One of the most challenging tasks in parallel processing is to compile from a high-level functional
definition to a complete description of an efficient placement and interconnection of an ensemble
of processing elements. The processing elements may have different functionality and their inter-
connection may be changing dynamically dependent upon the computation itself. In this paper, a
design methodology for synthesizing such placements and interconnections is presented. We show
how a systolic architecture can be generated systematically by a series of transformations, each
aiming at optimizing the target implementation for a specific purpose, from a mathematical prob-
lem definition. A set of formal rules of algebraic transformations and their motivations are given.
Throughout this paper, the problem of LU decomposition is illustrated and a new design is derived.

Placement and Interconnection of Systolic Processing
Elements: A New LU-Decomposition Algorithm

Marina C. Chen

Research Report YALEU/DCS/RR-498
October 1986

Work supported in part by the Office of Naval Research under Contract No. N00014-86-K-0296.
Approved for public release: distribution is unlimited.



(Selected as the best paper in the Architectures area of ICCD '86)

PLACEMENT AND INTERCONNECTION OF SYSTOLIC PROCESSING ELEMENTS:
A NEW LU DECOMPOSITION ALGORITHM

Marina C. Chen

Department of Computer Science
Yale University
New Haven, CT 06520
chen-marina@yale

Abstract One of the most challenging tasks in parallel processing
is to compile from a high-level functional definition to a complete
description of an efficient placement and interconnection of an en-
semble of processing elements. The processing elements may have
different functionality and their interconnection may be changing dy-
namically dependent upon the computation itself. In this paper, a
design methodology for synthesizing such placements and intercon-
nections is presented. We show how a systolic architecture can be
generated systematically by a series of transformations, each aiming
at optimizing the target implementation for a specific purpose, from
a mathematical problem definition. A set of formal rules of algebraic
transformations and their motivations are given. Throughout this pa-
per, the problem of LU decomposition is illustrated and a new design
is derived.

1. Introduction

One of the major issues in paralle] processing is how to organize
a given computation so that, collectively, hundreds of thousands of
autonomous paralle] processes may accomplish the task in an efficient
manner. The technology, on the other hand, constrains the way in
which parallel computation can be organized. Dominant costs at the
technological level often have profound implications in the designs at
algorithmic and architectural levels. Clearly, to achieve an efficient
design. one must take advantage of what the technology can offer, and
minimize the costs associated with the constraints it imposes upon a
design. 7

The so-called systolic algorithms [10] make use of hardware tech-
nology very effectively in several aspects: (1) they avoid the incur-
rence of high communication costs by organizing the computation in
such a way that only local communications take place; (2) they avoid
large numbers of fan-ins and fan-outs by 'using networks of fixed de-
grees of connectivity; and (3) they use hardware resources effectively
by pipelining. i.e., re-using each component O(k) number of times
where k is proportional to problem sizes (e.g. linear or square root of
problem size). Numerous reports [14, 15, [13], |16}, [12], [2], [3], [1],
and (7] have appeared in the area of synthesis methodology for sys-
tolic algorithms. A detailed review on the relative strength of these
different approaches and comparison of the computational complex-
ity of the mapping procedures appears in [3]. Mostly, the emphasis
of these reported synthesis methods is on the mapping of a problem
specification to a systolic architecture by a linear transform. The
specification is mostly given in recurrences of one form or another;
very little attention has been paid to how to come up with a suitable
problem specification that is amenable to a linear transformation in
the first place. In [14] and [13], a problem specification is obtained
from a FORTRAN loop by augmenting it with suitable indices. In

[3], several guidelines (e.g. first order recursion equations for near-
est neighbor communications) but no specific formal rules are given
for transforming specifications to a target specification. In [7], the
method first seeks linear transforms and then requires the user to
modify the problem specification if the former fails. The process iter-
ates until some linear transform is found, but no guideline as to how
modification should proceed is given. Clearly, a unified methodology
for synthesizing systolic algorithms, at the specification level as well
as the mapping level, along with its automation, is highly desirable.

In this paper, we show how a systolic algorithm can be gener-
ated systematically by a series of transformations, each aiming at
optimizing a target implementation, from a (mathematical) problem
definition. A set of formal rules of algebraic transformations and their
motivations are given. Throughout this paper, the problem of LU de-
composition is used for illustrating synthesis by algorithm transfor-
mation. All specifications, from the initial problem definition to the
target specification, and the rules of transformations, are described
in the same notation — the language Crystal [4]. Several key ideas
underlie the synthesis approach:

1. Mathematical definition is used as an initial specification, for two
reasons: First, the presentation of a definition is aimed at human
understanding of the problem and communicating it to others,
not programming. Therefore a definition is most suitable as a hu-
man interface to computer aided programming tools. Secondly,
a problem definition is a “pure” specification without being con-
taminated by constraints at the implementation level: it is nat-
urally parallel. Sequentiality is an example of a constraint in
conventional programming on a single processor machine. With-
out the presence of such artificial constraints, a mathematical
definition can be interpreted as an algorithm which exhibits ex-
treme parallelism.

2. However, the parallel implementation media impose their own
set of constraints on the design of algorithms, and the extreme
parallelism exhibited in the definition may not be most efficient
from the standpoint of parallel implementation. For instance,
bounded fan-in and fan-out degrees and locality of communica-
tions are often imposed by realistic parallel implementations such
as VLSI architectures or programs on a network of parallel pro-
cessors. Extreme parallelism without taking into account these
constraints may turn out not to be efficient. The heart of the
synthesis approach described here lies in harnessing the extreme
parallelism exhibited in the definition by infusing suitable data
dependencies into the problem definition so as to optimize the
efficency of the resulting parallel implementation. It is an oppo-
site approach to the one that extracts parallelism from sequential



programs.

3. Source program and target program optimizations are employed
in the process of devising efficient parallel solutions to problems.
A mathematical definition which is conceptually clear and easy
to express by the user does not guarantee its efficiency in im-
plementation. Such optimizations relieve a user from many im-
plementation details. On the other hand, certain optimization is
concerned with the trade-offs at the implementation level, and
hence must be performed at the target program level. In both
cases, the transformation rules for optimization and the programs
themselves are specified in the same high-level language Crystal.

4. Pipelining is a form of efficient. resource sharing in parallel pro-
cessing. It can be automatically incorporated into algorithms by
a process called space-time mapping.

5. The design space for parallel algorithms has been enlarged from
the one-dimensional space of sequential programming to multi-
dimensional space in which processors can be arranged in a va-
riety of different ways. The number of possible solutions to a
given problem can be different not only in the algorithmic sense:
the same algorithm can have many different realizations in multi-
dimensional space and time, each with different control and data
flow and space-time tradeoffs. These different space-time real-
izations can be systematically obtained.

6. The design methodology advocates a uniform framework in which
parallel algorithms and architectures are described, from source
level to target level, in the same language Crystal. Such gen-
eral purpose parallel programming environment allows the com-
pilation methods and optimization techniques described in this
paper, or any other new methods and techniques be integrated
readily within the existing framework, and makes them inde-
pendent of the target machine architectures or implementation
media. Furthermore, a simulation of a target VLSI architecture
or a parallel program is automatically generated by executing
the Crystal program in any given implementation of Crystal.
The rest of the paper is organized as follows: In Section 2, the

mathematical definition of LU decomposition is given. In Section 3, a
large number of fan-ins and fan-outs, and long range communications
in a parallel algorithm are identified as features that incur high costs
in hardware, and hence should be avoided. Transformations of algo-
rithms to reduce the fan-ins and fan-outs to bounded degrees, and to
reduce long range communications to local ones, are introduced. In
Section 4, program optimization at the source level is illustrated. In
Section 5, space-iime mapping which incorporates pipelining into an
algorithm is described and illustrated. In Section 6.3, optimization of
control signals at the target program level is illustrated.

2. Definition of LU Decomposition

2.1. Recursion equations

LU decomposition of matrices can be defined as the following
system of recursion equations which is essentially the standard defi-
nition of LU decomposition except for slight notational variances. It
describes that the decomposition of the matrix A is obtained itera-
tively as index k ranges from 0 to n, and at each iteration a column
of the L matrix and a row of the U matrix are computed.

In the system of equations. we call ¢, 7, and k indices; they corre-
spond to subscripts (e.g. indices of matrix elements) and superscripts
(e.g. indices for iterations) in the linear recurrence notation®. They
always assume discrete values, and these values are referred to as
indices. We refer to a, L, and U as identifiers of functions.

k=0— A(i,5)

0<k<n—ali,jk=1)+L(i, k) x (~U(k, )
1€i<k—0

Lit,k)=Si=k=—1

k<i—a(i,kk—1)x U(k,k)?
1<7<k—0

k<j—a(kjk-1)

a(s, 5, k) = {

U(k,j) = {
(2.1)

2.2. Parallel interpretation of recursion equations

The definition of LU decomposition above can be interpreted
as a parallel program as follows: Each triple of indices (5,7, k) is
interpreted as a process in a domain of process P € pxDx D, the
Cartesian product of the domain of the indices D %' {i:0<4i<
n,{ is an integer}.

The domain of process P is ordered by a data dependency re-
lation. We say that a process u immediately precedes v (u < v),
or that v immediately depends on u (v > u), when v appears on
the left-hand side of a system and u appears on the right-hand side
of a system. A system (e.g. 2.1) must be such that the transitive
closure “<” (precedes) of “<” on all processes is a partial order, and
there is no infinite decreasing chain from any node v, nor is there
an infinite number of processes that immediately precede v. The set
(P, ;) can be depicted as a DAG (Directed Acyclic Graph), which is
shown in Figure 1. It consists of nodes, where each node corresponds
to a process (i, , k) in the set P, and directed edges, where an edge
is emitting from node u to node v if u < v. Those nodes that have
no incoming edges are called sources.

The processes are parallel in nature, a computation starts at the
sources which are properly initialized, and is followed by other pro-
cesses each of which starts execution when all of its required inputs,
or dependent data, become available.

2.3. Local processing functions

The local function each process should perform can be extracted
from the definition. The local function performed may vary from
process to process; hence, often a family of local functions, subscripted
by the indices of the process, are defined. For LU decomposition, three
families of processing functions F; ; x, Gi, and H, x listed below are
defined. For instance, the family of functions F; ;s is defined with
three formal parameters z, y, z and a constant function A, and it
is defined as a composition of primitive functions such as addition,
multiplication, boolean predicates, and conditionals.

et k=0— A(i,j)
I;"-J}k(z’ y,z) =
O<k<n—z+yx(-2),
1€i<k—0
Girl(z,y) E{i=k—=1 forallo<j<n  (2.2)

k<i—zxyTl,

1<j<k—0
Hjk(2) "="{ forall0<i<n

k<j—az,

* The choice of a functional notation such as Crystal, in which subscripts and
superscripts are treated uniformly, is not only for linguistic reasons, but also
because, conceptually, they deserve a symmetrical treatment. In a recurrence. a
subscript such as i or j is thought to be an index for a static location of some
structured data, and a superscript such as & is thought to be an index for iterative
computational steps. However, in the multi-dimensional design space of parallel
programs, there are numerous different ways a subscript or superscript can be
interpreted: statically as a location, dynamically as a computational step, or as
a linear combination of both.




Figure 1: The DAG describing the data dependency of process
(6.2.4) and the fan-outs of process (4, 4, 3).

2.4. Communication functions

Similarly, the communications between processes can be extracted
from the definition. Each formal parameter of a local processing func-
tion, at run time, might either be substituted by a functional value
evaluated within the process, or by a value passed on by other pro-
cesses. In the latter case, a communication function is defined for
specifying which process is passing on a value for the parameter sub-
stitution. Listed below are the families of communication functions
extracted from the definition of LU decomposition.

ran & (17,6 1),
i (t,k,k—1), forall0<j<n (2.3)

ok & (k,j k1), forall0<i<n

For example, from the definition of H, x and System (2.1), the formal
parameter z of local processing function H, x in process (1, , k) should
be replaced by a(k, 5, k — 1), which is passed by process (k, j,k — 1);
hence the definition of 3,k

Note that all of the above communication functions do not take
any arguments other than the constants 1, 7, and k which are asso-
ciated with a process. In other words, the communication specifies a
data flow that is independent of input or data obtained during com-
putation. In the algorithm for LU decomposition with pivoting, one
of the communication functions becomes data dependent.

2.5. Complexity of the naive parallel program

Using one processor for each process in System (2.1), we obtain
immediately a naive parallel program in which the local processing
at each processor and the communications between processors are
obtained from the definition as described above. Altogether O(n3)
number of parallel processors are needed. As shown in System (2.1),
any value a(i, 7, k) cannot be computed until a(i, 5, k—1) is computed,
and hence the number of time steps needed to compute the result is
n.

3. Implementation Constraints Affecting Efficiency

8.1. Large Fan-in and fan-out degrees

Due to the inherent physical constraints imposed by the driving
capability of communication channels, power consumptions, heat dis-
sipations, memory bandwidth, etc., data cannot be sent or received
to or from a large number of destinations or sources in a unit commu-
nication time. In other words, any program should avoid large fan-in
and fan-out degrees, where the fan-in degree of a datum is defined
as the number of data items it depends on, and fan-out degree is the
number of data items dependent upon it.

3.2. Counting fan-in and fan-out degrees

The fan-in degree of a process (1, 5, k) is obtained by counting the
number of distinct processes (i, ", k') appearing on the right hand
side of a definition. Conversely, the fan-out degree of a process (1,5, k)
is the number of times (1, 7, k) appears on the right-hand side while
a process (i', 5%, k'), each time a different (i*, ;*, k'), appears on the
left-hand side.

For LU decomposition, by definition (2.1), the fan-in degree of
processes (i, 7,0) is zero, because it is a source. The fan-in degree
of processes (f,7,k) where k > 0, i > k, and j > k is 4, since it
depends on values computed at processes (i, §, k—1), (i, k, k— 1) (via
definition of L(1, k)), (k, j, k—1) (via definition of U(k, )), (k, k, k—1)
(via definition of U(k, k)), as shown in Figure 1. The fan-out degree
of processes (k, k, k — 1) for all k > 0 deserves special attention. Each
value a(k, k,k — 1) is needed by processes (i, 7,k) for all k <i < n
and 0 < j < n, and thus its fan-out degree is (n — ) x n, which is
proportional to the square of the problem size n.

'3.3. Reduction to bounded fan-in and fan-out degrees

Since all processes appearing in System (2.1) have constant fan-
in degrees, no transformation aiming at fan-in degree reduction is
needed.

3.3.1. Concurrent assignments vs. serial assignments

On the other hand, reduction of the fan-out degree must be per-
formed. It can be achieved by serializing an n-destination communi-
cation as a series of nearest neighbor communications. The following
two rules of transformations are used:

Proposition 8.1. Let z(!) for u < I < v where u and v are integers
and u < v be v—u+ 1 variables to which a value z shall be assigned,
i.e., z(l) = z for u < 1 < v (where the fan-out degree of z is v—u + 1),
then the assignments of these variables can be performed instead by
recursion in index j:

w={"""" (5.)
z(l) = 3.1
I1>u—z(I-1)

or by

m={'7""" (52)

z(l) = 3.2
l<v—2z(I+1)

foru<l<v

where the fan-out degrees of z and z(l) foru <1< vare 1.

The two recursion equations above are only two out of many
possible ways a value z can be concurrently assigned to many variables
z(l). The first equation describes the situation where z is assigned
first to the variable at the endpoint u of the interval between u and v.
Alternatively, the second equation describes the assignment starting
at the other endpoint v. Similarly, z could be first assigned to a z2(w),
where w is somewhere in the middle of the interval. To complete
the concurrent assignments, all of the above schemes, called linear
shift arrays, require time steps linear to the number of variables to




be assigned. A much different way of implementing the concurrent
assignment of x to many variables may be via a broadcasting tree, in
which only a logarithmic number of steps are needed to complete the
assignments. Interested readers may try to describe the broadcasting
tree by recursion equations. Such transformation is very useful in
devising efficient parallel programs. The question now is which rule
should be selected for transformation.

3.3.2. Time complexity and program indices
For the LU decomposition problem, in order to decrease the fan-
out degree of L(1, k), the schemes of linear shift array and the broad-

cast tree are first compared. Recall that System (2.1) takes n steps to -

complete, where index k counts the number of steps. If the time steps

of the new algorithm can be counted by any expression®of the indices

only to the first power, then the time complexity of the algorithm is
maintained at O(n) due to the range of the three indices. For this
reason. the linear shift array is chosen because it increases the time
complexity no more than a constant factor and requires less hardware
than a broadcasting tree.

By matching the indices of a(7, 5, k) on the left-hand side of Sys-
tem (2.1) with those of L(7, k) on the right, it is clear we should define
a new variable I(7, 7, k) to which the value L(, k) is to be assigned for
each process (1, 7. k). Proposition 3.1 should be applied to variables
I(i, 5. k). with recursion in j. Similarly, we define for each process
(t,7.k). a variable u(i, 7, k) to which the value U(k, ) is to be as-
signed. and apply the proposition to u(i, j, k) with recursion in index
1.

Within the class of linear shift arrays there are a few possible
choices: initial assignments to variables at endpoints of an interval
are in general preferred since they result in uni-directional data flow,
which requires simpler control than bi-directional data flow. However,
Jocality is another factor:

8.8.3. Locality of initial assignment

In choosing the lower and upper bounds u and v for index /, and
the particular variable z({) to which the value z should be initially as-
signed in the Proposition 3.1, one must be aware of the issue of locality
of communications. For example, in the case when 1 > k, L(i, k) is
defined in terms of a(i, k,k — 1) and a(k, k,k — 1) (via U(k, k)), while
in the case of 1 < k. it is defined by two constants. To assure that
communications are local (in fact, between nearest neighbor), for the
case ¢ > k, I(i. k. k) should be chosen as the variable to which L(1, k)
is initially assigned. On the other hand, as a convenience at the level
of implementation. constants should be assigned as an intial condition
in the equations. Hence for 1 < k, L(i. k) should be initially assigned
to 1(1,0,k).
3.3.4. Algebraic transformations

Putting all of the above considerations together, the transforma-
tions proceed as follows:

1. The definition of L(1,k) is split into two cases:

i<k—0
Li(i, k)=
1(ik) i=k—1

La(i k) = a(i, k. k = 1) x U(k,k)™!

2. For the case k < 1, first Rule (3.1) in Proposition 3.1 is applied
to I(1,7.k) and La(i. k) for j in the range k < j < n, and then
Rule (3.2) is applied for 1 < j < k, which result. respectively, in:

J=k — Ly(i, k) c
yfork<j<n, and (3.3)

k<j<n—=l(i,j-1,k)

I=k— Ly(i,k)

1<j<k—I(6,5+1,k "

(i, 5,k) = {

(¢, 5,k) = { for1 <j<k. (3.4)

for ¢ > k.

In the case 1 < k, Rule (3.1) in Proposition 3.1 is applied to
(¢, 5,k) and L, (i, k) for 7 in the range 0 < § < n:

.o j=0—L1(i,k)
Ui, 5,k) = . o ,for0<j<n
O<jy<n—=l(i,j-1,k)
The fan-out degrees of L(s,k) (Ly(i, k) and Ly(i,k)) are now
reduced to 2 and that of each I(t, 5, k) is reduced to 1.
Similarly, let u(1, 7, k) be the variable at each process (1, j, k) to
which U(j, k) is to be assigned and let

Ul(kaJ) = 0
U2(k11) = a(kajvk"' l)

In the case k < j < n, Rule ((3.1)) is applied for k <1 < n and
Rule ((3.2)) for 1 <1 < k. In the case 1 < j < k, Rule ((3.1)) is
applied for 0 <1 < n.

Ld

The three equations.defining I(1, 7, k) and, similarly, those defin-
ing u(i, s, k) are merged and then substituted into the original
system of equations (2.1) for L(i,k) and U(k,j) on its right-
hand side. Moreover, the definitions of Ly (i, k), Ly(i, k) Uy (k, 5),
and Uz(k, ) are substituted directly into the equations, and we
obtain a new definition of LU decomposition that has bounded
fan-in and fan-out degrees:

a(‘ ‘ k)_{ -.—;O—A(i.j)
1K) = O0<k<n—ali,jk=1)+1(,5,k) x (~u(i, j, k)

i<k—0
71=0—

i=k—1

O0<j<n—=lij-1,k)

I(i,5,k) =
j=k—a(i,j,k—1)xu(i,j,k)!
k<i<n—=< k<j<n—=lij-1,k)
1<5<k—1(i,5+1,k)
i=0—0
y<k—
0<i<n—u(i~1jk)
u(i,j k) = i=k—a(ijk-1)

k<j—={k<i<n—l{i-1,7k)

1<i<k—I(i+1,5,k)
(3.5)

A remaining criterion for a good parallel algorithm is that all
communications between processes defined by a system of recursion
equations should be local. The more local a communication is, the



less the area in hardware and the shorter the time required for its
implementation. Since System (3.5) contains only local communica-
tionsl, no transformation is needed. Techiques for reducing the range
of communications in general, please see [5].

4. Program Optimization

At the level of problem definition, what is conceptually clear and
easy to express by a user does not guarantee the efficiency in its imple-
mentation. Program optimizations at the source level are needed, for
example, to simplify program control, reduce the complexity of oper-
ations in each processor, maintain a balance between communications

and computations. etc.

4.1. Simplify program control

The system of equations often has many alternative branches on
the right hand side of each equation specifying different processing
functions and communication functions. The execution of such a
program requires control information which determines one of the
alternatives to be actually carried out. The fewer number of different
processing functions and communication functions, the less control
is needed. Reducing control information to a minimum level is of
particular importance for a VLSI implementation of such a program
due to the area that must be devoted to such control.

The program in Equation (3.5) can be improved by the elimi-
nation of some of the branches on its right-hand side. Observe that
whenever 1 < k, I(i,7,k)=0 and whenever j < k, u(i,5,k) = 0. If
the binary multiplication operation is defined so that whenever a zero
appears in one of the arguments, the result is zero irrespective of the
other arguments, then we don’t care what the value of u(f, j. k) is in
the former case and similarly, what the value of (1, 7, k) is in the latter
case. Since they are “don’t care” values, their definition in these cases
can be redefined so that some of the right-hand side branches can be
merged with others and the total number of branches in the system
becomes smaller. The merging of the branches for the definitions of
I(,5,k) and u(i, j. k) are illustrated in Table 1.

4.2. Detect common expensive operations

Similar to the idea of detecting common sub-expressions in con-
ventional compilation. detecting common ezpensive operalions can re-
duce the total cost of a parallel implementation. An expensive opera-
tion is, for instance, one that might take more time to complete than
other operations in an otherwise balanced system. It then becomes
necessary to devote powerful computing resources to this operation so
as to keep up the performance. If a given expensive operation occurs
commonly in quite a few processes in the system, then the alternative
of communicating the result of the operation in one process to other
processes may reduce the total cost of the computation.

Such an optimization technique can be applied at the source level
as illustrated by the following example. System (3.5) contains three
data streams: stream a for the matrix to be decomposed, and streams

+ 1 and u containing. respectively, the lower and upper triangular matri-
ces to be obtained. Its domain of processes D3 is three-dimensional.
Table 2 contains the part of the program after optimization, which
is a better program due to the reduction in the number of division
operations, from order n? to n. The modification to the program to
achieve the optimization consists of moving the processes performing
divisions in a region of the half plane i > k = j to those in a segment
of the line i = j = k by using an extra data stream b which flows
along the same direction as stream u. Stream b can be sent on the
same channel as u.

Incorporating the above two transformations, using . for an un-
defined value, Equation 3.5 becomes:

k=0— AGi,5)
0<k<n—a(i,5,k-1)+1(17,k) x (~u(t, 5,k))

a(is Js k) = {

i<k—0
J:O—v
i<k— izk—1
1(5,5,k) = 0<j<n—lli,j—1,k)

j=k—a(t,5,k—1) xb(i,7,k)
k<i<n—

k#j<n—=Ii,j - 1,k)
I<k—
0<{<n—[u(i-1,jk),1]
i= k= (ali, 5.k — 1), a(i, .k — 1)1
o, bl ) = k=j~{ laio sk = 1) alig k= 1))
,'#k—-»[u(i—l,j,k),b(i—l,j,k)}

i=k—|a(i,j,k—1),1]

k<j—
'#k—'[u('_la.’ak)s-l-]
(4.1)
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5. Mapping Pr to Pr rs

System (4.1) derived above may be further improved by incorpo-
rating pipelining. From the standpoint of implementation, a process
v in a system of recursion equations will be mapped to some physical
functional unit, or processor s during execution, and once the process
is terminated, another process can be mapped to the same processor.
In fact, such re-use of the resource is the essence of pipelining. We
call each execution of a process by a processor an tnvocation of the
processor. Let t be an index for labeling the invocations so that the
processes executed in the same processor can be differentiated, and



let these invocations be labeled by strictly increasing non-negative in-
tegers. Then fora glven implementation of a program, each process v
has an alias s, t] f(v) telling when (which invocation) and where
(in which processor) it is executed.

The key to an efficient parallel implementation of an algorithm
is to find an appropriate one-to-one function J that maps a process v |
to its alias [s,1] such that ¢ will be non- neganve and t; > t; if v, <l
v2, where [s,,!,) [(vl) and [ag,tg] = j(vz) Due to the page
limitation, the method of space-time mapping is not presented here.
Please refer to presentation elsewhere [5]. For LU decomposition, the i
method yields four different linear mapping functions, and three of |
them (denoted by T) are listed in Table 3.

dependency vec. |comm. vec. I{comm. vec. II|comm. vec. III
1 ¥ (1,0,0) (1,0,1) ¥ 1,0, [1,0,1]
2 %' (0,1,0) [0.1, 1) 2 ¥ 0,1,1) [0,1,1]
d¥0,01) | (001 [e¥[1,1,1)] [-1,-1,1]
1 00 1 01 1 0 -1
T 010 011 01 -1
T\1 11 111 11 1
Algorithm I | Algorithm II | Algorithm 111
data flow 9, 8] 13] [11]

Table 3: Data dependency vectors, communication vectors, lin-
ear transforms *, and the data flows of systolic algorithms for LU
decomposition.

6. Target Programs and Architectures

1
. . 4
Proposition 6.1. A space-time mapping T = o 1 1 (Al-
1 11

gorithm 1I) maps every process (1.7, k) (written as a column vector)
of P to an invocation (z,y.t) (written as a column vector), or in
functional notation:

(z.y.t)= fli, 5. k)= (i+k j+ki+j+k)
where1<z2<2n,1<y<2n,(n-1)<z-y<n-land2<t<3n.
The inverse mapping from the image of f to the domain of processes,
denoted by f!

(i3, k) = [Ny t) = (t-yt-z,2+y-1),
specifying at a particular invocation of a processor, which correspond-
ing process is being executed.

The space-time mapping results in a new coordinate system with
z-axis, y-axis, and t-axis as shown in Figure 2. Each process (1, 7, k)
is now mapped to some processor (z,y) at time step t. The resulting
systolic algorithm with pipelining builtis obtained algebraically by
substituting into System (4.1) the inverse mapping f~! of 1, 7, and
k. The program again is a system of recursion equations in Crystal,
called space-time recursion equations, to indicate that each of the in-
dices in the equations has a space or time interpretation. As described
in Section 2, the system of equations has a parallel interpretation from
which the local processing functions and communcation functions can
be extracted from the algorithm. Once such factorization is made,
the equations are ready to be translated to multiprocessor code or
architectural-level specifications required by a silicon compiler. The
formal algebraic transformations to obtain the space-time recursion
equations are omitted here; rather, a few distinguishing features of
the target program are discussed and shown in Figure 3.

ANk

Figure 2: Processes in the original coordinate system and the one
of Algorithm II. Processes on the same plane in any of the series
of parallel planes can be executed at the same time step.
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Figure 38: Processors and intial data streams of Algorithm II. Each
of the processors that performs a division at some given time step
is enclosed in a box.

6.1. Processor utilization

To find out if each processor (z, y) is active at every time step ¢,
the inverse space-time mapping f~! is used in obtaining the following
two propositions.



Proposition 6.2. Except for the boundary cases, a processor (z,y)
which executes process (1, j, k) at time t will execute (f+1,541,k-1)
at time t + 1 in Algorithm II.

Proposition 6.3. Except for the boundary cases, a processor (z,y)
which executes process (i, j, k) at time t will execute (i+1, j+1, k+ 1)
at time t+3 in Algorithm III, but no process is executed at (z,y,t+ 1)
or (z,y.t + 2).

By comparison, each processor is busy at every time step in Al-
gorithm 1II [3] but only busy one out of every three time steps in
Algorithm 1II [11].

6.2. Processor that performs division

From System (4.1), a process (1, 5, k) performs division if i = j =
k. Using the space-time mappings f:

Proposition 6.4. An invocation (z,y,t) performs division if t =
%z = %y in Algorithm II it performs division if z = y = 0 in Algo-
rithm II1.

The control needed to indicate that a division a(i, s,k —1)""
should be performed is simple in the case of Algorithm III because
7 =y = 0is a time-invariant expression, and hence is fixed statically.
For Algorithm II, control code must be compiled into the object code
to perform the test of the expression t = ;:z = %y. For a VLSI
implementation of this algorithm, computing such control information
locally at each processor is far too expensive to be desirable. Program
optimization at the target program level that replaces time-variant
control with time-invariant ones to avoid such computation is needed.

6.3. Target program optimizations

A better design can be obtained by replacing the expensive com-
putations of a time-variant predicate by transferring a control signal.
For a predicate that is independent of ¢, there is no concern, since
it can be hardwired into the design. For any predicate that is de-
pendent on t, it must be substituted by one that is independent of ¢.
Since a communication always both moves in space and takes time to
complete, it can be used to “compute” expressions of the space-time
indices in a time-variant predicate. In the following, the control signal
for the division operation in the new LU decomposition algorithm is
derived. Please refer 1o [6] for the general method in deriving control
signals.

The predicates t < %x, t= %z, and t > %: mentioned above can
be implemented by predicates g(z.1) = 0, g(z,t) = 1, and q(z,t) =2,
respectively, where the control stream is defined as

t<0—0

IT=0—(t=0—1

wir

olz.t) = t>0—2
§z>0—>q(:-l,t— ;)

This control stream can be easily implemented by a two-bit signal
which moves “two processors every three time steps.” Initially, its
value is set to 1 and fed to processor z = 0 and then changes its value
to 2 for t > 0, and shifts subsequently to processors with increasing z
values one at a time. Readers might be curious about how, in general,
the initialization of control stream for the switch-on predicates t < 0
is carried out in practice. The implementation is just the familar
“system reset” which puts a given system into a desired initial state.

Central to an optimizing compiler for parallel systems is the
making of trade-offs between communications and computations, i.e.,
trading local computation with global control signals or vice versa.
Such trade-offs can be systematically devised and carried out by sym-
bolic transformations in quite an elegant fashion, as illustrated here.

7. Concluding Remarks

The objective of this work is to demonstrate that it is possible
to start with a high-level problem definition, and, by successive pro-
gram transformations each aimed at optimizing the utilization of the
underlying technologies, obtain a set of efficient parallel algorithms or
architectures. The merits of these algorithms and architectures can
be systematically compared and chosen for specific purposes. Due to
the complexity that arises in dealing with hundreds of thousands of
autonomous parallel processing elements, we find such a methodology
and its automation highly desirable.

Automation of algorithm synthesis relies, at its most basic level,
upon a formal notation for describing the problem, and henceforth
upon manipulating the descriptions to yield efficient parallel algo-
rithms. The essential nature of Crystal is that it is amenable to
algebraic manipulation and is a general purpose programming lan-
guage which allows new design methods and synthesis techniques,
properties and theorems about problems in specific application do-
mains, and new insights into any given problem be integrated within
the existing program transformation and architecure simulation envi-
ronment. Furthermore, all program transformations are carried out
in Crystal, whether the issue is algorithmic or a concern of imple-
mentation. This capability of Crystal makes the tool that supports
them portable from one multiprocessor environment to another, or to
an entirely different medium, such as direct VLSI implementations.
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