expansion in GPSFs of a complex exponential will also recover the coefficients

in a GPSF expansion of a bandlimited function.

Lemma 3.6.1 Suppose that for all t ∈ B,

∣∣∣∣∣
∫
B

ψj(x)eic〈x,t〉dx−
∑
k=1

wkψj(xk)e
ic〈xk,t〉

∣∣∣∣∣ < ε (3.233)

where B denotes the unit ball in Rp+2 and ψj is defined in (3.98). Then,

∣∣∣∣∣
∫
B

ψj(x)f(x)dx−
∑
k=1

wkψj(xk)f(xk)

∣∣∣∣∣ < ε (3.234)

where

f(x) =

∫
B

σ(t)eic〈x,t〉dt. (3.235)
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The following lemma shows that the product of a complex exponential with a

GPSF of bandlimit c > 0 is a bandlimited function with bandlimit 2c. The proof

is a slight modification of Lemma 5.3 in [24].

Lemma 3.6.2 For all x ∈ B where B denotes the unit ball in Rp+2 and for all

c > 0,

eic〈ω,x〉ψj(x) =

∫
B

σ(ξ)ei2c〈ξ,x〉dξ (3.236)

where ψj is defined in (3.98) and σ satisfies

∣∣∣∣∫
B

σ(t)2

∣∣∣∣ ≤ 4/|λj|2. (3.237)

where λj is defined in (3.98).

Proof. Using (3.98),

ψj(x)eic〈ω,x〉 =
1

λj

∫
B

eic〈ω+t,x〉ψj(t)dt. (3.238)

Applying the change of variables ξ = (t+ ω)/2 to (3.238), we obtain

ψj(x)eic〈ω,x〉 =
1

λj

∫
Bω

ei2c〈ξ,x〉2ψj(2ξ − ω)dξ (3.239)

where Bω is the ball of radius 1/2 centered at ω/2. It follows immediately from

(3.239) that

ψj(x)eic〈ω,x〉 =
1

λj

∫
Bω

ei2c〈ξ,x〉µ(ξ)dξ. (3.240)
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where

µ(ξ) =


2ψj(2ξ−ω)

λj
if ξ ∈ Bω,

0 otherwise.
(3.241)

Inequality (3.237) follows immediately from the combination of (3.241) with the

fact that ψj is L2 normalized. �

The following observation describes a numerical scheme for recovering the coeffi-

cients in a GPSF expansion of a bandlimited function.

Observation 3.6.1 Suppose that f is defined by the formula

f(x) =

∫
B

σ(t)eic〈x,t〉dt (3.242)

where σ is some function in L2(B). Then, f is representable in the form

f(x) =
∞∑
k=1

akψk(x) (3.243)

where

ak =

∫
B

f(x)ψk(x)dx. (3.244)

It follows immediately from the combination of Lemma 3.6.2 and Lemma 3.6.1 that

using quadrature rule (3.201) with bandlimit 2c will integrate ak accurately. That

is, following the notation of Observation 3.5.1,

∣∣∣∣∣ak −
n∑
i=0

wi

m∑
j=1

vjf(rixj)ψk(rixj)

∣∣∣∣∣ (3.245)

is exponentially small for large enough m,n.
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Remark 3.6.2 When integrating a function of the form of (3.243) on the unit

disk in R2, the vj in (3.245) are defined by the formula

vj = j
2π

2m− 1
(3.246)

for j = 1, 2, ..., 2m− 1 and the sums

m∑
j=1

vjf(rixj)ψk(rixj) (3.247)

for each i can be computed using an FFT.

The following lemma bounds the magnitudes of the coefficients of the GPSF ex-

pansion of a bandlimited function.

Lemma 3.6.3 Suppose that f is defined by the formula

f(x) =

∫
B

σ(t)eic〈x,t〉dt. (3.248)

Then,

f(x) =
N∑
i=1

aiψi(x) (3.249)

where ψj(x) is a GPSF defined in (3.98) and ai satisfies

|ai| ≤ |λi|
∫
B

|σ(t)|2dt (3.250)

where λi is defined in (3.98).

Proof. Since ψj form an orthonormal basis for L2[B], f is representable in the
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form of (3.249) and for all positive integers i,

ai =

∫
B

f(t)ψi(t)dt =

∫
B

(∫
B

σ(ξ)eic〈t,ξ〉dξ

)
ψi(t)dt. (3.251)

Combining (3.251) and (3.98) and using Cauchy-Schwarz, we obtain

|ai| = |λi
∫
B

σ(t)ψi(t)dt| ≤ |λi|
∫
B

|σ(t)|2dt
∫
B

|ψj(t)|2dt = |λi|
∫
B

|σ(t)|2dt (3.252)

�

Remark 3.6.3 Lemma 3.6.3 shows that in order to accurately represent a ban-

dlimited function, f , it is sufficient to find the projection of f onto all GPSFs with

corresponding eigenvalue above machine precision. In Section 3.6.1, we approxi-

mate the number of GPSFs with large corresponding eigenvalues.

3.6.1 Dimension of the Class of Bandlimited Functions

In this section, we investigate the properties of the eigenvalues µ0, µ1, . . . , µj, . . .

of the operator Qc, defined via formula (3.99). We denote by λj the eigenvalues

of operator Fc, defined via formula (3.97), and let ψj denote the eigenfunctions

corresponding to λj, for each nonnegative integer j.

The following two theorems evaluate the sums
∑∞

j=0 µj and
∑∞

j=0 µ
2
j respec-

tively.

Theorem 3.6.4 Suppose that c > 0. Then

∞∑
j=0

µj =
cp+2

2p+2Γ(p
2

+ 2)2
. (3.253)

132



Proof. From (3.98), we observe the identity

∞∑
j=0

λjψj(x)ψj(t) = eic〈x,t〉, (3.254)

for all x, t ∈ B, where B is the closed unit ball in R
p+2, and the sum on the

left hand side converges in the sense of L2(B) ⊗ L2(B). By taking the squared

L2(B)⊗ L2(B) norm of both sides and using (3.84), we obtain the formula

∞∑
j=0

|λj|2 =
πp+2

Γ(p
2

+ 2)2
. (3.255)

Since

µj =
( c

2π

)p+2

|λj|2, (3.256)

for all nonnegative integer j (see (3.98)), it follows that

∞∑
j=0

µj =
cp+2

2p+2Γ(p
2

+ 2)2
. (3.257)

�

Theorem 3.6.5 Suppose that c > 0. Then

∞∑
j=0

µ2
j =

cp+2

2p+2Γ(p
2

+ 2)2
− cp+1 log(c)

π2Γ(p+ 2)
+ o
(
cp+1 log(c)

)
, (3.258)

as c→∞.
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Proof. By (3.101),

∞∑
j=0

µjψj(x)ψj(t) =
( c

2π

)p/2+1Jp/2+1(c‖x− t‖)
‖x− t‖p/2+1

, (3.259)

for all x, t ∈ B, where the sum on the left hand side converges in the sense of

L2(B)⊗L2(B), and where Jν denotes the Bessel functions of the first kind. Taking

the squared L2(B)⊗ L2(B) norm of both sides, we obtain the formula

∞∑
j=0

µ2
j =

( c

2π

)p+2
∫
B

∫
B

(
Jp/2+1(c‖x− t‖)

)2

‖x− t‖p+2
dx dt

=
( c

2π

)p+2
∫
B

∫
B

(
Jp/2+1(c‖x+ t‖)

)2

‖x+ t‖p+2
dx dt

=
( c

2π

)p+2
∫
RD

∫
RD

(
Jp/2+1(c‖x+ t‖)

)2

‖x+ t‖p+2
1B(x)1B(t) dx dt, (3.260)

where 1A is defined via the formula

1A(x) =

 1 if x ∈ A,

0 if x 6∈ A.
(3.261)

Letting u = x+ t, we observe that

∞∑
j=0

µ2
j =

( c

2π

)p+2
∫
RD

∫
RD

(
Jp/2+1(c‖u‖)

)2

‖u‖p+2
1B(u− t)1B(t) du dt

=
( c

2π

)p+2
∫
RD

∫
RD

(
Jp/2+1(c‖u‖)

)2

‖u‖p+2
1B(2)(u)1B(u− t)1B(t) du dt

=
( c

2π

)p+2
∫
B(2)

(
Jp/2+1(c‖u‖)

)2

‖u‖p+2

∫
RD

1B(u− t)1B(t) dt du. (3.262)
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Combining (3.262) and (3.85),

∞∑
j=0

µ2
j =

( c

2π

)p+2
∫
B(2)

(
Jp/2+1(c‖u‖)

)2

‖u‖p+2
· Vp+2(1)

B1−‖u‖2/4(p
2

+ 3
2
, 1

2
)

B(p
2

+ 3
2
, 1

2
)

du

=
( c

2π

)p+2 Vp+2(1)

B(p
2

+ 3
2
, 1

2
)

∫
B(2)

(
Jp/2+1(c‖u‖)

)2

‖u‖p+2
B1−‖u‖2/4(p

2
+ 3

2
, 1

2
) du

=
( c

2π

)p+2Vp+2(1)Ap+2(1)

B(p
2

+ 3
2
, 1

2
)

∫ 2

0

(
Jp/2+1(cr)

)2

r
B1−r2/4(p

2
+ 3

2
, 1

2
) dr

=
( c

2π

)p+2Vp+2(1)Ap+2(1)

B(p
2

+ 3
2
, 1

2
)

∫ 1

0

(
Jp/2+1(2cr)

)2

r
B1−r2(

p
2

+ 3
2
, 1

2
) dr, (3.263)

where Vp+2(1) denotes the volume of the unit ball in Rp+2, Ap+2(1) denotes the

area of the unit sphere in Rp+2, B(a, b) denotes the beta function, and Bx(a, b)

denotes the incomplete beta function. Applying Theorem 3.2.26 to (3.263),

∞∑
j=0

µ2
j =

cp+2

2p+1
√
πΓ(p

2
+ 1)Γ(p

2
+ 3

2
)

∫ 1

0

(
Jp/2+1(2cr)

)2

r
B1−r2(

p
2

+ 3
2
, 1

2
) dr

=
cp+2

πΓ(p+ 2)

∫ 1

0

(
Jp/2+1(2cr)

)2

r
B1−r2(

p
2

+ 3
2
, 1

2
) dr. (3.264)

Combining (3.264) and (3.77),

∞∑
j=0

µ2
j =

cp+2

πΓ(p+ 2)

( √
π Γ(p

2
+ 3

2
)

(p+ 2)Γ(p
2

+ 2)
− 1

π

log(c)

c
+ o
( log(c)

c

))
=

cp+2

2p+2Γ(p
2

+ 2)2
− cp+1 log(c)

π2Γ(p+ 2)
+ o
(
cp+1 log(c)

)
, (3.265)

as c→∞.

�

The following corollary follows immediately from theorems 3.6.4 and 3.6.5.
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Corollary 3.6.6 Suppose that c > 0. Then

∞∑
j=0

µj(1− µj) =
cp+1 log(c)

π2Γ(p+ 2)
+ o
(
cp+1 log(c)

)
, (3.266)

as c→∞.

From (3.253) and (3.266) we observe that the spectrum of Qc consists of three

parts:

cp+2

2p+2Γ(p
2

+ 2)2
(3.267)

eigenvalues close to 1;

cp+1 log(c)

π2Γ(p+ 2)
(3.268)

eigenvalues in the transition region; and the rest close to 0.

3.7 Numerical Experiments

The quadrature and interpolation formulas described in Sections 3.5 and 3.6 were

implemented in Fortran 77. We used the Lahey/Fujitsu compiler on a 2.9 GHz

Intel i7-3520M Lenovo laptop. All examples in this section were run in double

precision arithmetic.

In Figure 3.1 and Figure 3.2 we plot the eigenvalues |λN,n| of integral operator

Fc (see (3.97)) for different N and different c.

In Figures 3.3, 3.4, 3.5, and 3.6 we plot the GPSFs ΦN,n(r) (see (3.111)) for

different N, n, and c.

In Tables 3.1-3.6, we provide the performance of quadrature rule (3.201) in
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integrating the function

eic〈x,t〉 (3.269)

over the unit disk where x = (0.9, 0.2). We provide the results for c = 20 and

c = 100 using both Chebyshev and Gaussian quadratures in the radial direction

(see Remark 3.5.4).

In Tables 3.7, 3.8, and 3.9, we provide magnitudes of coefficients of the GPSF

expansion of the function on the unit disk eic〈x,t〉 where x = (0.3, 0.4). These

coefficients were obtained via interpolation scheme (3.245).

In each table in this section, the column labeled “c” denotes the value of c

in (3.269). The column labeled “radial nodes” denotes the number of nodes in

the radial direction. These nodes integrate GPSFs. The column labeled “angular

nodes” gives the number of equispaced nodes used in the angular direction. The

column labeled “N” denotes the N of ΦN,n (see 3.111). The column labeled “n”

denotes the n of ΦN,n. The column labeled “integral via quadrature” denotes

value of the integral obtained via quadrature rule (3.201) The column labeled

“relative error” denotes the relative error of the integral obtained via quadrature

to the true value of the integral. The true value of the integral was obtained by a

calculation in extended precision. In Tables 3.7, 3.8, and 3.9, the column labeled

|αN,n| denotes the coefficient of ΦN,n(r)sin(θ) in the GPSF expansion of (3.269).

These coefficients were obtained via formula (3.245).
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Figure 3.1: Eigenvalues of Fc (see (3.97)) for c = 100 and p = 0
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Figure 3.2: Eigenvalues of Fc (see (3.97)) for c = 50 and p = 1

c radial nodes angular nodes integral via quadrature relative error
20 6 50 −0.1076416394449520 + i0.13791× 10−15 0.84109× 100

20 8 50 −0.0584248723305745 + i0.31659× 10−15 0.70864× 10−3

20 10 50 −0.0584663050529888 + i0.26671× 10−15 0.15834× 10−7

20 12 50 −0.0584663041272412 + i0.27929× 10−15 0.75601× 10−13

20 14 50 −0.0584663041272372 + i0.16220× 10−15 0.68485× 10−14

20 16 50 −0.0584663041272371 + i0.27777× 10−15 0.29262× 10−14

20 18 50 −0.0584663041272375 + i0.23191× 10−15 0.75991× 10−14

Table 3.1: Quadratures for eic〈x,t〉 where x = (0.9, 0.2) over the unit disk using
several different numbers of radial nodes for c = 20. Chebyshev quadratures are
used in the radial direction.
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Figure 3.3: Plots of GPSFs Φ0,n (see (3.111)) with c = 50 and p = 1
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Figure 3.4: Plots of GPSFs Φ0,n (see (3.111)) with c = 100 and p = 0

c radial nodes angular nodes integral via quadrature relative error
20 14 20 −0.0856165805088149− i0.57734× 10−16 0.46437× 100

20 14 25 −0.0584663041272373 + i0.10816× 10−2 0.18500× 10−1

20 14 30 −0.0584748094426783− i0.18258× 10−15 0.14547× 10−3

20 14 35 −0.0584663041272371− i0.37973× 10−8 0.64949× 10−7

20 14 40 −0.0584663041418621 + i0.14875× 10−15 0.25015× 10−9

20 14 45 −0.0584663041272375− i0.94777× 10−14 0.16653× 10−12

20 14 50 −0.0584663041272372 + i0.16220× 10−15 0.51483× 10−14

20 14 55 −0.0584663041272368 + i0.39248× 10−15 0.30672× 10−14

20 14 60 −0.0584663041272371− i0.13661× 10−16 0.53592× 10−14

Table 3.2: Quadratures for eic〈x,t〉 where x = (0.9, 0.2) over the unit disk using
several different numbers of angular nodes for c = 20. Chebyshev quadratures are
used in the radial direction.
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Figure 3.5: Plots of GPSFs Φ10,n (see (3.111)) with c = 50 and p = 1
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Figure 3.6: Plots of GPSFs Φ25,n (see (3.111)) with c = 100 and p = 0

c radial nodes angular nodes integral via quadrature relative error
20 4 50 −0.0510613892349747 + i0.37123× 10−15 0.12603× 100

20 6 50 −0.0584663254751910 + i0.11623× 10−15 0.36513× 10−6

20 8 50 −0.0584663041272613 + i0.37340× 10−15 0.41931× 10−12

20 10 50 −0.0584663041272369 + i0.20903× 10−15 0.15463× 10−14

20 12 50 −0.0584663041272371 + i0.34694× 10−15 0.35160× 10−14

Table 3.3: Quadratures for eic〈x,t〉 where x = (0.9, 0.2) over the unit disk using sev-
eral different numbers of radial nodes for c = 20. Gaussian quadratures generated
via Algorithm 3.5.2 are used in the radial direction.
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c radial nodes angular nodes integral via quadrature relative error
100 30 140 0.0164989321769857− i0.50090× 10−16 0.10612× 102

100 32 140 −0.0019104800874610− i0.65264× 10−15 0.11305× 100

100 34 140 −0.0017165140985462− i0.21673× 10−15 0.45510× 10−4

100 36 140 −0.0017164370759186− i0.27856× 10−15 0.63672× 10−6

100 38 140 −0.0017164359820963− i0.30840× 10−15 0.54009× 10−9

100 40 140 −0.0017164359830235− i0.30398× 10−15 0.94943× 10−13

Table 3.4: Quadratures for eic〈x,t〉 where x = (0.9, 0.2) over the unit disk using
several different numbers of radial nodes for c = 100. Chebyshev quadratures are
used in the radial direction.

c radial nodes angular nodes integral via quadrature relative error
100 40 115 −0.0017164359830236− i0.21183× 10−6 0.12341× 10−3

100 40 120 −0.0017164338146549− i0.44658× 10−15 0.12633× 10−5

100 40 125 −0.0017164359830231− i0.48252× 10−10 0.28112× 10−7

100 40 130 −0.0017164359819925− i0.11947× 10−14 0.60096× 10−9

100 40 135 −0.0017164359830233 + i0.24522× 10−14 0.13296× 10−11

100 40 140 −0.0017164359830235− i0.30398× 10−15 0.94943× 10−13

100 40 145 −0.0017164359830231− i0.78770× 10−15 0.23749× 10−12

100 40 150 −0.0017164359830231− i0.31466× 10−15 0.16075× 10−12

Table 3.5: Quadratures for eic〈x,t〉 where x = (0.9, 0.2) over the unit disk using
several different numbers of angular nodes for c = 100. Chebyshev quadratures
are used in the radial direction.

c radial nodes angular nodes integral via quadrature relative error
100 20 150 −0.0017164492038983− i0.52665× 10−15 0.77025× 10−5

100 22 150 −0.0017164359833709− i0.60352× 10−15 0.20280× 10−9

100 24 150 −0.0017164359830226− i0.45244× 10−15 0.28465× 10−12

100 26 150 −0.0017164359830229− i0.35123× 10−15 0.50904× 10−13

100 28 150 −0.0017164359830224− i0.55262× 10−15 0.35430× 10−12

100 30 150 −0.0017164359830228− i0.63794× 10−15 0.39846× 10−12

Table 3.6: Quadratures for eic〈x,t〉 where x = (0.9, 0.2) over the unit disk using sev-
eral different numbers of radial nodes for c = 100. Gaussian quadratures generated
using Algorithm 3.5.2 are used in the radial direction.
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radial nodes angular nodes c N n |αN,n|
40 140 50 1 0 0.5331000423667240× 10−2

40 140 50 1 1 0.4428631717847083× 10−1

40 140 50 1 2 0.1658210569373790× 100

40 140 50 1 3 0.3007289752527894× 100

40 140 50 1 4 0.1775918995268194× 100

40 140 50 1 5 0.1698366869978232× 100

40 140 50 1 6 0.1326556850627168× 100

40 140 50 1 7 0.1913962335203701× 100

40 140 50 1 8 0.1031820332780429× 10−1

40 140 50 1 9 0.1525659498901890× 100

40 140 50 1 10 0.1596240985391338× 100

40 140 50 1 11 0.5077661980005956× 10−1

40 140 50 1 12 0.7004482833257132× 10−1

40 140 50 1 13 0.1328923889087414× 100

40 140 50 1 14 0.1238722286983581× 100

40 140 50 1 15 0.6158313809902630× 10−1

40 140 50 1 16 0.9273653953916678× 10−2

40 140 50 1 17 0.1222486302912020× 10−2

40 140 50 1 18 0.5966018610435559× 10−3

40 140 50 1 19 0.9457503976218055× 10−4

40 140 50 1 20 0.7272803775518590× 10−5

40 140 50 1 21 0.2471737500102828× 10−7

40 140 50 1 22 0.5697214169860662× 10−7

40 140 50 1 23 0.6261378248559833× 10−8

40 140 50 1 24 0.2876620855784414× 10−9

40 140 50 1 25 0.3487372839216281× 10−11

40 140 50 1 26 0.1344784001636234× 10−11

40 140 50 1 27 0.8389389113185264× 10−13

40 140 50 1 28 0.3090050472181085× 10−14

40 140 50 1 29 0.5438594709432636× 10−15

Table 3.7: Coefficients, obtained via formula (3.245), of the GPSF expansion of
the function on the unit disk eic〈x,t〉 where x = (0.3, 0.4).
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radial nodes angular nodes c N n |αN,n|
40 140 50 10 0 0.6083490415455435× 10−1

40 140 50 10 1 0.2656230046895768× 10−1

40 140 50 10 2 0.4475286860599875× 10−1

40 140 50 10 3 0.4833769722091774× 10−2

40 140 50 10 4 0.3152644364681537× 10−1

40 140 50 10 5 0.3440099078209665× 10−1

40 140 50 10 6 0.1216643028774711× 10−1

40 140 50 10 7 0.1348650121618380× 10−1

40 140 50 10 8 0.2761069443786074× 10−1

40 140 50 10 9 0.2729520957518510× 10−1

40 140 50 10 10 0.1713503999971936× 10−1

40 140 50 10 11 0.4647646609621038× 10−2

40 140 50 10 12 0.5498106244002701× 10−3

40 140 50 10 13 0.4531628449744277× 10−3

40 140 50 10 14 0.9388943333348342× 10−4

40 140 50 10 15 0.1018790565231280× 10−4

40 140 50 10 16 0.4628420439758330× 10−6

40 140 50 10 17 0.3302969345113099× 10−7

40 140 50 10 18 0.7386880328505609× 10−8

40 140 50 10 19 0.5793842432833322× 10−9

40 140 50 10 20 0.1808244166685658× 10−10

40 140 50 10 21 0.8331243140844428× 10−12

40 140 50 10 22 0.1247624356690115× 10−12

40 140 50 10 23 0.6402836746674745× 10−14

40 140 50 10 24 0.3219490617035674× 10−15

40 140 50 10 25 0.4392156715211933× 10−16

40 140 50 10 26 0.4216375878565715× 10−16

40 140 50 10 27 0.1192730971046164× 10−15

40 140 50 10 28 0.5964172072581517× 10−16

40 140 50 10 29 0.9795188267888765× 10−16

Table 3.8: Coefficients, obtained via formula (3.245), of the GPSF expansion of
the function on the unit disk eic〈x,t〉 where x = (0.3, 0.4).
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radial nodes angular nodes c N n |αN,n|
40 140 50 30 0 0.4972797526740737× 10−3

40 140 50 30 1 0.1401428942935588× 10−2

40 140 50 30 2 0.2710925506457800× 10−2

40 140 50 30 3 0.3545718524468668× 10−2

40 140 50 30 4 0.2241476750854641× 10−2

40 140 50 30 5 0.6682792235496368× 10−3

40 140 50 30 6 0.1339565034261751× 10−3

40 140 50 30 7 0.2092420216819930× 10−4

40 140 50 30 8 0.2648137075865133× 10−5

40 140 50 30 9 0.2763313112747597× 10−6

40 140 50 30 10 0.2398228591769509× 10−7

40 140 50 30 11 0.1734961623216772× 10−8

40 140 50 30 12 0.1041121888882874× 10−9

40 140 50 30 13 0.5099613478241473× 10−11

40 140 50 30 14 0.1958321703329898× 10−12

40 140 50 30 15 0.5129356249335817× 10−14

40 140 50 30 16 0.1790936343596214× 10−15

40 140 50 30 17 0.2114685083013237× 10−15

40 140 50 30 18 0.1221114171480004× 10−15

40 140 50 30 19 0.1775028830408308× 10−15

40 140 50 30 20 0.9115790774963023× 10−16

40 140 50 30 21 0.7676533284257323× 10−16

40 140 50 30 22 0.1056865232130847× 10−15

40 140 50 30 23 0.1282851493246300× 10−15

40 140 50 30 24 0.1301036117017623× 10−15

40 140 50 30 25 0.6302967734899496× 10−16

40 140 50 30 26 0.7542252119317336× 10−16

40 140 50 30 27 0.6734661033178358× 10−16

40 140 50 30 28 0.7752009233608849× 10−16

40 140 50 30 29 0.1184019207536341× 10−15

Table 3.9: Coefficients, obtained via formula (3.245), of the GPSF expansion of
the function on the unit disk eic〈x,t〉 where x = (0.3, 0.4).

3.8 Miscellaneous Properties of GPSFs

3.8.1 Properties of the Derivatives of GPSFs

The following theorem follows immediately from (3.115) and (3.119).
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Theorem 3.8.1 Let c > 0. Then

d

dx

(
(xp+1 − xp+3)

dΦN,n

dx
(x)
)

+
(
χN,nx

p+1 − (p+ 1)(p+ 3)

4
xp+1 −N(N + p)xp−1 − c2xp+3

)
ΦN,n(x) = 0,

(3.270)

where 0 < x < 1 and N and n are arbitrary nonnegative integers.

Corollary 3.8.2 Let c > 0. Then

x2(1− x2)Φ′′N,n(x) +
(
(p+ 1)x− (p+ 3)x3

)
Φ′N,n(x)

+
(
χN,nx

2 − (p+ 1)(p+ 3)

4
x2 −N(N + p)− c2x4

)
ΦN,n(x) = 0, (3.271)

where 0 < x < 1 and N and n are arbitrary nonnegative integers.

The following lemma connects the values of the (k + 2)nd derivative of the

function ΦN,n with its derivatives of orders k− 4, k− 3, . . . , k + 1, and is obtained

by repeated differentiation of (3.271).

Lemma 3.8.3 Let c > 0. Then

(x2 − x4)Φ
(k+2)
N,n (x) +

(
(2k + 1 + p)x− (4k + 3 + p)x3

)
Φ

(k+1)
N,n (x)

+
(
k(k + p)−N(N + p) +

[
χN,n − 1

4
(p+ 1)(p+ 3)

− 3k(2k + 1 + p)
]
x2 − c2x4

)
Φ

(k)
N,n(x)

+
([

2k
(
χN,n − 1

4
(p+ 1)(p+ 3)

)
− k(k − 1)(4k + 1 + 3p)

]
x− 4kc2x3

)
Φ

(k−1)
N,n (x)

+
(
k(k−1)

(
χN,n− 1

4
(p+1)(p+3)

)
−k(k−1)(k−2)(k+p)−6k(k−1)c2x2

)
Φ

(k−2)
N,n (x)

− 4k(k − 1)(k − 2)c2xΦ
(k−3)
N,n (x)− k(k − 1)(k − 2)(k − 3)c2Φ

(k−4)
N,n (x) = 0,

(3.272)
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where 0 < x < 1, N and n are arbitrary nonnegative integers, and k is an arbitrary

integer so that k ≥ 4. Also,

(x2 − x4)Φ′′N,n(x) +
(
(p+ 1)x− (p+ 3)x3

)
Φ′N,n(x)

+
(
−N(N + p) +

[
χN,n − 1

4
(p+ 1)(p+ 2)

]
x2 − c2x4

)
ΦN,n(x) = 0, (3.273)

and

(x2 − x4)Φ
(3)
N,n(x) +

(
(p+ 3)x− (p+ 7)x3

)
Φ′′N,n(x)

+
(

(p+ 1)−N(N +p) +
[
χN,n− 1

4
(p+ 1)(p+ 3)−3(p+ 3)

]
x2− c2x4

)
Φ′N,n(x)

+
(

2
[
χN,n − 1

4
(p + 1)(p + 3)

]
x− 4c2x3

)
ΦN,n(x) = 0, (3.274)

and

(x2 − x4)Φ
(4)
N,n(x) +

(
(p+ 5)x− (p+ 11)x3

)
Φ

(3)
N,n(x)

+
(

2(p+2)−N(N+p)+
[
χN,n− 1

4
(p+1)(p+3)−6(p+5)

]
x2−c2x4

)
Φ′′N,n(x)

+
([

4
(
χN,n − 1

4
(p+ 1)(p+ 3)

)
− 6(p+ 3)

]
x− 8c2x3

)
Φ′N,n(x)

+
(

2
(
χN,n − 1

4
(p + 1)(p + 3)

)
− 12c2x2

)
ΦN,n(x) = 0, (3.275)
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and

(x2 − x4)Φ
(5)
N,n(x) +

(
(p+ 7)x− (p+ 15)x3

)
Φ

(4)
N,n(x)

+
(

3(p+3)−N(N+p)+
[
χN,n− 1

4
(p+1)(p+3)−9(p+7)

]
x2−c2x4

)
Φ

(3)
N,n(x)

+
([

6
(
χN,n − 1

4
(p+ 1)(p+ 3)

)
− 6(3p+ 13)

]
x− 12c2x3

)
Φ′′N,n(x)

+
(

6
(
χN,n − 1

4
(p+ 1)(p+ 3)

)
− 6(p+ 3)− 36c2x2

)
Φ′N,n(x)

− 24c2xΦN,n(x) = 0, (3.276)

where 0 < x < 1 and N and n are arbitrary nonnegative integers.

The following corollary and theorem are obtained immediately from Lemma 3.8.3.

Corollary 3.8.4 Let c > 0. Then

(
k(k + p)−N(N + p)

)
Φ

(k)
N,n(0)

+
(
k(k − 1)

(
χN,n − 1

4
(p+ 1)(p+ 3)

)
− k(k − 1)(k − 2)(k + p)

)
Φ

(k−2)
N,n (0)

− k(k − 1)(k − 2)(k − 3)c2Φ
(k−4)
N,n (0) = 0, (3.277)

where N and n are arbitrary nonnegative integers, and k is an arbitrary integer so

that k ≥ 4. Also,

N(N + p)ΦN,n(0) = 0, (3.278)

and

(
(p+ 1)−N(N + p)

)
Φ′N,n(0) = 0, (3.279)
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and

(
2(p+ 2)−N(N + p)

)
Φ′′N,n(0) + 2

(
χN,n − 1

4
(p+ 1)(p+ 3)

)
ΦN,n(0) = 0,

(3.280)

and

(
3(p+ 3)−N(N + p)

)
Φ

(3)
N,n(0)

+
(

6
(
χN,n − 1

4
(p + 1)(p + 3)

)
− 6(p + 3)

)
Φ′N,n(0) = 0, (3.281)

where N and n are arbitrary nonnegative integers.

Theorem 3.8.5 If N = 0, then

ΦN,n(0) 6= 0, (3.282)

where n is an arbitrary nonnegative integer. If N ≥ 1, then

Φ
(k)
N,n(0) = 0 for k = 0, 1, . . . , N − 1, (3.283)

and

Φ
(N)
N,n(0) 6= 0, (3.284)

where n is an arbitrary nonnegative integer.

Theorem 3.8.6 Suppose that N and n are nonnegative integers. Then

ΦN,n(1) 6= 0. (3.285)
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3.8.2 Derivatives of GPSFs and Corresponding Eigenval-

ues With Respect to c

The following two theorems establish formulas for the derivatives of the eigenvalues

µN,n (see (3.100)) and βN,n (see (3.111)) with respect to c.

Theorem 3.8.7 Suppose that c > 0 is real and that N and n are nonnegative

integers. Then

∂βN,n
∂c

= βN,n
(ΦN,n(1))2 − (p+ 2)

2c
, (3.286)

and

∂µN,n
∂c

=
µN,n
c

((ΦN,n(1))2 − (p+ 1)). (3.287)

3.9 Appendix A

3.9.1 Derivation of the Integral Operator Qc

In this section we derive an explicit formula for the integral operator Qc, defined

in (3.99).

Suppose that B denotes the closed unit ball in Rp+2. From (3.99),

Qc[ψ](x) =
( c

2π

)p+2
∫
B

∫
B

eic〈x−t,u〉ψ(t) du dt, (3.288)

for all x ∈ B. We observe that

eic〈v,u〉 =
∞∑
N=0

h(N,p)∑
`=1

iN(2π)p/2+1JN+p/2(c‖u‖‖v‖)
(c‖u‖‖v‖)p/2

S`N(u/‖u‖)S`N(v/‖v‖), (3.289)
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for all u, v ∈ B, where S`N denotes the spherical harmonics of degree N , and Jν

denotes Bessel functions of the first kind (see Section VII of [26]). Therefore,

∫
B

eic〈v,u〉 du = (2π)p/2+1

∫ 1

0

Jp/2(c‖v‖ρ)

(c‖v‖ρ)p/2
ρp+1 dρ

=
(2π)p/2+1

(c‖v‖)p/2

∫ 1

0

ρp/2+1Jp/2(c‖v‖ρ) dρ

=
(2π

c

)p/2+1Jp/2+1(c‖v‖)
‖v‖p/2+1

, (3.290)

for all v ∈ Rp+2, where the last equality follows from formula 6.561(5) in [12].

Combining (3.288) and (3.290),

Qc[ψ](x) =
( c

2π

)p/2+1
∫
B

Jp/2+1

(
c‖x− t‖

)
‖x− t‖p/2+1

ψ(t) dt, (3.291)

for all x ∈ Rp+2.
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Chapter 4

An Algorithm for the Evaluation

of the Incomplete Gamma

Function

4.1 Background

The evaluation of special functions is one of the most developed areas of numerical

analysis. For some special functions, such as Bessel functions, the theory has

been fairly complete for many decades; for others, such as Prolate Spheroidal

Wave Functions, the theory is still an active area of research. In this respect, the

Incomplete Gamma Function occupies an intermediate position. Its mathematical

properties appear to be well understood, but the relevant numerical techniques

leave much to be desired, at least in certain regimes.

In this chapter is to introduce a numerical scheme, or rather a class of nu-

merical schemes, for the evaluation of the Incomplete Gamma Function. When

calculations are performed in double precision, these numerical schemes produce

(more or less) full double precision accuracy and are sufficiently fast to be com-
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patible with standard schemes for the evaluation of other special functions. When

calculations are performed in extended precision, the schemes produces roughly

extended precision accuracy, though in this regime the algorithm loses much of

its efficiency. The algorithm is based on the combination of an identity concern-

ing the Incomplete Gamma Function (see [1] formula 6.5.22), with an asymptotic

expansion that appears to be new (see [9], [10], [7], [28], [29]); its performance is

illustrated with several numerical examples, in both double and extended precision

(see Section 4.9).

The structure of this chapter is as follows. In Section 4.2, we introduce notation

and summarize a number of elementary mathematical results to be used throughout

the remainder of the chapter. Section 4.3 contains apparatus, consisting mainly

of technical lemmas, that will be used in proofs in subsequent sections. Section

4.4 contains technical lemmas describing conditions under which, when x is much

smaller than m, the function P (m,x) is essentially 0. In Section 4.5, we describe

conditions under which, when x is much larger than m, the function P (m,x) is

essentially 1. Section 4.6 describes a technique for the evaluation of P (m,x) via

direct summation. Section 4.7 describes an asymptotic expansion for the evaluation

of P (m,x). Section 4.8 contains a description of an algorithm to evaluate P (m,x)

for all m,x > 0. Section 4.9 contains the results of numerical experiments with

the algorithm for P (m,x) described in Section 4.8.

4.2 Preliminaries

In accordance with standard practice, we will be denoting the Incomplete Gamma

Function by γ(m,x) where

γ(m+ 1, x) =

∫ x

0

tme−tdt, (4.1)
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for all real numbers m > −1 and x > 0. We define γ(m+ 1, x) by the formula

γ(m+ 1, x) =

∫ x

0

tme−t

mme−m
dt. (4.2)

Let φ(s) be defined by the formula

φ(s) = log((m+ s)me−(m+s))− log(mme−m) (4.3)

for all real numbers s and we observe that

γ(m+ 1, x) =

∫ x−m

−m
eφ(s)ds (4.4)

We will be denoting by P (m + 1, x) (see [1]), the Incomplete Gamma Function

scaled by the Complete Gamma Function. That is,

P (m+ 1, x) =
γ(m+ 1, x)

Γ(m+ 1)
=

mme−m

Γ(m+ 1)
γ(m+ 1, x). (4.5)

Consistent with standard practice, we denote by Γ(m) the Complete Gamma Func-

tion,

Γ(m+ 1) =

∫ ∞
0

tme−tdt, (4.6)

for all real numbers m > −1. We define Γ(m+ 1) by the formula,

Γ(m+ 1) =

∫ ∞
0

tme−t

mme−m
dt. (4.7)
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for all real numbers m > −1. We define fm to be the function on C defined by the

formula,

fm(z) = exp
(
m log(1 + z/m)− z + z2/2m

)
(4.8)

and observe that

eφ(s) = fm(s)e−s
2/2m. (4.9)

The following lemma, Stirling’s Formula, is a classical asymptotic expansion for the

Gamma Function, Γ(m) (see (4.6)). It can be found in, for example, [12], Formula

6.1.37. Proofs for bounds on the error terms for Stirling’s Formula, provided in

Lemma 4.2.1, can be found in, for example, [18].

Lemma 4.2.1 [Stirling’s Formula] For all m > −1,

Γ(m+ 1) ∼e−(m+1)(m+ 1)m+1/2(2π)1/2[
1 +

1

12(m+ 1)
+

1

288(m+ 1)2
+ ...+ gk(m+ 1) + ...

] (4.10)

where formulas for gk(m+ 1) can be found in [19]. Further, for K > 2, if

Γ(m+ 1) = e−(m+1)(m+ 1)m+1/2(2π)1/2

(
K−1∑
k=0

gk(m+ 1) +RK(m+ 1)

)
(4.11)

then

|RK(m+ 1)| < Γ(K)

(K + 1)(m+ 1)K
. (4.12)
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Additionally,

log(Γ(m+ 1)) ∼(m+ 1/2) log(m+ 1)− (m+ 1) + 1/2 log(2π) +
1

12(m+ 1)

− 1

360(m+ 1)3
+ ...+ hk(m+ 1) + ...

(4.13)

where formulas for hk(m) can be found in, for example, [1]. Further, suppose that

log(Γ(m+ 1)) =(m+ 1/2) log(m+ 1)− (m+ 1) + 1/2 log(2π)

+
K−1∑
k=0

hk(m+ 1) +RK(m+ 1).
(4.14)

Then,

|RK(m+ 1)| ≤ |B2K |
(2K − 1)(m+ 1)2K−1

, (4.15)

where Bn is nth Bernoulli number (see [1]). In addition, |RK(m)| is smaller in

magnitude than the first neglected term (see [18]).

The following observation will be used throughout the remainder of the chapter.

Observation 4.2.1 Straightforward application of Stirling’s Formula (see (4.10))

and its error bound (4.15) shows that for m > 1,

Γ(m+ 1) > mm+1/2e−m > 0. (4.16)

It follows immediately from (4.16) that, for m > 1,

0 <
mme−m

Γ(m+ 1)
< m−1/2. (4.17)

155



The following well-known inequality will be used in the proof of Lemma 4.3.1. A

proof of Lemma 4.2.2 can be found in, for example, Section VII of [8].

Lemma 4.2.2 For all x, σ > 0,

1

(2πσ2)1/2

∫ −σx
−∞

e−t
2/2σ2

dt <
1

x
e−x

2/2. (4.18)

4.3 Mathematical Apparatus

The main analytical tools of this section are Lemma 4.3.6 and Corollary 4.3.7.

They will be used in Sections 4.4 and 4.5. All other apparatus will be used in the

proofs of Lemma 4.3.6 and Corollary 4.3.7 or in Sections 4.4, 4.5, 4.6, and 4.7.

We use the following lemma in the proof of Lemma 4.4.1.

Lemma 4.3.1 For all α,m > 0,

∫ m−αm1/2

0

m−1/2e−(t−m)2/2m+1dt <
1

α
e−α

2/2+1. (4.19)

Proof. Clearly,

∫ m−αm1/2

0

m−1/2e−(t−m)2/2m+1dt = em−1/2

∫ m−αm1/2

0

e−(t−m)2/2mdt

< em−1/2

∫ m−αm1/2

−∞
e−(t−m)2/2mdt

= em−1/2

∫ −αm1/2

−∞
e−t

2/2mdt.

(4.20)

Applying Lemma 4.2.2 to (4.20),

em−1/2

∫ −αm1/2

−∞
e−(t)2/2mdt <

1

α
e−α

2/2+1 (4.21)

(4.19) follows immediately from the combination of (4.20) and (4.21). �
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The following elementary inequality will be used in the proof of Lemma 4.3.5.

Lemma 4.3.2 Let {an}∞n=1 be a non-negative, monotonically decreasing sequence

in R such that an → 0 as n→∞. Then,

∣∣∣∣∣
∞∑
n=1

(−1)n+1an

∣∣∣∣∣ ≤ a1. (4.22)

Proof. Clearly, since {an}∞n=1 is monotonically decreasing, for all i ∈ N,

ai − ai+1 ≥ 0. (4.23)

therefore,

∞∑
n=1

(−1)n+1an =
∞∑
n=1

(a2n−1 − a2n) ≥ 0. (4.24)

Combining (4.23) and (4.24) yields

0 ≤
∞∑
n=1

(−1)n+1an = a1 −
∞∑
n=1

(a2n − a2n+1) ≤ a1. (4.25)

Inequality (4.22) follows from (4.25). �

Lemma 4.3.3 and Lemma 4.3.4, indefinite integral identities, will be used in Section

4.8.

Lemma 4.3.3 For all non-negative integers, n, and real numbers, m > 0,

∫
t2n+1e−t

2/2mdt = 2e−t
2/2m(−2mt2n+2−

n+1∑
k=1

(2m)k+1(n+ 1)(n)...(n− k + 2)t2(n+1−k)),

(4.26)
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Proof. By the change of variables x = t2,

∫ b

a

t2n+1e−t
2/2mdt = 2

∫ b2

a2
xn+1e−x/2mdx. (4.27)

for all a < b. From Formula 2.321.2 in [12], we know that for all non-negative

integers n,

∫
xne−x/2mdx = e−x/2m

(
−2mxn −

n∑
k=1

(2m)k+1n(n− 1)...(n− k + 1)xn−k

)
.

(4.28)

Combining (4.27) and (4.28) yields (4.26). �

Lemma 4.3.4 For all non-negative integers, n, and real numbers, m > 0,

∫ x

0

t2n+2e−t
2/2mdt =

n∏
i=0

αi(2m)1/2

√
π

2
erf

(
x√
2m

)
−

n−1∑
i=0

(
βi

n−1−i∏
j=0

αn−j

)
−βn,

(4.29)

where

αi = (2i+ 1)m (4.30)

and

βi = mx2i+1e−x
2/2m (4.31)
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for i ∈ {0, 1, ...}, and where, in accordance with standard practice,

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (4.32)

Proof. Integrating by parts,

∫ x

0

t2ne−t
2/2mdt =

x2n+1

2n+ 1
e−x

2/2m +
1

m(2n+ 1)

∫ x

0

t2n+2e−t
2/2mdt. (4.33)

Now, rearranging the terms of (4.33),

∫ x

0

t2n+2e−t
2/2mdt = (2n+ 1)m

∫ x

0

t2ne−t
2/2mdt−mx2n+1e−x

2/2m. (4.34)

Repeated application of identity (4.34) yields,

∫ x

0

t2n+2e−t
2/2mdt =

n∏
i=0

αi

∫ x

0

e−t
2/2mdt−

n−1∑
i=0

(
βi

n−1−i∏
j=0

αn−j

)
− βn, (4.35)

where

αi = (2i+ 1)m (4.36)

and

βi = mx2i+1e−x
2/2m. (4.37)

Through a straightforward change of variables, we obtain the identity

∫ b

a

e−t
2/2mdt = (2m)1/2

√
π

2

(
erf

(
b√
2m

)
− erf

(
a√
2m

))
, (4.38)
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where, in accordance with standard practice,

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (4.39)

(4.29) follows directly from the combination of (4.35) and (4.38). �

The following bound will be used in the proof of Lemma 4.3.6.

Lemma 4.3.5 For all m > 0 and α ∈ (−m1/2,m1/2),

−
∞∑
j=3

(α/m1/2)j

j
≤ 1. (4.40)

Proof. We will consider two cases.

Case 1: α ∈ [0,m1/2). Clearly, since m > 0,

α/m1/2 ≥ 0. (4.41)

It follows immediately that

−
∞∑
j=3

(α/m1/2)j

j
≤ 0 (4.42)

for all α ∈ [0,m1/2).

Case 2: α ∈ (−m1/2, 0). Clearly, for all α ∈ (−m1/2, 0),

−
∞∑
j=3

(α/m1/2)j

j
=
∞∑
j=3

(−1)j+1 |α/m|j/2

j
. (4.43)

Furthermore, the sequence

{
|α/m|j/2

j

}∞
j=3

(4.44)
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is a non-negative, monotonically decreasing sequence in j. Therefore, according to

Lemma 4.3.2,

∞∑
j=3

(−1)j+1 |α/m|j/2

j
<
|α3|

3m3/2
<

1

3
. (4.45)

Combining (4.43) and (4.45) yields

−
∞∑
j=3

(α/m1/2)j

j
<

1

3
. (4.46)

for all α ∈ (−m1/2, 0). Combining (4.42) and (4.46) yields (4.40). �

The following lemma will be used in the proof of Corollary 4.3.7.

Lemma 4.3.6 For all m > 1 and α ∈ (−m1/2,m1/2),

(m− αm1/2)me−(m−αm1/2)

Γ(m+ 1)
< m−1/2e−α

2/2+1, (4.47)

where Γ(m) is defined in equation (4.6).

Proof. It follows immediately from Observation 4.2.1 that for all m > 1,

(m− αm1/2)me−(m−αm1/2)

Γ(m+ 1)
<

(m− αm1/2)me−(m−αm1/2)

mm+1/2e−m

= m−1/2

(
m− αm1/2

m

)m
e−(m−αm1/2)

e−m
.

(4.48)

Clearly,

m−1/2

(
m− αm1/2

m

)m
e−(m−αm1/2)

e−m
= m−1/2

(
1− α

m1/2

)m
eαm

1/2

= m−1/2 exp
(
m log

(
1− α

m1/2

))
eαm

1/2

.

(4.49)
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Expanding

log(1− α

m1/2
) (4.50)

into Taylor series yields

m−1/2 exp
(
m log

(
1− α

m1/2

))
eαm

1/2

= m−1/2 exp

(
−m

∞∑
j=1

(α/m1/2)j

j

)
eαm

1/2

= m−1/2e−α
2/2 exp

(
−
∞∑
j=3

(α/m1/2)j

j

)
(4.51)

for α ∈ (−m1/2,m1/2). According to Lemma 4.3.5,

e−α
2/2 exp

(
−
∞∑
j=3

(α/m1/2)j

j

)
< e−α

2/2+1 (4.52)

for all α ∈ (−m1/2,m1/2). Combining (4.49), (4.51), and (4.52) yields (4.47). �

The following inequality provides a bound on the integrand of P (m+1, x) and will

be used in the proofs of Lemmas 4.4.1 and 4.5.1.

Corollary 4.3.7 For all m > 0 and t ∈ (0, 2m),

tme−t

Γ(m+ 1)
< m−1/2e−

(t−m)2

2m
+1. (4.53)

Proof. Obviously, for all m > 0,

t = m− (
−t+m

m1/2
)m1/2. (4.54)
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Combining Observation 4.2.1 and (4.54) we have

tme−t

Γ(m+ 1)
=

(
m− (−t+m

m1/2 )m1/2
)m

e
−
(
m−(−t+m

m1/2
)m1/2

)
Γ(m+ 1)

. (4.55)

Combining Lemma 4.3.6 with (4.55) yields,

(
m− (−t+m

m1/2 )m1/2
)m

e
−
(
m−(−t+m

m1/2
)m1/2

)
Γ(m+ 1)

< m−1/2e
− 1

2

(
−t+m
m1/2

)2
+1

= m−1/2e
−(t−m)2

2m
+1

(4.56)

for −t+m
m1/2 ∈ (−m1/2,m1/2) or, equivalently, t ∈ (0, 2m). �

4.4 P (m + 1, x) for Small x

The principal purpose of this section is to introduce Lemma 4.4.1, which shows

that for sufficiently small x, the function P (m+ 1, x) is essentially 0.

Lemma 4.4.1 For all m > 1 and α ∈ (0,m1/2),

P (m+ 1,m− αm1/2) <
1

α
e−α

2/2+1 (4.57)

with P (m+ 1, x) defined in (4.5).

Proof. Using (4.2) and applying Corollary 4.3.7 and Lemma 4.3.1, we have

P (m+ 1,m− αm1/2) =

∫ m−αm1/2

0

tme−t

Γ(m+ 1)
dt

<

∫ m−αm1/2

0

m−1/2e−
(t−m)2

2m
+1dt

<
1

α
e−α

2/2+1.

(4.58)
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Remark 4.4.1 Suppose m > 1. By observing that P (m+1, x) is non-negative for

all x > 0, and applying Lemma 4.4.1 with α = m1/6, we obtain the bound

|P (m+ 1,m−m2/3)| < m−1/6e
−m1/3

2
+1 (4.59)

for all m > 1 where P (m+ 1, x) is defined in (4.5).

4.5 P (m + 1, x) for Large x

The main purpose of this section is to introduce Lemma 4.5.3, which shows that,

for sufficiently large x, the function P (m+ 1, x) is well approximated by 1.

In the following lemma, we provide a bound to be used in the proof of Lemma

4.5.3.

Lemma 4.5.1 For all m > 1 and α ∈ (0,m1/2),

|P (m+ 1, 2m)− P (m+ 1,m+ αm1/2)| < 1

α
e−α

2/2+1, (4.60)

where P (m+ 1, x) is defined in (4.5).

Proof. Clearly, by (4.5) and applying Corollary 4.3.7,

|P (m+ 1, 2m)− P (m+ 1,m+ αm1/2)| =
∫ 2m

m+αm1/2

tme−t

Γ(m+ 1)
dt

<

∫ 2m

m+αm1/2

m−1/2e−
(t−m)2

2m
+1dt.

(4.61)
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Applying Lemma 4.4.1 and the change of variables s = 2m− t to (4.61), we obtain

∫ 2m

m+αm1/2

m−1/2e−
(t−m)2

2m
+1dt =

∫ m−αm1/2

0

m−1/2e−
(s−m)2

2m
+1ds <

1

α
e−α

2/2+1. (4.62)

Combining (4.61) and (4.62) yields (4.60). �

In the following lemma, we provide a bound to be used in the proof of Lemma

4.5.3.

Lemma 4.5.2 For all m > 1,

|1− P (m+ 1, 2m)| < 10m−1/2e−m/5, (4.63)

where P (m+ 1, x) is defined in (4.5).

Proof. Obviously, by (4.2) and (4.7),

|1− P (m+ 1, 2m)| =
∫ ∞

2m

tme−t

Γ(m+ 1)
dt

=

∫ ∞
2m

tme−9t/10

Γ(m+ 1)
e−t/10dt

=

∫ ∞
2m

ψm(t)e−t/10dt,

(4.64)

where, by Observation 4.2.1,

ψm(t) =
tme−9t/10

Γ(m+ 1)
< m−1/2 t

me−9t/10

mme−m
. (4.65)

We now provide a bound for ψm(t) on the interval t ∈ (2m,∞). Straightforward

differentiation shows that for all m > 1 and t ∈ (2m,∞), the function ψm(t) is

decreasing as a function of t. Therefore, using (4.65), for t ∈ (2m,∞),

ψm(t) ≤ ψm(2m) < m−1/2 (2m)me−9m/5

mme−m
= m−1/22me−4m/5 < m−1/2. (4.66)
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Therefore, combining (4.64) and (4.66) yields,

∫ ∞
2m

tme−9t/10

Γ(m+ 1)
e−t/10dt <

∫ ∞
2m

m−1/2e−t/10dt = 10m−1/2e−m/5. (4.67)

Combining (4.64) and (4.67) yields (4.63). �

The following lemma shows that for sufficiently large x, the function P (m + 1, x)

is well-approximated by 1.

Lemma 4.5.3 For all m > 1 and α ∈ (0,m1/2),

∣∣1− P (m+ 1,m+ αm1/2)
∣∣ < 1

α
e−α

2/2+1 + 10m−1/2e−m/5, (4.68)

where P (m+ 1, x) is defined in (4.5).

Proof. Obviously, by (4.2) and (4.5),

∣∣1− P (m+ 1,m+ αm1/2)
∣∣ =

∫ ∞
m+αm1/2

tme−t

Γ(m+ 1)
dt

=

∫ 2m

m+αm1/2

tme−t

Γ(m+ 1)
dt+

∫ ∞
2m

tme−t

Γ(m+ 1)
dt.

(4.69)

According to Lemma 4.5.1,

∫ 2m

m+αm1/2

tme−t

Γ(m+ 1)
dt < m1/2e−α

2/2+1. (4.70)

According to Lemma 4.5.2,

∫ ∞
2m

tme−t

Γ(m+ 1)
dt < 10m−1/2e−m/5. (4.71)

Combining (4.69), (4.70), and (4.71) yields (4.68). �

The following corollary will be used in Section 4.8. It shows that for fixed m and

sufficiently large x, the function P (m+ 1, x) is well-approximated by 1.
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Corollary 4.5.4 For all m > 1 and x > m,

|1− P (m+ 1, x)| < m1/2

x−m
e−

(x−m)2

2m
+1 + 10m−1/2e−m/5, (4.72)

where P (m+ 1, x) is defined in (4.2).

Proof. We consider two cases.

Case 1. Suppose x ∈ (m, 2m). Obviously, by (4.2),

|1− P (m+ 1, x)| =
∫ ∞
x

tme−t

Γ(m+ 1)
dt

=

∫ 2m

x

tme−t

Γ(m+ 1)
dt+

∫ ∞
2m

tme−t

Γ(m+ 1)
dt.

(4.73)

Using the identity

x = m+

(
x−m
m1/2

)
m1/2 (4.74)

and applying Lemma 4.5.1 to (4.73),

∫ 2m

x

tme−t

Γ(m+ 1)
dt =

∫ 2m

m+ x−m
m1/2

m1/2

tme−t

Γ(m+ 1)
dt <

m1/2

x−m
e−

(x−m)2

2m
+1. (4.75)

Applying Lemma 4.5.2 to (4.73),

∫ ∞
2m

tme−t

Γ(m+ 1)
dt < 10m−1/2e−m/5. (4.76)

Combining (4.73), (4.75), and (4.76) yields (4.72) for all x ∈ (m, 2m).
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Case 2. Suppose x ≥ 2m. Obviously, by (4.2),

|1− P (m+ 1, x)| =
∫ ∞
x

tme−t

Γ(m+ 1)
dt <

∫ ∞
2m

tme−t

Γ(m+ 1)
dt. (4.77)

Applying Lemma 4.5.2 to (4.77),

∫ ∞
2m

tme−t

Γ(m+ 1)
dt < 10m−1/2e−m/5. (4.78)

Combining (4.77) and (4.78) yields (4.72) for all x ≥ 2m. �

4.6 Evaluation of P (m+ 1, x) for Small m and In-

termediate x via Summation

The principal purpose of this section is Lemma 4.6.2, which provides a formula for

evaluating P (m+ 1, x) (see (4.2)), for all real numbers m > −1 and x > 0, and a

bound on the error of the approximation.

The following lemma provides a bound for P (m+ 1, x) for small x and will be

used in the proof of Lemma 4.6.2.

Lemma 4.6.1 For all real numbers m > 1, k ≥ 0, x ∈ (0,m),

P (m+ k + 1, x) <
(m+ k)1/2

m+ k − x
exp

(
−(k +m− x)2

2k + 2m
+ 1

)
, (4.79)

where P (m+ 1, x) is defined in (4.5).

Proof. Clearly, since m > 0 and k > 0,

x = (m+ k)− α(m+ k)1/2, (4.80)
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where

α =
m+ k − x
(m+ k)1/2

. (4.81)

Therefore, by (4.80), (4.81), and applying Lemma 4.4.1, we obtain,

P (m+ k + 1, x) = P (m+ k + 1, (m+ k)− α(m+ k)1/2)

<
(m+ k)1/2

m+ k − x
exp

(
−(k +m− x)2

2k + 2m
+ 1

)
.

(4.82)

�

In the following lemma, we provide a formula for evaluating P (m + 1, x) and a

bound on the error. In Table 4.1, we list values of the bound on the error for

different values of m,x, k.

Lemma 4.6.2 For all real numbers m > −1, x > 0, and for any positive integer

k > m+ 2− x,

P (m+ 1, x) =
k∑
i=0

xm+1+ie−x

Γ(m+ 2 + i)
+ ρk+1(m+ 1, x), (4.83)

where

|ρk+1(m+ 1, x)| < (m+ 1 + k)1/2

m+ 1 + k − x
exp

(
−(k +m+ 1− x)2

2k + 2m+ 2
+ 1

)
. (4.84)

Proof. By Formula 6.5.21 of [1],

P (m+ 1, x) = P (m,x)− xme−x

Γ(m+ 1)
. (4.85)
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Iteratively applying identity (4.85) k times yields

P (m+ 1, x) = P (m+ k + 2, x) +
k∑
i=0

xm+1+ie−x

Γ(m+ 2 + i)
. (4.86)

According to Lemma 4.6.1,

0 < P (m+ k+ 2, x) <
(m+ 1 + k)1/2

m+ k + 1− x
exp

(
−(k +m+ 1− x)2

2k + 2m+ 2
+ 1

)
. (4.87)

Combining (4.86) and (4.87) yields (4.84). �

Observation 4.6.1 For all m > −1, α ∈ (0, (m+ 1)1/2), and x ∈ (m+ 1−α(m+

1)1/2,m), by applying Lemma 4.6.2 with k ≥ λ(m+1)1/2 where λ ∈ (1, (m+1)1/2),

we obtain the bound

ρk+1(m+ 1, x) <
(m+ 1 + λ(m+ 1)1/2)1/2

λ(m+ 1)1/2
exp

(
−(λ− α)2

4
+ 1

)
. (4.88)

4.7 Evaluation of P (m+ 1, x) for Large m and In-

termediate x via Asymptotic Expansion

In this section, we introduce an asymptotic expansion for the evaluation of P (m+

1, x) for sufficiently large m and x ∈ (−m2/3,m2/3).

We will denote by Sm (see Figure 4.1) the tubular m2/3-neighborhood of the

real interval x ∈ (−m2/3,m2/3). That is,

Sm = {z ∈ C : |z − x| ≤ m2/3 for some x ∈ (−m2/3,m2/3)}. (4.89)

170



m+ 1 x k error bound (see (4.84))

100 50 60 0.1183591× 10−16

100 75 95 0.2915023× 10−16

100 100 130 0.3512477× 10−16

100 125 165 0.2748450× 10−16

100 150 200 0.1624504× 10−16

1000 800 80 0.5502590× 10−16

1000 900 200 0.1624504× 10−16

1000 1000 310 0.3731746× 10−16

1000 1100 420 0.7018108× 10−16

1000 1200 540 0.1571927× 10−16

10000 9200 50 0.7854609× 10−16

10000 9500 380 0.1984442× 10−16

10000 10000 900 0.2302159× 10−16

10000 10500 1420 0.2542989× 10−16

10000 10800 1730 0.3085479× 10−16

Table 4.1: Bounds on the error of evaluating P (m + 1, x) via sum (4.83) using k
terms for different m,x, k.

Observation 4.7.1 We observe that |z| < 2m2/3 for all m > 0 and z ∈ Sm. In

particular, if m > 100, then for all z ∈ Sm, |z| < 2m2/3 < m.

The following observations will be used in the proof of Lemma 4.7.2.

Observation 4.7.2 Suppose we choose the branch cut for fm to be the negative

real axis with x < −m. Then, by (4.8), (4.89), and applying Observation 4.7.1, we

observe that fm is analytic on Sm, where fm is defined in (4.8) and Sm is defined

in (4.89).

Observation 4.7.3 It follows immediately from the combination of Observation

4.7.2 and Observation 4.7.1 that for all m > 100 and ξ ∈ (−m2/3,m2/3), the

function fm is analytic on the disk of radius m2/3 centered at ξ, where fm is defined

in (4.8).

The following lemma will be used in the proof of Lemma 4.7.2.
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Sm

(−m2/3, 0) (m2/3, 0)
• ••

ξ

m2/3 Γξ

Figure 4.1: An illustrative domain of Sm, the m2/3-neighborhood of the interval
on the real line (−m2/3,m2/3).

Lemma 4.7.1 For all m > 0 and z ∈ Sm,

|fm(z)| < 15, (4.90)

where fm is defined in (4.8) and Sm is defined in (4.89).

Proof. Obviously, by (4.8), for all m > 0 and z ∈ Sm,

|fm(z)| = | exp[m log(1 + z/m)− z + z2/2m]|

= exp[Re{m log(1 + z/m)− z + z2/2m}].
(4.91)

Hence, expanding log(1 + z) into Taylor series, we have

|fm(z)| = exp[Re{m
∞∑
k=1

(−1)k+1(
z

m
)k − z + z2/2m}]

= exp[Re{
∞∑
k=3

(−1)k+1 zk

kmk−1
}].

(4.92)

Therefore, by (4.92), and the combination of Observation 4.7.1 and Lemma 4.3.2,

|fm(z)| ≤ exp[Re{
∞∑
k=3

(−1)k+1 (2m2/3)k

kmk−1
}] ≤ exp

(
(2m2/3)3

3m2

)
= e8/3 < 15. (4.93)

�
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In Lemma 4.7.2, we provide a bound to be used in the proof of Theorem 4.7.4.

Lemma 4.7.2 For all m > 100 and ξ ∈ (−m2/3,m2/3),

∣∣∣∣∣f (k)
m (ξ)

k!

∣∣∣∣∣ < 15

m2k/3
, (4.94)

where f
(k)
m is the kth derivative of fm defined in (4.8).

Proof. Let m > 100 and ξ ∈ (−m2/3,m2/3). Let Γξ be the positively oriented

circular contour of radius m2/3 centered at ξ (see Figure 4.1). Then combining Ob-

servation 4.7.2 and the Cauchy Integral Formula and applying elementary integral

transformations, we obtain

∣∣∣∣f (k)(ξ)

k!

∣∣∣∣ =

∣∣∣∣∣ 1

2πi

∫
Γξ

f(z)

(z − ξ)k+1
dz

∣∣∣∣∣
≤ 1

2π

∫
Γξ

|f(z)|
|(z − ξ)k+1|

dz.

(4.95)

By applying Lemma 4.7.1 to (4.95), we have

∣∣∣∣f (k)(ξ)

k!

∣∣∣∣ ≤ 1

2π

∫
Γξ

15

|(z − ξ)k+1|
dz

=
15

2π

∫
Γξ

1

m2(k+1)/3
dz.

(4.96)

Now, combining (4.96) with the fact that Γξ is of length 2πm2/3 yields,

∣∣∣∣f (k)(ξ)

k!

∣∣∣∣ ≤ 15
m2/3

m2(k+1)/3
=

15

m2k/3
. (4.97)

�

The following observation will be used in the proof of Lemma 4.7.3.

Observation 4.7.4 Expanding fm into k-order Taylor series centered at 0, and
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using (4.2) and (4.9), we obtain

γ(m+ 1, x) =

∫ x−m

−m
e−s

2/2mfm(s)ds.

=

∫ x−m

−m
e−s

2/2m(1 + f ′m(0)s+ ...+
f

(k)
m (0)

k!
sk +Rk+1)ds

(4.98)

where Rk(s) is the Taylor remainder term,

Rk(s) =
f

(k)
m (ξ)sk

k!
(4.99)

for some ξ ∈ (0, x). The function γ(m + 1, x) above is defined in (4.2), fm is

defined in (4.8), and f
(k)
m is the kth derivative of fm.

The following lemma will be used in the proof of Theorem 4.7.4 to bound the error

of asymptotic expansion (4.105).

Lemma 4.7.3 For all m > 100 and x ∈ (−m2/3,m2/3),

∣∣∣∣∫ x−m

−m2/3

e−s
2/2mRk(s)ds

∣∣∣∣ ≤ 15
Γ(k+1

2
)2(k+1)/2

mk/6−1/2
, (4.100)

where Rk is defined in (4.99) and Γ(k) is defined in (4.6).

Proof. Using (4.99) and applying elementary integral transformations to (4.100),

∣∣∣∣∫ x−m

−m2/3

e−s
2/2mRk(s)ds

∣∣∣∣ < ∫ x−m

−m2/3

∣∣∣e−s2/2mRk(s)
∣∣∣ ds

=

∫ x−m

−m2/3

e−s
2/2m

∣∣∣∣f (k)(s)sk

k!

∣∣∣∣ ds. (4.101)
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It follows immediately from applying Lemma 4.7.2 to (4.101) that

∣∣∣∣∫ x−m

−m2/3

e−s
2/2mRk(s)ds

∣∣∣∣ < ∫ x−m

−m2/3

e−s
2/2m

∣∣∣∣f (k)(s)sk

k!

∣∣∣∣ ds
<

15

m2k/3

∫ x−m

−m2/3

e−s
2/2m|sk|ds

≤ 15

m2k/3

∫ ∞
−∞

e−s
2/2m|sk|ds.

(4.102)

Combining formulas 7.4.4 and 7.4.5 in [1], we obtain the identity,

∫ ∞
−∞

e−s
2/2m|sk|ds = Γ

(
k + 1

2

)
(2m)(k+1)/2, (4.103)

and combining (4.102) and (4.103) yields,

∣∣∣∣∫ x−m

−m2/3

e−s
2/2mRk(s)ds

∣∣∣∣ < 15

m2k/3
Γ

(
k + 1

2

)
(2m)(k+1)/2

=15
Γ(k+1

2
)2(k+1)/2

mk/6−1/2
.

(4.104)

�

The following theorem provides an asymptotic expansion for the evaluation of

P (m+ 1, x) where P (m+ 1, x) is defined in (4.5).

Theorem 4.7.4 For all m > 100 and x ∈ (m−m2/3,m+m2/3),

P (m+ 1, x) ∼ mme−m

Γ(m+ 1)

∞∑
i=0

f
(i)
m (0)

i!

∫ x−m

−m2/3

e−s
2/2msids, (4.105)

where f
(k)
m is the kth derivative of fm (see (4.8)) and P (m+1, x) is defined in (4.5).
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Furthermore, for all k ∈ N,

∣∣∣∣∣P (m+ 1, x)− mme−m

Γ(m+ 1)

k−1∑
i=0

(
f

(i)
m (0)

i!

∫ x−m

−m2/3

e−s
2/2msids

)∣∣∣∣∣ <
15

Γ(k+1
2

)2(k+1)/2

mk/6
+m−1/6e

−m1/3

2
+1,

(4.106)

where Γ(k) is defined in (4.6).

Proof. Clearly, using (4.2) and Observation 4.7.4,

γ(m+ 1, x) =

∫ −m2/3

−m
eφ(s)ds+

∫ x−m

−m2/3

eφ(s)ds

=

∫ −m2/3

−m
eφ(s)ds+

∫ x−m

−m2/3

e−s
2/2m(1 + f ′m(0)s+ ...

+
f

(k−1)
m (0)

(k − 1)!
sk−1 +Rk(s))ds,

(4.107)

where Rk is the Taylor remainder term (4.99). Now, rearranging the terms of

(4.107),

γ(m+ 1, x)−
k−1∑
i=0

(
f

(i)
m (0)

i!

∫ x−m

−m2/3

e−s
2/2msids

)

=

∫ −m2/3

−m
eφ(s)ds+

∫ x−m

−m2/3

e−s
2/2mRk(s)ds.

(4.108)

Using (4.5) and scaling both sides of (4.108) by

mme−m

Γ(m+ 1)
(4.109)
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we obtain,

P (m+ 1, x)− mme−m

Γ(m+ 1)

k−1∑
i=0

(
f

(i)
m (0)

i!

∫ x−m

−m2/3

e−s
2/2msids

)

=
mme−m

Γ(m+ 1)

∫ −m2/3

−m
eφ(s)ds+

mme−m

Γ(m+ 1)

∫ x−m

−m2/3

e−s
2/2mRk(s)ds.

(4.110)

Combining Remark 4.4.1, (4.4), and (4.5), we obtain

mme−m

Γ(m+ 1)

∫ −m2/3

−m
eφ(s)ds = P (m+ 1,m−m2/3) < m−1/6e

−m1/3

2
+1. (4.111)

Furthermore, according to Lemma 4.7.3 and Observation 4.2.1,

mme−m

Γ(m+ 1)

∣∣∣∣∫ x−m

−m2/3

e−s
2/2mRk(s)ds

∣∣∣∣ < 15

m2k/3+1/2
Γ

(
k + 1

2

)
(2m)(k+1)/2. (4.112)

It follows immediately from applying the triangle inequality and combining (4.110),

(4.111), and (4.112) that

∣∣∣∣∣P (m+ 1, x)− mme−m

Γ(m+ 1)

k−1∑
i=0

(
f

(i)
m (0)

i!

∫ x−m

−m2/3

e−s
2/2msids

)∣∣∣∣∣ ≤
15

Γ(k+1
2

)2(k+1)/2

mk/6
+m−1/6e

−m1/3

2
+1.

(4.113)

�

4.8 Description of Algorithm

Suppose we wish to evaluate P (m+1, x) for some m > −1 and x > 0. We consider

the following two regimes.
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4.8.1 Regime 1: −1 < m ≤ 10, 000

Numerical experiments show that in this regime, evaluation of P (m + 1, x) using

formula (4.83) is faster than evaluation by asymptotic expansion (4.105). Hence,

in this regime, we evaluate P (m + 1, x) directly using formula (4.83). A bound

on the error of approximation (4.83) is provided in Lemma 4.6.2 and Table 4.1

includes values of the bound for different m,x, k.

When x > m/2, in order to evaluate sum (4.83) and without a loss of accuracy,

we compute recursively the terms ωn of (4.83) defined by the formula,

ωm+i =
xm+ie−x

Γ(m+ i+ 1)
(4.114)

by observing that

ωk+1 =
xke−x

Γ(k + 1)
=
x

k
ωk. (4.115)

and evaluating the initial recursive step ωm by observing that

ωm =
xme−x

Γ(m+ 1)

= exp (m log(x)− x− log(Γ(m+ 1))) .

(4.116)

We then use (4.13) to evaluate log(Γ(m+ 1)).

4.8.2 Regime 2: m > 10, 000

We first check if x < m + 1. If so, we use Lemma 4.6.1 to determine whether

P (m + 1, x) is sufficiently small that it is well-approximated by 0 to some user-

specified accuracy. If x > m+ 1, we check if P (m+ 1, x) is well-approximated by

1 via Corollary 4.5.4.
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If P (m + 1, x) is neither well-approximated by 0 nor by 1, further analysis

remains to show under what conditions algorithm (4.105) is computationally less

expensive than (4.83). However, numerical experiments show that for most x

arising in practice, evaluation of P (m + 1, x) by asymptotic expansion (4.105) is

significantly faster than evaluation by (4.83). Hence, we evaluate P (m + 1, x)

by asymptotic expansion (4.105). In the remainder of this section, we provide a

detailed explanation of asymptotic expansion (4.105).

Remark 4.8.1 Numerical experiments show that in this regime, evaluation of

P (m + 1, x) via asymptotic expansion (4.105) achieves full double precision ac-

curacy when using an expansion of 29 terms. That is, setting k = 28 in (4.106).

Precomputation

Asymptotic expansion (4.105) includes the factors,

f
(k)
m (0)

k!
(4.117)

where k ∈ {0, 1, 2, ...} and f
(k)
m is the kth derivative of fm (see (4.8)). Straight-

forward differentiation shows that for all k, the values f
(k)
m (0) are defined by the

formula,

f
(k)
m (0)

k!
=

nk∑
i=jk

ak,i
k!mi

, (4.118)

for some jk, nk ∈ N and some ak,i ∈ R. The values,

{ak,i
k!

}
, (4.119)
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for i ∈ {jk, ..., nk}, are computed in Mathematica and stored in Fortran DATA

statements.

Evaluation

The inputs to this stage of the algorithm are m > 10, 000 and x > 0.

Step 1. Given some requirement on the precision of the approximation, we use

(4.106) to determine the number of terms in the expansion. For the remainder of

this section, we assume that we require an expansion of K terms.

Step 2. For all k ∈ {1, ..., K}, compute the powers from (4.118),

1

mi
, (4.120)

and store them for all i ∈ {jk, ..., nk}, where nk is defined in (4.118).

Step 3. Evaluate the factors in (4.105) defined by (4.118). Specifically, for each

k ≤ K, evaluate

f
(k)
m (0)

k!
=

nk∑
i=jk

ak,i
k!mi

, (4.121)

where ak,i and mi are defined in (4.118). Note that we have already computed the

quotients

{ak,i
k!

}
, (4.122)
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for i ∈ {jk, ..., nk}, in the precomputation stage, while the necessary powers of 1/m

were computed in Step 1.

Step 4. Use Lemma 4.3.3 to evaluate the integrals of (4.105) of the form,

∫ x−m

−m2/3

e−s
2/2ms2n+1dt, (4.123)

where n is a non-negative integer, and x > 0 and m > 10, 000 are real numbers.

Step 5. Use Lemma 4.3.4 to evaluate the integrals of (4.105) of the form,

∫ x−m

−m2/3

e−s
2/2ms2ndt, (4.124)

where n is a non-negative integer and x > 0 and m > 10, 000 are real numbers.

4.9 Numerical Experiments

The algorithm of this chapter was implemented in Fortran 77. We used the La-

hey/Fujitsu compiler on a 2.9 GHz Intel i7-3520M Lenovo laptop; all examples in

this section were run in double precision arithmetic.

Throughout this section, we report numerical results relating to the evaluation

of P (m+1, x) via asymptotic expansion (4.105) and via summation (4.83) for var-

ious values of m and x. In each table in this section, the column labeled “m+ 1”

denotes the value of m + 1 in P (m + 1, x). The column labeled “x” denotes the

value of x in P (m + 1, x). The column labeled “k” denotes the number of terms

of expansion (4.105) used to approximate P (m+ 1, x). The column labeled “time

(µs)” denotes the time, in microseconds, required to run each evaluation. The col-
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umn labeled “relative error” denotes the relative error of the approximation. The

column labeled “absolute error” denotes the absolute error of the approximation.

The column labeled P (m + 1, x) denotes the true value that is being approxi-

mated. This value was computed in extended precision using adaptive Gaussian

quadrature.

In Table 4.4, the column labeled αk(m+1, x) denotes log10 of the magnitude of

the kth term of asymptotic expansion (4.105). Specifically, αk(m+ 1, x) is defined

via the formula

αk(m+ 1, x) = log10

∣∣∣∣∣ mme−m

Γ(m+ 1)

f
(k)
m (0)

k!

∫ x−m

−m2/3

e−s
2/2mskds

∣∣∣∣∣ . (4.125)

In Table 4.4, the column labeled σk(m+ 1, x) denotes the relative error of the

k-term approximation (4.105). Specifically, σk(m+ 1, x) is defined via the formula

σk(m+ 1, x) =

P (m+ 1, x)−1

∣∣∣∣∣P (m+ 1, x)− mme−m

Γ(m+ 1)

k∑
i=0

(
f

(i)
m (0)

i!

∫ x−m

−m2/3

e−s
2/2msids

)∣∣∣∣∣ .
(4.126)

In Table 4.7, the column labeled “evaluator” indicates whether P (m+1, x) was

evaluated via sum (4.83) or asymptotic expansion (4.105).

The primary purpose of Table 4.2 and Figure 4.2 is to demonstrate that for

fixed m and fixed k, evaluation of P (m + 1, x) via k-term asymptotic expansion

(4.105) results in a smaller error for larger x.

Table 4.3 and Figure 4.3 report the numerical costs of evaluation of P (m+1, x)

via k-term asymptotic expansion (4.105) for different k. We report runtimes for

different k with m+ 1 = x = 107.

The primary purpose of Table 4.4 and Figure 4.4 is to report the decrease in
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the magnitude of the kth term of asymptotic expansion (4.105) along with the

corresponding error of k-term expansion (4.105). In Table 4.4, we report these

numerical results for the case m + 1 = x = 104. In Figure 4.4, we plot log10 of

the magnitude of the kth term of expansion (4.105) for k ≤ 28. We do this for the

cases m+ 1 = x = 104, m+ 1 = x = 107, and m+ 1 = x = 1010.

In Table 4.5 and Figure 4.5 we report the numerical costs of evaluation of

P (m+1, x) via summation (4.83) for different m. We report runtimes for different

m with x = m + 1. In Figure 4.5, the horizontal line corresponds to the runtime

required for evaluation of P (m+1, x) via asymptotic expansion (4.105) with k = 28.

Table 4.6 and Figure 4.6 report the numerical costs of evaluation of summation

(4.83) for fixed m and different x. We report runtimes for m + 1 = 1000 with

various x.

Table 4.7 demonstrates that both sum (4.83) and asymptotic expansion (4.105)

achieve nearly full extended precision accuracy when evaluating P (m + 1, x). We

demonstrate this for various values of m and x.

Observation 4.9.1 Figure 4.5 demonstrates that for all real numbers x > 0 and

−1 < m < 103, evaluation of P (m + 1, x) via asymptotic expansion (4.105) is

computationally more expensive than evaluation of P (m+ 1, x) via sum (4.83).
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m+ 1 x (·103) k relative error P (m+ 1, x)

106 996 10 0.21472× 10−7 0.0000310071182110
106 997 10 0.15395× 10−8 0.0013381041673135
106 998 10 0.11619× 10−9 0.0226961140067368
106 999 10 0.16768× 10−10 0.1586552135743036
106 1000 10 0.53194× 10−11 0.5001329807608725
106 1001 10 0.31623× 10−11 0.8413447863683402
106 1002 10 0.27477× 10−11 0.9771959041012301
106 1003 10 0.32794× 10−11 0.9986382593537824
106 1004 10 0.46816× 10−11 0.9999676545526865

Table 4.2: Relative errors for the evaluation of P (m+1, x) via 10-term asymptotic
expansion (4.105) for different x

996 998 1,000 1,002 1,004
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Figure 4.2: log10 of relative errors for evaluation of P (m+ 2, x) via k-term asymp-
totic expansion (4.105) for different x and for k = 10, k = 15, and k = 20
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m+ 1 x k time (µs) relative error P (m+ 1, x)

107 107 4 1.68 0.83327× 10−7 0.500042052208723698
107 107 8 2.08 0.59881× 10−10 0.500042052208723698
107 107 12 2.50 0.40330× 10−15 0.500042052208723698
107 107 16 2.92 0.60328× 10−15 0.500042052208723698
107 107 20 3.44 0.60328× 10−15 0.500042052208723698
107 107 24 3.75 0.60328× 10−15 0.500042052208723698
107 107 28 4.26 0.60328× 10−15 0.500042052208723698

Table 4.3: CPU times for the evaluation of P (m + 1, x) via k-term asymptotic
expansion (4.105) for different k

4 8 12 16 20 24 28
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s)

m+ 1 = x = 107

Figure 4.3: CPU times for evaluation of P (m+ 1, x) via k-term asymptotic expan-
sion (4.105) for different k and m+ 1 = x = 107
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m+ 1 x k αk(m+ 1, x) σk(m+ 1, x) P (m+ 1, x)

104 104 0 -0.2976 0.52970× 10−2 0.501329808339955200
104 104 4 -4.4259 0.83144× 10−4 0.501329808339955200
104 104 6 -4.3803 0.13220× 10−5 0.501329808339955200
104 104 8 -7.2890 0.19636× 10−5 0.501329808339955200
104 104 10 -7.1832 0.50570× 10−7 0.501329808339955200
104 104 12 -7.5752 0.41020× 10−8 0.501329808339955200
104 104 14 -9.6979 0.19454× 10−8 0.501329808339955200
104 104 16 -9.8870 0.50321× 10−10 0.501329808339955200
104 104 18 -10.496 0.10907× 10−10 0.501329808339955200
104 104 20 -12.127 0.31368× 10−11 0.501329808339955200
104 104 22 -12.492 0.48601× 10−13 0.501329808339955200
104 104 24 -13.264 0.33580× 10−13 0.501329808339955200
104 104 26 -14.519 0.68569× 10−14 0.501329808339955200
104 104 28 -15.016 0.52361× 10−16 0.501329808339955200

Table 4.4: Numerical results for log10 of the magnitude of the kth term of asymp-
totic expansion (4.105) and errors of the k-term expansion
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Figure 4.4: log10 of the magnitude of the kth term of asymptotic expansion (4.105)
for different m
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m+ 1 x time (µs) relative error P (m+ 1, x)

100 100 0.62 0.34164× 10−16 0.632120558828557678
101 101 0.96 0.16914× 10−15 0.542070285528147791
102 102 1.34 0.71081× 10−15 0.513298798279148664
103 103 3.00 0.41353× 10−15 0.504205244180215508
104 104 7.80 0.39818× 10−15 0.501329808339955200
105 105 20.88 0.45496× 10−14 0.500420522110365176
106 106 62.32 0.95799× 10−14 0.500132980760872591

Table 4.5: CPU times and errors for the evaluation of P (m,m) by direct summation
(4.83) for different m
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Figure 4.5: CPU times for evaluation of P (m + 1, x) by direct summation (4.83)
and by asymptotic expansion (4.105)
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m+ 1 x time (µs) relative error P (m+ 1, x)

1000 900 1.93 0.50370× 10−15 0.000549902265711782
1000 925 2.16 0.93887× 10−15 0.007693713246846007
1000 950 2.28 0.99996× 10−16 0.055054686230738034
1000 975 2.49 0.27405× 10−14 0.215731105240819891
1000 1000 2.65 0.41353× 10−15 0.504205244180215508
1000 1025 2.90 0.62391× 10−15 0.786575483861807090
1000 1050 3.06 0.34303× 10−15 0.941328888622681922
1000 1075 3.35 0.13468× 10−14 0.989973597928674133
1000 1100 3.55 0.15243× 10−14 0.998940676746070022

Table 4.6: CPU times for the evaluation of P (m+1, x) by direct summation (4.83)
for different x
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Figure 4.6: CPU times of evaluation of P (m + 1, x) via direct summation (4.83)
for different x
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m+ 1 x evaluator absolute error P (m+ 1, x)

1 0.5 Sum (4.83) 0.48148× 10−34 0.393469340287366576396200465009
1 1 Sum (4.83) 0.10000× 10−34 0.632120558828557678404476229839
1 10 Sum (4.83) 0.13482× 10−32 0.999954600070237515148464408484
100 80 Sum (4.83) 0.10803× 10−32 0.017108313035133114165877307636
100 100 Sum (4.83) 0.33415× 10−31 0.513298798279148664857314256564
100 120 Sum (4.83) 0.80504× 10−31 0.972136260109479338515814832144
10, 000 9, 000 Sum (4.83) 0.13501× 10−34 0.000000000000000000000000207329
10, 000 10, 000 Sum (4.83) 0.49111× 10−32 0.501329808339955200382742251300
10, 000 11, 000 Sum (4.83) 0.19356× 10−31 0.999999999999999999999830714685
105 105 − 103 Sum (4.83) 0.31597× 10−34 0.000757419921174767974118465304
105 105 Sum (4.83) 0.80889× 10−32 0.500420522110365176693312579044
105 105 + 103 Sum (4.83) 0.45221× 10−30 0.999191578487074409267531226544
106 106 − 103 Sum (4.83) 0.43733× 10−30 0.158655213574303652463032743495
106 106 Sum (4.83) 0.51519× 10−31 0.500132980760872591244322817503
106 106 + 103 Sum (4.83) 0.87534× 10−31 0.841344786368340291627563851466
107 107 − 103 Exp. (4.105) 0.11700× 10−30 0.375950818831443160416162761546
107 107 Exp. (4.105) 0.24941× 10−31 0.500042052208723698333756164783
107 107 + 103 Exp. (4.105) 0.63748× 10−31 0.624121183505552339531809964939

Table 4.7: Absolute errors for the evaluation of P (m + 1, x) by direct summation
(4.83) and asymptotic expansion (4.105) in extended precision
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