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Abstract

Recent advances in visual servoing theory and practice now make it possible to
accurately and robustly position a robot manipulator relative to a target. Both the
vision and control algorithms are extremely simple, however they must be initialized
on task-relevant features in order to be applied. Consequently, they are particularly
well-suited to telerobotics systems where an operator can initialize the system but
round-trip delay prohibits direct system feedback during motion. This paper describes
the basic theory behind feature-based visual servoing, and discusses the issues involved
in integrating visual servoing into the ROTEX space teleoperation system.

Submitted as a Long paper to Intelligent Robots and Systems, 1994. Correspondence
should be addressed to the first author at the address listed above, or via electronic mail to
hager@cs.yale.edu




1 Introduction

Automation and robotics are rapidly becoming extremely attractive areas within space tech-
nology. They hold the promise of assembly, servicing, and repair with a minimal number
of expensive manned missions [7]. However, unlike a factory environment, space operations
require the ability to work in an environment which is unstructured. For this reason, some
amount of autonomous behavior is necessary to perform complex, diverse tasks. This level
of autonomy will relay heavily on sensors such as vision, depth, force, torque and tactile,
as well as advanced planning and decision capabilities. Unfortunately, our current lack of
understanding in sensor data interpretation, robot motion control and artificial intelligence
makes the prospect of complete autonomy for complex tasks unlikely in the near future
[2]. One way out of this dilemma is sensor-based telerobotics. In particular, space operation
tasks for which telerobotics could play an increasingly large role include inspection, assembly,
servicing, and repair [10].

When teleoperating in space, relay satellites and computer networks insert a large delay
into round-trip communication. Hence sensor data such as video images cannot be used as
direct, real-time feedback by a remote operator. One approach to overcoming this problem is
to use a predictive computer graphics system as was successfully demonstrated in the German
space robot experiment ROTEX. In ROTEX, the operator handles a control device—a 6-dof
control ball—based on a predictive graphics model of the robot and its environment. The
control commands issued to the robot simulator are sent to both the local and remote robot.
If the simulation is properly calibrated to the real environment, the behavior of the remote
system will exactly mimic that of the simulation.

Clearly, the crucial problem in this system is to provide an extremel); accurate simulation.
Teleoperation based on the predictive graphics will fail if the world model does not correspond
with reality. This may happen if objects are deformed or damaged, for example the solar

panel of the Hubble Space Telescope, or if an object is freely floating in space. Another




disadvantage of relying on a known world model is the need for a precise calibration of
the entire operational space. This is problematic as the mechanics are put under extreme
pressure by liftoff and the subsequent extreme temperature differences between the parts
facing towards the sun and those facing away.

One way of lessening the dependence on prior geometric knowledge is to make remote
operations sensor-based. Experience has shown that proper use of closed-loop control al-
gorithms operating in orbit can significantly enhance the capabilities of the teleoperation
system [6]. To date, there has been little progress in the use of visual feedback to support
teleoperation. One reason is that most classical work on visual servoing relies heavily on a
calibrated hand-eye system. As noted above, maintaining accurate calibration in orbit can
be difficult. A second reason is that most vision algorithms are too complex to execute on
hardware that is space-qualified.

In [5], an approach to feature-based visual servoing using closed-loop control was devel-
oped. The main advantages of the approach are that it is extremely robust to calibration
error and it uses simple visual features that are computationally simple to track in an image.
It can be shown that the accuracy of these visual servoing algorithms is, in fact, independent
of calibration error. These properties make the technique well-suited to the teleoperation
problem since the operator can choose features and servoing operations using a single static
image, and the system can then, without further intervention, autonomously execute the
operation with high accuracy and reliability.

In this paper we discuss a family of visual servoing techniques including a previously
unreported extension to perform full six degree-of-freedom relative positioning. We then
describe some of the issues involved in integrating visual servoing into a teleoperation envi-
ronment, discuss a preliminary design for such a system, and illustrate its use on an example
problem. The remainder of this paper is organized as follows. The next section describes the

visual servoing problem and our solution to it. In section 3, we describe the integration of




visual tracking and the telerobotic system and we discuss the operator interface. In section

4, we describe our current progress at implementing this system.

2 Feature-Based Visual Tracking and Servoing

Vision is an extremely rich and precise sense. In many ways, it is an ideal candidate for
sensor-based motion and manipulation. However, in order to combine vision and robotics,
two major problems must be addressed. First, vision problems that involve scene interpre-
tation tend to be extremely.diﬂicult, and most of the vision algorithms used to solve them
require specialized hardware in order to operate in real-time. Second, in order to relate visual
information to a robot manipulator, the spatial relationship between the manipulator and
the camera(s) must be known. Determining and maintaining this relationship, the hand-eye
calibration, with high accuracy is extremely difficult. Here we describe an approach to visual
servoing that obviates these difficulties. The method uses locally defined visual features,
primarily image contours, that can be tracked in real-time by standard workstations or PCs.
Corresponding features in two cameras comprise the input to a feedback control system. The
feedback control system will provide accurate positioning despite calibration errors provided

control gains are chosen to ensure stability.

2.1 Visual Feedback Control

In this paper, we describe two systems for visual feedback control: one that controls only
position, and one that controls both position and orientation. Figure 1(a) illustrates the
underlying principle. The left figure is a schematic depiction of our visual servoing ar-
chitecture which includes two video cameras, a robot arm, and computers that perform
image-processing, low-level control operations, and other interface-related functions. Any

attempt to accurately calibrate this system is limited by system modeling errors, mechanical




N .
\/ / e 92 \ / \/92= 0
Vision ) N Feedbackj % g %
Processing )) \ Control
a b c

Figure 1. The figure on the left shows a visual servoing system consisting of two cameras on pan-
tilt heads connected via a vision-based controller to a robot arm. The middle and right figure

demonstrate positioning by reducing visual disparity to zero.

backlash, control inaccuracy, and so forth. Consequently, a system that reconstructs abso-
lute point coordinates using vision and positions the robot based on that information will be
extremely imprecise. However, as illustrated in Figures 1(b) and 1(c) the robot manipulator
can be positioned extremely accurately relative to the observed target. In (b), the cameras
observe the visual disparity 6; and 6, between a point on the manipulator and the corner
of the box. We know the following property: zero disparity between the manipulator and
the goal in both images means that they are at the same point in space. This property is
true independent of where the cameras are located relative to the robot.! Thus, if we have
a stable controller to achieve zero visual disparity, we can position accurately, even if the
system is badly calibrated.

The theory underlying a feedback control algorithm for this problem can be summarized
as follows. Suppose that y = f(z), is a mapping from a robot configuration space to an

output (sensor) space, both of dimension n. Given a desired setpoint y*, define e, = y — y*

IMore precisely this statement is true modulo configurations where the goal or robot and the cameras

are collinear.




and introduce a new variable z such that z = e,. Taking time derivatives of the system, we

see that

¢, = Jyi. (1)

where J; is the Jacobian of f. If f is nonlinear, J; is a function of the system state, z. Thus,
if the system state is not directly available, it must be estimated from sensor data.

We take u = = to be the control input to the system and, presuming J; is full rank,
compute

u = ——Jf_l(kley + kzZ)

where k; and k, are constants set by the designer. To analyze the behavior of this control
method, we substitute this expression for u into (1) yielding:
t
%=hU?%%+hm=h%+bA%
Or,

€y = k1€y + kaoey.

It is well known that proper choices of k; and k; in differential equations of this form lead to
an error, e, that asymptotically approaches zero. The presence of the integrator, z, ensures
this behavior in the presence of external disturbances or if the system model, f, is in error
provided the errors are not large enough to destabilize the system.

Using these concepts, we can construct visual servoing systems to perform different types
of positioning and motion by defining the appropriate error term. The inputs available for
defining errors are contours and fixed visual reference points observed in two cameras. The
following is a brief review of camera imaging geometry for these features. Camera positions
are represented by the frames C; = (¢1,%1) and C; = (¢2,X2). Points and lines in R(3) will
be written in capital letters. The projection of a point P or line L in camera ¢ will be written

p; and [; respectively.




The projection of a point P = (P,, P,, P,)T to a homogeneous vector p; = (u,v,1)T is
given by
P' = Z(P-q)

(u,0,1)" = P'/P, (2)

Di

In vector form, this is written p; = ¢:(P).
Following the approach of Taylor and Kriegman [14], an arbitrary infinite line, L, is
parameterized by a tuple (L4, L,) where L, is fixed point on the line and L, is the direction

of the line. The vector /; parameterizing the projection of L in camera ¢ is
l,’ = Z,’ (Lv X (Ld - c,)) (3)

In vector form, this is written /; = h;(L).

The Jacobian of g is a function of the position of the observed point, and the Jacobian
of h is a function of the fixed point on the line. As described in [3], it is possible to estimate
the parameters of both lines and points using relatively straightforward techniques. We refer
the reader to that publication for the technical details of estimation and control and proceed
to describe the structure of two representative controllers. |
Problem Definition: Given a fixed reference point, P, on a manipulator and a point, R,

not on the manipulator, servo the manipulator so that P = R using inputs p; and r;, 7 = 1, 2.

Define g(P) = (¢1(P); 92(P)) and y* = (ry;r2). Note that g maps three values—the
Cartesian position of a point—into six values—the homogeneous camera image locations of
the projections of the point. Two values are constant and can be discarded. Of the remaining
four, one is redundant and should also be discarded. As described in [5], it is possible to
compute a 3 by 6 matrix £ which depends on camera calibration parameters such that the
product Eg(P) provides three independent observations of P. Define J(P) = EJ,(P) and
e = E(y* — g(P)). Applying the methods described above yields a controller for relative

positioning. The controller has been implemented and tested as described in [5].
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Figure 2. The geometry of the six degree of freedom servoing problem.

Problem Definition: Given a three non-collinear, fixed reference points P, R and S and
two non-parallel reference lines L and M that are rigidly attached to a manipulator, develop a
regulator that positions the manipulator so that P € L, R € L, and S € M using p;, r;, s, l;,

and m;, 1 = 1,2. This is illustrated in Figure 2.

A homogeneous vector p; in camera image ¢ lies on the line projection /; if and only if
pi - l; = 0. Modulo a set of singular configurations, it can be shown that for any arbitrary

line L and a point P, l; - p; =l - p, = 0 if and only if P € L. This motivates the definition




of a positioning error e € R(6) as:

o [mn] [a@ - mw]
) p2- 2 92(P) - hao(L)
e I I R B AT} (4)
s rs - by 9>(R) - ha(L)
es s1-my 91(5) - k(M)
e | |saoma| | 0a(S)ha(M) |

Based on the remarks above, it follows that, modulo a set of singular configurations, e = 0
if and only if P € L, R € L, and S € M. The system Jacobian Jy is square, and depends
on five vector quantities that can be estimated from sensor data. Applying the methods
described above produces a regulator that can control all six degrees of freedom of a robot
manipulator. For details on the form of the Jacobian and the estimation of unknown values,

we refer the reader to [3].

2.1.1 Variations On These Systems

Note that the assignment of features in the problem above was arbitrary. That is, the
roles of points and lines can be interchanged without changing the final result. Also, one
way of defining L and M is by choosing two reference points and computing the line that
runs through them. The problem formulation is independent of whether the cameras are
stationary in the environment or mounted on the manipulator itself. Thus this basic control
formulation can operate on a wide variety of systems with different types of input.

The controller can also be simplified to control fewer degrees of freedom. Dropping
components involving M and S from the error term leads to a system that controls 4 degrees
of freedom. It aligns two points to an axis, but leaves rotation about the axis and translation
along the axis free. Since the Jacobian, J; is nonsquare in this case, the control vector is

computed by
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Figure 3. The geometric constructions for inserting a floppy disk into a drive unit.

u = ——(J.]T)_IJT(kley + kzZ).

With this formulation, it is possible to impose the remaining two degrees of freedom
arbitrarily by chosing a rotational velocity and translation velocity about and along the
estimated value of the line L, respectively. This provides for shared control between the
control system and an external agent, e.g. an operator. Although not discussed here, other

related variations are possible.

2.2 Geometry and Visual Servoing

The controllers described above do not have to be based on directly observed features.
Various types of geometric constructions can be used to define “virtual” lines and points.
However, in order to maintain the accuracy of servoing, these constructions must rely on
image-level geometric constructions.

For example, Figure 3 describes the use of geometric constructions to place a floppy disk

into a disk drive. Geometrically, the strategy is to move the disk into the plane of the disk
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drive unit, align perpendicular to the slot, and then move toward the slot until the disk
slides in. In the visual domain, we can perform this task if we know that the sides of the
disk drive unit are parallel to the floppy disk drive. In a projected image, parallel lines meet
at a point, so we first construct vanishing point V1 by tracking the indicated corners of the
drive unit. The edge of the floppy slot and the vanishing point are used to construct the
line L. The line M is constructed from the image of the slot itself. The three corners of the
floppy are used to define the reference points P, R, and S. Servoing using this information
will place the floppy disk at the mouth of the drive slot, oriented parallel to it.

As this example illustrates, a variety of geometric constructions can be used to provide
increased functionality for visual serving. As with the basic servoing routines, these con-
structions rely on tracking specific features in an image, and computing values based on

those features.

2.3 Feature Tracking

In [4], a feature-based tracking system was described. The tracking system is based on two
central ideas: window-based image processing, and state-based programming of networks of
tracked features. A window is an image defined by its height, width, position, and orien-
tation in device (framebuffer) coordinates. Tracking a feature means that image-processing
operations are used to maintain a fixed relationship between window coordinates and the
underlying feature. The low-level features currently available in the system include solid or
broken contrast edges detected using convolutions, and general grey-scale patterns tracked
using SSD methods [1, 15]. The entire tracking system is designed to run on a standard
CPU and framegrabber with no additional hardware support. For example, tracking single
contours on a Sun Sparc 2 with an Imaging Technologies 100 series framegrabber requires
1.5ms for a 20 pixel contour searching + 10 pixels using a mask 15 pixels wide. Tracking

arbitrary patterns using SSD methods requires 70 ms to localize a 20 by 20 window.
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Basic features can be easily composed into more complex configurations using feature
networks. Every feature or image property in our system can be characterized in terms
of a state vector. For basic features—those that operate directly on images—the state of
the feature tracker is usually the position and orientation of the feature relative to the
framebuffer coordinate system. We define composite features to be features that compute
their state from other basic and composite features. A feature network is defined as a set of
basic and composite featuers connected by two types of directed arcs referred to as up-links
and down-links. The up-links provide image information for higher levels of abstraction. For
example, a cluster of image features that all lie in a plane may contribute information to a
composite feature that has, as state, the slant and tilt of the plane. The down-links provide
constraints from higher levels of abstraction. For example, if something is known about the
motion of a rigid object, this information can be propagated down to the feature level to
predict positions of image features in the subsequent image.

This ability to “package” features into higher-level primitives is particularly useful for
providing visual constructions such as those used in the last section. Each of these con-
structions can be defined as an object that requires certain initialization information and
provides a particular type of image information. These objects can be composed to form

more objects, or can be used directly to provide input to visual servoing routines.

3 Teleoperation and Visual Servoing

Visual servoing provides the means to achieve a particular geometric configuration reliably
and accurately. However, some intelligence external to the servoing algorithm must translate
a geometric task into the visual operations and choose the visual features needed to perform
those operations. In this section, we explore the issues that arise when integrating visual
servoing into a teleoperation system similar to ROTEX.

The information available to the human operator consists of a menu driven programming
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environment, two camera images of the remote site, and a graphics simulation of the known
aspects of the remote site. The completeness of the latter depends on the availability of
prior object knowledge and/or sensor reconstruction methods. The system interface offers
the operator a list of the visual servoing operations, e.g. positioning or alignment, that are
available in the current execution context. The operator must select an operation and, based
on the selection, he or she must choose image features that initialize the tracking system
for the chosen operation. These may be image features, or features defined using visual
constructions. In the latter case, the system requests further initialization information until
all operations are fully instantiated with image-level features. Note that the initialization of

feature tracking must take place in both camera images.

3.1 Image Level Feature Specification

The effect of a visual control action is only meaningful if the chosen feature has physical
relevance, and if the images of the same physical features are chosen in both camera images.
As a consequence, the set of image-level features we consider are cohtours, intersections of
contours, and unique surface markings. An example of the latter would be a barcode or
similar artificial labeling device. We disallow arbitrary patterns that would be difficult to
place in accurate correspondence in both camera images.

At the image level, the tracking system is initialized to track a feature by supplying the
image coordinates (position and orientation) of the feature within a prescribed tolerance.
This information may be interactively supplied by an operator “clicking” on a feature in an
image, or may be indirectly supplied through model information. In both cases, the low-level
image processing can check for the presence of the correct type of feature, and also ensure
that there are no distracting features in the immediate vicinity that would lead to tracking
ambiguity. The system can reject any feature that does not satisfy these conditions.

As noted above, it is important that the features chosen in both camera images be
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physically consistent with one another. One means of ensuring this is to exploit epipolar
camera geometry. Given (homogeneous) projections p; and p,, of a point P, there is a 3 by 3
matrix E such that p] Ep, = 0. If the camera system is accurately calibrated, the F matrix
can be computed directly from the calibration. Alternately, the E matrix can be computed
from the projections of eight points in two images provided the points are arranged in a
non-singular configuration [11, 9, 12]. Hence given a ninth feature point in one image, it
is possible to determine the epipolar line along which the corresponding feature lies in the
second image.

Note that if the point P lies on a contour in one image, the corresponding point in
the second image is determined by the intersection of the corresponding contour with the
epipolar line. Consequently, standard matching methods can be applied to order candidate
matches along the epipolar line. The operator can then accept the system’s best choice, or
override it by choosing another contour. If the feature in the first image. is the intersection
of contour points (e.g. a corner) then the feature in the second image is a point where two
contours and the epipolar line intersect at a single point. This has a very high probability
of being unique. Similar remarks hold for special patterns.

These ideas rely on having either an accurate calibration or at least 8 corresponding
points in both images. That latter condition is preferable as it is independent of camera
calibration, however it may be extremely difficult to satisfy. However, the environment
contains many known objects, in particular the robot itself. Consequently, a simple method
for providing the required correspondences is to decorate the workspace with unique visual
targets. These targets can be acquired automatically from static images on the ground
and used for subsequent epipolar computations. Furthermore, if enough image processing
bandwidth is available at the remote site, the targets can be tracked over time and do not

have to be reacquired for every operation initialization.
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3.2 Using Prior Environmental Knowledge

Even if the automatic correspondence mechanisms described above functioned perfectly, it
would still become onerous for the operator to specify all of the features needed for numerous
six degree-of-freedom positioning operations.

In many cases, image-level tracking initialization may not be necessary. Some objects in
the environment will be known objects, in particular the robot‘ manipulator. If the location
and pose of these objects can be calculated using artificial markings or by tracking object
features, then the operator can choose features from the model in the graphics simulation.
By using the known correspondence between model and image, the tracking system can be
initialized in both images automatically. If sufficient tracking bandwidth is available the
operator can also register features for later use and reuse. For example, if the manipulator
is holding a particular tool, e.g. a screwdriver, the operator may instruct the system to
track the shaft and the endpoint of the screwdriver at all times. These features can then be
used again and again by referencing a symbolic label, or by choosing them from an iconic
representation in the graphic simulation.

Likewise, some often-used operations may implicitly select certain object features. For
example, one extremely common operation is to command the manipulator to approach an
object along the manipulator center axis. An operation “manipulator-aligned-approach”
could be defined that automatically choses certain manipulator features to define the center
axis and endpoint of the manipulator. In this case, the operator need only choose one or two
features that define the goal configuration. If this can be done in the graphic simulation,

visual servoing is essentially no more difficult than pointing to where the robot should go.

3.3 Integration into ROTEX

The ROTEX sensor-based telerobotic system [6] is based on the shared autonomy concept

that distributes intelligence to man and machine [8]. Global tasks like visual servoing are
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Figure 4. The ROTEX workcell.

specified interactively by a human operator and carried out by local sensory feedback loops

executed by the remote robot system. Coarse task-level planning activities are performed by
human intelligence, while fine path planning on manipulator level takes place on sensor-based
control level [13]. The shared autonomy concept also allows shared control in which the robot
is guided by local sensory feedback as well by the human operator via the teleoperational
device. In context to visual servoing, this allows the specification of a visual controller
constraining less than 6 degrees of freedom. The remaining degrees of freedom are controlled
by the operator.

The ROTEX system already supports a three-dimensional graphics environment in which
object models and the robot are represented. This virtual world allows the operator to
move around and “interact” with the robot and its environment. In addition, all remote
operations are mimicked in the graphical simulation. In order to support visual servoing, the
functionality of the ROTEX ground station [6] will be expanded to include a menu-driven
programming environment, the image processing system, and the capability of overlaying

remote camera images with wireframe models of known objects. These visual aids make
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the feature selection easier for the operator. The overlay not only shows the correspondence
between a model and real data but also gives also a visual hint as to the validity of the
system calibration. Selected visual features will appear highlighted in the camera images
and, when possible, in the graphic display. Visual servoing will also be incorporated into the
robot simulation so that the servo operations can be tested offline before applying them to
the remote system.

Below we briefly sketch how two servoing problems would be specified in the extended
ROTEX system. ROTEX contains two camera systems: a stereo system mounted on the
manipulator itself, and an external camera system. The first example uses the external stereo
cameras, and the second uses a single manipulator-mounted camera. We assume that some
calibration information on both camera systems is available, although the correctness of the

calibration is not guaranteed.

3.3.1 Examples

We first describe how the floppy insertion task could be performed using the ROTEX inter-
face. We note this is in fact a realistic task since one of the commonly performed tasks in
orbit is the removal and insertion of circuit boards. We assume that the disk drive unit is
a known object registered to the graphics model. The disk itself is not an object known to
the system. We assume the manipulator is holding the disk initially.

The first action of the operator would be to choose a servoing operation. Since insertion
is a common operation, it would appear in the list of available operations. Once insertion is
chosen, the operator is notified that he or she must must choose specific image information—
in this case points and/or contours on the manipulated and target objects. The operator then
chooses the three corner points of the floppy disk as the defining points for the manipulated
object. When chosen, the system estimates the depth of the points (using camera calibration

information) and displays them in the graphics display.
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Figure 5. The view from the manipulator cameras.

The system continues to request two lines on the target object. The operator now chooses
the construction parallel-line. The system offers options for constructing parallel lines, in
particular by choosing tAwo parallel lines in the world and a third point. The operator
chooses this option. Since the floppy drive is registered in the graphics model, the operator
can directly choose the sides of the drive unit as the requested parallel lines and the edge of
the floppy slot as the point defining the insertion axis. This defines the line L of Figure 3.
Still needing a second line, the operator indicates the drive slot of disk unit in the graphics
display. The feature specification for the task is now complete. The system analyzes the
features for trackability and completeness. If the features are satisfactory, the operation
proceeds in both simulation and on the remote system. When finished, the operator receives
an image and checks that the operation was correctly performed. If so, the system proceeds
to perform the insertion operation, presumably under position and force control.

As a second example, we describe the task of grasping the ORU (Orbit Replaceable

Unit). This task is representative of many experiments which involve the manipulator moving
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toward a rigidly attached object, grasping it, and moving it to some other place.

Figure 5 shows a typical view from the manipulator cameras above the ORU. The visual
line markings [; and [, were added to aid the human operator in positioning. The final
goal position is reached if /; aligns with the horizon of the fingertips, l; aligns with the gap
between the fingers and the manipulator is perpendicular to the surface of the ORU as it
touches down. In the final approach, four laser distance sensors integrated into the fingertips
can provide distance and some orientation information. In this example it is assumed, that
all objects are known and their models are registered in the graphics model.

Unfortunately, the configuration of the manipulator cameras is such that occlusion and
visual singularities severely limit their usefulness. In particular, the “horizon” line in the
ﬁgure is parallel to the baseline of the cameras. This means that it is not possible to acquire
depth information on this line, or on lines parallel to it. Instead, we use visual information on
the lines l; and I; to constrain the orientation of the manipulator about the center axis and
translation perpendicular to the manipulator axis while the operator controls the direction
and attitude of approach.

Proceeding as above, the operator begins by choosing an operation, this case the appro-
priate approach operation. This operation assumes that the horizon line and the center of
the manipulator gap (P in the figure) are the manipulator setpoints. It indicates that the
operator must specify a line and point in one camera. Since the ORU is registered in the
graphics simulation, the operator indicates I; and P;. The system verifies that these fea-
tures are visible and trackable, and then begins to graphically simulate the visual servoing
operation as it is carried out remotely. The operator uses the tracking ball to move the
manipulator toward the ORU, simultaneously adjusting orientation, until the laser distance
sensors detect the ORU surface. At this point, the distance sensors can control manipulator
attitude with respect to the surface. Vision continues to control translation parallel to the

surface and rotation about the center axis. The operator continues to control distance to
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the object until touchdown is registered on the force sensors.

4 Discussion and Future Research

We have described a method for feature-based visual servoing and its application to remote
teleoperation. The visual servoing methods described above have been tested in stand-alone
systems. We are now in the process of integrating them into a larger, more flexible servoing
system. We have taken some initial steps toward including visual servoing in the ROTEX
environment.

Even at this early stage, several points are clear. First, any remotely operated system
will benefit from the availability of artificial visual features, even if the features are not part
of a calibrated geometric model. Ensuring that eight such features are always visible is ex-
tremely useful for correspondence calculation when the camera system is not well calibrated.
Second, the ability to recognize and calibrate the robot end-effector and other objects in the
environment to a simulation significantly eases the burden on the operator. Careful design of
the visual servoing operations can relieve the operator from the potentially onerous task of
specifying visual cues. Third, the availability of a graphical simulation for the visual servoing
operation is an ex=trernely useful tool. In addition to providing a means for choosing object
features, it supports operator interaction using hybrid control. The latter often simplifies
the specification of a visual servoing task.

One issue we have not addressed in any detail is the issue of error handling. The visual
servoing methods described above will fail if the system moves through (visually) singular
configurations. In many cases, these errors can be detected and corrected for automatically.
However, some errors should be flagged and returned to the operator. For example, in
ROTEX is it possible for the operator to choose a set of features on the manipulator that
lead to a globally singular system. This should be detected and the feature specification

rejected with an appropriate explanation of the problem.
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