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Abstract

The fluid flow in a three-dimensional twisted channel is modeled by both the compressible
Navier-Stokes equations, and the Euler equations. A three stage Runge-Kutta method is
used for integrating the system of equations in time. A second order accurate, centered
difference scheme is used for spatial derivatives of the flux variables. For both the Euler
and the Navier-Stokes equations artificial viscosity introduced through fourth order cen-
tered differences are used to stabilize the numeric scheme. By using lower order difference
approximations on or close to the boundary than in the interior, the difference stencils
can be evaluated at all grid points concurrently. A few different difference molecules for
the boundaries, and different factorizations of the fourth order difference operators were
evaluated. With the appropriate factorization of the difference stencils, six variables per
lattice point suffice for the evaluation of the difference stencils occurring in the code. The
three fourth order stencils we investigated, including three different factorizations of one
of these stencils, account for three out these six variables. The convergence rate for all
stencils and their factorizations is approximately the same for the first 1000 — 1500 steps
at which point the residual has reached a value of 1072 — 103, From this point on the
convergence rate for one of the factorizations of the fourth order stencil is approximately
twice that of one of the unfactored stencils.

A performance of 1.05 Gflops/s was demonstrated on a 65,536 processor Connection
Machine system with 512 Mbytes of primary storage. The performance scales in propor-
tion to the number of processors. The performance on 8k processor configurations was
135 Mflops/s, on 16k processors 265 Mflops/s, and 525 Mflops/s on 32k processors. The
efficiency is independent of the machine size. The evaluation of the boundary conditions
accounted for less than 5% of the total time. A performance improvement by a factor
of about three is expected with optimized implementations of functional kernels such as
convolution, and matrix-vector multiplication.




1 Introduction

Fluid flow problems are computationally very demanding. The full Navier-Stokes equa-
tions completely describe the fluid flow at the macroscopic level. The equations describe
the balance of mass, linear momentum and energy, and model the turbulent phenomena
that occur in viscous flow. In order to resolve all the small scale effects, very fine grids are
needed. It has been shown [11], that for incompressible flow the minimum scale needed
to resolve turbulent phenomena is no smaller than

)‘min = '—1—'_"7
\/Re||Dul|s

where Re is the Reynolds number. The quantity ||Dul|e is defined as

t,x,Y,2
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The vector u represents the velocity field, i.e.

where u, v and w are the Cartesian velocity components; |- |, denotes the Euclidean length
of the vector.

In three space dimensions the bound for the velocity gradient ||Dul|o is not known. A
possible bound is

[|Dul|eo ~ V Re.

This choice corresponds to the so called Kolmogoroff scale of

1
/Re3

/\min =

A realistic treatment of the inflow means a Reynolds number of ~ 50,000. This implies
that the Kolmogoroff scale is
Amin = 0.0003.

For such a length scale the grid point spacing must not exceed Az = 0.00015. This
condition holds for each space dimension. Hence, without a turbulence model, a grid
consisting of approximately 300 billion points is needed. At each grid point we use roughly
150 variables, which are stored as floating point numbers. Consequently, 240,000 Gbytes
of memory are needed to represent the state of the Navier-Stokes equations for a resolution
capturing all scales. Assuming in the order of 2,500 floating point operations for each
variable per time step approximately 1,000 trillion operations are required per time step.
Clearly, both storage and computational demands are beyond the capacity of today’s
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computers. Turbulence models are the only feasible alternative for the study of turbulent
phenomena. The idea in the various turbulence models is to separate small scale effects
from large scale effects by introducing extra differential equations. The implementation
described below does not include a turbulence model. Even though it is not feasible
to compute all scales by the Navier-Stokes equations they describe the solution more
accurately near solid walls than do the Euler equations, since viscous effects are very
prominent near solid boundaries.

The next generation supercomputers with a performance of a trillion operations per
second are expected to have thousands to tens of thousands of processing units inter-
connected by a hierarchy of buses or some other network. It is important to develop
algorithms that can make effective use of such architectures. Explicit methods are obvi-
ous candidates for highly concurrent architectures, and is the subject of this investigation.
We focus on the data structures for the data parallel implementation, the programming
primitives in such an implementation, and to some extent the algorithms. Load balance
and maximum communication efficiency are issues of particular concern in a data par-
allel implementation, but the ability to express the computations in terms of standard
functions, as for instance the Basic Linear Algebra Subroutines (BLAS) is always im-
portant. The latter simplify the programming and enhance performance (by virtue of
being efficiently implemented). We present the techniques used in our implementation for
concurrent evaluation of the difference stencils at all grid points.

The model problem is the simulation of air flow in a twisted channel. This problem
is motivated by a study to improve the combustion in a diesel engine by redesigning
the combustion chamber and cylinder inlet. Of particular interest is the air flow near
the cylinder inlet. The study reported here only includes the inlet channel. The fluid
flow simulations are reported in [26, 25] which also addresses numerical issues. The work
reported here does not include any turbulence model.

The outline of this paper is as follows. We present the Euler and Navier-Stokes equa-
tions in section 2. The numerical method used in the simulation is presented in section
3. In section 4 we give a brief description of the data parallel programming model, the
Connection Machine system model CM-2, and issues related to load balance and commu-
nication efficiency. Implementation characteristics of the finite difference, explicit in time
algorithms are presented in section 5. Summary and conclusions are given in section 6.

2 Mathematical Model

2.1 The Domain

The physical and computational domains are shown in Figure 1. The cross-sectional
physical side lengths are L, and Ly, and the physical channel length is L,. The relationship
between the variables 7,£, 7 and ( in the computational domain, and ¢, z, y, and z in the
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Figure 1: Computational and Physical Domain

physical domain is formally given by

T =t

¢ = &t a,y,2)
n = n(taw’yvz)
¢ = ((t=y,2)

assuming differentiability and non-singularity as needed. The Jacobian matrix J is defined
by

1 0 0 O
e Nz Ny 72
(t Cx Cy Cz

The subscripts denote partial differentiation. The functional determinant of the Jacobian
|J| corresponds to the reciprocal cell volume:

1 0 0 O

(Vé)r
|J| = det J = det b b & L) det | (V)T |, (2)
e Nz Ny N2 (VC)T
Ct Ca: Cy Cz
where 5 5 5
V'=(5 3 o) (3)

For the discretization of the domain we use two grids: for viscous flows a stretched
grid so as to produce fine grids near the solid walls, and for inviscid flows a grid with




equidistant grid spacing. The computational grid ¢ x n x ¢, 0 < & < Ng, 0 < . < N,
and 0 < ¢ < N¢ is mapped to the physical domain through the transformation

z = {cos(w(()/Ne) — n'sin(w(()/Ne)

y = {sin(w(()/Ne) + n'cos(w(()/Ne) (4)
z = (L,/N;
where
¢ = L_Itanh(a(zg/ive—l))
{ ) Ly tanh(EGniN-1) (5)
=3 tanh(Z)
and
0 C € [074.0)
w(() =1 @(BG — o —20)(¢ —¢0)*(¢1—¢o)™® ¢ €llo,Cr) - (6)
w ’ C € [Clv NC]
Grid stretching is introduced through the transformation :%m“-g%%, —-=2<LyY <= A very

small value of = results in a practically unstretched grid. For the Euler equations we
use = = 0.0001. A value of = = 1.2 is used for the Navier-Stokes equations. The
relationship between the physical and computational grids is such that the origin of the
physical coordinates coincides with the center of the channel cross-section at the inflow
boundary. w({) is a C'-spline on the interval [0, N¢]. Introducing this spline function
enables a C'-grid transformation, which is such that the homogeneous inflow condition
u =0, v=0, w=wy, yields continuous velocity gradients even at the inflow boundary.
The function w(() describes how the twisting factor (angular frequency) increases along
the (-axis, which coincides with the physical z-axis. The value of @ is

w = 27T/N(.

In [25] we show that this grid is well conditioned [7]. The metric coefficients are derived
from relations (4), (5) and (6) and

. & & & Te Tp I¢ i
J" =1 My Nz | = | Y Ynp Y¢ . (7)
(z G C Ze Ry 2

Note that the grid is not stretched in the z-direction.

2.2 Fluid Flow Models

We have implemented two models: A compressible Navier-Stokes model, and an Euler
model. We first describe the Euler flow model in conservative form, then define the
complete Navier-Stokes model by appending terms for the viscosity.




2.2.1 The Interior

The conservative form of the Euler equations is
dq OJOF 0G OH
. T i 8
ar ~o¢ "oy T (8)
where the variable vector q is given by

p
pu

q=[J7"] pv |. (9)
pw
€

The components of the variable vector q have the following meaning:

p density
pu  x-component of linear momentum
pv y-component of linear momentum
pw z-component of linear momentum
e total energy.

The flux vectors F, G and H have the following components (inviscid case):

pU
pulU + p¢, 0
F = —[J7"| wU+p& | =-Uq-p|I|™* ( V¢ ) (10)
pwU + p, U—-4&
\ (e + p)U — pé;
pV \
puV + pn, 0
G = 37| wV4pn |=-Vq-plI™ ( Vin ) (11)
pwV + pn; V—n
\(e+p)V —pn./
pW
puW + p(y 0
H = -7 | poW+p, |=-Wq-pd|" ( V¢ ) , (12)
pwW + p(, W — G
(e +p)W — p(;
and U, V and W are the contravariant velocity components:
1

U
(V):J' ol (13)
w w




J’ denotes the 3 x 4 matrix obtained by deleting the first row of J. The pressure p is
related to the total energy according to

p=(y=1)(e— 50 +v?+uw?), (14)

where 7 is the ratio of the specific heats ¢,/c,. We assume that v is a constant having
the value 1.4.

The advantage of the conservative formulation of the Euler equations is the ability to
capture shocks. Using this Euler formulation, the Navier-Stokes equations are obtained
by adding the viscous flux vectors F,, G, and H, to F, G and H, respectively,

0
) ) fmTz:z: + €yTwy + fz'r:cz L L 0
F, = [J[7Re™ | Lamuy +&Tyy + &7y | = [I|7 Re™ ( 1;,) V¢ (15)
EoToe + EyTys + E:T2s K
& fs + &ygs + Ehs
0
) L NeTea + Ny Tzy + 2T ; . 0
G, = [J[TRe™ | nuTuy + MyTyy + 0Ty | = [T Re” ( TT) Vn (16)
NeTzz + NyTyz + N2Tzz K
Nefs + Mygs + n:hs
0 \
) L Cmec + CyTa;y + C.zTa:z , , 0
H, = [J|7'Re™ | (oTwy + (yTyy + Gz | = [T Re™ ( TT) ve |- (17)
CoToz + CyTye + T2z K
Ca:fS + CyQS + Cth

The entries of the viscous stress tensor

TeaTey Tz
T = | TuyTyyTys (18)

TezTyzTzz

are

( Tow 2uu;  + Mue +vy+w,) = Moy + w, — 2uy)
= 2y + Aup + vy +w,) Mug + w, — 2vy)

2pw, 4+ AMuz +vy+w,) = Aug + vy — 2w,)

Toy = H(Uy +va)

Tez = ﬂ(uz + wm)

\ Tyz = N(wy + 'Uz)-

SN
S
I

(19)

The subscripts of the entries of the viscous stress tensor signify the index of each element
in 7. They do not denote partial differentiation, as opposed to the subscripts of the




velocity components, where the indices denote partial differentiation. By the chain rule

Uy = gxu§ + NgUuy + Cqu T Ug

— !
uy = &ue + Myu, + Gue (=T Uy |- (20)
U = €zu{f + N2Uy + Czu( U¢

Similar expressions are obtained for Vv, Vw and Va?. The effects of heat conduction
and the work done by the viscous forces are captured in

fs u k , U 5
K=|gs | =7 + ——F—Va*=7| v | +Va’ (21)
hz Pr-(y—1) w

where

k
~2 _ 2
TP
since k, the conductivity coefficient, Pr, the Prandtl number, and + are assumed constant
in time and space. We have assumed the Stokes condition 3\ 4 2u = 0 to be valid, where
p and A are the viscosity coefficients. This condition means that the viscous forces do

not exert any normal compressive stress. The speed of sound a is related to pressure and
density according to

(22)

a =7, (23)

and

RN )

2.2.2 The Boundary

In [25] the in- and outflow boundary conditions are considered in detail. At each point
on the inflow boundary, { = 0, and the outflow boundary, ( = N¢, the values of the
density, the axial velocity, and the pressure at the new time level, p, w, p, are determined
by solving a 3 by 3 system of equations

ag 0 -1 P P3
0 poag 1 w | =] és |. (25)
0 —poao 1 p b5

The variables @3, ¢4 and ¢5 are the characteristic variables. These variables are determined
from the density, the axial velocity, and the pressure at the reference level, po, wo, po,
and the output state vector from the Runge-Kutta routine (57), 5,w, 5. Here 5, and
represent the values of the density, the axial velocity and the pressure before the boundary
corrections. Determining the characteristic variables by the equations below leads to a
well posed problem [25].




e Subsonic inflow: Compute ¢3, ¢4 and ¢5 according to:

¢s = Poaf‘; — Do
¢s = poaowo + Po
¢5 = —poaoW + P

e Subsonic outflow: Compute ¢3, ¢4 and @5 according to:

¢3 = paj — P
¢y = PodoW + P
¢5 = —poaowo + Po

e Supersonic inflow: Compute ¢3, ¢4 and ¢5 according to:

¢3 = Poag — Do
¢4 = poaowo + po
¢s = —poaowo + po

e Supersonic outflow: Compute ¢3, @4 and ¢5 according to:

¢ = ﬁa3 - p
¢s =  poao® + P
¢5 = —poaoWw + P

Having computed the characteristic variables according to the above procedure, equa-
tion (25) is solved for p,w and p. For supersonic inflow p = pg, w = wp and p = py, and
for supersonic outflow p = p,w = W and p = p. At the inflow u = vy = v = vg = 0 for

both subsonic and supersonic flow.

At the solid walls u, v and w are obtained by solving 3 x 3 systems of equations. Define

u' Te Yo oz
Y’ = Ty Yp 2y
w’ e Yoo 2¢

S S

At £ =0 and { = N¢ u, v, and w are obtained by solving the 3 by 3 system

e &y & u 9
Ty Yn 2y v | =V
Teo Yoo 2z¢ w w’

At n =0 and n» = N, u, v, and w are obtained by solving the 3 by 3 system

.’135 Ye Z¢ u ﬁ !
Ne My 7Nz v = 9
Te Yo 2 w w’

(26)

(27)

(28)




Finally, at the channel edges the 3 by 3 system

€ fy & U 0
Ne TNy 72 v = 9 (29)
Te Yo z¢ w w!

is solved. The above procedure corresponds to setting the normal component of the
flow field to zero at the solid walls. For the Euler equations these boundary conditions
suffice [25]. For the Navier-Stokes equations the conditions at the solid walls are nonslip
conditions, i.e., v = v = w = 0. For further discussion of boundary conditions for the
Navier-Stokes equations see [24].

3 Numerical Methods

With the physical domain being a channel, a regular discretization is efficient and a
finite difference method a plausible choice of numeric method. A finite difference method
with explicit time stepping parallelizes easily and efficiently. Centered spatial difference
operators are used in the interior and one-sided operators at the boundaries [9]. Non-
linear phenomena, such as shocks and aliasing, cause numerical instabilities. To remedy
this situation numerical dissipation is introduced. It is created through a fourth order
difference term (in q), which is turned off near shocks so as not to cause any spurious
effects. At shocks we use a second order difference to filter the solution. In this section we
define a few dissipation operators that have been used in the simulations. The derivation
of the operators, and an analysis of their properties can be found in [25]. Implementation
issues are discussed in section 4. For notational convenience the artificial viscosity is
discussed for the Euler equations. Artificial viscosity is also needed for the Navier-Stokes
equations [25]. We use the same dissipation operators for both sets of equations.

3.1 Artificial Viscosity, Interior Points

Artificial viscosity is introduced by adding a term to the analytic equations in the previ-
ous section. For the semidiscrete Euler equations and a time independent geometry the
equations become

0q ki

2 = |Tul[D6Fm + D{Giw + D§Hj — Davéul, (30)
where
Fin = F(qu)
Gjn = G(qju) -
H;u = H(qju)




The discrete difference operators Df, Aﬁ_ and A% are defined by

Dipin = (bisip — bioim)/(2A8)
Aﬁ.%’kz = Gjt1,k1 — Pjki . (31)
Aldi = Gjri— i1

The remaining operators are defined analogously. The computational coordinates are

chosen such that Aé = Ap = A( = 1.

For Davqju the following three dissipation operators [15, 8, 27] are considered. The
operators (33) and (34) are conservative, and (32) is non-conservative

Davijim = |Jjul " oju{f[ALAL]? + e"ATAT]? 4+ [AL AL P gm (32)

Davjm = AL[|Tu| ot ALAL AL &) (33)

+ AL[Tjul T ojue" AL AT AL ;]

+ AL et AL AL AL ]
Davim = ALAY[Tjul ojuet AL AL dm] (34)

+ ALAL[[Tu| " ojue" ALAYL §jn]

+ ALALTul T ojret AL A ],

where

Akt = [T jm|djm (35)
ikt = |Ujnt| + [Viea| + Wit + aua(IVE&mlz + [Vnjmlz + [V Eul2) (36)
ef=e"=¢el =4, (37)

with no smoothing at shocks. The constant ¥4 has a value of approximately 0.01. For a
better treatment of shocks we add one of the following quantities to D4y (the first choice
corresponds to a conservative formulation, the second to a non-conservative formulation):

—|Tjul T om{ AL AL + € ATAT 4 &AL A 1u(38)

— AL [T 1l oS A Qint] — AT | o€l Al ] — AL ] ol AL Gy .(39)
The coefficient in front of the difference operator in the ¢-direction is given by
6§kl =1, ma'X(T§+l,kl7 T?kb T§—1,kz) (40)

with

¢ _ Piviw = 2pin + pi-aml

ikl = . 41
H |Pi+1,kt + 2P0 + Pj1,ml] (41)
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A typical value of the constant ¥, is 1/4. The other coeflicients are defined analogously.
The max-function is used to increase the second order dissipation coefficients near the
shock. The fourth order coefficients €%, 7, €¢ can no longer be treated as constants. Instead
we set

e = sﬁkl = max(0,94 — 6§k1)
P — s;?kl = max(0,94 — 5;?kl) (42)
L= €§kz = max(0,94 — 6§k1)’

Near shocks the pressure gradients are very strong causing the max-function to switch off
the fourth order dissipation.

3.2 Artificial Viscosity, Boundary Points

On the boundaries the fourth order dissipation operators cannot be used as presented in
section 3.1. In the interior applying the fourth order operator Dy = [A;A_]? to a variable
¢ yields

Dygj = [A+ AP = ¢j2 — 4851 + 6¢; — 4djp1 + Bjsa. (43)

In matrix notation, the most general form of the fourth order dissipation operator, subject
to the constraint that the bandwidth be constant is

[0 a1 o \
Bo B B2 B3
1 —4 6 —4 1
. .. .. .. ) (44)
1 —4 6 —4 1
IN-3 IN-2 IN-1 IN
\ én-2 On-1 6N )

The restriction of a constant bandwidth is made for computational efficiency, which will
become clear in section 4.6.1. In [25] we show that the dissipation operator [8]

[ 1 -2 1 \

—2 5 —4 1
1 —4 6 —4 1
D, = (45)
1 -4 6 —4 1
1 -4 5 -2
1 -2 1)

preserves the zeroth and first order moments, the best possible if we want the operator
to be positive semidefinite. Since the choice of artificial viscosity affects the rate of
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convergence [27], it is of interest to study the impact of a positive definite operator

[5
—4
1

—4
6
—4

1
—4
6

1

6 —4
-4 5

(46)

The operator (46) is obtained by deleting the first and last rows and columns of (45).
Deleting these rows and columns is equivalent to prescribing Dirichlet boundary condi-

tions.

We also include a non-symmetric fourth order dissipation operator

pl

[ 0

-1

\

1
6 —4 1

-3 3 -1
0 0 0)

(47)

This operator is indefinite and preserves only zeroth order moments.

Different implementations of the operator D4 have different characteristics with respect
to computational efficiency, and numeric stability. We evaluate these properties by con-
sidering the unfactored operator D, and the factorizations

D4 - Dl_Di’-Dz
D, = D{D;D,,
where
1
-1 1
-1 1
D] = . (48)
-1 1
-1 1
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1 -1 \

1 -1
1 —1
D} = . (49)
1 -1
1 -1
1/
0 0
-1 2 -1
D, = (50)
-1 2 -1
\ 0 0
[ 0 0
-1 2 -1
1 -3 3 -1
Dg — (51)
1 -3 3 -1
1 -3 3 -1
\ 1 -2 1)
[ 1 -2 1 \
-1 3 -3 1
-1 3 -3 1
DI = : (52)
-1 3 -3 1
-1 2 -1

0 o)
(53)

Note that Df’T = D7 . Using these factorizations the total artificial viscosity operator in
one space dimension is factored as

D; XD7 (54)
Df XD; (55)
D; D} XD,, (56)
respectively, where
X = diag(eooo|Jo| ™, . .. ,enon|In|7L).

Here 0;,¢; and |J;|~" are the one-dimensional equivalents of (36), (42) and (2).

The first factorization corresponds to splitting the fourth order operator [A_A,]?
into A_ and A;A_A,. Since A} and A_ commute A, and A_A,A_ is an alternate

splitting, which is used in the second case. The different operators are summarized in
Table 1.
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Dissipation | Definiteness | Preservation | Dimension of
Operator of Moments Null Space
positive < first
Dy semidefinite order 2
positive none
]~)4 definite 0
indefinite zeroth
D, order 3
D; XD} 2
D} ¥D; 2
positive < first
D;D{ ¥D; | semidefinite order 2

Table 1: Properties of the Dissipation Operators

3.3 Time Discretization

We use a three stage Runge-Kutta method for the time integration of the semidiscrete
equations. The integration method belongs to a class of algorithms that can be written

( ~x0 ~T
Q1 Uik
Gu = G+ a1 ATR(q%)
X : . (57)
Ak % + e ATR(QSY)
~n+l ~m
( Dkt = Gk

The vector R is the right member of an equation of the same type as equation (30).
For a three stage Runge-Kutta method m = 3. We have used a; = @ = a3 = 1. In [25]
we derive the stability condition

< CFL _ CFL
UL+ IVI+ W]+ a(IVE + [Vala + V() — o

A (58)
for Euler flows without the dissipation operator. CFL is the Courant-Friedrichs-Lewy
number. In general, o varies in space, and the stability criterion above can be used to
determine the local time step, for time independent problems. The fourth order artificial
viscosity slightly shifts the spectrum of the discrete space operator into the left half of
the complex plane. From Figure 2 it is evident that the shifted spectrum will remain in
the stability region of the three stage Runge-Kutta method, if the viscosity coefficient is
sufficiently small.
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Domain of stability
y
1.0°
0.0
-1.0 -1
I i I T 1] X
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Figure 2: Stability Region of the Three Stage Runge Kutta Method
3.4 Numerical Methods, Summary
In summary, the Euler flow equations are based on the twisted grid as defined by equations
(4), (5) and (6) with Z = 0.0001, and the semidiscrete equations

04kl

5 = 13| [D§F s + DGt + D§H ]

- ijz{eﬁkz[AiAEV + elu[ATATP + Sgkz[AiAi]z}éb‘kl (59)
+ Ujkl{fﬁsziAé + JuALAL + &AL AL Y0
in non-conservative form and
a' .
"'g‘h;k‘l = |Jul{D§Fju + DIGju + D§H
— AL et AL AL AL gju)
— ALIu| ol AL AT AT g 1] (60)
— ATl ety AL AL AL &)

+ ALl ojuen AL G u)
+ AL|Tul " ojue), AL d ]
+ AC—[Iijz|_10jk16§k1Ai€1jk1]}
or
8".
;1:91 = |T;ul{DsF;u + DIGjn + DSH g
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- AiAi[|ij1I_lﬁjklsfktAiAiqikl]

= ALA|Tu| ojue i AL AT &) (61)
— ASAY[T ] omeby AL AL G u]

+ ALT | e A dj]

+ ATl ojmely AL & u]

+ ALl o A i}

in conservative form. The reciprocal cell volume at point j&! is computed from equation
(1), Fju, Gj and Hjj; are given by equations (10), (11) and (12). The vector ¢ is
given by equation (35), o by equation (36), ;1 by equation (42), €k by equation (40),
and the difference operators for interior and boundary points are given by equation (31).
For boundary points higher order difference operators are modified as defined by one of
equations (45), (46) or (47) and by (50). For the conservative form the fourth order
operator equations (48) and (52) are used. The in- and outflow boundary conditions are
defined by equations (25). At the solid boundaries the normal component of the velocity
field is zero according to equations (27), (28) and (29).

For the Navier-Stokes equations Fjx, Gju, and Hjy, are replaced by Fiu+F,,,, Gju+
Gy, and Hjy + H,,,,, respectively, where Fous Gujyy,y and H,,, are given by equations
(15), (16), and (17). The stretching parameter = equals 1.2. Artificial viscosity is required
even when solving the Navier-Stokes equations. The second derivatives are approximated
by twice applying the operators DS, Dg, and D§, rather than by the standard operators
D% D% and so forth. From equations (15), (16), (17), (19), (20) and (31) it follows that
the viscous flux vectors contain centered second order accurate approximations of the
velocity gradients. The inviscid and viscous flux vectors are added and the accumulated
flux vectors differentiated (equation (8)). Implicitly, uge, u,,, etc. are computed using the
centered operator Dy. This procedure minimizes the number of numerical differentiations,
and thereby reduces the number of arithmetic operations. At the solid walls © = v =
w = 0 and the pressure and density are extrapolated. At the in/outflow we use the same
boundary conditions as for the Euler equations, since viscous effects are assumed to be
negligible except in boundary layers near solid walls.

4 Data Parallel Programming

4.1 Arrays and virtual processors

Architectures in which tens of thousands of operations can be performed concurrently are
often referred to as data parallel to distinguish them from control parallel architectures,
which offer a considerably lower degree of concurrency. Algorithms are designed based
on the structure and representation of the problem domain. Objects in data parallel
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languages are represented by higher level data types such as the array extensions of
Fortran 8X [23]. In a language with an array syntax, a number of nested loops (often
equal to the number of axes in the array) disappear from the code, compared to a language
without the array syntax. We illustrate this property by the computation of a 7-point
stencil in three dimensions.

SUBROUTINE PSOLVE(PHI, OMEGA, N, ITER)
REAL PHI(N, N, N), OMEGA(N, N, N), FACTOR
FACTOR = 1.0/6.0
DO 100 I=1,ITER,1

PHI = FACTOR * (

$ CSHIFT(PHI,DIM=1,SHIFT=-1) +
$ CSHIFT(PHI,DIM=2,SHIFT=-1) +
$ CSHIFT(PHI,DIM=3,SHIFT=-1) +
$ CSHIFT(PHI,DIM=1,SHIFT= 1) +
$ CSHIFT(PHI,DIM=2,SHIFT= 1) +
$ CSHIFT(PHI,DIM=3,SHIFT= 1)) +
$ OMEGA
100 CONTINUE
RETURN
END

The operation csHIFT defines a circular shift. The first argument is the variable to
which the shift is applied, the second defines the axis along which the shift takes place,
and the third argument defines the length and direction of the shift. Since there is no
conditional statement in the code, the difference stencil is applied at every interior and
boundary point. The code implements periodic boundary conditions. Note that there are
no explicit loops enumerating grid points along the three array axes.

In the data parallel programming model it is often convenient to define elementary
objects subject to the same set of transformations. These objects are referred to as
virtual processors [12]. For the Navier-Stokes, and Euler, equations the three-dimensional
Cartesian topology of the computational lattice is one of the basic characteristics of the
data structure representing the fluid, and the state of the flow. A grid point, its state, and
the part of the problem description associated with it are chosen as a virtual processor,
or a virtual processor set in the Connection Machine programming terminology.

The data parallel programming model is particularly effective when the same operation
is applied to a large number of virtual processors. A single instruction suffices to apply
a given operation to all virtual processors that are subject to the same computations.
Virtual processors are assigned to physical processors. In the current implementation on
the Connection Machine system CM-2, the number of virtual processors and the number
of physical processors are both powers of two. The ratio between the number of virtual
and physical processors is known as the virtual processor ratio. Every physical processor
is assigned this many virtual processors. The total number of virtual processors is limited
by the size of the primary storage, and the storage required by each virtual processor.
The virtual processor concept makes the size of the physical machine transparent to the
programmer. Only the size of the physical storage matters. The scheduling of virtual
processors on physical processors is also transparent to the programmer.
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Computation | Registers | 4 Mbit 256 4 Mbit 256
only | chips | chips (board) | Boards

Mtx mpy 0.5 104 1600 26000
3-d Relaxation 0.17 4.27 26.7 170.7
FFT 1 18.8 28.8 38.8

Table 2: Number of operations per remote reference of a single variable.

Computation | 4 Mbit 256 256

1 proc. | Procs. = | boards =

1 chip Board | Machine
Mtx mpy 1 10 160
3-d relaxation 32 480 24600
FFT 3 1140 160000
no locality 300 76800 | 19660800

Table 3: Number of bits across the chip/board/system boundary per cycle.

Data parallel architectures achieve supercomputer performance through a large num-
ber of processing units, and a large number of memory modules. Supercomputers with
a performance of 1 Tflops/s or more, requires a memory bandwidth of several Thytes /s,
which can be realized by thousands of processors and thousands of memory units. It is
feasible to build such computers in state-of-the-art technology [16, 5]. A network inter-
connecting the processors and the memory modules is required to achieve a sufficient data
motion capability. The most critical property of the technology with respect to sustained
performance is packaging. The technology for packing integrated circuits, and connecting
printed circuit boards, is such that the communication bandwidth on a chip is about two
orders of magnitude higher than the communication bandwidth at the chip boundary,
and the bandwidth on a board about two orders of magnitude higher than the bandwidth
at the board boundary. A sustained performance close to the peak performance is only
possible if locality of reference exists in the problem, and can be exploited in the imple-
mentation. This fact is illustrated by Tables 2 and 3 [18]. Table 3 gives the number of bits
that on the average must cross the chip, board, and system boundaries during a single
cycle, assuming the optimum locality, or no locality of reference. It is assumed that each
chip has one processing unit, that a board has 256 processing units, and that all variables
are in single precision.

Next we address the issues of load balance, and the efficient use of the communication
system in the particular case of the Connection Machine system model CM-2 for the
model problem. The techniques are generally applicable to data parallel architectures.
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4.2 The Connection Machine Architecture

The Connection Machine [12] is a data parallel architecture. It has a total primary storage
of 512 Mbytes using 256 kbit memory chips, and 2 Gbytes with 1 Mbit memory chips.
The data transfer rate to storage is approximately 45 Gbytes/s at a clock rate of 7 MHz.
The primary storage has 64k ports and a simple 1-bit processor for each port. The storage
per processor is 8 kbytes for a total storage of 512 Mbytes and 32 kbytes with 1 Mbit
memory chips. The Connection Machine model CM-2 can be equipped with hardware
for floating-point arithmetic. With the floating-point option, 32 Connection Machine
processors share a floating-point unit, which is an industry standard, single chip floating-
point multiplier and adder with a few registers. The peak performance available from the
standard instruction set and the higher level languages is in the range 1.5 Gflops [s - 2.2
Gflops/s. The higher level languages do not at the present time make efficient use of the
registers in the floating-point unit for operations that vectorize. With optimum use of the
registers, a performance that is one order of magnitude higher is possible. For instance,
for large local matrices, a peak performance in excess of 25 Gflops /s has been measured.

The Connection Machine needs a host computer. Currently, three families of host
architectures are supported: the VAX family with the BI-bus, SUN 4, and the Symbolics
3600 series. The Connection Machine memory is mapped into the address space of the
host. The program code resides in the storage of the host. It fetches the instructions,
does the complete decoding of scalar instructions, and executes them. Instructions to
be applied to variables in the Connection Machine are sent to a microcontroller, which
decodes and executes instructions for the Connection Machine. Variables defined by array
constructs are allocated to the Connection Machine, unless allocation on the front-end is
requested. The architecture is depicted in Figure 3. The Connection Machine can also
be equipped with a secondary storage system known as the data vault. There exist 8 I/0
channels, each with a block transfer rate of up to approximately 30 Mbytes/s. The size
of the secondary storage system is in the range 5 Gbytes to 640 Gbytes. The Connection
Machine can also be equipped with a frame buffer for fast high resolution graphics. An
update rate of about 15 frames per second can be achieved.

The Connection Machine processors are organized with 16 processors to a chip, and
the chips interconnected as a 12-dimensional Boolean cube. The communication is bit-
serial and pipelined. Concurrent communication on all ports is possible. Through the
bit-serial pipelined operation of the communication system, remote processor references
require no more time than nearest neighbor references provided there is no contention
for communication channels. For communication in arbitrary patterns, the Connection
Machine is equipped with a router which selects one of the shortest paths between source
and destination, unless all of these paths are occupied. The router has several options for
resolving contention for communication channels.
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Figure 3: The Connection Machine System

4.3 Configuring the address space

The address field of the Connection Machine is divided into three parts:
(off-chip|on-chip|memory). The off-chip field consists of 12 bits that encode the Connec-
tion Machine processor chips, the on-chip field encodes the 16 processors on each Connec-
tion Machine processor chip, and the lower order bits encode the memory addresses local
to a processor. The lowest order off-chip bit encodes pairs of processor chips sharing a
floating-point unit. On-chip communication is considerably faster than inter-chip commu-
nication. On-chip communication is a local memory reference. Off-chip communication is
slower due to the limited bandwidth at the chip boundary. The non-uniformity in access
time impacts the optimum data allocation [17, 18].

The default data allocation scheme on the Connection Machine first determines how
many data elements there are to each processor, then stores that many successive elements
in each processor, consecutive storage [17]. With the n highest order bits encoding the
processors and the lower order bits encoding memory addresses in each processor, the
consecutive assignment can be illustrated as follows:

Consecutive assignment:  (ZTy—1Tm—2. .. Tm-n Tm-n-1Tm_n—3 - - - Zo).

P vp
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The field denoted rp encodes real processor addresses as opposed to local memory
addresses vp. For a data set of M = 2™ real numbers, m address bits are required, n of
which are processor address bits. Hence, there are m — n local memory address bits. In
cyclic assignment the lowest order address bits determine the real processor address.

Cyclic assignment: (Tp-1Zm-2...%n Tn_1Tn_z... :vg).

vp TP

In the cyclic assignment, all data elements in a processor have the same n low order
- bits. In the consecutive assignment, the elements in a processor have the same n high order
bits. The cyclic allocation scheme currently is not supported on the Connection Machine
system. However, for some computations, it offers certain performance advantages [17, 20].

Current implementations of the Connection Machine languages encode each axis of
a multi-dimensional array separately. Each axis is extended to a length that is equal
to some power of two. For an axis length N, [log, N| address bits are assigned to the
encoding of the elements along that axis. The consecutive allocation scheme is used for
each axis. The encoding of the axes in the total address space attempts to configure each
part of the address space (off-chip, on-chip, and memory) to conform with the array. To
the extent possible, all axes have a segment of each address field, and the ratio of the
lengths of segments for different axes is the same as that of the length of the axes. The
address space of an Ny x Ny X ... x Ny array is configured as

off-chip on-chip mem

(Zhi+181+lel=1 - T|git1a] Zipilal—1 - - - Tla] Flal—1 - - - £0);

TP vp

where o; + §; + v; = [log, N;| with

o B v N

o B N
whenever possible. Using standard multi-index notation, || is defined as |a| = a; +. ..+
a4. Analagous expressions hold for |3 and |v]|.

For a computation in which the interaction between virtual processors is equally fre-
quent in each direction, the total amount of communication is minimized if the virtual
processors assigned to a physical processor, or actually a processor chip, forms a single
subdomain with an aspect ratio as close to one as possible [18]. The different Connec-
tion Machine languages provide different means for user controlled data allocation. In
CM-Fortran, compiler directives allow a user to specify an axis as SERIAL, which implies
that the axis is allocated to a single processor. In PARIS (PARallel Instruction Set), the
Connection Machine native language, a user has full control over what dimensions of the
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address space an axis occupies. But, only consecutive allocation of data to processors is
supported.

If an array has fewer elements than the number of real processors in the configuration,
the array is extended such that there is one element per real processor. In CM-Fortran an
axis is added to the array with a length equal to the number of instances of the specified
array that matches the number of real processors.

4.4 Encoding of array axes

In the common binary encoding, successive integers may differ in an arbitrary number of
bits. For instance, 63 and 64 differs in 6 bits, and hence are at a Hamming distance of 6
in the Boolean cube. A Gray code by definition has the property that successive integers
differ in precisely one bit. The most frequently used Gray code for the embedding of
arrays in Boolean cubes is a binary-reflected Gray code [17, 21, 28]. This Gray code is
periodic. The code preserves adjacency for any loop (periodic one-dimensional lattice) of
even length, and for loops of odd length one edge in the loop is mapped into a path of
length two [17]. For the embedding of multi-dimensional arrays, each axis may be encoded
by the binary-reflected Gray code. The embedding of an N; X N2 X ... X Ny array requires
E;Ll [log, N;] bits. The ezpansion, i.e., the ratio between the consumed address space
and the actual array size, is 92 is Nloga Ni1 /I, N;, which may be as high as ~ 2¢ [10, 13].
The expansion can be reduced by allowing some successive array indices to be encoded
at a Hamming distance of two. The dilation is the maximum Hamming distance between
any pair of adjacent array indices. Every two-dimensional array can be embedded with
minimum expansion and dilation 2 [3]. Minimum expansion dilation 2 embeddings for a
large class of two-dimensional arrays are given in [13], which also provides a technique
for reducing the expansion of higher dimensional arrays. Minimal expansion dilation 7
embeddings are possible for all three-dimensional arrays [4]. Embeddings with dilation 2
for many three-dimensional arrays are given in [14].

The lattice emulation by a binary-reflected Gray code embedding is part of the stan-
dard programming environment on the Connection Machine system. In CM-Fortran,
array axes are by default encoded in a binary-reflected Gray code for the off-chip segment
of the address field. In the other Connection Machine languages, the Gray code encoding
is invoked by configuring the Connection Machine as a lattice of the appropriate number
of dimensions. The benefit of the lattice emulation feature is twofold: the virtual pro-
cessors are assigned to physical processors such that the communication requirements are
minimized, and lattice organized computations are often easier to express by virtue of
programming constructs corresponding directly to the operations in the problem domain.

22




4.5 Programming Languages

The data parallel languages on the Connection Machine currently are CM-Fortran, *Lisp,
and C*. These languages are extensions of the well known languages for sequential ma-
chines. In all three languages the extensions effectively consist of higher level data types,
and the operations associated with them. In the case of CM-Fortran the additional data
types are the array extensions of Fortran 8X [23]. C* [2] is derived from C++, and the
additional data types named poly serve the same purpose as the array extensions in
CM-Fortran. Objects of the same type are members of the same domain. Referencing
a domain implies a subselection of virtual processors. Every instance of a domain is as-
sociated with a virtual processor. In *Lisp [1] the corresponding data types are pvars
for parallel variables. Parallel variables with the same layout form a virtual processor
set. The higher level data types define collections of variables assigned to the Connection
Machine system. Scalar data are assigned to the memory of the host, together with the
program code.

The data parallel languages on the Connection Machine system include instructions for
reduction, copy/broadcast, and scan operations. These operations can be performed both
on all virtual processors, or concurrently on different sets of virtual processors forming
segments. A segment consists of a set of virtual processors with contiguous addresses.
Different segments have disjoint sets of addresses. Virtual processors can be subselected
within segments, such that a given operation only applies to the selected set. Below, we
give a few examples of data parallel programming.

4.5.1 CM-Fortran

The default encoding of array axes in CM-Fortran is by a binary-reflected Gray code on
the part of the address defining Connection Machine processor chips. As an illustration of
the use of array operations and layout directives we show a code fragment from a Navier-
Stokes solver with periodic boundary conditions. The implementation of non-periodic
boundary conditions will be discussed in section (4.6.1). The piece of code shown below
illustrates how the inviscid flux vectors, equations (10), (11), (12), and the viscous flux
vectors, equations (15), (16), (17), are accumulated and differentiated. At each grid point
the inviscid flux vectors make up a 5 by 3 array, which is stored in rPLUX. Similarly,
VFLUX holds the viscous flux vectors. The result is stored in RQ, which represents the
right member of equation (30) before adding the artificial viscosity. The loop over the
three lattice axes of the array are unrolled. The expression within the parenthesis defines
a convolution operator for which all communication can be executed concurrently.
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CMF$LAYOUT IFLUX(:SERIAL, :SERIAL, , , )s VFLUX(:SERIAL, :SERIAL, , , ) RQ(:SERIAL,, ,)

REAL IFLUX(5,3,32,32,32), VFLUX(5,3,32,32,32), R(5,32,32,32)

R = 0.0

DO I=1,5

R(I:::) = R(L:::) + 0.5*(CSHIFT(IFLUX(L1,:,:,:) + VFLUX(I,1,:,:,:),1, 1) -

CSHIFT(IFLUX(L1,:,:,:) + VFLUX(L1,:,:,:),1,-1) +
CSHIFT(IFLUX(L2,::,:) + VFLUX(I,2,:,:,:),2, 1) -
CSHIFT(IFLUX(L,2,:,:,:) + VFLUX(L2,:,:,:),2,-1) +
CSHIFT(IFLUX(L3,:,:,:) + VFLUX(L,3,:,:,:),3, 1) -
CSHIFT(IFLUX(L3,:,:,:) + VFLUX(LJ,:,:,),3,-1))

END DO 1

In the above code segment, it should be noted that the grid spacing equals 0.5 in each
dimension.

CM-Fortran provides a second grid communication scheme:
EOSHIFT(ARRAY, DIM, SHIFT, BOUNDARY).

Function EosHIFT is used to shift off all rank-one sections of ARRAY in the dimension
specified by DIM at one end. At the other end copies of a boundary matrix BOUNDARY
are shifted in. If the rank of ARRAY is n, then the rank of BOUNDARY must be n — 1 or 0,
i.e., a scalar. The usage of EOSHIFT provides for very efficient implementation of boundary
conditions of Dirichlet type, whereas csHIFT implements periodic boundary conditions.

It is possible to order the virtual processors by their send addresses. This is accom-
plished through the layout directive :seND. The default option is :NEWs, which corresponds
to the Cartesian grid topology. Specifying the :SEND option implies that the router will
be used for communication. Finally, the layout directive :SERIAL tells the compiler that
all element along that axis should be allocated within the same virtual processor. The
previously defined variable 1rLUX is thus defined to emulate a 5 by 3 matrix at each grid
point.

Assignment statements formally look like those in regular Fortran. Consider the fol-
lowing assignment:

A = 3.5 4+ X*Y.

If all variables are scalar, then this is nothing but an ordinary Fortran statement. However,
if A and either x or v are CM-arrays, then the above assignment will take place in every
virtual processor. For example, an array is considered a CM-array if there is one axis
whose layout directive is :NEws.

In general, whether or not an operation shall be carried out is a function of the state.
Examples of conditionals in CM-Fortran are 1F, CASE and WHERE. The syntax of the 1F
and CASE statements is the same as that of Fortran 8X. To illustrate the usage of the
WHERE statement we give the example
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WHERE (X .GE. 0.0) X = SQRT(X).

WHERE subselects the processors for which (X .GE. 0.0) is true.

CM-Fortran also has some powerful global operators. Of particular interest for numeric
applications are MIN, MAX, MINLOC, MAXLOC and SUM.

MAX(A1,A2,...)
MIN(A1,A2,...)
MAXLOC(ARRAY,MASK)
MINLOC(ARRAY,MASK)
SUM(ARRAY,DIM,MASK)

MAX and MIN returns an array whose elements are the largest of the corresponding ele-
ments of the arguments. MaXLOC, MINLOC and suM compute the location of maximum
and minimum, and the sum of the values in ARRAY for those elements (virtual processors)
where MASK is true. MASK and DIM are optional.

4.6 Load balance

For the model problem the only concern with respect to load balance is the treatment of
the boundary points. The boundary stencils we use are structurally subgraphs of the in-
terior stencils. The application of the difference stencils to virtual processors representing
grid points on or close to the boundary can be performed concurrently with the interior
points, both with respect to computation and communication. However, the evaluation
of the boundary conditions are performed after the interior points have been properly
updated. Though the separate evaluation of the boundary conditions causes a loss in
performance, this loss is small for the model problem implemented on the Connection
Machine. We also address the issue of efficient memory usage for the implementation of
the difference stencils.

4.6.1 Difference Stencils

The difference stencils can be evaluated in the interior as well as at the boundary concur-
rently, if the number of neighbors in a given dimension at the boundaries does not exceed
the number of neighbors in the same dimension in the interior. For the flux vectors we use
a second order accurate stencil in the interior (7-points in 3D). With only one neighbor in
the direction of the normal at the boundary, the approximation of the boundary operators
is only first order accurate. However, for linear problems the overall approximation is still
second order accurate [9]. Hence, for each grid dimension one difference operator at the
left boundary, and one at the right boundary is needed in addition to the difference op-
erator in the interior. For a one-dimensional problem the difference stencil D? in matrix
form is
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Processor 0 1 2 3 4 5 6 7
Sup diag. 1.0 051 05| 0.5] 05| 0.5 0.5 0
Main diag. | -1.0 0 0 0 0 0 0] 1.0
Sub diag. 0(-0.5(-05]-0.51-0.5|-05]|-0.5]-1.0

Variable bo| O1| 2| P3| da| 5| Pe| &b

Figure 4: Storage layout for the difference operator DY.

-1 1 \
—05 0 05
—-05 0 05
D! = . . (62)
-05 0 0.5
-05 0 0.5
-1 1

In three dimensions the number of stencils for a difference molecule with 2p+ 1 points
in each of the three dimensions is 8p® + 12p% +6p + 1, even if the stencil contains elements
off the three axes. The total number of multiplications per stencil evaluation is 2dp + 1,
if all elements of the stencil fall along the axes in d dimensions. The difference stencils
for all grid points may be stored across the virtual processors as illustrated in Figure 4.

The one-dimensional difference stencil defined by (62) can be implemented as:

Multiplication of the center point:

-1 0 0 0 0 0 0 1
o b1 G2 Pz b b5 de @7

The right neighbor. Multiplication, left cyclic array shift, addition:

1 05 05 0.5 05 05 05 0
$1 B2 Pz b1 b5 Ps  dr  ¢o

The left neighbor. Multiplication, right cyclic array shift, addition:
0 -05 -0.5 -0.5 -05 —-05 —0.5 -1
7 o ¢1 b2 $3 P4 ¢ de -

The implementation in CM-Fortran is

CMF$LAYOUT F(:SERIAL, )
REAL F(3,8), D(8), S(8)

D = F(1, :)*S

D = D + F(2, :)*CSHIFT(S, 1, 1)
D = D + F(3, :)*CSHIFT(S, 1,-1),
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where the main diagonal is stored in the first row of ¥. The super- and subdiagonals are
stored on the second and third rows, respectively. In general, p — 1 shifts and 2p — 1

- floating-point operations are needed to evaluate a stencil containing p points. No un-
necessary operations are performed, since, in general, the coefficients occurring in the
difference stencils will be different from 1 and 0. If the differential equation has constant
coeflicients and the difference approximation is applied at all grid points including the
boundary points, (periodic boundary conditions) then the storage of a single instance of
the difference stencils suffices. With the stencil stored in the host computers memory
the numerical differentiation is performed by broadcasting each coeflicient of the stencil,
one at a time, to every processor. The time needed to distribute a scalar value from the
host to each processor is negligible compared to the time for shifting an array. When
many different stencils are needed, as for instance is the case for higher order difference
methods for boundary value problems, the host rapidly becomes a bottleneck. Moreover,
subselection is required for the broadcasting of each stencil, and potentially also for the
application of the stencil. The degree of concurrency in evaluating the stencils may be
reduced significantly. The more complex the stencils, the more urgent it is to store them
on the data parallel computer.

Our implementation of the Navier-Stokes equations requires the difference operators
D, D, and Dy in the non-conservative case, and the storage of DY, Df,D; and DI in
the conservative case, calling for a total of 27 and 25 variables per grid point, respectively.
Table 4 shows the number of variables per grid point required for each difference operator.

Difference | Storage Requirement
Operator | Array elem. in d Dim

D? 2d + 1

D} d+1

DT d+1

D, 2d +1

D 3d+1

D3 3d+1

D, 4d +1

D, 4d + 1

D, 4d + 1

Table 4: Memory Requirements for the Difference Operators

If each virtual processor stores all stencils required for the grid point it represents,
then the memory requirements for the difference stencils may dominate the storage re-
quirements. For our model problem the coefficients are constants, but storing the stencils
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on the front-end would reduce the performance by a factor of three. However, since the
coeflicients are constants, and the same constants shared between some of the difference
operators we use, the storage per virtual processor can be reduced without loss of perfor-
mance. The main diagonals in Df and Dy are equal to 1, and need not be stored. The
evaluation of the subdiagonal in D7 yields

0 -1 —1 -1 -1 -1 -1 -1
¢7 do b1 P2 ¢z bs b5 6.

which can be accomplished by an end-off shift (boundary value zero) and a coefficient
array of -1:

-1 -1 -1 -1 -1 -1 -1 -1

0 do ¢1 2 ¢35 I o5 s

Since all entries of the coeficient array are the same, using an end-off shift operation allow
the stencils for Dy and D7 to be stored as scalars, without a performance degradation.
To evaluate DY it suffices to store its main diagonal, since the subdiagonal is equal to
—0.5(I+ diag(DY)), and the superdiagonal is 0.5(I — diag(D?)). For the evaluation of D,
one more coefficient array is needed:

(1 000000 1)

Since Dy = D7 DD, and DI = DI D,, it is immediately clear that no more storage
is required to evaluate D4 and Dg’. Even I~)4 could be evaluated without any extra
storage, since diag(D,) = 5I1+0.5diag(D,), the remaining sub- and super-diagonals being
constants. Hence, a total of 2d variables per virtual processor suffice. Six variables per
virtual processor covers both the conservative and the non-conservative 3D-Navier-Stokes
equations.

4.7 Virtual Processor Operations.

Many of the computations in each virtual processor is of the type defined in levels one
and two of the Basic Linear Algebra Subroutine packages [22, 6]. The advantage of using
these functions is that architectural features such as registers and caches can be used
effectively for performance enhancements. On the Connection Machine, the performance
for scalar operations in each virtual processor is in the range 1.5 - 2.2 Gflops/s for 32-bit
floating-point addition, subtraction, and multiplication. Kernels of the matrix-vector type
achieve a peak performance in excess of 20 Gflops/s [19] when effective use of the registers
on the floating-point units is made. The performance quoted in this paper was obtained
without any such features. Using vector, matrix-vector and matrix-matrix operations
for the computations in each grid point the arithmetic performance can be improved
significantly.
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The computations of 7 and &%. involve scalar arithmetic only. The evaluation of the
velocity gradients Vu, Vv, Vw and Vé? comprises a matrix-matrix multiplication, the
matrices being 3 x 3 and 3 x 4. The computation of &, equation (21) includes a matrix-
vector operation where the matrix is a 3 x 3 real, symmetric, matrix. The computation
of the inviscid flux vectors is of the type vector < scalar, x vector; + scalary X vector, for
each of the equations (10), (11), and (12), where vector; and scalar, are common for all
three equations. The vectors are of length 5. Each vector operation can be viewed as a
5 x 2 matrix-vector multiplication. The computation of the viscous flux vectors are of
type matrix-vector multiplication, where the matrix is common to all three equations.
The computations of all three viscous flux vectors, equations (15), (16), and (17), can be
performed as a matrix-matrix multiplication, where the first matrix is a 4 x 3 matrix and
the second a 3 x 3 matrix. The computation of the contravariant velocities involves a
3 X 4 matrix-vector multiplication. The computation of &k, pjri, Yk, €jki, €k consists
of scalar operations. Finally, the implementation of the difference stencils is similar to
multi-dimensional convolution in that a weighted sum of a set of neighborhood values
is computed for every point. The difference operation is vector valued, with vectors of
length 5. The width of the kernel depends on the difference operator, and ranges from
two to five in each of the three space dimensions.

In summary, the computations in each virtual processor contains the following set of
BLAS primitives

e Scaling of vectors of length 3.

2-norms (|| - ||2) on vectors of length 3.

Inner-products for vector length 3.

Difference Stencils on vector arguments. Vectors of length 5.

Matrix Vector multiplication in each virtual processor

— & X 2 matrix vector multiplication
— 3 X 4 matrix-vector multiplication

— 3 X 3 matrix-vector multiplication

Matrix-matrix multiplication

— 4 x 3 by 3 X 3 matrix-matrix multiplication

— 3 X 3 by 3 x 4 matrix-matrix multiplication
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5

Simulations

The required computations are divided into a preprocessing step in which time indepen-
dent variables are computed, and the main simulation step for time dependent variables.
In the preprocessing step the grid is generated and the Jacobian computed as well as some
other variables as follows

Compute V¢, Vn, and V( by equations (4), (5), (6) and (7). Note that we assume
a time independent geometry.

Compute |J;5|™" from equation (1).
Compute |J ;x|  Re™t.
Compute (|V&klz + [Vnsmlz + [V nil2)-

k
Compute m—:—m .

The simulation of the Navier-Stokes equations consists of

10.
11.
12.
13.

. Compute u,v,w from q.

Compute the contravariant velocities U, V and W by equation (13).
Compute p by equation (14).

Compute @ by equation (24).

. Compute ug, ..., w, by equations (20) and (31) for interior and boundary points,

respectively.

. Compute Va? by the analogue of (20) and equations (31).

Compute T by equation (19).

. Compute & by equation (21).

Compute o5 by equation (36).

Compute Fxi, Gjr, Hju by equations (10), (11), and (12).
Compute F,,,,, G,,,,, H,,, by equations (15), (16), and (17).
Compute Y ;i by equation (41).

Compute € by equation (40).
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14. Compute € by equation (42).

15. Compute the fourth order difference by one of equations (45), (46) or (47) or by
equations (48) and (52).

16. Compute the second order difference by equation (50).

0Q ki
0

T

17. Compute by equation (30).

18. Compute one Runge-Kutta step by equation (57).

For the implementation, the Connection Machine was configured as a regular 3D-
grid. No low level coding, or optimization with respect to the architecture, has been
undertaken. Fast library routines of the BLAS type were not available at the time of the
experiments. The implementation of the combination of the Dy, D; and Ds stencils that
was numerically best behaved was not optimized with respect to storage, and required
approximately 170 variables per virtual processor. In the simulations additional stencils
were tried. The code had 218 variables per virtual processor, and the maximum virtual
processor ratio with 8k bytes of storage per physical processor was 8. The subgrid for each
processor was a 2 X 2 x 2 grid. Each floating-point unit services a 4 x 8 x 8 subgrid. The
measured bandwidth for nearest neighbor communication in this grid was on the average
about 2.5 Gbytes/s for a fully configured Connection Machine.

The execution times as a function of the virtual processor ratio, and the physical
machine size are given in Table 5. The physical domain was 3.5 x 1.75 x 14 cm?, the
flow velocity 80 m/s, and the Reynolds number 140. The aspect ratio of any pair of grid
dimensions was either one or two, and the size ranging from 16 x 16 X 32 to 64 x 64 x 64.
The number of floating-point operations per virtual processor was 2,550 per time step,
and the number of lattice communications of single variables 492. The execution time
per time step is independent of the machine size, as expected, Table 5 and Figure 5. The
processor utilization increases by a factor of 2.75 as the virtual processor ratio increases

from 1 to 8. The work increases by a factor of 8, but the execution time only by a factor
of 2.9.

Virtual Machine Size
processor 8k 16k 32k
ratio | CM-time | Total time | CM-time | Total time | CM-time | Total time
1 0.261 0.443 0.261 0.442 0.261 0.442
2 0.412 0.474 0.412 0.474 0.412 0.474
4 0.707 0.708 0.704 0.705 0.701 0.702
8 1.270 1.270 1.283 1.283 1.283 1.283

Table 5: Execution Time for Different Virtual Processor Ratios.
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Figure 5: The Execution Time for a Single Time Step.
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Figure 6: The Execution Speed for the Compressible Navier-Stokes Solver.
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Figure 7: Rate of Convergence for the Different Dissipation Operators, Irrotational Inflow
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Figure 6 shows the achieved floating-point rate for *Lisp. Computations expressed in *Lisp
have a peak performance of about 2.3 Gflops/s. The difference between the peak and the
measured performance is mostly due to the communication required for the difference
stencils. The evaluation of the boundary conditions accounts for less than five percent of
the total execution time. The utilization of the Connection Machine exceeds 99 %. With
a virtual processor ratio of 8, grids with up to 524,288 points were simulated.

The rate of convergence for the Euler equations is illustrated in Figures 7 and 8. The
residual at time step n is computed as

o™ — p™ 1|2
o™ |2

On a 4 k CM-2 it takes approximately 40 minutes to reach the steady state for a grid of
32,768 points. This time is the same as the execution time for the original Fortran code
on a CRAY-1S (Linképing, Sweden). The execution time on a single processor Alliant
FX/8 is approximately ten times longer.

6 Summary and Conclusions

By making the stencils on or close to the boundary be subgraphs of the stencil in the
interior of the computational domain, the stencils can be evaluated for all grid points
concurrently. Three different fourth order stencils were tried, as well as three different
factorizations of one of these stencils. The difference between the three fourth order
stencils were due to different treatment of the boundary stencils. The different treatment
of the boundary for the artificial viscosity resulted in significantly different flow fields
at the outflow. The convergence properties were also significantly different. Factoring
of the higher order stencils as products of lower order stencils affected the convergence
behavior. The operator Dy D7 had the best convergence behavior. For residuals of less
than about 1072 — 1072 this operator had a convergence rate of approximately twice that
of the operator Dy.

The factorization of the higher order stencils also provides a mechanism for conserving
storage. For the three dimensional Navier-Stokes equations six variables per lattice point
suffice for the generation of all difference stencils needed for the flux vectors and the three
different fourth order operators tried for the artifical viscosity, including the different
factorizations of one of these operators.

Computationally, the most frequent functions in the Euler version of the code are eval-
uation of three-dimensional difference stencils on vectors of length five, matrix multipli-
cation at each lattice point for the computation of the contravariant velocity components,
and inner product evaluation for the computation of the pressure at a lattice point. The
vector length for the inner product is three, and the matrices required for the contravari-
ant velocity components are of size 3 x 4. The Navier-Stokes code requires in addition
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three matrix-vector multiplications with the same 4 x 3 matrix, and all three resulting
vectors scaled with the same variable (|JJ|"*Re™!), one 3 x 3 matrix-vector multiplication,
and a SAXPY operation for computing «. The Euler code requires approximately 1,900
floating-point operations per time step, and the Navier-Stokes code approximately 2, 550
operations per time step. The number of variables communicated per time step is 396 in
the Euler case and 492 in the Navier-Stokes case.

The explicit method parallelizes easily, and a floating-point rate of 1.05 Gflops/s was
achieved for a 64k processor configuration and a virtual processor ratio of 8. The eval-
uation of the boundary conditions accounted for less than 5% of the total time. The
processor utilization increases by a factor of 2.75 in increasing the virtual processor ratio
from 1 to 8. We estimate that with optimization of the storage of the coefficients for the
difference stencils, and the use of temporary variables a virtual processor ratio of 32 is
feasible for 8k bytes of storage per processor (and 128 for 32 kbytes per processor). Such
an increase in the virtual processor ratio is expected to directly increase the performance
by about 5%. A much more significant increase in performance is likely to be achieved
by the use of optimized BLAS functions, and convolution kernels. For the matrix and
vector sizes in the code the performance of optimized kernels is expected to be three to
five times higher than the scalar performance in the current code. The communication
times can also be reduced by performing concurrent communication on all three axes. The
communication primitives used in our implementation only performed communication in
one direction along one axis at the time. A total performance improvement by a factor
of about three is expected by optimizing arithmetic and communication functions.
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