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Abstract

Av is an extension of the A-calculus with a binding con-
struct for local names. The extension is symmetric in
identifiers and names, it has properties analogous to
classical A-calculus, and it preserves all observational
equivalences of A. The calculus is useful as a basis for
modeling wide-spectrum languages that build on a func-
tional core. ‘

1 Introduction

Names are ubiquitous in programming. We find them
as the substrate for mutable variables in imperative pro-
gramming languages, for logic variables in Prolog, or for
communication links in process algebras. Milner’s Tur-
ing Award Lecture [11] emphasizes naming as the key
idea of the m-calculus [12, 13]. Even if names are in gen-
eral introduced as the basis of more complex entieties,
they can also be useful on their own. For instance, we
often find statements like “let z be some fresh identifier”
in definitions of denotational semantics or type checking
algorithms.

Names are different from the identifiers serving as place-
holders in functional languages: in contrast to a place-
holder, nothing is ever substituted for a name. Con-
versely, equality tests are meaningful for names but not
for placeholders. Names are also different from constant
strings, at least if the programming language in question
admits recursion. In this case, the same text string can
denote different names in different recursive instances
of a program construct.

This paper presents a syntactic theory that extends the
A-calculus with names. The basic idea is to generalize
the notion of constant symbol already present in ap-
plied A-calculus, by introducing an abstraction vn.M
that binds a name n. Constant symbols in classical ap-
plied A-calculus then become a special case of names

that are not bound anywhere. The new calculus, \v,
is pleasingly symmetric: Both placeholder-identifiers
and names can be bound, and both are subject to a-
renaming. The difference between the two lies in the
operations that can be applied to them. One can sub-
stitute a term for an identifier, and one can compare
two names for equality, but not vice versa.

By studying a theory that combines names with \-
abstractions we hope to gain some understanding of the
issues involved in the design of wide-spectrum languages
that build on a functional core. The main results of this
work are:

e Names can be added to the A calculus in a refer-
entially transparent way. That is, full 8 remains a
valid reduction rule.

o The resulting calculus, Av, is confluent and admits
a standard evaluation function.

o The addition of names is fully compatible with
functional programming. That is, every observa-
tional equivalence in A carries over to Av. This has
important practical consequences. We are guaran-
teed that every equational technique for verifying,
transforming, or compiling functional programs is
also applicable to programs with local names.

Many of the themes of this paper have also been ad-
dressed in the context of Ayer [17]. The main contribu-
tion of the present work over [17] is a considerably sim-
pler theory that isolates the treatment of names from all
other issues of imperative programming. This separa-
tion of concerns helped simplify the (rather hard) proofs
on the observational equivalence theories of imperative
languages. For this reason, we have based an extended
version of the Ayq--report on v [16].

Recent work on monads [14, 23, 24, 18, 8] shares with Av
the motivation to extend functional programming lan-
guages to new application domains. Monads solve the
problem of making sequencing explicit, which is needed
if state is to be updated destructively. Av solves the or-
thogonal problem of expressing and encapsulating refer-




z € Idents A-bound identifiers
n € Names = Names® U Names” names
n® € Names® constants
n” € Names’ v-bound local names
P €  Primops primitive operators
M e Av terms
M = z|Xz.M | M M,
I n I vn.M | M1 == M2
| (M, M) | pM
Figure 1: Syntax of Av
B (Az.M)N > [N/z]M
eq n==n — true
== false (n # m)
V) vnz.M Az.vn. M
Vp vn. (M, M3) — (vn.M, vn.My)
Vn vn.m - m (n #m)

Figure 2: Reduction rules for A\v

ences. The two techniques complement each other well,
as is shown in Example 3.2.

Several other calculi use a notion similar to names for
expressing mutable variables in imperative languages.
The motivation for these calculi comes partly from the
desire to explain the semantics of existing languages
(e-g- [5, 9] for Scheme or ML, [20, 10, 25] for Algol), and
partly from the desire to extend functional program-
ming with full imperative state [22, 17]. The calculi
differ in the assumed order of evaluation, in the kinds
of side effects that are admitted, in whether state is im-
plicit or explicit, and in many other properties. But
they all have in common an alphabet of a-renamable
names that identify mutable variables. By factoring out
this common concept, and studying it independently
and irrespective of the particular additional semantics
attached to names, we hope to find a common basis for
the various approaches that describe state.

A theory with a motivation close to A has also been

developed independently by Pitts and Stark [19]. Even
though the term languages of both theories are strik-
ingly similar, their laws are fundamentally different.
The nu-calculus of Pitts and Stark is intended to model
names as they are used for ML-style references. It is
not intended to be a referentially transparent extension
of a functional core. Hence, our result of conservative
extension does not apply to the nu-calculus.

The rest of this paper is structured as follows. Section 2
describes term syntax and reduction rules of Av, a calcu-
lus of functions and names. Section 3 presents two appli-
cations of local names, a type reconstruction algorithm
and an implementation of state. Section 4 shows prop-
erties of Ay, in particular its confluence and its standard
evaluation function. Sections 5 and 6 discuss the obser-
vational equivalence theory of Av and prove that it is a
conservative extension of the corresponding theory of \.
Section 7 concludes.




2 The \v calculus

Terms. The term-forming productions of Av are given
in Figure 1. The three productions on the first line are
those of classical, pure A-calculus. The three produc-
tions on the next line are particular to Av. Besides
A-bound identifiers there is a new, countably infinite al-
phabet of names. Names fall into two classes, global
and local. A global name n® is an atomic constant.
We assume that there are two such constants denoting
the Boolean values true and false. A local name n” is
a name that is bound in a name abstraction vn”.M.
In contrast to the case of A-bound identifiers, nothing
is ever substituted for a name. Rather, names can be
tested for equality, as in n; == ny. Both constants and
local names can be operands of (==).

We study here an applied variant of Av. Accordingly,
we have on the last line productions for pairs (M;, Ms)
and applied primitive operators p M. Primitive opera-
tors are always unary, but operators of greater arity can
be obtained by currying. We assume that at least the
following operators are defined:

pair? (My, M) = true
pair? _ = false
name? n = true
name? _ = false
fst (Ml, Mz) = M1
snd (M], Mz) = Mz

Notational conventions. We use BV(M) and
FV (M) to denote the bound and free identifiers in
a term M, respectively. Analogously, BN(M) and
FN(M) denote bound and free local names in a term
M. A term is closed if FV(M) = FN(M) = . Closed
terms are also called programs. Note that programs do
not contain free local names n¥, but they may contain
constants.

We use M = N for syntactic equality of terms (modulo
a-renaming) and reserve M = N for convertibility. If R
is a notion of reduction, we use > to express that M
reduces in one R reduction step to N, and M —» N to
express that M reduces in zero or more R-steps to N.
We also use M 2 N to express that M reduces to N
by contracting redex A in M.

The syntactic category of values V comprises constants,
names, pairs, and A abstractions. An observable value
(or answer) A is an element of some nonempty subset

of the alphabet of constants.

V u= c¢|n| (M,M)]| AzM

A € Answers C Names®

A context C[]is a term with a single hole [ ] in it. C[M]
denotes the term that results from replacing the hole in
C[] with M.

Following Barendregt [1], we take terms that differ only
in the representatives of bound identifiers and names to
be equal. That is, all terms we write are representa-
tives of equivalence classes of a-convertible terms. To
avoid name capture problems in substitutions we re-
strict ourselves to representatives in which bound and
free identifiers are always distinct, and we employ the
same conventions for names.

We let letters L, M, N range over terms, and V and
W range over values. We let letters m, n range over
names. We use a v-superscript with these to indicate a
local name, and a ¢ superscript to indicate a constant.
Alternatively, we also use the letter ¢ for a constant.

Reduction Rules. Figure 2 gives the reduction rules
of Av. They define a reduction relation between terms in
the usual way: we take (—) to be the smallest relation
on Av X Av that contains the rules in Figure 2 and that,
for any context C, is closed under the implication

M - N = C[M]— C[N].

Equality (=) is the smallest equivalence relation that
contains reduction (—).

Rule f is the usual reduction rule of pure A-calculus.
Rule § expresses rewriting of applied primitive opera-
tors. To abstract from particular primitive operators
and their rewrite rules, we only require the existence of
a partial function § from primitive operators p and val-
ues V to terms. 4 can be arbitrary, as long as its result
does not depend on the body of a an argument func-
tion, or the value of a local argument name. That is,
we postulate that for every primitive operator p there
exist closed terms N? (c € Names®). N, N} and N’,”_

such that for all values V for which §(p, V) is defined:

NP fvV=c
NP if V is a local name
) = v
(P, V) NP if V is a A-abstraction

N('.)'.) M1 M2 ifvs= (M],Mz)
Note that all primitive operators are strict, since § re-
quires its arguments to be values.

The remaining rules of Figure 2 are particular to Av.
Rule eg defines (==) to be syntactic identity. Rule vy




says that v- and A-prefixes commute. Rule v, says that
v-prefixes distribute through pairs. Finally, rule v, says
that a v-prefixes is absorbed by any name that differs
from the name bound in the prefix. Taken together,
these rules have the effect of pushing names into a term,
thus exposing the term’s outer structure and allowing it
to interact with its environment.

An important consequence of these rules is that the term
vn.n cannot be reduced further, but is not a value ei-
ther, and hence cannot be decomposed or compared. In
other words, the identity of a name is known only within
its (dynamic) scope. This does not restrict expressive-
ness since it is always possible to extend the scope of a
variable by passing the “rest” of the computation as a
continuation (see the examples in the next section),

A Note on Church-Encoding Pairs. We have cho-
sen to make the pairing function (-,-) a primitive term
constructor with associated primitive projections fst
and snd. What would have happened if we had en-
coded pairs as functions instead? The Church-encoding
of pairs defines a pairing function

Az Ay M. fzy

and associated projections

T Ap.p (Az.\y.z)

T2 = Ap.p (Az.Ay.y).

The crucial question is what happens to vy, or, rather
its Church-encoded form

vn.PM N = P (vn.M) (vn.N). (1)

It is easily verified that this not an equality derivable
from the other reductions. On the other hand, if we
apply a projection 7; to each side of (1) then we do get
an equality that is derivable from B8 and v,. This is
shown by some straightforward computation:

7 (vn.P M N)
= (by definition of m;, P)
(Ap.p (Az.Ay.z)) (vn. Af.f M N)
= (by B)
(vn.Af.f M N) (Az.\y.z)
= (by I/,\)
(Afvn.f M N) (Az.\y.z)
= (by B)
vn.M
= (by definition of 71, P and f)
m (P (vn.M) (vn.N))

The case where the projection is 3 is completely analo-
gous. In summary, the v, rule for Church-encoded pairs
is subsumed by vy and f3, as long as pairs are used as
intended (i.e. only projections are applied to them).

3 Applications

To demonstrate how the new constructs in Av could be
used in a functional programming language, we present
two example applications: a type reconstruction algo-
rithm, and an implementation of state-transformers.
We use a program much like Haskell, writing \x => M
for Az.M and (.) for function composition. We extend
Haskell by a new term construct new n ->M, the ASCII
form of vn.M. Types are presented only informally;
they are in general modeled after the type systems of
ML and Haskell, with some polymorphic extensions in
the second example. A name has type Name a, for some
type a. The typing rule rule for v is:

Tn:Namet - M:r
''FvnM:r

Example 3.1 (Type Reconstruction) Type recon-
struction algorithms for polymorphically typed lan-
guages need to define fresh identifiers for type variables
“on the fly”. To this purpose, a name supply is usually
passed along as an additional argument to the type re-
construction function. Typically, names are represented
as integers, and the name supply indicates the next un-
used integer. As an alternative, we present here a type
reconstruction algorithm for the simply typed A-calculus
that replaces the name supply by bound Av names.

The code for the type checker is given in Figure 3. Types
are either variables TV n or function types t1 :-> t2.
The identifying part n of a type variable TV n is a name
(of type TID, which is a synonym for Name ()). The
main function tp constructs a proof for a goal e + a:
t, where e is a typing environment, a is a term, and
t is a type. e, a and t are the first three arguments
of tp. The function returns a substitution transformer
(of type SubstTran), which is a mapping that takes a
continuation and a substitution and yields either failure
or succeeds with some result type that is determined by
the continuation. Success and failure are represented
as the two alternatives of type E a. Fresh names are
created in the clauses of tp that have to do with function
abstraction and application. The unification function
unify takes as arguments two types, a continuation,
and a substitution. If the argument types are unifiable,
it augments the argument substitution with their most
general unifier, passing the result to its continuation.




data Id = String

data Term = ID Id | AP Term Term |
LAM Id Term

data TID = Name ()

data Type = TV TID | Type :-> Type

data E a = Suc a | Err

type TypeEnv = Id -> Type

type Subst = Type -> Type

type SubstTran a

upd i (@a=>b) ->a->b->(a->b)
upd f x a y

if y == x then a else f y

mngu :: Type => Type -> E Subst
-- most general unifier; definition is left out

(Subst => E a) -> Subst -> E a

unify :: Type ~> Type -> SubstTran a

unify t1 t2 k s case mgu (s t1) (s t2) of
Suc 8’ -> k (s . 8°)

Err -> Err

tp :: TypeEnv -> Term -> Type
=> SubstTran a

tpe (IDn) t
tpe (APab) t

unify (e n) t

nev n ->
tpea (TVn :->t) .
tpeb (TV n)

new n -> nev m ->
unify (TVn :-> TVm) t .
tp (upd e x (TV n)) a (TV m)

tpe (LAMx a) t

Figure 3: Type reconstruction algorithm for the simply typed A-calculus.

If the arguments are not unifiable, type reconstruction
fails.

Example 3.2 (State Transformers)
State-transformers are a way to write imperative pro-
grams in a functional programming language, by treat-
ing an imperative statement as a function from states
to states. They have received much attention re-
cently. State-transformers can be classified according
to whether they are global or local, and according to
whether state is fixed or dynamic.

[23] and [24] describe local state-transformers that can
be embedded in other terms and that operate on a fired
state data structure. By contrast, [18] describes global
state-transformers that act as the main program and
thus cannot be embedded in another term. State in [18]
is dynamic, i.e. it consists of a heap with dynamically
created references.

Figure 4 shows an implementation of local state-
transformers with dynamic state. This is to my knowl-
edge the first fully formal treatment of this class of state-
transformers, even if [6] and [8] contain similar informal
proposals.

State is represented as a polymorphic function from
names of type Name a to terms of type a. Its type is:

all a.Name a -> a

A state-transformer of type ST a is a function that takes

a continuation and a state as arguments, and returns the
result of the continuation. Its type is:

all b.(a -> State => b) -> State -> b

Note that the polymorphic function types of state and
state transformers exceed the capabilities of first-order
type systems such as Haskell’s or ML’s. However, an ef-
ficient implementation of state transformers would treat
type ST a as an abstract data type and would hide
type State altogether, to guarantee that state is single-
threaded. Such an implementation could do with just
let-polymorphism in the style of ML.

State transformers form a Kleisli monad, with return as
the monad unit, and with infix (>>=) as the “bind” op-
erator. If we leave out the redundant state parameter s
this is just the standard continuation monad. The result
type of a continution is an observer! of type State -> a.

Function begin, of type ST a -> a, allows one to get
out of the ST monad. begin runs its state transformer
argument in an empty initial state and with the identity
function as continuation.

The remaining operations access state. newref returns
a freshly allocated reference as result. Its implementa-
tion is based on v-abstraction. (n := a) updates the
state, returning the unit value as result, while deref n
returns the current value of the state at reference n.

This concludes our implementation of state in Av. It is

lin the sense of [22].




type State all a. Name a -> a

type ST a

—-- Monadic Operators:

return ::a->ST a

(>>=) :: STa->(a->STb) ->SThbH
begin :: 8T a->a

returna ks = kas

(p>>=gq) ks p (\x >qgxk)s

begin p = p (\x -> x) bottom
bottom = bottom

all b. (a -> State -> b) -> State => b

-- State-Based Operators:

newref :: ST (Name a)
(:=) ~ :: Name a -> a => ST ()

deref :: Name a -> ST a
newref ks = newn->kns
(n:=a) ks = k () (upd s n a)
deref n ke = k (sn) s

if n == m then x else s m

upd s nxm

Figure 4: State Transformers

perhaps surprising how simple such an implementation
can be, once the problem of expressing local names is
taken care of. However, one could argue that we have
oversimplified, in that the implementation of Figure 4
does not really describe state! Indeed, there are two
trouble-spots.

The first problem is caused by the fact that the state ar-
gument s is not linear in the definition of deref. There-
fore, access to state is only single-threaded if the appli-
cation s n in the body of deref gets resolved before
control is passed to the continuation. But nothing in
the implementation forces this evaluation order! One
could solve the problem by making continuations strict
in their first argument. However, this forces s n to be
reduced to a value, which is needlessly drastic. To en-
sure single-threadedness, it is enough to just perform
the function application without further evaluation.

Another problem concerns the meaning of readers and
assignments that involve names from some outer block.
In the implementation of Figure 4, such accesses are not
errors. Instead, the read or write is performed on a lo-
cally allocated cell that is named by the non-local name.
Therefore, the same name might identify several loca-
tions in different states. This approach, which is similar
to the semantics of state in [21], is perfectly acceptable
from a theoretical standpoint. But it raises some imple-
mentation problems, since it prevents the identification
of names with machine addresses.

Both problems are solved by a slightly more refined im-
plementation, which marks stored terms with a data
constructor. We modify the type of state as follows:

all a. Name a -> D a
Da

type State
data D a

The implementation of the state-based operators then
becomes:

newref ks = newn ->
k n (upd s n (D bottom))
case s n of
Db->k () (upd s n (D a))
deref n ks = case s n of
Da->kas

(n :=a) ks

In the new implementation, the case construct in the
body of deref forces s n to be evaluated before con-
trol is passed to the case-branch (we take D-patterns
to be refutable). This takes care of the first problem.
Moreover, both readers and writers require that an en-
try for the accessed reference exists in the local state,
and newref allocates such an entry for a freshly created
reference. This takes care of the second problem.

The contribution of Av to this implementation is rather
subtle. It consists of the v-abstraction in the code of
newref and the equality test in function upd. Never-
theless, the presence of local names is important for
modeling dynamic local state in a simple way. To see
this, let’s try to model local state without local names,
by representing heaps as arrays with references as in-
dices, say. Now, any implementation of local state has
to distinguish between variables that are defined in dif-
ferent begin-blocks. This is necessary to guard against
access to non-local variables and against export of lo-




cal variables out of their block, both referentially opaque
operations. A straightforward scheme to distinguish be-
tween variables defined in different blocks would pass a
name supply to each block, such that the block, and all
the variables defined in it, can be tagged with a unique
identifier. The problem with this scheme is that it has
a “poisoning” effect on the environment that surrounds
a block. Each function now has to pass along name-
supply arguments even if the function itself does not
contain begin-blocks as subterms. It is not clear what
is be gained by this method over a program that con-
tains a single, global state, and hence is imperative all
the way to the top. Of course, we could have also used
Av-names for the task of marking blocks uniquely. Such
a scheme was described by Launchbury [8]. It might
lead to more efficient implementations than the simpler
method of equating references with names that we have
used here.

Interestingly, it is possible in principle to model local
state without local names. As part of the proof of ob-
servational extension it will be shown in Section 6 that
there is another technique, somewhat similar to a de
Bruijn numbering [3], that allows names to be distin-
guished without needing name supplies to be passed.
However, due to its complexity the numbering method
is hardly practical as a programming technique.

4 Fundamental Theorems

This section details the fundamental laws of Av: reduc-
tion is confluent and there is a standard evaluation func-
tion. The treatment largely follows [1], and we assume
that the reader is familiar with the some of the more
fundamental definitions and theorems given there.

4.1 Confluence

‘We show in this section analogues for Av of the Finite
Developments and Church-Rosser theorems for the A-
calculus.

Definition 4.1 Let \qv be the extension of \v with
labeled redexes (Agz.M) N and py V and with labeled
reduction rules

Bo: (Aoz.M)N — [N/z]M
(50: Po V g J(P; V)

Let —» be the reduction relation generated by o, do,
€q, U, Vp, Vn.

Theorem 4.2 (Finite Developments) — is strongly
normalizing.

Proof: The proof is similar to the proof of finite devel-
opments in the pure A calculus ([1],CH.11,§2). Let \'v
be the extension of A\g with weighted identifiers z¥ and
weighted primitive function application p§ M (k > 0).

We define a norm || - || on X'v terms by
ll=ll =1
ll= Il = k
IAz.M|| = 1+(M]|
IAoz.M]| = 1+(M]
(1M My|| = [IMi] + (| M2]
lIn] =1
[lvn.M|| = 2x||M|
1My == Ms|| = ||Mo]l + || Mz]|
(M1, Mp)l| = 1+ ||Ma]|+[|M:]l
llp M| = 1+(M]|
llps M| k+(M]]

A term M e A'v has a decreasing wetighting if for every
occurrence of a labeled term (Aoz.M1) M; in M, every
occurrence of z in M; has a weight k > [|M;|], and,
for every occurrence of a labeled term pf V in M, n +
HVIE>16(p, V)II-

By a proof similar to the one in [1}, Lemma 11.2.18(z1)
one shows that, if M has a decreasing weighting, and
M - N, then N has a decreasing weighting. Further-
more, an easy case analysis on the notion of reduction
—* in X'v shows that for all terms M, N € A'v,

M N = (M| >[N

Since weightings are well-founded, —» is strongly nor-
malizing on all terms in A’v that have a decreasing
weighting.

Now every term M in Ag can be transformed to a term
with a decreasing weighting in A’'v, by giving appropri-
ate weights to all labeled occurrences of identifiers and
primitive functions. As a consequence, — is strongly
normalizing on Aov. N

Theorem 4.3 The notion of reduction in Av is Church-
Rosser: if M —» M; and M —» M, then there is a term
M;s s.t. My —» M3 and My —» M;.

Proof: Using a case analysis on reduction rules, cou-
pled with a case analysis on the relative position of
redexes, one shows that the notion of reduction dv is
weakly Church-Rosser and commutes with 8. Then
by Theorem 4.2 and Newman’s lemma ([1],CH.3,§1)




dv is Church-Rosser, and together with the lemma of
Hindley/Rosen ([1],CH.3,§3) this implies the proposi-
tion. W

4.2 Evaluation

As programmers, we are interested not only in proving
equality of terms, but also in evaluating them, i.e. re-
ducing them to an answer. We now define a computable
evaluation function that maps a term to an answer A
iff Av F M = A. Following Felleisen [2], the evalua-
tion function is defined by means of a contezt machine.
At every step, the machine separates its argument term
deterministically into an evaluation context and a redex
and then performs a reduction on the redex. Evaluation
stops once the argument is an answer. Evaluation con-
texts for Av are defined as follows:

E = []|EM |pE | vnE (2)

The first three clauses generate evaluation contexts for

the applied call-by-name A-calculus, whereas the last .

clause is particular to Av.

Definition. The deterministic reduction relation — on
terms in Av is the smallest relation that satisfies

M2 N = E[M]— E[N].

A simple inspection of the productions for E establishes
that —» is indeed deterministic:

Proposition 4.4 For any redexes A;, A, and evalua-
tion contexts E, Fo,

El[Al] = Ez[Ag] = Ei=ENAL = A,

A redex A is a head redez of a term M if M = E[A], for
some evaluation context E. A redex that is not head
redex is called an internal redez. Reduction of internal
redexes keeps head and internal redexes separate, in the
sense of

Lemma 4.5 Let M be a program s.t. M -2 N where
A is an internal redex of M. Then,

(7) If N has a head redex then so has M,

(71) the residual of M’s head redex is head redex in N,
(447) the residuals of every internal redex in M are in-
ternal redexes in N.

Proof: Let A be an internal redex in M. By the defi-
nition of evaluation contexts (2), there is an evaluation
context E, context C, term M’ such that

M = E[M' (C[A))].

(7) Let R be the reduct of A. Then
N = E[M' (C[R)])].

Assume that N has a head-redex A;. Then because of
the form of evaluation contexts (2), either A, is con-
tained in M’, or A, = M’ (C[R]). In both cases, A}, is
the residual of a head redex in M.

The proofs of parts (i) and (iii) are similar. W

Theorem 4.6 (Correspondence) For every program
M e Av and every answer A,

M—»A@M—;»A.

Proof: Direction “<” follows immediately. To prove
“=” assume that M —» A. One shows first as an inter-
mediate result that, whenever M —» A, there is a term
N st. M —» N —» A, where the reduction sequence
N —» A from N to A consists of only internal reduc-
tions. This result corresponds to the main lemma for
the Curry/Feys standardization theorem ([1],CH.11,§4)
and has exactly the same proof. That proof uses only
the theorem of finite developments (Theorem 4.2 for Av)
and a lemma equivalent to Lemma 4.5. The proposition
then follows from the observation that no internal Av re-
duction ends in an answer, hence we must have N = A.
n

5 Observational Equivalence

In this section we study observational equivalence, the
most comprehensive notion of equivalence between pro-
gram fragments. Intuitively, two terms are observation-
ally equivalent if they cannot be distinguished by some
experiment. Experiments wrap a term in some arbi-
trary context that binds all free identifiers and local
names in a term. The only observation allowed in an
experiment is whether the resulting program reduces to
an answer, and, if so, to which one. We define observa-
tional equivalence for arbitrary extensions of applied A
calculus. In the following, let 7" be an equational theory
that extends A and has term language Terms(7) and a
set of answers Ans(7) C Names®(T). We assume that
Names®(T)\Ans(T) is infinite.

Definition 5.1 Two terms M, N € Terms(T) are ob-
servationally equivalent in T, written 7T E M = N,
iff for all contexts C in Terms(T) such that C[M] and
C[N] are closed, and for all answers A € Ans(T),

TFCM=A¢& Tk C[N]=A




Lemma 5.2 For any terms M, N € Terms(T),

TEM=N & YC.T E C[M] = C[N].

Proof: “=”: Assume M = N, let A be an answer, and
let C be a context. Let C’ be a context such that
C'[C[M]] and C’'[C[N]] are closed. Then M = N im-
plies

C'[C[M]]= A< C'[C[N]] = A.

Since C’ was arbitrary, C[M] = C[N].
“”:PickC=[]. ®m

Lemma 5.3 For any two terms M, N € Terms(T),

TEMM=)N & TEM=N

Proof: “=”: Assume Az.M = Az.N, let A be an an-
swer, and let C be a context such that C[M] and C[N]
are closed. Then

CIM]I=A
< (by B-conversion)
Cl(Ay.[y/z] M) z] = A
& (premise)
Cl(Ay.[y/z] N) z] = A
& (by B-conversion)
C[N]=A

Hence, M = N.

“&” is a consequence of Lemma 5.2. W

Proving Observational Equivalences

The definition of (=) gives us only a very cumbersome
way to reason about observational equivalence, since it
relies on a universal quantification over all contexts. We
now summarize two theorems that are useful for proving
observational equivalences. The proof method is simi-
lar to the critical pair technique used in Knuth-Bendix
completion [7]. For a more complete treatment, see [15].

The theorems require a more formal treatment of the
rules for reduction and observational equivalence than
the exposition in previous sections. The following is an
excerpt of the relevant definitions of [15].

Both reduction rules and rules for observational equiv-
alences are defined as relations between meta-terms.
A meta-term is formed from the inductive definition
of terms, meta-variables a, b, and a substitution con-
struct [M /z]N, where M and N are meta-terms. Hence,
meta-terms include terms as a subset. A valuation is a

mapping from meta-variables to meta-terms that is ex-
tended homomorphically to a mapping from meta-terms
to meta-terms. A notion of reduction is expressed by a
set of reduction rules

R = {Li = Ri}ier

where I is an arbitrary (possibly infinite) index set, and
all L; and R; are meta-terms. The reduction relation
generated by R is the smallest relation between meta-
terms that contains all valuation instances of rules in R
and that is closed under context formation. Likewise,
we can define a notion of similarity ~ by a symmetric
set of rules

§ = {5 = Ti}jes

where again J is arbitrary and S;, T; are meta-terms.
~ is then the smallest relation between meta-terms that
contains all valuation instances of rules in S and that is
closed under context formation.

Two meta-terms Ly, Ly overlap at a valuation p if there
is a non-variable sub(meta-)term M of L; such that
pM = pL; (i,5 € {0,1} i # 7).

Two sub(meta-)terms M;, M, of a common meta-term
interfere wrt a set of meta-terms £ if there is a valua-
tion p and there are meta-terms Ly, Ly € £ such that
M, = pLi, My = pL; and L; and L, overlap at p.
We sometimes do not mention the set £ explicitly. In
particular, when we say that a redex A and a pattern
instance of a similarity P interfere, we mean that they
interfere wrt the set of left-hand sides of reduction rules
and similarities

{Liliel}u{s;|jeJ}.

Given similarity ~, we define parallel similarity as fol-
lows: M~;N if M and N differ in sub(meta-)terms
My, Ny, ..., My, Ny, M; ~ N; for each i € {1,...n}, and
the M;, as well as the N;, are pairwise non-interfering.
The set {Mj, ..., M} sometimes is written as a super-
script, as in

M {Mx,':l.Mn} N.

Two meta-terms M, N form a critical pair if there exists
a root meta-term R, a redex A, and pattern instances
of similarities Py, ..., Py (n > 1), such that

R&N  and RV iy
and A interferes with each P; (i = 1,..,n). The pair
is deterministically critical if A is head redex in R. We

use the notation
M~ R— N

for a critical pair M, N with root R.




A given set of equations can be shown to be an ob-
servational equivalence by formulating it as a similarity
relation and showing that it satisfies the following two
properties.

~ preserves answers if M ~ A implies M = A.

~ is locally stable if, for all critical pairs N~y M — M’
there is a meta-term N’ such that the following diagram
commutes.

M M’
~1 i~
Neweewn JETRR N’

Theorem 5.4 Let ~ be the equivalence closure of ~.
If ~ is locally stable and preserves answers then ~ C 2.

We also need a second, stronger version of Theorem 5.4
that applies if the calculus has a notion of evaluation
contexts that satisfies the following two criteria.

Evaluation contexts are downward closed if, whenever
Ci1[C3] is an evaluation context, then so is Cy. ~ inter-
feres with evaluation contexts, if some left-hand-side S;
of S overlaps with some sub(meta-)term of an inductive
production for evaluation contexts.

If these criteria are fulfilled, a weaker notion of deter-
ministic local stability is sufficient to guarantee that a
similarity is an observational equivalence:

~ is deterministically locally stable if for all determinis-
tically critical pairs N~y M — M’ there are meta-terms
M", N' such that the following diagram commutes.

L. > "
M P M d M
Neeovnoonn. FURPRTI N’

Theorem 5.5 Let & be the equivalence closure of ~.

If

¢ T has downward closed evaluation contexts,

e ~ preserves evaluation contexts,
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e ~ is deterministically locally stable, and

® ~ is answer-preserving

then ~ C =,

A straightforward analysis shows that Av’s evaluation
contexts are downward closed, Furthermore, since the
productions for evaluation contexts contain only meta-
variables as sub(meta-)terms?, no similarity relation can
interfere with evaluation contexts. Hence, to prove that
a similarity is an observational equivalence in v it suf-
fices to show that it satisfies the last two conditions of
Theorem 5.5.

Theorem 5.5 will be used extensively in the next section.
We use it here in the proof of

Proposition 5.6 The following are observational
equivalences in Av:

vmuvn.M
M

vnvm.M =
vnM =

(n # m)
(n ¢ FN(M))

(3)
4)

Proof: We prove (3) here; the proof of (4) is given in
[15].

Let a be a meta-variable and let

~

S = {vnwm.a = vnvm.a|n,me Names*,n # m}.

Let ~ be the compatible valuation closure of S. Since
no side of § matches an answer, ~ vacuously preserves
answers. We now show that ~ is also deterministically
locally stable.

Matching (3) against Av’s reduction rules establishes
that a redex interferes with a pattern instance of S only
if the redex is of the form vm.M, for some meta-term
M, and the pattern instance is vn.vm.M, for n # m.
If ym.M is a redex, then M must be a A-abstraction, a
pair, or a name.

If M is a M-abstraction, say Az.N, then the following
diagram commutes:

vnvmAz.M —=vnz.wvm.M —= Az.vnvm.M

d d

Az.vm.vn.M

vm.vn iz M

2Note that a meta-term may not contain a variable ranging
over contexts.




If M is a name, say n’, then m # n’ (otherwise there
would be no redex), and the following diagram com-
mutes.

vnvm.n' ———vn.n'

1

vmun.n' —g——vn.n

The bottom edge of this diagram is justified by (4),
since m # n’. The remaining case where M is a pair is
omitted (it is found in [15]).

This shows that ~ is deterministically locally stable.
With Theorem 5.5, (3) follows. W

6 Observational Extension

Definition 6.1 7 is an observational extension of Ty if
Terms(T) 2 Terms(To) and, for all M € Terms(7To),

ToEM=N =>TEM=N.

The extension is conservative if the implication can be
strengthened to an equivalence.

The main result of this section states that Av is an ob-
servational extension of \.  The proof relies on the
construction of a syntactic embedding from Av to A.
Syntactic embeddings are certain functions (defined be-
low) that map terms of one language to terms of a sub-
language.

6.1 Syntactic Embeddings

Definition 6.2 Given an inductively defined term lan-
guage Terms, an extended term is formed from the in-
ductive definitions of Terms and []. (Hence, both terms
and contexts are extended terms).

Definition 6.3 A term M is A-closed iff FV (M) = 0.
M may contain free occurrences of local names.

Definition 6.4 (Syntactic Embedding) Let 7 and 7
be extensions of A such that Terms(7) D Terms(To)
and Ans(T) = Ans(To). Let € be a syntactic mapping
from extended 7 -terms to extended 7g-terms. Then &
is a syntactic embedding of T in Ty if it satisfies the
following two requirements.
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1. £ preserves A-closed To-subterms. For all T-

contexts C, A-closed To-terms M,
To + E[C[M]] = £[C] [M].

2. & preserves semantics. For all closed 7-terms M,
answers A,

TFM:A@%*‘X[M]:A.

Syntactic embeddings generalize the syntactic (macro)
expansions of [4]. They are useful for two reasons. First,
a syntactic embedding £ of 7 in 7y allows us to extend
models of 7g to all of T, simply by composing the deno-
tation function of 7y with £. As a concrete example, the
syntactic embedding from Av to A given in Figure 5 gives
us immediately a denotational semantics of Av. Since a
syntactic embedding is the identity on programs in its
codomain, the resulting semantics maps A-terms to the
functions they denote in the chosen model of classical
A-calculus. Second, and somewhat related to the first
point, the existence of a syntactic embedding between
two theories guarantees that all observational equiva-
lences of the base theory are preserved in the extension3.
Indeed, we have:

Theorem 6.5 Let 7 and 7, be extensions of A\ such
that Terms(T) 2 Terms(To) and Ans(T) = Ans(To).
If there is a syntactic embedding of 7 in 7o then 7 is
an observational extension of 7y.

Proof: Assume that 7o | M = N Then, forall answers
A and To-contexts Cp such that Co[M] and Cy[N] are
closed,

To b G[M]=A& T b Go[N] = A.

Assume first that both M and N are A-closed. Let £ be
a syntactic embedding of 7 in 7y. Let C be a T-context
such that C[M] and C[N] are closed, and let A be an
answer such that C[M] = A. Then,

TF CM]=4

& (€ preserves semantics)
To F E[C[M]]= A

& (€ preserves A-closed 7o terms)
To F E[C][M]=A

< (premise: To = M = N)
To + E[C][N]= A

&  (reverse the argument)

T + C[N]= A.

3 Another approach to proving observational extension is based
on constructing a retraction between models rather than a syn-
tactic embedding between term languages [21]. At present, this
seems to require a fully abstract denotational semantics of the
base language, however.




Since A and C were arbitrary, 7 = M = N. Now let M
and N be arbitrary 7o terms, with FV(M)UFV(N) =
{21, ...,zn}. Then,

Tob M=N
= (Lemma 5.2)

To b Az, ... Az M = A1y,
= (first part of proof)

T E Az, ... Azg. M = Azy.
= (Lemma 5.3)

TFHM=ZN,

eo. Az, N

... Az, .N

6.2 A Syntactic Embedding of Av in A
The main difficulty in constructing a syntactic embed-
ding of Av in A has to do with the representation of
names. Since names are subject to a-renaming, which
is necessary to avoid name capture problems, we cannot
simply assign a fixed constant symbol to a name. In-
stead, the embedding maps a name occurrence to a level
number that indicates the number of v’s between the
occurrence of the name and its definition. This is some-
what similar to the de Bruijn numbering of A-bound
identifiers [3] (but see below for an important differ-
ence).

For instance, in vn.(vm.n, n), the first occurrence of n
in the pair would have level number 1, while the second
one would have level number 0. Level numbers have
to be adjusted during reduction when v abstractions
are created or destroyed. For instance, vn.(vm.n, n) re-
duces (by rule v,) to vn.(n, n), a term in which both oc-
currences of n have number 0. The adjustments are per-
formed by functions inc, dec and new. Intuitively, inc
and dec add or subtract one to all level numbers in their
argument terms. new is like dec, except that it is defined
only on positive level numbers. For instance, the trans-
lation under N of vn.(vm.n, n) is new (new 1),0)).

Adjustments are also necessary when a term is substi-
tuted in another. For instance, Az.(vn.z,z) is trans-
lated to Az.(new (inc z),z). This takes account of the
increase in the number of surrounding »’s when an ar-
gument term is substituted for z.

Note that there is an important difference between de
Bruijn numbers and level numbers. Adjustment of de
Bruijn numbers is a meta-operation whereas it is crucial
that inc and dec are definable in the A-calculus itself.
Even if we had used a de Bruijn numbering scheme for
all identifiers, level numbers and their their shift func-
tions would still be needed.
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We have to represent level numbers in such a way that
they can be distinguished from other symbols in the
translated terms. There are a number of ways of doing
so. For instance, level numbers can be represented as
pairs of a marker name, that is chosen to be distinct
from the names of a mapped term M, and a Church-
Numeral. (Note that this means that identity of the
marker names depends on the mapped term). The pre-
cise representation of level numbers is irrelevant here;
we abstract from it by denoting level numbers with nu-
merals, and assume that we have a test function Inum?,
successor and predecessor functions (+1) and (—1), and
equality eg_lnum on level numbers. In the following, we
let the letters k& and ! range over level numbers.

Figure 5 gives an embedding £ of Av in A. The embed-
ding is defined in terms of another syntactic mapping
N, that takes as additional arguments a level number [
that indicates the current v-nesting level, and an envi-
ronment p that maps identifiers and names to the nest-
ing level of their definition.

Definition 6.6 (Admissible Environments) Given a
term M and a level number [, the set Env(M,1) of en-
vironments that are admissible for M at level | is the
set of all finite mappings p from identifiers and names
to level numbers in 0.. that satisfy the following two
requirements:

1. p is defined for each identifier and name free in M.

2. p maps different names to different level numbers.

Furthermore, we assume that each p € Env(M, 1) is un-
defined on all bound identifiers and names in M. This
can always be achieved by choosing an appropriate a-
representative for M.

Notation. p[z — a] (or p[n — a]) denotes the exten-
sion of environment p by the binding that maps z (or
n) to a. To save parentheses, we assume that exten-
sion binds more strongly than function application, i.e

f plz — d] parses f (p[z — a]).

The embedding is defined in terms of a number of aux-
iliary functions, which for the moment are assumed to
be primitive. They are:

o A function eg, such that

d(eg, c)
d(eq, 1)

and such that é(eg, V) is undefined for values that
are not constants or level numbers.

= Az.if (lnum? z) false (z == ¢)

Az.if (name? z) false (eg-Inum z 1)




E[M] = N[M]Jo L

Nz]lp = inclr?) g

Nz.M]1lp = Az N[M] 1 p[z — ]

NiMy M) p = (NM]ip) VM) p)
N[n]lp = n°

N[n*]1p = l-pn¥

Nlvn.M]lp = new (N[M] (I41) p[n — 1+1])
NiMi==M]lp = eq(N[M]Ip) (N[M]!p)
NI(My, M2)] 1 p (N[M] 1 p, N[M] 1 p)
Nlp M]1p = p' (N[M]1p)

NI ip = [l

Figure 5: Syntactic embedding of Av in .

o For each primitive function in Av, a primitive func-
tion p’ such that §(p’, N[V] I p) is defined for all
1>0, pe Env(V,1)iff 6(p, V) is defined, and

é(r', V)
N[NPJO L V=
NINF]O L if V is a level number
NINP]O L if V is a A-abstraction

(N‘EN{.’,.)B 0L1) Ml M, if V= (M,M)

o Primitive functions inc, dec, new, such that

d(inc, 1) = I+1

d(inc, c) = ¢

d(inc, A\z. M) = Az.[dec z/z] (inc M)
d(inc,(M,N)) = (inc M,inc N)
d(dec, 1) = -1

d(dec, c) = ¢

d(dec, Az.M) = Az.[inc z/z] (dec M)
d(dec,(M,N)) = (dec M,dec N)
d(new, 1) = -1 ifl#0
d(new, c) = ¢

d(new,Az. M) = MAz.lincz/z] (new M)

d(new, (M, N)) (new M, new N)
Ultimately, all these functions will be defined as A-
terms, but for now we assume that they are primitive
functions. To keep the different calculi apart, we call
the variant of A with the new primitive functions X’.
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One checks easily that N preserves closed A-terms.
Hence, the hardest part of showing that A is a syn-
tactic embedding of Av in A concerns the proof that A/
is semantics preserving. This proof is rather convoluted;
it occupies all of the remainder of this section.

Outline of the proof of semantics preservation.
The proof is in four parts. In the first part, we show
that equal terms in Av are mapped (via N) to equal
terms in A’ (Lemma 6.32). In the second part, we show
that A has a left inverse, N~! (Lemma 6.34). We use
the left inverse in the third part to show that different Av
terms are mapped to different A\’ terms (Lemma 6.38).
In the fourth part, we use the previous results to show
that N preserves semantics (Lemma 6.39). This is also
the part where we drop the assumption that eq, inc,
dec, new and the p’ are primitive (Corollary 6.40).

The first part is the hardest. Its cornerstone is a syn-
tactic characterization of the result of applying inc to
an N-mapped term (Lemma 6.29). It relates function
tnc with )%, a syntactic shift operator on level numbers
(Lemma 6.29). Informally, {x increments all nonnega-
tive level numbers greater than or equal to k in a term.
The detour via f}x and |k is necessary since new and
dec do not distribute through function application, but
{x does, and we need this property to carry out the
structural induction in later proofs.

An important property of ftx and its inverse {j is
that both mappings are preserved under reduction.
(Lemma 6.26, Lemma 6.27). The following lemmas pre-
pare the way for these results.



inc (dec (Az.M))

d

Az. M

First, some facts about inc, dec and new:

Lemma 6.7 For all M € A/,

(1)
(4)

inc (dec M)
dec (inc M)

mn m

M
M

Proof: (i) We use the critical pairs technique described
in Section 5. Let

S = {inc (dec a) ~ a}

for some meta-variable a and let ~ be the symmetric
compatible valuation closure of §. We use Theorem 5.5
to show that ~ C =,

It was shown already in [15] that Av has downwards
closed evaluation contexts that are preserved by every
similarity relation. Hence, it remains to be shown that
~ preserves answers and that it is deterministically lo-
cally stable.

If M ~ A, then, by the definition of S, M must be of
the form inc (dec A). This term reduces to A, hence
M = A. This shows that ~ is answer preserving. We
now show that ~ is deterministically locally stable.

Since the RHS of S consists a single meta-variable, it
cannot interfere with a redex. The left hand side can in-
terfere in exactly one way, namely A = dec M, for some
term M. Furthermore, since A is a redex, M must be a
A-abstraction, a pair, a name, or a level number. We dis-
tinguish the four cases. In the case of a A—abstraction,
diagram (5) commutes.

In the case of a level number, the following diagram
commutes.

inc (dec 1))

—d>inc(l—1)""’°a—'—>l

~1
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(5)

inc (Az.[inc z/z] (dec M)) ———* Az.[inc (dec z) [ z] (inc (dec M))

d

The other two cases are similar. This shows that ~ is
deterministically locally stable. Thus, by Theorem 5.5,

~Ce.

The proof of (i) is analogous. W

Lemma 6.8 For all M, N in A’,
inc (M N)

o~

(inc M) (inc N)

Proof: Let
S = {inc(a b) ~ (inc a) (inc b)}

and let ~ be the symmetric compatible valuation closure
of §. We use Theorem 5.5 to show that ~ C =. Clearly,
no side of § matches an answer, hence ~ vacuously pre-
serves answers. We now show that ~ is deterministically
locally stable. Assume first that a A interferes with the
LHS of S. Then A must be of the form (Az.M) N, for
some terms M, N. In this case the following diagram
commutes.

(7)

inc ((Az.M) N) inc ([N/z]M)

d

R

(inc (Az.M)) (inc N)
The = diagonal follows from the following argument.

(inc (Az.M)) (inc N)

(by definition of inc)

(Az.[dec z/z] (inc M)) (inc N)
(by B-reduction)

[inc N /z] ([dec z/z] (inc M))
(by combining the substitutions)
[dec (inc N) / z] (inc M)

(by Lemma 6.7)

[N/z] (inc M)

R




(inc (Az.M)) (inc N)

d

inc ((Az.M) N)

Assume now that a redex A interferes deterministically
with the right hand side of S. Then A must be of the
form inc L, for some term L that is a A-abstraction, a
pair, a name, or a level number. Furthermore, since A is
by assumption head-redex, it must match the function
part (inc a) of the RHS of S. We distinguish according
to the form of L.

If Lis a A—abstraction Az.M, diagram (8) commutes.
The = diagonal in (8) holds, since

inc ((Az.M) N)

(by B-reduction)

inc ([N/z] M)

(by Lemma 6.7)

[inc N /z] ([dec z/z] (inc M))

o

If Lis a pair (M, Mz), the following diagram commutes.

(9)
(inc (M1, M3)) (inc N) 3 (inc My, inc My) (inc N)

R

inc ((Ml, Mz) N)

The = diagonal holds by a further application of The-
orem 5.4 since both sides of = are “stuck”, i.e. they do
not interfere with any redex.

The cases where L is a name or a level number are anal-
ogous to the last case. The preceding discussion showed
that ~ is weakly locally stable. By Theorem 5.5, ~ C=*,
|

The proofs of the following three lemmas are omitted.
They are like the last two proofs routine applications of
Theorem 5.5.

Lemma 6.9 For all primitive operators p’, terms M ¢
A,

inc(p' M) = p' (inc M)

15

(®)

(Az.[dec z/x] (inc M)) (inc N) = [inc N /z] ([dec z/z] (inc M))

R

Lemma 6.10 For all M, N € A/,

inc(egM N) = eq(incM)(incN)

Lemma 6.11 For all terms M € A/,

new M = dec (neg 0 M),

where
negq l k = k ifl#k
neql c = ¢
negl (A\z.M) = Mz.neql M
negl (M, N) (neg I M,neql N)

Next, some facts about A that are easily shown by an
induction on the structure of the the term argument of

N.

Lemma 6.12 For all terms M € Av, level numbers 0 <
k <1, environments p € Env(M, 1),

(7) If z is not free in M,

NM] 1 plz — k] = N[M] 1 p.

(¢) If n is not free in M,

NIM] 1 pln = k] = N[M] 1 p.

Lemma 6.13 For all closed terms M € Av, level num-
bers [, environments p € Env(M, 1),

NIM]1p = N[M]O L.

Lemma 6.14 Forall M € Av, level numbers 0 < k < I,
environments p € Env(M, 1),

[inc z/z] (N[M] 1 p[z — k+1]) = N[M] 1 plz — k]

Proof: By an induction on the structure of M. The
interesting base case for (1) is:




[inc z/z] (N[z] I p[z — k+1])
(by definition of N, substitution)
inc!=(k+1) (inc 1)

(by definition of N)

Nz} p[z = k]

The corresponding case for (i7) is analogous. The other
base cases and induction steps are all routine. W

We now work towards giving a syntactic characteriza-
tion of inc (M[M] ! p) that relates inc with the syntac-
tic operator f}%. ftx and its inverse |}« are defined in Fig-
ures 6 and 7 (Note that |} is a partial function). Before
we come to the correspondence result of (Lemma 6.29),
we need to prove some facts about these shift operators.

Lemma 6.15 |; and f}x are inverses. For all M € A’,
level numbers k,
be (hx M) = M,

and for all M € A’, level numbers k, such that {x M is
defined,

e (b M) = M
Proof: An easy induction on the structure of M. ®

Lemma 6.16 f}_and {_ are compositional: For all con-
texts C, level numbers k, there exists an level number
k' such that, for arbitrary z ¢ FV (C[M]),

T (C[M]) [t M /2] (fhe (C[2]))
4 (C[M]) W M /2] (Y (C[2]))

Proof: An easy structural inductionon C. W

Lemma 6.17 For all lievel numbers k,l;,b,
h<lb = Ml <l

If &y # k and Is # k then also
h<b = b <lib.

Proof: Easy. B

Lemma 6.18 For all M ¢ A’, level numbers k, identi-
fiers z,

1% ([inc z/z] M) [inc z/z] (s M)
% ([dec z/z] M) [dec z/z] (ftx M).
Furthermore, provided either side is defined,

Yk ([inc z/z] M) [inc z/z] (Yx M)
Y ([dec z/z] M) [dec z/z] (Yx M),
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Proof: An easy induction on the structure of M. =

Definition 6.19 The dec-ezcess of a subterm N of a
A’-term M is the number of dec and new terms occur-
ring on the path between N and the root of M minus
the number of inc terms occurring on that path.

Definition 6.20 A term M is balanced if every occur-
rence of a bound identifier in M has the same dec-excess
as its binding A-term.

Lemma 6.21 For all terms M € Av, level numbers [,
environments p € Env(M,1): N[M] ! p is balanced.

Proof: Follows directly from the definition of N. W

Lemma 6.22 For allterms M, N € A/, if M is balanced
and M — N then N is balanced.

Proof: A straightforward analysis of the different reduc-
tionsin A’. H

Lemma 6.23 For all terms M € Av, level numbers k:
If M is closed then

e (W[M]0 L) = N[M]O L =4 (M[M]O L)
Proof: An easy induction on the structure of M. ®

Lemma 6.24 (ftx-Substitution) For all terms M, N ¢
A, level numbers k, if Az.M is balanced then

(e N/z] (e M) =t ([N/z]M).

Proof: Let | be a level number and let C' be an n-hole
context such that

M=Clz,.., 2], (10)
and z is not free in C. Since Az.M is balanced, the dec-
excess of every occurrence of z in M is 0. This means
that there is an equal number of inc and dec/new nodes
on every path from the root of C to a hole. Therefore,

by the definition of f}x, there is a n-hole context C’ such
that for all terms Ny, ..., N,

e (C[N1, .., Nu)) = C'[fk Ny ooyt Na. (11)




frx

ftx =
ffx

% (Az.M)

fx (MN)
fx (p' M)

ftx (eg M N)
1k (dec M)
e (inc M)
Tk (new M)

] 1 1 T 1 T T/ 1 A 1

+1
l

x

C

ifk<l
ifk>1

Az. e M

(% M) (frx N)

P’ (e M)

eq (ftx M) (ftx N)
dec (ftk+1 M)

inc (k-1 M)

% (dec (negq 0 M))

Figure 6: Up-shift operator {}.

Hence,

[t N/] (T M)

(by (10))

[ﬂk N/.‘L‘] (ﬂk C[.’l:, )z])
(by (11))

[t N/z] (C'[ 2, ..., % 2])
(by the definition of f}x)
[tk N/z] (C'[z, ..., z])
(by substitution)

C'lftk N,...,ftx N]

(by (11))

% (C[N,...,N))

(by (10))

i ([N/z]M).

Lemma 6.25 ({x-Substitution) For all terms M, N €
A’, level numbers k, if Az.M is balanced and {; N and
{x M are both defined then

e N/z] (U M) = Ui ([N/2]M).

Proof: Analogous to the proof of Lemma 6.24 R

Lemma 6.26 For all terms M, N € A/, level numbers

%,

M->3SN = t«sM->M N

Proof: We distinguish according to the form of the redex
A in M — N. Assume first that A coincides with M.
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iCase (Az.M) N| In this case:

% ((Az.M) N)
(e Az.M) (e N)
(Az. ftx M) (i N)
[t N/z] (e M)
(by Lemma 6.24)
e ([N /z]M)

If | < k-1, we have:

1% (inc )
inc (k=1 1)
incl

I+1

frx (14+1)

Wy onem

On the other hand, if | > k-1, we have:

Tk (inc )
inc (k-1 1)
inc (14+1)
1+2

fix (I41)

nm-4 wm




Wl = 11 if k<l
= I ifk>1

Jr z =z

Y c = ¢

e Az M) = M.l M

4 (MN) = (U M) (U N)

e (P M) = p' (I M)

U (eg M N) = eq (& M) (Ui N)

Jr (dec M) = dec (Yk41 M)

Y (inc M) = inc (k-1 M)

Ui (new M) = Ui (dec (neg 0 M))

Figure 7: Down-shift operator {x.

ICase inc (/\z'Mﬂ In this case we have:

% (inc (Az.M))

inc (Az. k=1 M)

(by definition of inc)

Az.inc ([dec z/z] (k-1 M))
(by Lemma 6.18)

Az.inc (ftx-1 ([dec z/z] M))
% (Az.inc ([dec z/z] M))

mooLom

|Case inc cl {Case inc (M,N)l are both easy.

I Case dec [ [ LCase dec (Az‘]lﬂl

|Case dec cl

IEase dec (M, N) l are analogous to the last four cases.

14 = & then

e (eq b I2)

eg (e &) (fix b2)
(by definition of eq)
true

Lom

ftx true

If [y # I then, with Lemma 6.17, ftx i # ftx ko, and we
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have:

13 (eq L )

eq (x h) (e &2)
(by definition of eq)
false

% false

Lom

In this case we further distinguish accord-
ing to the form of M. If M is a level number [, then
1% ! is some level number I’ and we have:

e (p' 1)

p'(fe 1)

p/ ll

(by definition of p’)
N[NF]O L

(by Lemma 6.23)
e WINZIO 1)

Lo

if M is a pair (My, M;), we have

T (p" (M1, Mz2))

(e My, ftx Ma)

(by definition of p')

(MINE 510 L) (fhe My (e Mz)

(by Lemma 6.23)

e (WINE 510 L) (fhe M1) (fhe Mz)
i3 ((NEN(}.),.)B 0 -L) M Mz)

Lo

The remaining two cases, where M is a A-abstraction or
a constant, are similar.




This concludes the analysis for the case where A = M.
We now show the lemma for the general case that A is
contained in M. Let C and R be such that

M= ClA] A C[Rl= N

By Lemma 6.16, there is an level number &’ such that
for all terms L, fix (C[L]) = [fix+ L/z] (C[z]) By the
first part of the proof, ftx A — {5+ R. Hence,

T M = i (C[A]) = [fw A/2] (C[2])
= [t R/2](C[s]) = % (C[R]) =M N.
m

The reverse of Lemma 6.26 also holds:

Lemma 6.27 For all terms M, N € A’, level numbers
k,if M — N and {x M is defined, then so is {x N and

UkM—)UkN.

Proof: Largely analogous to the proof of Lemma 6.26.
We distinguish according to the form of the redex in
M — N. The only three cases that are not completely
symmetric to cases in the proof of Lemma 6.26 are.

We distinguish two subcases: ! < k-1 and

Il > k-1. (I = k-1 is impossible, since in this case
neither Jx (inc l) nor Y, (I+1) are defined). If I < k-1,
we have:

Yk (inc )

inc (Yx-11)

inc l

+1

Y (141).

On the other hand, if I > k-1, we have:

$x (inc )
inc (Yr-11)
inc (I-1)

l

Y (l+1).

nm g mmw

Wy

We distinguish again two subcases: | <
k+1, and I > k+1. (Case | = k+1 is impossible). If
l < k+1, we have:

Yk (dec 1)

dec (Yi41 1)
dec |

-1
Ui (I-1).

Mmoo
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On the other hand, if I > k+1, we have:

Y« (dec 1)
dec (Y41 1)
dec (1-1)
-2

Y (I-1).

nm-3 w

Since Y« (eg & Ip) is defined, and
Yk (eg b k) = eq (Y« ) (U k),

& i and i b are both defined, which implies l; # k,
lp # k. With Lemma 6.17, it follows that

h=belilh=khb

The case then follows as in Lemma 6.26. MW

We now use the fact that {}x and | are stable under
reduction for a stepping stone towards Lemma 6.29.

Lemma 6.28 For all terms M,

~

neg 0 (1 M) = neg 1 (fro M). (12)

Proof: We use Theorem 5.5. (12) corresponds to the
symmetric system of similarities

s « {neqi(ft; M) ~ neqj (t: M)
IMeA,ije{0,1},i#j
}

Let ~ be the compatible valuation closure of S. We
show that ~ is deterministically locally stable. Let
(P, Q) be a deterministically critical pair. Then (P, Q)
falls into one of the categories (1.)—(5.) below. We show
in each case that the critical pair can be completed.

1. The redex is contained in {t; M, i.e.

P

neq i (ff; M) ~ neq j (i M) —p negj N
Q

where M,N e A", i M — N, i,j € {0,1},1i # 5.




In this case, 3. The redex involves neq and a pair, i.e.

P P = neqi(ftj (M,N)) ~ neqj(fti (M,N))
= negi(ft; M) - (negj (i M), neg j (i N))
= (by Lemma 6.15) = Q

neg ¢ (ft; (4i (i M)))
(by Lemma 6.27, Lemma 6.26)

neg i (f; (4i NV))

where M, N e A’, 1,7 € {0,1},1 # j. This is essen-
tially analogous to the last case.

l

~  (by definition of ~) 4. The redex involves neq and a constant, i.e.
neg j (i (Ui N)) P = negi(fjc) ~ negj(fric) —p c = Q
= (by Lemma 6.15)
negj N where ¢ is a constant, i,] € {031},i # j. Then
_ P = neg i (fj ¢) — c which completes the
= 0@ critical pair.
Therefore, the following diagram commutes. 5. The redex involves neg and a level number, i.e.
P = neqgi(fijl) ~ negj (hil) pthil = Q
(i M ) N =
neq  (fti M) d neqd Q where [ is a level number, i,j € {0,1},¢ # j. We
distinguish the two subcases t = 0,7 = 1and ¢ =
1,7 = 0. If i« = 0,57 = 1 then the root of the

critical pair is neq 1 (ffo !). Since this is also a
redex we must have fto | # 1, and therefore | #
0. But this implies {11 { = f}o ! # 0. Therefore,
P =neqi(ff; M) —— neq i (ft; (i N)) neg 0 (1 ) = ff1 . In summary, the following
diagram commutes:
2. The redex involves neq and a A-abstraction, i.e.

P

neg i (f; Az.M) ~ neqj (fti \z. M) neg 1 (fro !) ] fol=Q
- Az.neq j (fti M)
= Q

where M € A’, i,5 € {0,1},1# j. In this case,

P P=negO(hl) — Ml

= neqi(fij Az.M)

= negi(Az.ft; M) The subcase where i = 1 and j = 0 is completely

- Az.neqi (TTJ' M) symmetric.

~ Az. (1

_ z.neq j (fr: M) (1.)—(5.) together show that S is locally stable. Further-

= Q more, since neither side of this system matches an an-
swer, ~ vacuously preserves answers. By Theorem 5.5,

Therefore, the following diagram commutes. ~C™ m

L ol _ Lemma 6.29 Let o be the syntactic mapping that sub-
neq j (s Az.M) d Az.neq j (1 M) = @ stitutes inc x for z in M, for every free identifier z in
M. That is, for all terms M,
~ ~ oM = [incz/z)zervmy M.
Then for all M € Av, level numbers [, p € Env(M, 1),

P = neq i (ffj Az.M) —— Az.neg i (t; M) inc N[M]1p) = o (fho N[M]p))
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Proof: By induction on the structure of M.

In this case:
inc (N[c] 1 p)
= mcec
= ¢
= o (o WVl lp)

In this case:

inc (N[n*] 1 p)

inc (I-pn")

(by definition of inc)
l-pn¥+1

o (o WIn*11p)

In this case:

inc (M[z] ! p)
inc (inc'™P*z)
inc'™P%(inc 1)

o (fo (V=] p))

In this case:

IR

1

inc (N[Az.M] 1 p)
inc Az N[M] 1 p[z — 1))
(by definition of inc)
Az.[dec z/z] (inc (N[M] ! p[z — 1]))
(by the induction hypothesis)
Az.[dec z/z] (o (fro (N[M] 1 plz — 1])))
o (Az.[dec z/z] ([inc z/z]
(fto (WIM] 1 plz — 1]))))
(by Lemma 6.7)
o (Az. fo WIM] 1 p[z = 1]))
o (fo (N[Az.M] 1 p))
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In this case:

R 1 R n R R R

inc (M[vn.M] 1 p)

inc (new (N[M] (I41) p[n — 1+1]))

(by Lemma 6.11)

inc (dec (neg 0 (N[M] (I4+1) p[n = 141])))
(by Lemma 6.7)

dec (inc (neq 0 (N[M] (141) p[n = 1+1])))
(by Lemma 6.8)

dec (neq 1 (inc (N[M] (I14+1) p[n — 1+1])))
(by the induction hypothesis)

dec (neg 1 (o (fo (M[M] (14+1) p[n — 1+1)))))
(by rearrangement)

o (dec (neg 1 (fro (N[M] (I+1) p[n = 1+1]))))
(by Lemma 6.28)

o (dec (neq 0 (fry (W[M] (I+1) p[n = 1+1)))))
(by definition of k)

o (fro (dec (neq 0 (M[M] (I+1) p[n = 1+1]))))
(by Lemma 6.11, Lemma 6.26)

o (fro (new (NIM] (I14+1) p[n — 1+1))))

o (o (Nvn.M]1p))

Case MN | In this case:

IR

R

inc (N[MN] 1 p)

(by Lemma 6.8)

(inc (N[M] 1 p)) (inc (N[N] 1 p))

(by the induction hypothesis)

(o (fo WIM] 1 p))) (o (o (N[NT1p)))
o (o (N[MN] 1 p))

In this case:

e m

R

n

inc (N[M == N]1p)

inc (eg (N[M] 1 p) (N[N]1p))

(by Lemma 6.10)

eq (inc (VIM] 1 p) (inc (VTN p))

(by the induction hypothesis)

eg (o (o WIM] 1 p))) (o (fro (N[N p)))
o (fro (eg WIM] 1 p) (NIN] 1 p)))

o (o (N[M == N]1p))




In this case:

inc (N[p M] 1 p)

inc (p' (N[M] 1 p))

(by Lemma 6.9)

P’ (inc (N[M] 1 p))

(by the induction hypothesis)
' (o (fo (W[M] 1 p)))

o (fo (WNIp' M] 1 p))

n e m

Case (M, N)| In this case:
inc (N[(M,N)]1p)
= (by definition of inc)
(inc (N[M] 1 p), inc (N[N] 1 p))
(by the induction hypothesis)
(o (o (W[M]1p)), 0 (o (NNT 1 p)))
o (o (NI(M,N)]1p))

R

Using this characterization of inc in terms of f}x gives
us

Lemma 6.30 For all M € Av, level numbers I, p ¢
Env(M, 1),

inc (N[M] 1 p)

R

NIM] (1+1) p.

Proof: By Lemma 6.29,

inc (WIM11p) = o (o WIMI1p).  (13)
An easy induction on the structure of M shows that

o (ho WIMI1p) = NIMI(41) p  (14)

(13) and (14) together imply the lemma. W

The next result states that /' commutes (wrt =) with
substitution.

Lemma 6.31 (Substitution) For all M, N € Av, level
numbers I, p € Env((Az.M) N, 1),

VINTLp [ <) (N[M] L plz = 1)) = NIN/2] M] 1 p.

Proof: We use a structural induction on M. A direct
proof of the equivalence fails for the case M = vn.M’.
We prove instead a stronger proposition:
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For all M, N ¢ Av, level numbers [, k, environments
p' € Env(N,l) and p € Env(Az.M,l+k), such that p
extends p',

WINLL P [ 2] (NIM] (1+F) plz = 1)) (15)
NIIN/z] M] (1+k) p.

~

In this case:

WINTL ¢/ 2] (WE2] (14F) plz - 1)
WINLLp'/ 2] (inc* 2)
inck (N[N] 1 p')
(by Lemma 6.30)
NINY (1+k)
= (by Lemma 6.12)
NIIN/z] =] (1+k) p

Rnen

Case y where y # z‘l In this case:

WINT L o' [ ] (NTy] (i+k) plz = 1)
ININT 1 o [ 2] (inctthry )
inc!tkry y

NIIN/=ly] (1+k) p

| Case c| and | Case n”| are similar to the last case.

In this case:

WINLL P [ 2] (NAy-M] (1+k) plz = 1)
Ay.N[NDL o'/ 2]

(VIM] (1+F) plz = Uy = 1+K])
(by the induction hypothesis)
Ay N[N /z)M] (1+k) ply — 1+k]
NN /z] Ay.M] (1+k) p

IR

In this case:

WINDLp [ 2] (Nvn.M] (I+k) plz = 1))
new (WIN1 '/ 3]

(NIM] (14+k+1) plz = U[n = I+k+1]))
(by the induction hypothesis)
new (N[[N/z]M] (I4+k+1)

plz = l[n —» I+k+1])
N[N /z)vn.M] (I+k) p

|Case M1 M2|

il

1

ICaseM::NI

Case (M1 N M2)




are all easy induction steps. W

We now show that the translation A is stable under
reduction in Av:

Lemma 6.32 (Simulation) For all terms M, N € A,
level numbers [, environments p € Env(M,1): If M —
N then p € Env(N,1) and

N[M]1p= N[N]p. (16)

Proof: Assume M — N and let p € Env(M,l). Then
all free identifiers and names in N are also free in M,
therefore p € Env(N,l). To show (16), we distinguish
according to the notion of reduction in M — N. By an
argument analogous to the one at the end of the proof
of Lemma 6.26, we can assume w.l.o.g. that the redex
in the reduction from M to N coincides with M.

In this case the redex is of the form (Az.M) N,
and we have: ,

NI(Az.M)N)]lp

Az N[M] 1 ple = 1)) (N[N]1 p)

(by reduction in X’)

WINTLp [ ) (N[M] 1 plz — 1))

(by Lemma 6.31)

NIIN/z) M] Lp

In this case the redex is of the form p V', where
p is a primitive operator and V is a value. We further
distinguish according to the form of V. If V is a local
name n”, then N[n*] l p is a level number and we have:

Nlpn*]lp

P’ (pn”)

(by reduction in ')
NIN?] O L

(by Lemma 6.13)
NINZLLp
Ns(p,n")] 1 p

If V is a pair (M;, Mz), then

n

Il

Nlp (M, Mp)] 1 p

P (N[Mi] 1 p, N[Mo] L p)

(by reduction in X’)

(VINZ, )10 1) WML L) (VDM L p)
(by Lemma 6.13)

(VIN? J1 1) (NIMiJ L p) (WIMa 1 p)
NIs(p, (M, M2))] 1 p

23

The remaining cases, where V is a constant or a A-
abstraction, are similar.

In this case the redex is of the form n == m

where n and m are names. If n and m are the same
local name or constant then:

Nln==n]lp

eqg (Wn] L p) (NIn]!p)
(by reduction in X')

true

Ntrue]l p

If n and m are different local names then pn and pm are
different level numbers, because p is injective. Therefore
we have:

Nln==m]lp

eq (pn) (pm)

(by reduction in X’)
false

Nfalse] 1 p

A similar argument can be made in the case of different
constants n, m.

If n is a local name and m is a constant, then N[n] { p
is a level number and N[m] ! p is a constant and we
have:

N[n==m]lp

eq (pn) m

(by reduction in X’)

false

Nfalse] I p

The remaining case, where n is a constant and m is a
local name, is symmetric.

In this case the redex is of the form vn.Az. M,
and we have:
Nlvndz.M]1p
new Az N[M] (I14+1) p[n — I+1][z — +1])
Az.new ([inc z/z]

(NMIM] (141) pln = I+1][z = 1+1]))
(by Lemma 6.14)
Az.new (N[M] (141) p[z — {][n — 1+1])
N[Azwvn.M]1p

In this case the redex is of the form
vn.(M, N), and we have:




Nlvn.(M,N)]lp

new (N[M] (I14+1) p[n — 1+1],
NINT (141) p[n — 1+1))

(by definition of new)

(new (N[M] (141) p[n — 1+1]),
new (N[N] (I41) p[n — 1+1]))

(Myn.M] 1 p,N[vn.N]1p)

In this case the redex is of the form vn.m,
where m 1s a name different from n. If m is a constant,

we have:

i

Nlvn.m]lip

new m

I

(by reduction in X)
m

Nlvn.m]lp

]

On the other hand, if m is a local name, we have:

Nlvn.m]lp
new (I4+1-pm)
(by reduction in X, since p m < 1)

Il

l-pm
Nlvn.m]lp

Il

The preceding lemma showed that A” maps equal terms
in Av to equal terms in A’. We also need to show the
converse: different terms in Av are mapped to differ-
ent terms in A’. To show this, we define in Figure 8 a
mapping N ! which is a left inverse of N. N~1is a
partial mapping from terms in A’, level numbers ! and
environments p € | J{Env(M,l) | M € Av} to terms in
Av.

Definition 6.33 For a term M ¢ A/, let

Env=1(M,1) {p | IM' € Av. p € Env(M',1)
ANTIM] 1 pis defined}.

We observe that A1 is well-defined as a function. Since
p maps different names to different level numbers, there
is for any given pair (k, !) at most one name n such that
pn = l-k. Therefore, N =1 is a function.

Lemma 6.34 For all M e Av, level numbers [, p ¢
Env(M, 1),

N-UN[M]Lp)lp = M
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Proof: An easy induction on the structure of M. We
present only two sample cases.

In this case:

NNl Lp] L p
(by definition of N)
N~ inc"?* 2] 1 p
(by definition of N'~1)
N~=[z] (pz) p

(by definition of N'=1)
T

In this case:

N7YN[vn.M]1p]lp
(by definition of )
N Hnew (N[M] (I+1) p[n = I+1])] L p
(by definition of N ~1)
van NN [M] (141) p[n = 1+1]]
(141) p[n — 1+1]
(by the induction hypothesis)
vn.M

I

Lemma 6.35 For all terms M € A’, level numbers 0 <
k <1, environments p € Env=1(M, 1),

(¢) If z is not free in M,

N-UM) 1 plz = K} = N7 M] 1 p.
(#) If n is not free in M,

N-HM] 1 p[n = k)= N7 [M] 1 p.
Proof: Easy. ®

Lemma 6.36 For all M € A’, level numbers 0 < k < I,
environments p € Env=}(M, 1),

(i) NT[M]ipz— k]
= N~ Y[dec z/z]) M] 1 p[z > k+1]
(1)  NM]! p[z = k+1]

N [inc z/z] M] 1 p[z — k]

Proof: (i) By an induction on the structure of M. The

only interesting case is . In this case,




N-HK] L p = n if pn = I-k
N-z] lp =z if pr =1
N-1c]lp = ¢

N Az.M]1p = Az N"HM]plz =]

N=UM Me] 1 p = (NTH[Mi]1p) (NTU[M] L p)

N7HM M) L = VUM p, N [M] L p)

N7 M) 1p = pNTI[M]1p)

N-llegMy My]lp = N M]lp==N"[M]Ip

N-ine M) (I+1) p = N7 [M]Ip

N~dec M]1p = NHM](4+1) p

N-new M] 1 p = vn NTIM] (I41) p[n = 141] where n ¢ DOM (p) U FN (M)

Figure 8: Syntactic embedding /=1,

N=1z] 1 p[z = K]

(by definition of N'71)

inc!=k ¢

(by definition of A'~1)

N=1[z] (141) plz = k+1]

(by definition of A'71)
N-ldec z/z] z] 1 p[z = k+1]

n

The proof of (i) is analogous. W

We now show the dual of the substitution lemma
(Lemma 6.31).

Lemma 6.37 (Substitution-Dual) For all M, N € Av,
level numbers I, p € Env=!((Az.M) N, 1),

V=N p / 2] (NTHIMT L ple = 1))
= N7IY[N/zIM]1p.

Note that this is stronger than the corresponding state-
ment of Lemma 6.31, in that we have = instead of =.

Proof: We use a structural induction on M. A direct
proof of the proposition fails for the case M = vn.M'.
We prove instead a stronger proposition:

For all M,N € Av, level numbers [, k, environments
p € Env1(N,l) and p € Env=!(Az.M, l+k), such that
p extends p’,

WTIHINT L P [ 2] (N=2[M] (1+k) plz — 1])
= N-U[[N/z] M] (I+F) p.

25

In this case k = 0 and

[N“llN} l p’ / ,1;] (N_l[z] 1 P[.'L‘ — l])
(by definition of A'=1)

[N_ll[N]l lp/z]z

(by substitution)

N_II[[N/.Z'] z]ip

(by Lemma 6.35)

'N'—IIHN/’;] .'L']I lp

il

]

il

I Case y where y # zl In this case py = l+k, and

NTUIND P [ 2] (N y] (1K) plz = 1)
W=UNDL /2]y
N=IN/z] y] (1+F) p

| Case ¢| and [Case I| are similar to the last case.

In this case:

WHIND L' [ 2] (W Ay M] (1+F) plz — 1))
WINY P ] 2]

(AyN—M] (I+k) p[z = O]y — 1+E])
(by the induction hypothesis)
Ay N[N /zIM] (1+k) plz = [y — 1+k]
NN /) Ay.M] (I1+k) plz = 1]




In this case I+k > 0, and

WINT 1 p' [ o] (N~ [inc M] (1+k) plz — 1))
W=HINT L p' [ 2] (NTH[M] (14k-1) plz = 1))
(by the induction hypothesis)

N=HIN/z) M] (1+k-1) p

NN /2] (inc M)] (1+k) p

is similar to the last case.
In this case:

NTIINT L P [ 5] (N~ [new M] (1+F) plz = 1))
(by definition of N1,
for some n ¢ DOM (p) U FN(M))

W=IND P/ 5]

(vn N71M] (1+k+1) p[z = O[n = I+k+1])
(by the induction hypothesis)
v N[N /z] M] (I+k+1) p[n = (I+k+1]
N=HUIN/z] (new M)] (1+k) p

ICase M, Mz—l lCasele

Case (My, M;) | are all simple induction steps. MW

We now show in the dual of Lemma 6.32 that the reverse
translation A’ ~! is stable under reduction in X':

lCase eq M N| and

Lemma 6.38 (Simulation-Dual) For all M € A/, level
numbers , p € Env=1(M, 1), if M — N then

N M]lp=N"[N]lp

Note that this is stronger than the corresponding state-
ment of Lemma 6.32, in that we have = instead of .

Proof: We distinguish according to the form of the redex
in M — N. Since N'~! is compositional, we may assume
w.l.o.g. that M itself is the redex in the reduction step
(this is justified as in the proof of Lemma 6.26).

lCase (Az.M) Nl In this case:

N-[(\z.M) N} 1p
(by definition of A1)

Az N~HM] 1 p[z — 1) W-L[N]1p)
= (by reduction in \’)

NN p / o] W= [M] 1 plz — 1))
(Lemma 6.37)

N-UIN/z] M] L p

1l
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If V is a level number k then N~1[k] I p

is a local name n”, and we have:

N-p' K]l p

pn’

(by reduction in Av)
NS

(by Lemma 6.34)
NZIININEY L P L p
(by Lemma 6.13)
N=HNINEIO L] 2 p
N[, R

If V is a A-abstraction Az.M, we have:

NP Az.M)] 1 p

p Az N M]1 plz — 1))
(by reduction in Av)

Ny

(by Lemma 6.34)
NTUNINST L Pl L p

(by Lemma 6.13)
NIVINZTO 115

= N7, Az.M)] 1 p

The remaining cases, where V is a constant or a pair,
are similar.

W In this case V and W are level-numbers
or constants, otherwise we would not have a redex. In
each case N™1[V] I p and N™[W] I p are names.
Moreover, N=[V] | p == N-I[W] I p iff V and
W are the same level number or constant. Hence, if
eq V W = true in X, then:

N-llegV W]lp
= V==
= true

= N true]lp
On the other hand, eq V W = false in X, then:

N-legV W]lip
= V==
= false

= N false] L p

lCase inc (Az.M )l In this case I > 0, since otherwise




p ¢ Env='(inc (Az.M), 1), and we have

N-1inc Az.M)] 1 p

(by definition of N 1)

Az N~H[M] (1-1) plz = 1-1]

(by definition of N 1)

Az N~1inc M) 1 p[z — 1-1]

(by Lemma 6.36)

Az N~ dec z/z] (inc M)] 1 p[z — 1]
(by definition of N 1)

N7z [dec z/z] (inc M)] 1 p

In this case [ > 0, and we have:

N~ inck]lp

(by the definition of A'~1)

N (1)

(by the definition of N -1,
for some n s.t. pn = I-1-k)

I

n
(by the definition of A7)
N k+1] 1 p

In this case [ > 0, and we have:

N 1incc]lp

(by the definition of N'~1)
N (1) p

(by the definition of A1)
¢

(by the definition of A1)
N e lp

! Case inc (M, Mm is an easy induction step.

ICase dec /\z.Ml |Case dec k| |Case dec c| and

lCase dec (MI,MJI are symmetric to the last four

cases.

|Case new (Ax.M)I In this case:

N=new \z.M)] 1l p
(by definition of N1,
for some name n ¢ DOM(p) U FN(T))
vn Az N=HM]J (141) p[n — I+1][z — 141]
= (by reduction in X')
Az.vn N7 M] (14+1) pln = I+1][z = 1+1]
(by Lemma 6.36)
Az.vn N~ [inc z/z)M] (141) p[z = I][n = 1+1]
(by definition of =)
N[z [inc /2] (new M)} 1 p

In this case k > 0, since otherwise there

would be no redex, and we have:

N=new k]l p
(by definition of N1,
for some name n ¢ DOM (p) U FN(T))
vn N7HE] (141) p[n = 1+1]
(by the definition of A/ 71,
for some name m s.t. pm = I+1-k)

i

vn.m
= (by reduction in ), since m # n)
m

(by the definition of N'~1)
N-Hk-1] 1 p

|Case new cl and I Case new (Ml,Mzﬂ are both easy.

Now everything is in place for the main lemma of this
section:

Lemma 6.39 For all closed M € Av, answers A,

WEkM=A & XNF N[MJOL=A

Proof: “=”: Assume M = A. Then M —» A since
Av is Church-Rosser. By an induction on the length of
reduction from M to A, using Lemma 6.32 at each step,

NIMJO L = N[A]O L.

But N[A] 0 L = A, hence N[M] 0 L = A. By the
definition of =, this implies N[M] 0 L = A.

“4«=": Assume N[M]0 L= A. Then N[M]O L —» A
since A’ is Church-Rosser. By an induction on the length




of reduction from M to A, using Lemma 6.38 at each
step,

N7UN[M]O0 L]0 L=N"1[A]0 L

The left-hand side of this equality is M by Lemma 6.34,
whereas the right-hand side is A by the definition of
N-1 Hence, M=A. ®m

We now drop the assumption that /' maps to A’, where
all p’, eq, inc, dec and new are primitive functions, and
state the equivalent of Lemma 6.39 for A. This rests on
the fact that all p’, eq, inc, dec, and new are definable
in A. The definitions for p’, eq, inc are:

Az.if (Inum? z) (N[NF]0 L) (p z)

Az Ay.if (Inum? z)
if (Inum? y)
(eg-lnum z y)
(z==y)
(z ==1y)
inc Az if (Inum? z)
(z+1)
(if (name? z)
(¢f (pair? z)
(inc (fst z), inc (snd z))
(Ay-inc (s (dec v)))))

The definitions of dec and new are analogous to the one
for inc.

Let A be the syntactic mapping defined as in Figure §
except that instead of the primitive functions p’, eq, inc,
dec, new their defining \-terms are used. Then clearly,

N FN[MJlp & X F N[M]Ip.

With Lemma 6.39, this implies:

Corollary 6.40 For all closed M € Av, answers A,

WEFEM=A& )} NI[M]]O.L:A.
Corollary 6.41 £ is a syntactic embedding of Av in A

Proof: Tt is straightforward to verify that £ preserves
closed A subterms. With Corollary 6.40, £ preserves
semantics. W
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6.3 Putting It All Together

Theorem 6.42 \v is a conservative observational ex-
tension of A.

Proof: By Corollary 6.41, £ is a syntactic embedding
of Av in A. By Theorem 6.5 this implies that Av is an
observational extension of A. To show that the extension
is conservative, assume \v = M = N, for terms M, N ¢
A. Then we have

Ak CMl=A & AWt C[N]J=A

for all Av-contexts C such that C[M] and C[N] are
closed and therefore also for all such A-contexts. Since
terms M € A have only 3 and § redexes, and since A
is closed under (34 reduction, this implies A b M = N.
|

7 Conclusions

Av is a syntactic theory for functions that create lo-
cal names. The calculus is fully compatible with func-
tional programming, in the sense that all observational
equivalences of functional programming are preserved.
There is good evidence that it is a useful foundation
for modelling many constructs that so far were outside
the domain of functional programming. For instance,
Example 3.2 showed how imperative programming with
mutable variables can be expressed in Av. It would be
interesting to see other applications of the calculus, such
as in logic or concurrent programming.

Some other areas are left to future research. In partic-
ular, one would like to study models for local names.
Another question concerns implementation: How ex-
pensive are local names in practice? There exists a pro-
totype implementation of Av in Yale Haskell, but it is
not sufficiently integrated with the compiler to answer
questions of efficiency.
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