The Complexity of Control Structures
and Data Structures

R. J. Lipton, S. C. Eisenstat,
and R. A. DeMillo#*

Research Report #41

March 1975

* Department of Electrical Engineering
University of Wisconsin-Milwaukee
Milwaukee, Wisconsin 53201

This research was supported in part by the US Army Research Office under
grants number DAHC04-75-G-0037 and number DAHC04-74-C-0197 and by the Office
of Naval Research under grant number N00014-67-A-0097-0016.

THE COMPLEX1TY OF CONTROL STRUCTURES
AND DATA STRUCTURES

. R. J. Lipton,* S. C. Eisenstat™
Department of Computer Science
Yale University
New Haven, Connecticut 06520 . .

R. A. DeMillo**
Department of Electrical Engireering
. University of Wisconsin-Milwauiee
- . . Milwaukee, Wisconsin 53201

~

1. Introduction

. The running time or computational complexity of a

sequential process is usually determined by~
gumning weights attached to the basic operations
from wvhich the process is derived. Ia practice,
however, the complexity is often limited by how
efficiently it can access its data structures and

. how efficiently it can contvol program flow.

. that certain limitations on the procass sequencing

Furthermore, it has been extensively arxued {4]

mechanisms availsble to the programmer result in
more “eificient" representations for the
underlying processes. In this paper we will
examine these issues in an attempt to zssess the
“power" of various data and comtrol structures.

A key observation about sequential processes
4s that they usuzlly do nct reference their data
structures randomly. For instance, the many
algorithms that organize their data structures as

_arrays often access the array eleneats in a

“)ocal” rmanner (c.g. the conventional matrix

multiplication algorithn accesses its arrays by
rows and by columms). In a paging environment,
how one stores an array is especially important
(cf. Roserberg [14]). Therefore, it is natural

. to investigate how arrays can be stered so that

- stored near one another.

_ for data structures G and G¥%, (3

elements 'mear" one another in the array are
The basis Ior this
corpariscn will be a relation Sﬁ 1 deiined so that

*

B,1 G* if G can
be imbeddad in G* in 1-1 fashien so that there is
at most a B-fold increase in distance between
embedded objects. .

It is somewhat remarkable that an analogous
study for control structures uses the same basic
insights. It is well-kaown that process se-
quencing disciplines found in programting prac—
tice (e.g. "go to", "while") may simulate each
.other in a functionally equivalent way but that

* This recearch was supported in part by the US
Army Rescarch Qffice under Grant Number
DAHCQ4-75-G~0037 . .

4+ This resecarch was supperted in part by the
Office of Naval Rescarch under Grant Humber .
N00014-67-3-0097--0016. '

®% This rescarch was supported in part by the US
Army Research Cffice under Graat Nuumber
D&MC04-74-C-0179.

4f, in addition, the sinulation is constrained to
preserve the structure of the original algeritha
up to isomorphisa, the desired simulations may not
exist {1,2,3,9,10]. Obviously, the fendamental
{ssue is neither the counstruction of functiozally
equivalent programs nor the inability to preserve
structure exac:tly, bu: rather is the "naturalnes
of the simulation. Coentrol structures ave cli-
pared by the relation =, for M 2 1, 1li G and G#

Rt

are algorithms with distinct process scequencing
mechanisms, then GSB . G* indicates that G¥
0

simulates G by making at most M copies of each
operation in G and incrzcasing the ccst af sequen-
tial access of cmbedded operations by a factsr of
at most B. (ef. Liptonm {11})

Thus, comparing the power of data struc
and control structures invelves analyzing th
and many-one aspects of reduction (or sfmula
techniques whose efficiency is bounded by 4 and
In a natural way, the relation SB Y represe

a

n
an intertwining of space (i.e., M) and time (i.e.,
B) complexities. The cornecticn betvween our

relation Spou and the relations used by previous
5

studics of comtrol structure simulation is: (1)
SB M is weaker than isomorphism? siuce 1t allows
3

both time and space to increase; (2) SB v is
g

stronger than functional or input-output equiva=-
lence; (3) S5 nakes no assumptions about
o

adding program variables (as is made for example in
2n.

The plan of presentation is as follews. Ia
Section 2, the basic combinatorial deriniticns
used throughout the sequel are presented and the
combinatorial medels usad for representing coatrel
structures and data structures-are intrvoduzed. I

Section 3 the relation <4 is defined by neans
o

of graph embeddings., Tiis relation is viewed &s an
embedding in the data structure case and as a simu~
lation relation in the control strugture case.
Section &4 contains the main result for gati struc-
ture embeddings: that for certain structures

fIsomorphis:\ in this sense is taken to mean stric
computational equivalence; programs or proagran
schemes are isomorphic if for any interpretatica
of the computation, wa apply the same sequence ot
operations in the same order.-.

G, G*, 1if CS B,1 *, then B 2 0(log n) where n

is the number of components of G. This result will
also follow from our main theorem in Section 5, but
since the M = 1 condition can be uscd extensively
to simplify the relevant arpuments, it is instruc-
tive to coimpare the two proofs. The main theorem
in Section 5 generalizes the result in Section 4 by

allowing M 2 1. 1In this case, if GSB " G* for

certain natural choices of G,G* it must be that

B 4+ Log M 2 0(log n). A direct result of this
theorem is that certain schema constructions, such
as Engeler normal [5] form, cannot be achieved
Yuniformly"” with respect to the $p y Telation.

° 3

More exactly, for any B and M there is a goto pro-
gram G such that for no program H in Engeler nor-
mal form does GSB H hold. Thus, the construc-
WM
tion of Engeler normal forms - while always possi-
ble - does not preserve time and space in a
bounded way. This result also demonstrates how
our results vill be asymptotic in their nature.
For example, for any goto program G there and B
~and M such that GSB,M H where H is in Engeler

normal form; however, the values of B and M must
grow with the size of the program G. In Section 6,
. the main simulation results for control structures
are developed. The positive and negative results
vhicha ensue are responsible for the hierarchy of
control structures shown in Figure 1. In figure
X + Y means that for no B_and i does every G in
Jbave an H counterpart in Y such that GSB M H.
The ku result here is: '

]

goto + label exit .

The class of label exit programs includes many of
the standard constructs that are often allowed in
"structured" programs. Therefore, this result
states that there is a time-svace speedup between
goto programs and "structured' programs: there
are goto programs whose only '"structured” counter-
parts explode in either time or space. This result
‘geems to make precise the comments in Knuth {8] on
efficiency of goto and "structured" programs.
While the results contained in this paper
are motivated by our interest in the power of data
and control structures, it has not escaped our
‘attention that they may have interest purely as
':combinatorial results; they add for example, to
‘the scarce literature on graph embeddings.

computed goto
goto with d way branching (d 2 2)
label exits
do forever

{
while

Figure 1: Comparison.of Control Structures

2. The Combinatcsial Renvesentations

We will represent both control structures and

data structures by directed graphs. In the

control case, the nodes of a graph G represent
executable statements and the arcs possible flow
of control; in the data case the graph nodes of
the graph represent nemory locations and the arcs
successible elements. Thus, in either case, what
is to be modelled is the '"difficulty".of accessing
nodes: the complexity of a control structure is
given by the cost of accessing and sequencing nen-
control instructions, while the complexity of a
data structure is determined by the cost of
accessing successible data elements. Some care
must be exercised in viewing control structures
which are represented in this way; our representa-
tions do not always correspond to (temporal)
flow-of-control and are not to be looked at as
flowcharts. Rather, what is being modelled is the
potential control connectivity of an underlying
algoritum or process. Each class of control
structure or data structure will then be studied
in terms of restrictions on what graphs are
allowed in that representing class.

A directed graph G is an ordered pair (V,E)
of nodes and arcs. The usual graphic notaticn
will be used throughout. If there is an arc from
x toy and an arc from y to x, then we will say
there is an edge between x and y. Moreover,

X T
‘___/y
will be represented by
x y .

A path from x to y is defined by any sequence of

arcs from Xx, to x X, to x .. x to x
“ 70 1 1 2° "t Tpey n

. such that Xy = x and X =Y.

We define a metric dc(x v)
cn G as the number of arcs 1n the shortest such
path. A binary tree is as defined in Knuth [7)
HWote carefully that nodes in a binary tree are
connected by edees so that the metric is symme-
tric. The relations son and ancestor defined as
usual as is the function denth. It G is a binary
tree, then a node x of G is a lear of G if x has
no sons.

The two classes of data structure we will be
dealing with are arravs and ancestor trcées.

2.1 Avaus

G will denote the data structure correspon-

~ding to an n X n array, where n 2 1. If the

nodes of G are indexed by (i,j) where 1 s L s n

and 1< j S n, there is assumed to be an edge
between (i,j) and (i, jwl) and between (i,j) and
(i+1,3). Thus, G a is "rook connected." For in-

~stance? G3 is

(1,1) — (1,2) — (1,3)

@ — el —aly

oy —aly —oh
2.2 Anccstor Trces

Ancestor trees are binary trees with an addi-
tional feature: a node x of an ancestor tree nay

-be connected by an arc to any of its ancestors,

For example,

X

is an ancestor tree; y is both an ancestor and a
successor of x. Notice, however, that unlike a

binary tree, the graph metric dG is not necessari-

ly symmetric on ancestor trees. Ancestor trees
obviously include linear lists, circular lists,
binary trees, and threaded lists (cf. Perlis and
Thornton [12])) as special cases.

"We will consider the following five control
structures:

computed go to

po to with d-way branching
Jabelled exit

do forever

vhile .

In addition all of the available classes will have
access to a sequential flow-of-control and an al-
ternative (e.g., if-thcn-eise) flow of control.
However, since the constructions described below
do not involve schema manjpulation, the details of
-these features need not be made explicit. We will
now present the class of graphs which represent
prograns formed from each of the five control
structures.

2 3 Computed "ge to" Pxearams

GOUTO, programs are programs which allow
-arbitrary branching between statements. For in-
stance, we allow for representations of the
‘construct
goto i (L), «ovy Ln)

vhich branches to the jth label depending on the

value of i. Thus, this class of prograns is

represented by the entire class of directed graphs

with no restrictions at all., Intuitively, the
statement displayed above is represented by a node

. with n arcs leading to nodes labelled by

Ll’ ceny L :

.2.4 "go to" Ptoazams u&ih d- wau Branching

GOTO4 programs are programs in which the
-amount of branching that is possible in one step
:4s bounded by the integer d. For example, the
FORTRAN construct

IF (E) Ll' L2, L3

"falls in the class GOTO4. Programs with d-way
branching are represented by the class of directed
graphs with maximum out degree’ d.

TThe out degree of a node is
{y: 3 an arc from x to y}|

2.5 WhiLe, do {crcver, Label exit proaaans

In this section while, do forever, and label
exit programs will be defined. Each is defined as
a certain class of ancestor trees. In order to

* define these classes we need the following rela-

tions which are defined for any ancestor tree:
. x=»>y i1if y is the left immediate descen-
P dant of X.

2. x r if y is the right immediate
descendant of x.

3. x * y 1f y has an ancestor pointer
from x.
We view x + y as meaning that statement X can

Ypush" into a substructure with first statement vy,
while we view x pe y as meaning that statement x

4s “sequentially" followed by y. Finally, we view

x+y as meaning that statement x can "exit" somé

structure and return to statement y. By placing
restrictions on =+ , ; , and o e will obtain

the classes of progranms ahile, do forever, and
label exit.

A program is a vhile program provided it is
an ancestor tree that satisfies: y - x implies
Byl, ceer Yy such that a

X

A
"1\

s
4"

vhere N =Y is a leaf and no Yy for £ < k has an

ancestor pointer. The last restriction of course
reflects the fact that in a while loop only the
last statement is allowed to exit the loop.

. A program is a do forever program provided it
-is an ancestor tree that satisiies: y 7%

smplies 3y1, ceer Yy =Y such that

where each y; can only have ancestor pointers to

x. The key distinction between while programs and
do forever programs is that in a do forever pro-~
gram all statements ia a loop can chcntxally exit
immediately out of the looping structure. Cleariy,
do forever programs correspond to the BJ_ (n-2 1)
structures of Bohm and Jacopini [2]. !

Finally, a label cxit program is any program

)

that is also an ancestor tree. Esseatially label
cxit programs allow any jumping out of substruc-
tures as long as the return is always to ances-
tors. The class of label exit programs is there~
fore quite extensive and includes many types of
so-called "structured" prograss. For examnle, all
Jabel exit programs are reducible in the sense of
[6); morcover, they correspond essentially to
programs in Engeler normal form [5].

3. B, M Bounded Reductions.

The following definition is fundamental to
vhat follows. lLet G = (V,E) and G* = (V% EX)
be directed graphs with associated metrics dG’

dG*'
be reduced to G*) with time constant B and space
constant M,

Then we say that G* can sinulate G (or G can

*
G SB,MG
if there is a mapping (called an embedding)
©: V: - vV u {A} of the nodes of G* to the nodes
of G and a special node 'A', so that:

(1) Vv* e vx with &(v¢) 4 A

- Vv € V such that there is an arc
. from o(v*) tow

3w € V¥ such that O(w*) = w and

dc*(v*,w*) < B-dc(é(v*),w);

(2) VYvev

Iﬁ’l(v)[= [{vreve: ¢(vt) = vi| s M.

If ¢ is an embedding and ¢(v*) = A, then we will
sometimes refer to v# as a bookkeeping node. If
¢(vk) = v # A, then v* is said to be a coov of v,
. Condition (1) states that when G and G* are
reontrol structures (resp. data structures) simu-
" lation involves at most a B-fold increase in the
~cost of statement sequencing (resp. data element
accessing); i.e., the embedding induces at most a
-B-fold increase ir path length. Condition (2)
states that there are at most M copies of any

;v € V in G*. Note that although G SB qG* may
»

hold between data structures G and G when M > 1,
1t 1s unlikely that such a simulation would be of
ivalue (e.g., if an array is being stored as a
list structure with multiple copies of array ele-

- -ments, then selective updating of the array may
:involve rultiple updating of list nodes), In-
stead of G Sp 10% we will often write G SBG*.

»1

For control structures, however, simulations with
M > 1 are frequently used and are quite naturalj;
this is sometimes called “node splitting."

In the following sections we will investi-
gate uniform sinulations, sinulations in which B
and M can be bounded over a class of graphs.

4. Data Stuucture Embeddzngb

In this section we will present our main
result for data structures, settling negatively.
the question of whether arrays can be stored as
arbitrary lists with linear bounds on proximity,
This result generalizes a result of Rosenberg [14]

on whether an array can be stored in lincar memory
without unbounded loss of vroximity. However,
since the arguments are fundamentally different,
it is interesting to compare the two proors. Re-
call that Rosenberg's arguments are essentially
"volumetric:" a node in an array has at most

O(nz) neighbors within distance n, while a linear
list has at most O(n} neighbors within distance
n. A volumetric argurent then demonstrates that
arrays cannot be stored in a system with this
neighborhood structure without unbounded loss of
proximity. In contrast, these methods do not secem
to apply to our problems; e.g., a node in a binary
tree can have as many as 0(27) neighbors within
distance n. .

To obtain our result we will need a series of
lemmas. Llet G = (V,E) be a directed grapn with
associated metric dG and suppose A € V. We

define the "boundary" of A as

6(A) = {yea: IAx ¢ A s.t.
‘ dc(x,y) < 1)
In other woras §(A) dis the sct of vertices in A

but reachable from sowme node not in A by an arc of
c . ’

Lemma 4.1, Let Gn = (Vn.B) be an n-by-n array
and suppose th;t AC Vn is such that
|a] < n%/2. Then

Jal < 2fsm]? . E

Proof. Let A =< Al...An > be the columns of
A. Define k to be the nuzber of columns Ai with
lAil < n. Since |A] s n2/2 it follows that

(n - k)n £ n"/2; hence, k 2 n/2. There are two

cases.

I. No column has zero entries, i.e. for all i,
IA | > 0. In this case [A)] 2 k: each

i
column with at least 1 entry and less than
n - 1 entries contributes 1 to §(A). Thus,
26?2 n2/2 2 [a] .
II. Some column has zero entries, i.e. say

Ai | = 0. In this case,
°

L [swy] 2 mgx] .

In order to sec this let IAj! be maximum and
assume that io < 3 (the case j < io is simi-
lar). Select a row r. Then (r,io) has no entry,
but (r, 1,#1) or ... or (r,j) has an entry.

Thus, each row.r contributes at least 1 to the
8(A). Clearly, we can assume that]Ail <a for

all i; otherwise, the lerma is true. Now let
Tys eeey ¥, be the columns with 0 < |A1| < n.

Now as in case I,

2 |5 2k .

Putting (1) and (2) together yields,

-

(3) 2§6¢A)] 2 k + max .
: i

Wow ry + .o. + 1, = |A] and max r, > lAl/k. Thus,
1 k 1 3

(4) 218N 2 k + [A]/k.
It follows that IG(A)IZ 2 {Al. O

Lemma 4,2, Let Gn = (Vn,E) and suppose X,y € Vn;

then dc (x,y) S 2n.
n

Proo{. D

Lemnas 4 1 and 4.2 and the fact that IV | = n2
summarize the basic properties of arrays that will

be used in the proof of our main result.

Lemra 4.3,
}et To = (VO,EO) be a sub-tree of T. If x { Vo and
? eV - Vn, then dT(y,x) 2 depth of x in To'

Let T = (V,E) be an ancestor tree and

Proof. Since y ¢ Vs any path from y to x must
pass through the root of T,. O

Lemna 4.4, vLet T* = (VS,E*) be an ancestor tree;
let Té = (Vg,Eg) be a subtree of T#*; and let
A= 0V) - {A). Then 1 G s 1% and 1Al s n2/2,

1 ° -

; . 1Al < 228+1. ..

Proof. Assume that 15¢A)] > 25. Since the rcot

of T* has at most 2B descendants of depth less than

B + 1 there is a node x* ¢ V* of depth 2 B +)

in T* such that ¢ (x*) ¢ §(A). Since ¢(x*) € 8(A),

;here is a y ¢ A with dG (¥,%(x*))< 1. Now there
n

exists a y* such that ¢(y*) = y and dT*(y*,x*) < B.
Since y ¢ A it follows that y* ¢ V*
4 3, d *(y*,x*) B+1, which is a contradiction.
Therefpre, 16¢A)] < 2 and by Lemma 4.1,

2 < 22B+1. o

But by Lemma

1Al s 215y

Theorem 4.5, 1let T = (V*,E*) be an ancestor trece.
1f Gu SB T*, tlen B 2 0(log n).
H .
- Proof. Assume Gn $g T* and for any subtree
Tf = (v* E}) of T* let Ap = 2VH) - (A}, Let

Ti and T§ be subtrees of some node in T*, Either

IA |l sn /2 or !A | <n /2. since ¢ is 1-1. Using
this fact, we may assume that T* is of the form

e e e et e e aevm i e L b ~

T|'é+1/§T*

k

vhere IAil < n2/2 for 1 s i < k and we have
suppressed explicit representation of ancestral
links. - Without loss of generality we assume always
that the "smaller" subtree is on the right. By
Lemma 4.4, IA | < 22B 1 for all i.

Let i be the smallest integer such that A £0
and let j be the largest such integer. Then

J
1Al = T Al s (5-141)22B4,

g=1 "
Since Al = nz.

(3-1+1)228%1 , 2, ' Q)

Row, let x* ¢ V; and Y* ¢ V{.

d;(y*,x*).z J - 1. On the other hand, by Lemma

4.2 dc (¢(y*),6(x*)) s 2n; hence since Cn sp T,
n -

di*(y*,x*) < 2nB. Thus,

Then by Lemma 4.3,

3 -1 < 2B, o 2]

Combining (1) and (2) we have that
B + 1 2 Y2284,
It follows that B 2 €y lcg n + <y for constants

¢ €. O

- There are several ways to extend these results.
First notice the extension to generalized ancestor

trecs with bounded branching is straightforward.

_Extending the result to more general data structures
‘than arrays may also be interesting. Consider, for
"instance, the following restriction on the defini-

" tion of .array. Instead of edges between (1,3) and

(4,341) and (1,3) and (i+1,j), let there be an arc
directing (i,j) to(} J*1) and an arc directing
(1,3) to (1+1,3), reflecting, for example, a cormmon
accessing machanism, It can be shown that such
one-way arrays are S, embeddable in ancestor trees
(moreover, this embedding exists for any acyclic
graph) but at best SO(log n) embeddable in binary
trees,

.5. Main Theerom

- Observe that the proof of Theorem 4.5 uses the M = 1

hypothesis at several key points. Since this

gestriction would be unrealistic in dealing with

control structures, we will now remove it by

generalizing the previous result.

Theonem 5.1. Let T* = (V%,EX) be an ancestor tree
% —by-

and let Gn SB,M T* where Gn is an n-by-n array.

Then)

B+ logM=2logn+ 0(1). .

Pnoog. Let ¢ be the embedding function and define

another function ¥ with domain subsets of V* by
y(ar) = ¢(a%) - {A).

As in Theorem 4.5 we will decompose T* as follows.

lLet xi be the root of T* and write T* as

x¥

1
Li(/ \ki

vhere'wé may assume]?(Li)l < lY(Ri)I without loss
of generality. Clearly, this process may be
fterated, letting x§+l denote the root of Ri and
expanding Ri at each stage of the construction.

Thus, T* can be written in the form

{/xﬁ\ :
! % .
[LN
3
Lg Ax3\
AN
*
75N
f Rk
k [3

" whore 1¥@N| s I¥@®H| for 151 5 k. Notice

that we have ignored all ancestral links in this

construction. Instead, we shall assume all such

" 3inks exist but suppress explicit reference to

them. ’
Let Ti = (Vi,E;) denote the subtreé

*
g/xi
1

snd define T{ to be small 4f IY(VPI n2/4;

othervise T; is large. Define

B= U Toy(vE) .
1<i<k
Ti small

(This notion of small is motivated by the key to
the argument in Theorem 4.5.))

Lemma 5.9, For some k, n’/k s IB | nZ/2.

Proof. Clearly by convention IBOI = 0. If

B, < n2/4 and 18,1 2 n2/4, then

B = B U YOP

wvhere T§~is small, so that
2 2 c 2
* =
1B, | < lnk_ll + YOV < n /4 + n/4 = n®/2.

Thus, we need only show that IBkl 2 n2/4 for some k.
Assume, to the contrary, that IBkI < n2/4 for
all k. Since lW(Li)I < l?(Ri)l and

y(r%) = ¥ v (YGpY v YRD,
it follows that

n? = leanl € APl + 1+ PERPI
s 2lYRPI + 15

vhence, l?(Ri)liz (n2—1)12 2 n2/4. (Assume n 2 2.)
By taking k sufficiently large, we may assume that
IY(RE)I = 0. Let i be the largest integer such
that 19(R})| 2 n’/4: since [¥RDI = n?/4, 1 nust
exist. Then IV(RE)I < n2/4 for 1 < j s k and,

since

Y(Tg) - w(Lg) u (V(x})}.

ve have
wu?151+wap|s14wm?|<1+3m.
Thus, Tg is small for 4 < 3 s k. But this implies
Y(Ri) € v Y(V¥) ¢ Bk

J<isk ¢
so that n2/4 < lY(R;)I s IBkl, which is a

contradiction. O

We next nced a variant of the concept of
boundary. 1f A is a set of nodes of Gn' then

define the adjacent boundary of A, 3(A), by

T(A) = {y ¢ A | there exists x € A:

(X.Y) = 1}.

dG
n

In other words, E(A) i{s the set of nodes not in A

- reachable from some node in A in 1 step.

Lerma 5.3. Let A be a set of nodes of Cn with
lal < n2/2. Then

1Al s 203w 12.

Proof. The proof of this result is similar to that
of lemma 4.1 and is omitted. 0

Let k satisfy Lemma 5.2. By Lemma 5.3,

HEN RV 18,12 2 n/2/2.

_ Now let & = HT} | T% is large}l. Since at most M

coples of any node in Gn appear in 1%,

I 1Y@ s Mol
1535k
T; large

I3 vnzll‘s

.

JBence £ < AM.

In order to complete the proof our plan is as
follows: We have already shown that lg(Bk)l 2
n/2Y2; we next will show that this implies that
there are an untounded number of paths into fhe
large trees T; from the small trces; however,
this is impossible. In order to carry out this
plan let
§* = {V* | there exists large T},

) there exists small Tg,

" there exists y* € Vi

j’
such that dT*(x*,y*) < B}.

- there exists x* ¢ V

We will now define a 1-1 mapping g from E(Bk) to

S*. Select some y € E(Bk)‘ Then for some x € B

k’
dc (x,v) s1land y ¢ B . Let x* be a copy of x in
n .

some small T;. Such a copy exists because

B, = U Y(VH).

k i<isk i
T; small
Since C_ < T*, there is a copy of y* of y such
n B,M

that dT*(x*,y*) < B. Now y* is not in any small
Tg, for y ¢ B, . Thus we can define g(y) = y* and
¢ is indeed a mapping from E(Bk) to S*. In order
to see that g is 1-1 we note that for any

'y € 8(B)),

tg(y) = e(y*) = y;
hence, g is 1-1.

Finally, since h is 1-1, '3(Bk)’ s Is*l. But
it follows that |S*| < ¢ - ZB, and n/2/2 s AMZB;
hence, B + log M 2 log n + 0Q1). O

As an application of Theorem 5.1 we present
the following result. Say a goto program G has an

B,M Engeler normal form if G < H for some H as

B,M
an ancestor tree.

. CornolLlary 5.?. (1) 1If G, has a B,M Engeler normal
form and B is fixed, then M = 0(n). (2) If G, has
& B,M Engeler nornal form and'M is fixed, then

B 2 0QQog n). Thus in worst case either time or
space must be unbounded in the construction of

Engeler normal forms.

An open but interesting question is what other

echema constructions can be shown, as in Corollary

S.Qﬁ to be unbounded in time and space?

6. Contrnol Sthructures

In this section, we state our main results for
control sfrpctures using the relation SB,M‘ in
particular, we will establish the hierarchy of
figure 1. If X and Y are classes of control
structures recall that X - Y provided for no B and
M and all G € X does there exist an H € Y such that
G SB,M He Y # X we will write X > Y. It is, of
course, the results of the form X + Y that have the
greatest novelty; the reader will notice that in
contrast to previous results, the negative results

here lie intermediate to

). functional simulation: programs are functionally
equivalent when they compute identical outputs
for the same input

2. isomorphism or computational simulation: progranms
are computationally equivalent Qhen the .

sequences of actions invoked are identical.

Only-en indication is given for the proofs.
For any directed graph G let

. . -
an(ﬁ.x) =fy | y+ x in < & steps}]

Ngut(l.x) =y | x 2y in s £ steps)]

The key to the following proofs is:
Lemma 6.1, Suppose that G <
s el B,M
1) Nﬁut(t,x) < Ngut(Bl,x*) for any x* copy of x.

H. Then

G o M
2) Nin(B,X) < .l-Ni“(l.x*) for some copy x* of x.

Theorem 6.2. The following are true:
1) Cocow + Gotoy for any d.

2) Gotod
3) Label exit - do forever.

=+ label exit.

" 4) do forever -+ while.

Proof Outline.

1) This follows from Lemma 6.1 part (1).

2) This is essentially theorem 5.1.

3) This follows by a careful analysis of both in
and out degrece of do forever's.

4) This fbllows from Lemma 6.1 part (2) since in
degree of whiles is bounded and it is not in

do forever. [

References

l. E. Ashcroft and Z. Manna. The translation of
“goto" programs to "while" programs. Proc. IFLP

Congress 1971, 250-255. . -

" C. Bohm and G. Jacopini. Flow-diagrams, Turing

machines, and lanpuages with only two formation
rules. CACM 9:306-371, May 1966.

J. Bruno and K. Stieglitz. 7The expression of
algorithms by charts. JACM 517-525, 1972.

0.-J. Dahl et al. Structured Programming.

E. Engeler. Structure and meanings of elementary
programs. Symposium on Semantics of Algorithm

- Languages, 1971.

10.
11.

12,

13.

1.

M. S. Hecht and J. D. Ullman. Characterizations
of reducible flowgraphs. JACM 21, 1974,

D. E. Knuth. Fundamental Algorithms, The Art of
Computer Programming Volume I. 1968.

D. E. Knuth. Structured programming with "goto"
statements. Stanford Report €S-74-416.

D. E. Knuth and R. W. Floyd. Notes on avoiding
"goto" statements. IPL Volume 1, 1971.

S. R. Kosaraju. Analysis of structured"
programs. Proceedings of the Fifth Annual ACM
Symposium on Theory of Computing, 1973.

R. J. Lipton. Limitations of synchronization
primitives. Yale Computer Science Research.
Report #31. 1974,

A. J. Perlis and C. Thornton. Threaded trees.
CACM 3, 1960.

W. w{ Peterson et al. On the capabilities of
vhile, repcat, and exit statements. CACM 16,
1973, .

A. L. Rosenberg. Preserving proximity in
arrays. 1BM Report RC-4875, 1974.

.

