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Abstract

Control structures and data structures are modelled by directed graphs. In the control
case, nodes represent executable statements and arcs represent possible flow of control;
in the data case, nodes represent memory locations and arcs represent logical adjacencies

in the data structure. Classes of graphs are compared by a relation SS T where
4

<
G s,T H

if G can be embedded in H with at most a T-fold increase in distance between embedded
nodes by making at most S "copies" of any node in G. For both control structures and data
structures, S and T are interpreted as space and time constants respectively. Results are
presented that establish hierarchies with respect to SS,T for (1) data structures, (2)

sequential program schemata normal forms, and (3) sequential control structures.

Key Words and Phrases: ancestor tree, bounded simulation, complexity, control structure,

data structure, directed graph, do forever program, embedding, goto program, label exit
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1. Introduction

The running time or computational complexity of a sequential process is usually estimated
by summing weights attached to the basic operations from which the process is derived. In
practice, however, the complexity of a program is often limited by how efficiently it can
access its data structures and control prograﬁ flow. Furthermore, it has been extensively
argued [4] that certain limitations on the process sequencing mechanisms available to the
programmer result in more "efficient" representations for the underlying processes. In
this paper we will examine these issueé in an attempt to assess the "power" of various

data and control structures.

A key observation about sequential processes is that they usually do not reference
their data randomly. For instance, algorithms that organize their data structures as
arrays often access the array elements in a "local" manner (e.g. the conventional matrix
multiplication algorithm accesses its arrays by rows and columns) . Thus, in a paging
environment, how one stores an array is especially important (cf. Moler [13], Rosenberg
[16]), and it is natural to investigate how arrays can be stored so that elements "near"
one another in the array are stored near one another in memory. Data structures are
compared‘by the relation Sl,T: For data structures G and G*, G Sl,T G* if G can be
embedded in G* so that there is at most a T-fold increase in distance between embedded
objects.

Tt is somewhat unexpected that an analogous study for control structures uses the
same basic insights. It is well known that process sequencing disciplines found in
programming practice (e.g. goto, while) can simulate each other and are thus equivalent in
the sense of yielding functionally equivalent programs, but are inequivalent relative to
the stronger requirement of structural isomorphism [1,2,3,10,11]. We argue that the
fundamental issue is neither the construction of functionally equivalent programs nor the
inability to preserve structure exactly, but rather the "naturalness" of the simulation.

Control structures are compared by the relation SS o For algorithms G and G* with
r



distinct process sequencing mechanisms, G SS,T G* if G* simulates G by making at most S
copies of each operation in G and increasing the cost of sequential access of embedded
operations by a factor of at most T.

Thus, comparing the power of data structures and control structures involves
analyzing the one-one and many-one aspects of reduction (or simulation) techniques whose
efficiency is bounded by S and T. In a natﬁral way, the relation SS,T represents an
intertwining of space and time complexities.

The plan of presentation is as follows. In Section 2, the basic combinatorial

definitions used throughout the sequel are presented, and the combinatorial models used

for representing data structures and control structures are introduced. In Section 3, the

relation g is defined by means of graph embeddings. This relation is viewed as an

14
embedding in the data structure case and as a simulation relation in the control structure
case. Section 4 contains the main result for data structure embeddings: that for certain

s * . *
families of structures {Gi}izo and {Gi}izo' if Gi Sl,T Gi’ then

1.

T > c. log ni

for some positive constant c whose choice is independent of n,, the number of nodes

of G,.
i

The main theorem in Section 5 generalizes the result in Section 4 by allowing

S 2 1. 1In this case, if Gi < G{ for certain natural choices of {Gi}i> and {GI}

s,T 0 ix0’

then

T + log S 2 ¢+ log n,

where ng is the number of nodes of Gi and ¢ is a positive constant independent of-ni.

A direct result of this theorem is that certain schema constructions, such as Engeler

Tt When we establish results of this form, we are asserting that there is a minimal rate of
growth for T as a function of nj. In the sequel we will consistently abuse our notation
by writing £(S,T) 2= g(n) instead of the less convenient £(S(n),T(n)) > g(n). It will
usually be clear from context when S,T are to be considered constants and when S,T
are parameterized.

{
i
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normal form [6], cannot be achieved "uniformly" with respect to the SS,T relation. More
exactly, for any constants S and T there is a goto program G such that for no program H in
Engeler normal form is G SS,T H. Thus, the construction of Engeler normal forms -- while
always possible -- does not preserve time and space in a bounded way. This result also
demonstrates how our results will be asymptotic in their nature: For any goto program G
there are S and T such that G £S,T H where H is the Engeler normal form; however, the
values of S and T must grow with the size of the program G.

In Section 6, the relation SS,T is placed in the context of relations used in
previous studies of control structure simulation. The main simulation results for control
structures are then developed, giving rise to the hierarchy of control structures shown in
Figure 1. An important result is that goto programs are strictly more powerful than label
exit programs. Since the class of label exit programs includes many of the standard
constructs that are allowed in "structured" programs, this result can be viewed as a
precise sense in which there is a time-space speedup between goto programs and "structured"
programs: There are goto programs whose only "structured" counterparts explode in either
time or space. This result seems to make precise the comments of Knuth [9] on the
efficiency of goto and "structured" programs.

While the results in this paper are motivated by our interest in the power of data

and control structures, they may have interest purely as combinatorial results.




2. The Combinatorial Representations

A directed graph G is an ordered pair (V,E) of nodes and arcs. If there is an arc from x
to y and an arc from y to x, then we will say there is an edge between x and y. Moreover,
the arcs shown in Figure 2a will be represented as in Figure 2b. A path from x to y is
defined by any sequence of arcs from x = X, to x, to x, to ... to x =Y. We define the
metric dG(x,y) on G as the number of arcs in a minimal length path from x to y.

A binary tree is a directed graph that either is a single node or consists
of a root x and an edge between x and the root of each of two binary trees called the left
and right subtrees of the root (cf. Knuth [8]). Note that nodes in a binary tree are
connected by edges so that the metric is symmetric. If G is a binary tree, then a node x
of G is a leaf of G if x has no sons.

We will represent both control structures and data structures by directed graphs.
In ths control case, the nodes of a graph G represent executable statements and the arcs
represent possible flow of control; in the data case, the nodes of the graph represent
memory locations and the arcs, logical adjacencies in the data structure. Thus, in either
case, what is to be modelled is the "difficulty" of accessing nodes: The complexity of a
control structuref is given by the cost of accessing and sequencing non-control
instructions, while the complexity of a data structure is determined by the cost of
accessing successive data elements. Each class of control structure or data structure
will then be studied in terms of restrictions on what graphs are allowed in that

representing class.

+ Some care must be exercised in viewing control structures that are represented in this
way; our representations do not always correspond to (temporal) flow of control and are
not to be looked at as flowcharts. Rather, what is being modelled is the potential
control connectivity of an underlying algorithm or process.
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2.1. Data Structures

The two classes of data structure we will be dealing with are arrays and ancestor trees.

Arrays: Gn will denote the data structure corresponding to an nxn array. If the nodes of
Gn are indexed by (i,j) where 1<i<n and 1< j<n, then there is an edge between (i,3) and

is

(i,3j+1) and between (i,j) and (i+1,j). Thus Gn is "rook connected." For instance, G3

illustrated in Figure 3.

Ancestor Trees: Ancestor trees are binary trees with an additionail feature: A node x of

an ancestor tree may be connected by an arc to any of its ancestors. For example, the
graph shown in Figure 4 is an ancestor tree because y is both an ancestor and a successor
of x. Notice, however, that unlike metrics on binary trees, the graph metric dG is not
necessarily symmetric on ancestor trees. Ancestor trees include linear lists, circular

lists, and threaded lists [14] as special cases.

2.2. Control Structures

We will consider the following five classes of control structures:

computed goto

goto with d-way branching
label exit

do forever

while.
A

In addition, all of the available classes will have access to a sequential flow of control
and an alternative (e.g. if-then-else) flow of control. Since the constructions described

below do not involve schema manipulation, the details of these features need not be made




explicit. Indeed, there are a number of ways to represent these features in our model,
and our later results are invariant under the differing representations. We will now

present the class of graphs that represent programs formed from each of the five control

structures.

Computed goto Programs: gotow programs are programs that allow arbitrary branching

between statements. For instance, we allow for representations of the construct
goto i (Ll,...,Ln),

which branches to the ith label depending on the value of i. Thus, this class of programs

is represented by the entire class of directed graphs. The construct above is represented

by the graph of Figure 5: a node with n arcs leading to nodes labelled by Ll""'Ln'

goto Programs with d-way Branching: gotod programs are programs in which the amount of
branching that is possible in one step is bounded by the integer d. For example, the

FORTRAN construct

L

IF (E) Ll' L2, 3

falls in the class goto3. Programs with d-way branching are represented by the class of

directed graphs With maximum out-degree d.f

Label exit, do forever, and wi:ile Programs: Label exit, do forever, and while programs
are defined as certain classes of ancestor trees. In order to define these classes, we

need the following relations, which are defined for any ancestor tree:

b4 ; y if y is the left son of x.

X2y if y is the right son of x.

+ The out-degree of a node x is |{y: a, (x,y) = 1}.
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X ; y if y has an ancestor pointer from x.

We view x g y as meaning that statement x can "push" into a substructure with first
statement y; x g y as meaning that statement x is "sequentially" followed by y; and
xZyas meaning that statement x can "exit" some structure and return to statement y.

A program is a while program provided it is an ancestor tree that satisfies:
yZx implies & Yyreeor¥y such that x ; ¥y g e ; Y =Y where y is a leaf and no Yi
for i<k has an ancestor pointer. (See Figure 6a.) The last restriction reflects the
fact that only the last statement in a while loop is allowed to exit the loop.

A program is a do forever program provided it is an ancestor tree that satisfies:

y g x implies Yyreer¥y =Y such that x g Yy g e g Yy where each y; can have
ancestor pointers only to X. (See Figure 6b.) The key distinction between while programs
and do forever programs is that, in a do forever program, all statements in a loop can
potentially exit immediately out of the looping structure. Clearly, do forever programs
correspond to the Qn (n>1) structures of Bdhm and Jacopini [2].

A label exit program is any program that is also an ancestor tree. Essentially
label exit programs allow any jumping out of substructures as long as the return is always
to an ancestor. The class of label exit programs is, therefore, quite extensive and
includes many types of "structured" programs (cf. Peterson et al. [15]). For example, all

label exit programs are reducible in the sense of [7]; moreover, they correspond to

programs in Engeler normal form [6].

Example: The following program contains label gxit, do forever, and while control

structures; its representation using the conventions outlined above is shown in Figure 7.




L: Sl;

while B, do

1
begin Sz;

do forever

begin S, exit L

do forever begin s4; exit; 85 end;
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3. S,T Bounded Reductions

The following definition is fundamental to what follows. Let G = (V,E) and G* = (V*,E¥%)
be directed graphs with associated metrics dG and dG*' We say that G* can simulate G (or

G can be reduced to G*) with space constant S and time constant T, written

< %*
¢ "s,'rG !

if there is a mapping (called an embedding) ¢: V* > Vu {A} of the nodes of G* to the nodes

of G and a special node A, so that:

1) Yy* ¢ V* with &(v*) =z A
¥w ¢ V such that dG(<I>(v*),w) < o
Hw* ¢ V* such that ¢®(w*) = w and dG(v*,w*) < T-dG(Q(v*),W);

2) WveV, 0< [0 ()| = |[{vkeV*: o(v¥) = v}| < s.

If ¢ is an embedding and ®(v*) = A, then we will refer to v* as a bookkeeping node. If
d(v*) = v 2 A, then v* is said to be a copy of v. If S = 1, we will often write ST
instead of Sl,T'

Condition (1) states that when G and G* are control structures (or data structures)
simulation involves at most a T-fold increase in the cost of statement sequencing (or data
element accessing); i.e. the embedding induces at most a T-fold increase in path length.
Condition (2) states that there are at most S copies of any veV in G*. Note that,
although G SS,T G* may hold between data structures G and G* when S > 1, it is unlikely
that such a simulation would be of value (e.g. if an array is being stored as a list
structure with multiple copies of array elements, then selective updating of the array may
involve multiple updating of list nodes). For control structures, however, simulations

with S > 1 are frequently used and are quite natural; this is sometimes called node

splitting.

Example: Consider the flow diagrams shown in Figure 8. Figure 8b is the result of
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applying a standard "restructuring" algorithm [1] to 8a to remove the multiple exit loop
x3,x4,x5. Viewing both diagrams as directed graphs, the graph in 8b is a 2,2 simulation

of 8a by defining ¢ as follows:

e (x}) = Xy

@(xé) = x,

@(xg) = @(x;) = @(xio) = A
o(xy) = o(xg) = x,

o(xz) = o(x3) = X,

Q(Xg) = Xg

@(xil = X

* = * =
<I>(x12) <I>(x13) X,

Q(Xi4) = ¢(x15) =X

]
L]

®(x1g)
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4. Data Structure Embeddings

In this section we will present our main result for data structures, settling negatively
the question whether arrays can be stored as arbitrary lists with linear bounds on
proximity and determining a nontrivial lower bound on the growth rate of T as a function
of n for an nxn array. This result generalizes a result of Rosenberg's [16] showing that
arrays cannot be stored in linear memory with only bounded loss of proximity. But since
the arguments are fundamentally different, it is interesting to compare the two proofs.
Recall that Rosenberg's arguments are essentially "volumetric": The number of neighbors
within distance n of a node in an array can be quadratic in n, while a node in a linear
list can have at most 2n such neighbors. A volumetric argument then demonstrates that
arrays cannot be stored in a system with such linear neighborhood structure with only
bounded loss of proximity. In contrast, these methods do not seem to apply to our
problems; e.g. a node in a binary tree can have more than 2" neighbors within distance n.
To obtain our result we need a series of lemmas. Let G = (V,E) be a directed

graph with associated metric dG and suppose A € V. We define the boundary of A as follows:
9(a) = {yeA: Tx¢A such that dG(x,y) = 1}.

In other words, 3(A) is the set of nodes in A reachable from some node not in A by an arc

of G.

Lemma 4.1: Let Gn = (Vn,E) be an nxn array and suppose that A < Vn is such that

2
lal < %r. Then

2
|al < 2la@)“.
Proof: We assume |A| > 0, since otherwise the lemma is trivially true, and let Ajseea iR

be the columns of A; that is, if {(1,i),(2,i),...,(n,i)} is the ith column of G ,then A,

is that subset of the column that is included in A. Let k be the number of columns Ai
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such that lAiI < n, and let 2 < k be the number of columns A with 0 < IAiI < n. Since

2 2
la] < %r, it follows that (n-k)n < %r and hence

n
k 2 > (1)

Notice that if 0 < IAil < n then at least one node in Ai is adjacent to a node not in A

and thus contributes at least one node to 3(A); therefore

[3(a)| = 2. (2)
Suppose that IAi | = 0 for some io, ].Si0 <n. We then claim
0
[3(a)]| = max [A,]. (3)
i J

To show this, let Aj be maximal in size and assume i0 < j, the case j < i0 being handled
symmetrically. Select any row r of Gn such that (r,j)e;Aj. Now, (r,io) ¢ A by assumption,
but some one or more of (r,io+1),...,(r,j) is in A. Therefore, each row r of Gn for which
(r,3) ¢ Aj contributes at least one node to 3(A), which establishes (3).

To complete the proof of the lemma we consider two cases.
I. No Ai is empty. In this case, £ = k and, by combining (1) and (2),

2
219) 1% = 202 = %2 > 2> |al.

II. Some Ai is empty. Let Cyree-uCp denote the cardinality of the nonempty columns Aj.
If some cp = n, then the result follows directly from (2). If not, then m = % and

c1+...+cm = |A|, so that

|a]
A‘ 2 —_—
majx [a. | 2

By (2) and (3) it follows that

205(a)] = & + %.

The lemma is now immediate by calculation. gd
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Lemma 4.2: Let Gn = (Vn’E) and suppose x,ern; then dG (x,y) £ 2n.
n

Proof: This is an elementary property of arrays. [J

Lemmas 4.1 and 4.2 and the fact that Ian = vn2 summarize the basic properties of

arrays that will be used in the proof of our main result.

Lemma 4.3: Let H = (V,E) be an ancestor tree and let H = (VO,EO) be a subtree of H. If

0

erO and y € V-V_, then

dH(y,x) 2 depth of x in Ho.

Proof: Since y#¢ VO’ any path from y to x must pass through the root of T 0

0

Lemma 4.4: Let H* = (V*,E*) be an ancestor tree; let H* = (VS‘,ES) be a subtree of H*;

0
n2
= *) — < * —
and let A <I>(V0) {A}. If G Sp H* and |A| < 5 then

T > 2(log |al-1);
in other words,

|a] < 22T+l.

Proof: Assume that [3(A)]| > 2T. Since the root of H* has at most 2° descendants of

0
depth less than T+1, there is a node x* ¢ VS of depth > T+l in Ha such that ®(x*) ¢ 3(4).
Then there is a ern-A with dG (y,8(x*)) < 1. By the definition of ST’ there exists a

n

y* such that ¢(y*) = y and dT* (y*,x*) < T. Since y#A it follows that y* éva. But by

Lemma 4.3, dH* (y*,x*) 2 T+1, which is a contradiction. Therefore, |3(A)| < 2T and by

+
Lemma 4.1 |A| < 2|8(A)|2 < 22T l. ]

2
Theorem 4.5: Let H* = (V*,E*) be an ancestor tree. If G_ < H*, then T 2 = log n-3.
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. < * * = (Uk . F* * = *) -
Proof: Assume Gn r B and for any subtree Hi (Vi’Ei) of H* let Ai @(Vi) {A}. Let

2 2

HI and H; be subtrees of some node in H*. Either lAlI < %;-or |A2| < %{y since ¢ is 1-1.

2
Using this fact, we may assume that H* is of the form shown in Figure 9, where IAiI < %;

for 1<i<k. (We have suppressed explicit representation of ancestral links.) Without

loss of generality we assume always that the "smaller" subtree is on the right. By Lemma

4.4, Ial < 22T+ or a1z i

Let i be the smallest integer such that IAiI # 0, and let j be the largest such

integer. Then

3

Tola | < (5-i+1)22TH
g=i
Since |V_| = n2,
n
(§-i+1) 22T+ 5 2, (1)

Now let x* eVSf and y* EV{. Then by Lemma 4.3,
dH*(y*,x*) > j-i.
On the other hand, by Lemma 4.2,

dG (2(y*),0(x*)) < 2n;
n

hence, since Gn ST H*, dH*(y*,x*) < 2nT. Thus I

j=i < 2nT. (2)

Combining (1) and (2) we have it that

2

n
> —
2nT+1 2 22T+l'

It follows that
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5. Main Theorem

Observe that the S = 1 hypothesis was used at several key points in the proof of Theorem
4.5. Since this restriction is unrealistic in dealing with control structures, we will

now remove it by generalizing the previous result.

Theorem 5.1: Let H* = (V*,E*) be an ancestor tree and assume that Gn < H*, where Gn

s,T
is an nxn array. Then

T+ log S =2 log n- log 8v2.

Proof: Let @ be the embedding function and define a new function Y mapping subsets of V*

to subsets of V by
Y (a*) = & (a*) - {A}.

In other words, W(A*) contains those nodes of V of which copies exist in A%*.

.As in Theorem 4.5 we decompose H* as follows. Let xi be the root of H* and write
H* as in Figure 1l0a, where we may assume lW(Li)IS IW(Ri)I without loss of generality.
Clearly, this process can be repeated, letting x;+l denote the root of R; and expanding
R; at each stage of the construction. Thus, H* can be written as in Figure 10b, where
IW(L;)I < IW(Ri)l for 1<i<k. Notice that we have ignored all ancestral links in this
construction. Indeed, we shall assume that all such links exist but suppress explicit
reference to them.

Let H; = (V;,E;) denote the subtree of Figure 10c. We shall say that H; is sma;l

2

if IW(V;)I < %r7 otherwise H; is large. (The notion of smallness is notivated by the key

to the argument in Theorem 4.5.) Let

D = U ¥ (V*).
k 1<i<k *
HY small

In other words, Dk is the set of nodes in V of which copies exist in some small H;.
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2 2
n n
Lemma 5.2: For some p, e < lDPI < 5
n2 n2
. i = L > B = *
Proof: By convention IDOI 0. 1If IDP_ll < and IDPI 2 v then Dp Dp_ltJW(vP),
where H; is small, so that
2 2 2

n n n
< * —_—— = =,
|Dp[ IDp_1|+ |'¥(vp)| <TYI >

2
n_

4
Since IW(Li)I < IW(Ri)I and Y(V*) = ?(Li)l}{?(xi)}LJ?(RI), it follows that

Thus we need show only that IDPI > for some p.

n? = |y(vr)| < W@ |+ 1+ [¥RO | < 21¥ R0 | +1;

hence
n2-l n2
* Piniiiy
|‘l’(Rl)| 2 5= 2
We can obviously choose p so large that IY(R;)I = 0. We claim that the associated DP is
large.
n2 n?
Let i be the largest integer such that I‘P(R;)I 2 o Since I‘Y(Ri)l 2 < such an
n2
i must exist. Then IW(R;)I < 7I'f°r i<j<p and, since T(V;) = Y(Lg) U{W(xg)}, we have
n2
Y(V¥)| < 1+ |¥(L*)]| < 1+ |¥Y(R* < 1+—
¥ | v | ¥R | L
Thus, H; is small for i< j<p. But this implies
* *
(I)(Ri) c U Y(Vv*) < Dp.
i<j<p
n2
By our choice of i, however, we conclude that IDPI > IQ(R;)I 2 establishing our

claim. 0

We now introduce a variant of the concept of boundary. If A is a set of nodes of

Gn,then the coboundary of A is defined by

3(d) = {y#A: there exists x¢A such that dG (x,y) =1} = B(Vn-A).
n

In other words, S(A) is the set of nodes not in A reachable from some node in A in one
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step. The proof of the following result is similar to that of Lemma 4.1 and is omitted.

2
Lemma 5.3: Let A be a set of nodes of G, with |A] < %;; Then |A| < 2|3(A)|2.

Let k satisfy Lemma 5.2. By Lemma 5.3,

|D |1I n

13(,)| =
k k 2/5

1
V2
Now let

= *. H* i
2 I{Hi. HY is largel|,

the number of large subtrees. Since at most S copies of any node in Gn appear in H*,

i’“fl‘— < 5 lvn | < sn2.
1<i<k
H{ large

Hence ¢ < 4S.

In order to complete the proof our plan is as follows: We have already shown that

[3(D)] 2 ——;
k 2v2

we will show next that this implies that there are too many paths into the large trees
H; from the small trees for S and T to be bounded.
Let
QT = {v*e Vi: H; is large and there exist Hg small and x*(svg such that

dH*(x*,v*) < T},

In other words, Q_ is the set of nodes in large subtrees H{ that can be reached from some

T

node in some small subtree H; in at most T steps. We define a 1-1 mapping g from S(Dk)

into QT as follows. Select some ye¢ S(Dk)' Then y;éDk and, for some xe¢D, , dG (x,y) < 1.
n

Let x* be a copy of x in some small H:. Such a copy exists by the definition of Dk'

-

Since Gn H*, there is a copy y* of y such that dH*(x*,y*) < T. Now y* is not in

<
S,T

any small Hg since y#D,. Thus we can define g(y) = y* and g is indeed a mapping from
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S(Dk) to QT. In order to see that g is 1-1, we note that for any y e g(Dk),

®g(y) = ®(y*) = y; hence, g is 1-1, so that IQTI > |§(Dk)l.

Thus we have, on the one hand, that

lo.l 2 13| > =
T k 23
and, on the other hand, that
IQTI < I{H;: HY is largel}| * |{v*: v*¢ large H¥ within depth T of the root
*
of Hi}l
< ge2T
< as.27T,

Combining the upper and lower bounds on IQTI, we deduce that

T+1logS 2 logn-log8/2. [J

As an application of Theorem 5.1, we present the following result. Informally, a
flowchart is said to be in Engeler normal form if it is represented by a tree augmented
by pointers from nodes to ancestors, or nodes at an earlier level but along the same
branch. More precisely, a goto program G has an S,T Engeler normal form if G < H for

s,T

some ancestor tree H.

Corollary 5.4:
1) If Gn has an S,T Engeler normal form and T is fixed, then S 2 c°n.

2) If Gn has an S,T Engeler normal form and S is fixed, then T > ¢ * logn.

Thus, in the worst case, either time or space must be unbounded in the construction of

Engeler normal forms.
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6. Control Structures

In this section we establish our main results for control structures, using the relation
SS,T' (See Figure l.) For classes X and Y of control structures (i.e. classes of graph
representations of programs constructed using only the indicated restricted class of
control structures), we say that X is more powerful than Y (X > Y) where there exist
S',T' such that

(1) for all He Y there exists Ge X such that H SS' ) G
’

but for no constants S,T is it true that

(2) for all Ge X there exists He Y such that G SS T H.
’

Since, for the hierarchy of Figure 1, if X is more powerful than Y, then the control
structures in Y are restrictions of the control structures in X, condition (1) is
trivially satisfied with S' = T' = 1. It is of course results that establish condition
(2) that have the greatest novelty.

To place our results in historical perspective, we follow Ledgard and Marcottyk

[12] in distinguishing the following extremes in simulations among control structures:

1) G is functionally simulated by H (written G Sf H) if, under identical
interpretations, G and H compute the same function.

2) G is very strongly simulated by H (written G Svs H) if G Sl,l H and'if % is an
embedding inducing Sl,l’ then the domain of & and the range of & are identical sets.

In [2] it is shown that for an arbitrary goto program G there exists a while program H

such that G Sf H, while in [10] it is shown that for some goto program G there does not

exist a while program H such that G Svs H. Several other notions of simulation

intermediate to Sf and Svs have also been used to study the relative power of classes of

control structures [1,3,11,15].

The connection between our relation SS o and these relations is:
’
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ss T is weaker than Svs since we allow both space and time to increase and do not
4

require ¢ to have identical range and domain;

2) <

s, T is stronger than Sf since we require that paths be preserved in a weak sense;
’

3) SS T deals only with combinatorial aspects of program structure and thus we make no
’

assumptions about adding program variables or extra predicates (as were made for

example in [1,2,11]).

We thus claim that the hierarchy theorems presented in this section span the

relations used in previous studies.

Lemma 6.

l) For

2) For

left to

Theorem

We will make use of the following definitions. For any directed graph G, let

G .
N, (Rex) = [{y: d.(y,x) < L}
N w,x) = I{y: a.x,y) < 2}].
out ' G’
1l: Suppose that G SS T G* and let X be a node in G. Then
r
any copy x* of x NG (2,x) < NG* (TL,x*);
" Tout "' T Tout ! !

G G
* < S- *).
some copy x* of x, Nin(l,x) <Ss Nin(T,x )

The proofs of both (1) and (2) follow easily from the definition of SS T and are
’

the reader.

6.2: do forever > while.

Proof: Let S,T be such that for all do forever programs G there is a while program H for

which G SS T H. By Lemma 6.1 part (2), for any node x in G there exists a copy x* of x
’

such that

N (1,x) < S-NT (T,x*).
in in
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But since H is a while program, nodes in H have at most one ancestor pointer to them, so i

that
H T
* < .
Nin(T'x ) <2
Thus

G T
<
Nin(l,x) < 82

for any do forever program G and any node x in G. This is a contradiction, since the

number of ancestor pointers to nodes in do forever programs can be unbounded. g

Theorem 6.3: label exit > do forever.

Proof: Let S,T be such that for any label exit program G there exists a do forever

program H such that G < H. Consider the label exit graph G(n)

s,T defined as follows:

(

n) _
1) Vv = {xl,...,xn}

2) xi—>s X1 for all 1<i<n
3) x -+ x, for all 1<i<n

na ‘i
(see Figure 11). Then by construction

G(n)

Nout (l'xn) = n-1.

(n) (n)

Let H be the corresponding do forever program. Then a node x* in H has at most two
sons and one ancestor, so that

(n)

H T
* <
Nout (T,x*) <3

Thus by Lemma 6.1 part (1)
H

G T
- = < *
n-1 N (l,X ) < N (T,X ) < 3

where x* is any copy of x in H, a contradiction, since n is unbounded. [

Theorem 6.4: For d = 2, goto, > label exit.
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Proof: Notice that arrays are included in gotof for £ > 4. Thus, by Theorem 5.1, we have
gotof £ label exit (f > 4), since label exit Programs are ancestor trees. To complete
the proof it is sufficient to note that for any array Gn there is some H in goto2 such
<
that G <41 H- 0

Theorem 6.5: gotow > gotod for all 4 > 1.

Proof: Let S,T be such that for all gotow programs G there exists a gotod program H such

that G SS T H. By Lemma 6.1 part (1), for all nodes x in G there is a copy x* of x such !
’ i
that ;
H G |
*) <
Nout(T,x ) < Nout(l,x).
But

IA

H T
*
out(T,X ) d ’

since the out-degree of any vertex in H is at most d. This is a contradiction since in

oto NC (1,x) is unbounded. [
g-~w out
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7. Conclusion

The methods for comparing data structures and control structures by the relation SS,T
appear to be quite general, and there are several straightforward extensions of the data
structure embedding results that recover relationships between other data structures.

In the case of control structures, the conclusions to be drawn are perhaps more
widely varying and seem to give direction to further investigations. The observation in
Cérollary 5.4 that a standard schema construction is inherently inefficient leads us to
question the status of other property-preserving transformations. We also believe that
Theorem 6.5 has implications for the often quoted "theoretical foundations of structured
programming"; this is particularly apparent because the goto program that enters the proof
is itself a highly structured object. Indeed, a SS,T embedding into a label exit program
fails, not because Gn is i1l structured, but rather because of the densely hierarchical
nature of the control flow. We thus offer programs of the form Gn as "structured" goto
programs whose structures cannot be maintained by less general control structures. The
exact relationship between ancestor trees and reducible flow graphs [7] is still unsettled,
but some work has been done to place the reducible flow graphs in the hierarchy of Figure
1 [5]. More recent extensions of the results presented here give techniques for
uncovering total space the time simulation trade-offs, as opposed to the worst-case
analyses of this paper [5]. Finally, the extension of these results to parallel and

asynchronous control structures appears to be possible and promises to yield important

information about the relative power of non-sequential mechanisms.

Acknowledgements: The authors would like to thank W. Wesley Peterson for his comments on
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