Yale University
Department of Computer Science

A Comparison of CPS, Linda, P4, POSYBL, PVM,
and TCGMSG: Two Node Commumcatlon Times

Timothy G. Mattson, Craig C. Douglas, and Martin H. Schultz

YALEU/DCS/TR-975
May, 1993

This work was supported in part by the Office of Naval Research (grant N 00014-91-J-1576).

A COMPARISON OF CPS, LINDA, P4, POSYBL, PVM, AND
TCGMSG: TWO NODE COMMUNICATION TIMES*

TIMOTHY G. MATTSON , CRAIG C. DOUGLAS AND MARTIN H. SCHULTZ

Abstract. In this paper, we compare simple, two node communication times for a number of
distributed computing programming environments. For each environment, round trip communication
times for a ping/pong program are considered. The times were obtained using two SPARCstation 1
workstations on an isolated ethernet LAN.

Key words. Communication, CPS, C-Linda, P4, POSYBL, PVM, TCGMSG

AMS(MOS) subject classifications. 65Y05

1. Introduction. Distributed computing has emerged as a dominant force in
high performance computing. In response, a number of programming environments
have emerged that make distributed computing available to the application program-
mer. With multiple environments, the question naturally arises, which environment
is the best?

A complete and general answer to this question does not exist. Which environ-
ment is the “best” depends on the specific application as well as on a programmer’s
skills and personal tastes. Numerous issues including portability, ease of use, and
efficiency must be considered to really deal with this question.

Given the impossibility of deriving a general pecking order for distributed com-
puting environments, comparisons usually emphasize a single trait: runtime efficiency.
While providing only one part of the picture, this approach is valid as efficiency is
one of the few measures that can be applied objectively. The results from these stud-
ies, however, have been unsatisfactory and contradictory. Attempts to reproduce the
comparisons is usually difficult if not impossible due to insufficient explanations of
how the comparisons were carried out. The result is a general state of confusion re-
garding the runtime efficiency of various programming environments for distributed
computing,.

In this paper, we attempt to rectify this situation by carrying out “painstakingly
correct” comparisons of:

e CPS

e C-Linda

e P4

e POSYBL

e PVM

e TCGMSG
In every case, we present detailed code fragments and describe our procedures so any
group can reproduce our results. Furthermore, we carried out the comparisons on
an isolated workstation network so effects due to competing processes and network
traffic could be controlled.

Each of these environments uses one of three TCP/IP techniques for actually
transferring information between computer nodes:

* Department of Computer Science, Yale University, P. O. Box 2158 Yale Station, New Haven,
CT 06520-2158. This work was supported in part by the Office of Naval Research, grant N00014-91-
J-1576. Yale University Department of Computer Science Research Report YALEU/DCS/TR-975,
May, 1993.

e Point-to-point A processor opens a direct connection to another processor,
sends data, and then optionally closes the connection (e.g., C-Linda, P4,
POSYBL, and PVM).

e Open-a-crossbar All processors can send data to any other processor without
starting a new connection (e.g., TCGMSG).

o Ftp A processor starts an ftp session with another processor, sends data, and
then terminates the connection (e.g., CPS).

One might be tempted to deduce a programming environment “pecking order”
based solely on this study. This would be a serious mistake. The experiments de-
scribed here only test conflict free communication between two nodes. This is a highly
artificial arrangement and extrapolation of these results to the more complicated com-
munication patterns encountered in application programs is unclear. Furthermore,
runtime efficiency is not always the most important issue for the application pro-
grammer. In the course of a program’s lifetime, matters pertaining to debugging and
maintaining a code can be far more important than runtime efficiency.

The body of this paper begins with a general description of the experimental
setup: both the hardware and the common software elements. We then provide a very
brief description of each programming environment along with code fragments taken
from the test programs. Finally, the results of the timing experiments are presented
and briefly analyzed. The paper closes with a number of appendices detailing the raw
data and comparisons within a particular programming system.

2. Experimental Setup. The experiments described in this study were de-
signed to measure the communication time between two nodes on a local area network.
We wanted to eliminate any side effects due to network activity or competing processes
running on the workstations. Therefore, we placed two SPARCstation 1 workstations
in a room and connected them together using ethernet. Prior to each measurement,
the process status was checked on each node to assure that no user processes were
executing.

All programs were compiled with the standard SUN OS 4.1.3 C compiler. No
optimization switches were set, though we did investigate variation of compiler opti-
mization switches and found that they made no impact on the measured times.

The timings were obtained by measuring the round trip communication time in
a “ping/pong” program. A message was sent from one node to the other and then
back again. Code fragments are given for each case to show specifically how the com-
munication routines within each package were used. With some of the environments,
only one routine was sufficient to implement the ping/pong program (e.g., P4 and
TCGMSG). The remainder required two routines. We always refer to the ping code
as the master fragment and the pong code as the worker fragment, independent of the
actual number of routines.

Every program used the same procedures to access the system clock. This double
function, named wtime() called the standard UNIX function, gettimeofday():

#define USEC_TO_SEC 1.0e-6
double wtime()
{
double time_seconds;
struct timezone tzp;
struct timeval time_data;
tzp.tz_minuteswest = 0; tzp.tz_dsttime

"
o

2

gettimeofday(&time_data,&tzp);

time_seconds = (double) time_data.tv_sec;

time_seconds += (double) time_data.tv_usec * USEC_TO_SEC;
return time_seconds;

}

Since we were interested in elapsed time, not CPU time, this is obviously the correct
function to use for timings.

The average overhead associated with the calls to the timing function, wtime(),
was computed to use as a correction factor to the recorded times. This average and
the standard deviation were computed with the code fragment:

for(sum_t=0.0, sum_t2=0.0, iters = 100; iters—— ;) {
t0 = wtime();
twtime = wtime();
twtime -= t0;
sum_t += twtime; /* accumulate sum of times */
sum_t2 += twtime * twtime; /* accumulate sum of squares */
}
ave_time = sum_t/iterations;
std_dev = (sum_t2-((sum_t*sum_t)/(double)iterations))/(iterations-1);
std_dev = sqrt(std_dev);

]

[}

This overhead was computed within each test program and was always insignificant
(on the order of 0.13 milliseconds) compared to the measured round-trip communica-
tion times.

Each programming environment was tested by considering 100 iterations for the
round trip communication. Each iteration was separately timed and corrected for
the overhead associated with calling the clock routine. Once these individual timings
were collected, each program called the same statistics analysis routine which found
the following values:

e average.

o standard deviation.

¢ median.

e minimum.

e maximum.
In addition, the iteration that resulted in the minimum or the maximum communi-
cation time was reported.

In the following subsections, we provide the key loops from each of the timing
programs. This should allow one to unambiguously reproduce each program. For the
sake of these subsections, the following data declarations apply:

long buff_size_bytes; /* length of message to bounce in bytes */
long iterations=100; /#* Number of iterations to time */

long iters; /* Loop index for iterations count */

long *buffer; /* buffer to bounce from master to worker */
long *incoming; /* buffer to bounce from worker to master */
long iters; /* iteration loop index */

double *tp; /* array of times for each iteration */

3

double wtime(); /* Wall Time in Seconds */

double t0, twtime; /* initial time and timer overhead */
int other; /* Node ID of "other" nodex/
long size; /* Size of an incomming message */

Additional declarations will be provided as needed or if they differ from the above.

2.1. CPS release 2.7.2 . CPS [Fausey] (Cooperative Processes Software) is
a parallel programming environment designed to support the RISC processor farms
at the Fermi National Accelerator Laboratory. CPS provides constructs to support
message passing, remote procedure calls, process synchronization, bulk data transfers,
and batch processing queues. These last two points make CPS unique among the
programming environments considered in this paper.

CPS is optimized for applications requiring asynchronous I/O of large data blocks
from devices operating over a large range of communication bandwidths, from high
speed disks to relatively slow tape drives. Hence, the tests carried out in this study
are well outside of the domain for which the CPS design was optimized.

The CPS program included a common main program and two procedures to carry
out the actual timing: ping() and pong(). The main() routine served a number of
functions included memory allocation and management of I/O. As with the other
systems, we don’t present these details. The following code fragment just includes
the operations unique to setting up the CPS calculation.

/* Some important global declarations */

int (*poing_funcs[])() = { ping, pong };

int (*stop_funcs[])() = { acp_stop_process, acp_stop_job };
int buffer_nol] ={1,2}

int *buffer;

main (argc, argv)
int argc;
char **kargv;
{
int actual_buffer_size;
int buffer_size;
int ri, p2, p3, p4, pb, pgm;

/* The program is started up so this */
pgm = atoi(*++argv); /* O on one node and 1 on the other */

acp_init(); /* Startup CPS */

pl = actual_buffer_size; /* Declare buffers */
p2 = buffer_no[pgm]; /* to be externally */
acp_declare_block(buffer, &pl, &p2); /* accessible */
pl = ACP_ALL_PROCESSES; /* Synchronmize the */

P2 = 3; /* two processes */

acp_sync(&p1, &p2);

/* call ping or pong depending on value of pgm */
poing_funcs[pgm] (pgm, iterations, actual_buffer_size);

/% Shut down the process or job as a whole (based on pgm) */
pl = 1;
acp_sleep(&p1);
stop_funcs [pgm] ();
}

The master fragmant is a ping procedure provided the origination point in the round-
trip communication and therefore included all of the timing calls.

for(iters = iterations ; iters—— ;) {

t0 = wtime();

p1 = buffer_nol[1-pgnm];

p3 = actual_buffer_size;

p4 = buffer_nol[1-pgnm];

p5 = 0;

acp_send(&p1, buffer, &p3, &p4, &p5);
pl =1;

p2 = buffer_nolpgm];

acp_wait_for_data(&pl,&p2);
*tp = wtime();
*¥tp++ -= (t0 + twtime);

}

Since the buffers were declared to be externally accessible, they are visible at the user
program level and a separate buffer packing/unpacking is not explicitly required. The
worker fragment is a pong procedure:

for(iters = iterations ; iters—- ;) {
pl = 1;
p2 = buffer_no[pgml;
acp_wait_for_data(&pil,&p2);
pl = buffer_no[1-pgnm];
p3 = actual_buffer_size;
p4 = buffer_nol[1-pgm];
ps = 0;
acp_send(&p1, buffer, &p3, &p4, &p5);

2.2. C-Linda release 2.5. Linda [Carriero] is an associative, virtual shared
memory system. C-Linda’s operations act upon this memory to provide the process
management, synchronization, and communication functionality required to control
MIMD computers. The version of Linda we used is produced and commercially sup-
ported by Scientific Computing Associates, Incorporated.

The test program consisted of a master and a worker procedure. The master code
contained the timing loop:

eval(" Timing worker",worker(buffer_size,iterations));
in(" Worker alive?", ?flag); /* synchronize processes */

for(iters = iterations ; iters—— ;) {
t0 = wtime();

out("ping", buffer:buffer_size);
in("pong", ? buffer:);

*tp = wtime();
*#tp++ == (t0 + twtime);

}
The corresponding code in the procedure, worker() is:
out (" Worker alive?", 1); /* synchronize processes */

for(iters = iteratioms ; iters—- ;) {
in ("ping", ?buffer:);
out("pong", buffer:buffer_size);

¥

Network-Linda programs are initiated by a program called ntsnet. The ntsnet utility
[SCA] is very flexible and supports a number of command line options that can effect
the programs behavior. We varied the relevant options and settled on the following
command line:

ntsnet -h -p /tmp -d time_linda

where time_1inda is the timing program executable. Options to vary tuple rehashing
had no significant impact on the program’s execution.

2.3. P4 release 1.2. P4 [Butler] is a distributed computing environment pro-
viding constructs to program a number of multiprocessor systems. P4 uses monitors
for shared memory systems, message passing for distributed memory systems, and
includes support for computing across clusters of shared memory computers. It was
produced at Argonne National Laboratory as a follow on to the m4 project [Boyle].

For these code fragments, we need to define some additional message identification
variables:

(1]

int MTYP_4
int MTYP_5

4; /* message Type for P4 */
5; /* message Type for P4 */

The P4 program was coded in an SPMD (single program multiple data) structure with
two parts: a master and a slave. The top level structure of the program including the
master portion of the code follows:

p4_initenv(&argc,argv); /* both nodes call this */

6

if (p4_get_my_id() == 0)
[RFAR ARk k Rk ko kok ok
* Node 0 (Master)

Fokkok KRR AR AR ARk Kok [

{
p4_create_procgroup();
buffer = (long *) p4_msg_alloc (buff_size_bytes);
incoming = (long *) p4_msg_alloc (buff_size_bytes);
other = 1; /* Node id of worker */
p4_global_barrier(MTYP_3); /* synchronize processes */
for(iters = iterations ; iters—- ;) {
t0 = wtime();
p4_sendb (MTYP_4, other, buffer, buff_size_bytes);
p4_recv (&MTYP_5, &other, &incoming, &size);
*tp = wtime();
*tp++ -= (t0 + twtime);
}
p4_msg_free (buffer);
p4_msg_free (incoming);
}
else
{

/***************************

* Node 1 (Worker)
Fokkkokskokokkkkok ok ok ko kokok ok ok kkok ook /

slave();

}

The worker procedure slave() included the following code:

my_id
buffer

p4_get_my_id(Q);
(long *) p4_msg_alloc (buff_size_bytes);

p4_global_barrier(MTYP_3); /* synchronize processes */
other = 0; /* Node id of master*/
for(iters = iterations ; iters—— ;) {

p4_recv (ZMTYP_4, %other, &buffer, &size);

p4_sendb (MTYP_5, other, buffer, buff_size_bytes);
}
p4_msg_free (buffer);

2.4. POSYBL release 1.102. POSYBL [Schoinas] is a public domain asso-
ciative virtual shared memory system and is a simplified clone of the C-Linda pro-

7

gramming environment. It was developed at the University of Crete. POSYBL is
implemented strictly in terms of a runtime library and therefore can not utilize the
optimizations possible with compiler-based Linda systems.

As with the C-Linda program, the POSYBL program was divided into master
and worker procedures. The master program has as its timing kernel:

int len;
eval_1("#3/posybl_worker", NULL); /* create worker */
in(1string("Worker alive?"),qlint(&is_it_alive)); /* synchronize */

for(iters = iterations ; iters—- ;) {
t0 = wtime();

out(lstring("ping"), lnint(buffer,buffer_size));
in(lstring("pong"), qlnint(&buffer,&len));

*tp = wtime();
*tpt+ == (t0 + twtime);
}

The worker procedure, posybl_worker(), has the analogous code:

out(lstring("Worker alive?"),lint(TRUE)); /¥ synchronize */
for(iters = iterations ; iters—- ;) {

in (lstring("ping"), gqlnint(&buffer,&len));

out(lstring("pong"), lnint(buffer,buffer_size));
}

Notice that these commands require the user to notify the POSYBL runtime library
of the types of each object, but are otherwise identical to the C-Linda programs.

2.5. PVM release 2.4.1. PVM [Sunderam] has established itself as the de facto
standard for message passing programming environments for distributed computing.
It has been particularly designed to handle heterogeneous networks. It has been devel-
oped principally at Oak Ridge National Laboratory and the University of Tennessee.

PVM 2.4.1 includes two classes of message passing routines. The first, snd/rcv
passes all messages through intermediate daemons. This had the advantage of bet-
ter scalability, but at the price of substantial additional overhead. The more efficient
method, vsnd/vrcv, uses direct TCP socket connections between communicating pro-
cesses and is considerably faster.

Regardless of the basic message passing routines utilized, PVM differs from all
other systems we studied in that the communication buffers must be explicitly packed
and unpacked. Therefore, to be consistent with the other environments, we included
this buffer packing time in the round trip communication time.

Because of these options, it is possible for various groups to report drastically
different results with a PVM comparison. We report the results for the vsnd/vrcv
with buffer packing in the main body of this study and include the other timings for
some of the other PVM options in Appendix B.

8

A code fragment from the PVM timing program follows. It is divided into two
parts, a master and a worker. First we present the master code.

#define MSGTYPE 1000

int buff_sz= (int) buff_size_bytes;

id = enroll ("pvm_time");
initiate ("worker'", "SUN4");

waituntil ("synchcalled");

for (iters = iterations; iters--;)
{
t0 = wtime ();
initsend ();
stat = putbytes ((char *) buffer, buff_sz);
vsnd ("worker", 0, MSGTYPE);
vrcv (MSGTYPE);
stat = getbytes((char *) buffer, buff_sz);
*tp = wtime ();
*tp++ -= (t0 + twtime);
}

leave ();

The worker was a separate program and contained the code:
id = enroll ("“worker")

ready ("synchcalled"); /* synchronize with the master %/

for (iters = iterations; iters--;)

{
vrcv (MSGTYPE);
stat = getbytes((char *) buffer, buff_sz);
initsend();
vstat = putbytes((char *) buffer, buff_sz);
snd ("pvm_time", O, MSGTYPE);

}

leave ();

In the course of this study, PVM 3.0 and 3.1 were released. PVM 3.x includes sub-
stantial extensions to PVM’s functionality and an entirely new application program
interface. We did not time PVM 3.x, however, since the release available during this
study did not include fully optimized message passing routines. The message passing
routines in PVM 3.1, however, use the vsnd/vrcv communication mechanism and
therefore should match our vsnd/vrcev results.

2.6. TCGMSG release 4.02. TCGMSG [Harrison] (Theoretical Chemistry Group
Message passing system) is a simple message passing system that has risen to a po-

9

sition of prominence among computational chemists. It is very efficient for the two
node experiments we conducted with communication taking place over direct, point-
to-point TCP/IP sockets. It was developed initially at Argonne National Laboratory
and now at Pacific Northwest Laboratory.

The TCGMSG program was structured as an SPMD program with the kernel of
the timing program given by:

long MTYP_1
long MTYP_2

1;
2;

"

PBEGIN_(argc, argv);
id = NODEID_();

SYNCH_(&MTYP_1); /* synchronize processes */

if (id == oL) {
/K ke sk ok sk ok s s o sk sk ok ok o ok
* Node 0 (Master)
ok ok ok ook sk ok ok ok ko ke ook ke ok o/
other = 1L; /* id of other node */
for(iters = iterations ; iters—— ;) {
t0 = wtime();

SND_ (&MTYP_2, buffer, &buff_size_bytes, &other, &SYNC);
RCV_ (&MTYP_2, buffer, &buff_size_bytes, &lenmes,
&other, &nodefrom, &SYNC);

*tp = wtime();
*¥tpt+ -= (t0 + twtime);
}
}
else {
JFRF Rk Aok kR kokkkok ok kokkkok ok Kok !
* Node 1 (Worker) |
sk ok kK okkokok ok ok okokkokok ok Kok / |
other = OL; /* id of other node */ ?
for(iters = iterations ; iters—-- ;) {
RCV_ (&MTYP_2, buffer, &buff_size_bytes, &lenmes,
&other, &nodefrom, &SYNC);
SND_ (&MTYP_2, buffer, &buff_size_bytes, &other, &SYNC);
}
}
PEND_();

3. Results. The key results from this project are given in Table 3.1, which con-
tains the average round-trip communication times (in milliseconds) versus the message
size for each system. For more details about the performance of individual systems,
refer to the raw data in the Appendix A.

The results show clear and consistent performance differences for messages rang-

10

TaBLE 3.1
Average round irip times in milliseconds

Size | TCGMSG P4 | PVM | C-Linda | POSYBL CPS

100 3.6 4.9 5.7 7.9 15.9 | 1031.7

400 4.9 5.2 6.7 9.1 17.6 | 1031.6
1,000 5.9 6.3 9.2 10.9 19.4 | 1032.0
4,000 12.6 15.4 17.7 21.1 30.5 | 1042.2
10,000 23.4 32.8 42.5 53.6 64.3 | 1060.8
40,000 79.9 | 123.4 | 1473 168.9 273.0 | 1083.1
100,000 201.6 | 308.1 | 356.3 389.1 1261.8 | 1161.9
400,000 794.2 | 1213.4 | 1383.3 1491.7 8466.3 | 1556.3
1,000,000 1978.0 | 3030.5 | 3479.3 3711.5 — —

ing in size from 100 bytes to one megabyte. In other words, even at the largest
message sizes the ethernet-induced bandwidth limitations did not dominate the com-
munication time. TCGMSG was significantly faster for all message sizes. P4, PVM
and C-Linda (in that order) represent a middle range in performance. Finally, CPS
and POSYBL were the slowest systems and even failed for the largest message sizes.

The CPS times include startup costs on the order of half a second leading to
relatively flat performance across the full range of messages. CPS was designed to
fill much broader communication needs than the other programming environments
we studied and was optimized for asynchronous transfer of large data blocks with
potentially slow, tape 1/O systems. Under these circumstances, the observed startup
costs for CPS are insignificant.

A detailed analysis of the performance differences is beyond the scope of this
paper. It is clear, however, that the management of message buffers at either end
of the communication plays a major role in the overall communication performance.
This follows from the fact that systems using identical network protocalls (TCGMSG,
P4 and PVM) displayed very different results.

It is important to note that two node, point-to-point communication tests are
an overly simple way to compare programming environments. More complicated
communication patterns found in actual applications are essential to make a fair and
complete comparison. We intend to study such cases in a future paper.

Regardless of the programming environment, communication across LAN net-
works, even in the case of FDDI, is slow relative to computation. Any application
that maps well onto a network distributed computer must be coarse grained. Hence,
communication time must play a minor role in the application’s overall performance
making the differences seen here less significant in terms of an application’s overall
performance. Therefore, issues not addressed in this paper such as ease of use and
debugging support are critical when selecting a programming environment.

11

REFERENCES

[Boyle] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Patterson, and R.
Stevens. Portable Programs for Parallel Processors, Hold, Rinehart, and Winston,
1987.

[Carriero] N. Carriero and D. Gelernter, How to Write Parallel Programs: A First Course. (Cam-
bridge: MIT Press, 1990).

[SCA] Scientific Computing Associates, Inc. “C-Linda Reference Manual”, (1992).

[Butler] R. Butler and E. Lusk, “User’s Guide to the p4 Programming System”, Argonne Na-
tional Laboratory technical report ANL-92/17, (1992).

[Sunderam] V. S. Sunderam, “PVM: A Framework for Parallel Distributed Computing”, Concur-
rency: Practice and Experience, Vol 2, pages 315-339, (1990).

[Schoinas] G. Schoinas, “Issues on the implementation of Programming SYstem for distributed
applications”, University of Crete draft technical report, (1992).

- [Harrison] R. J. Harrison,“Portable Tools and Applications for Parallel Computers”, International

Journal of Quantum Chemistry, Vol 40, 847-863, (1991).

[Fausey] M. Fausey, F. Rinaldok, S. Wolbers, D. Potter, B. Yeager, “CPS and CPS Batch
Reference Guide”, Fermi National Accelerator Laboratory, GA0008, (1992).

A. Raw Data. In this appendix, we present the raw data for each system stud-
ied. For each table, Size refers to the size of each message in bytes. All time units are
in milliseconds and refer to the round trip communication time. Finally, the quantity
in parenthesis in the Minimum and Mazimum columns refers to the iterations that
resulted in the minimum or maximum time.

During the course of this investigation, a question about different major releases
of both C-Linda and PVM arose. In Tables A.2-A.3, raw data for two releases of
C-Linda (2.4.6 and 2.5) are presented.

- PVM 2.4.1 has two methods for message passing and separates communication
from the buffer manipulation. Consequently, PVM benchmarks can vary widely. Ta-
bles A.6—A.7 include buffer manipulation while Table A.8 excludes it. Note that PVM
3.1 using vsnd/vrcv should behave similarly to Table A.6.

TABLE A.1
CPS round irip times in milliseconds

Size | Average | Std dev | Median | Minimum Maximum
100 1031.7 11.4 | 1029.9 1029.1 (19) 1141.9 (0)
400 1031.6 11.5 | 1029.9 1029.0 (14) 1142.0 (0)
1,000 1032.0 13.3 | 1029.9 1029.0 (35) 11427 (0)
4,000 1042.2 22.3 | 1039.9 1029.7 (92) 1258.2 (0)
10,000 1060.8 100.5 | 1049.9 1039.6 (17) 2049.9 (31)
40,000 1083.1 12.9 | 1079.9 1079.2 (31) 1193.7 (0)
100,000 1161.9 12.2 | 1159.9 1158.9 (26) 1269.7 (0)
400,000 1556.3 74.6 | 1539.9 1509.8 (42) 2199.8 (22)

12

TABLE A.2
C-Linda 2.50 round trip times in milliseconds

Size | Average | Std dev | Median | Minimum Maximum
100 7.9 0.3 7.8 7.7 (50) 10.2 (99)
400 9.1 0.9 8.9 8.7 (18) 16.2 (1)
1,000 10.9 0.5 10.8 10.6 (89) 151 (3)
4,000 21.1 0.6 21.0 20.7 (81) 25.4 (60)
10,000 53.6 1.2 53.2 52.5 (60) 61.0 (0)
40,000 168.9 11.0 164.6 162.7 (59) 220.6 (23)
100,000 389.1 14.9 384.3 382.2 (85) 460.6 (23)
400,000 1491.7 48.6 | 1478.3 14704 (54) 17705 (0)
1,000,000 37115 201.5 | 36734 3651.3 (22) 5627.6 (0)

TABLE A.3
C-Linda 2.4.6 round trip times in milliseconds

Size | Average | Std dev | Median | Minimum Maximum
100 9.4 0.2 9.3 8.1 (99) 9.9 (40)
400 10.4 0.2 104 9.2 (99) 11.0 (64)
1,000 12.7 2.7 12.0 11.8 (38) 325 (91)
4,000 22.9 1.0 22.5 21.5 (81) 27.2 (86)
10,000 52.6 1.1 52.3 51.6 (20) 59.9 (0)
40,000 163.9 5.8 162.2 160.8 (13) 199.9 (26)
100,000 382.3 11.5 378.7 376.6 (40) 4495 (0)
400,000 1471.8 39.5 | 1460.7 1451.0 (32) 1704.1 (0)
1,000,000 3652.2 87.5 | 3625.7 3615.3 (63) 44345 (0)

TABLE A .4
P4 round trip times in milliseconds

Size | Average | Std dev | Median | Minimum Maximum
100 4.9 0.1 4.9 4.8 (49) 5.3 (78)
400 5.2 0.3 5.1 5.1 (35) 7.3 (0)
1,000 6.3 0.2 6.2 6.1 (87) 7.8 (64)
4,000 154 2.8 14.5 13.8 (61) 35.3 (96)
10,000 32.8 1.0 32.6 315 (1) 41.7 (0)
40,000 123.4 4.4 122.8 120.4 (60) 161.8 (0)
100,000 308.1 18.4 303.0 2953 (9) 402.8 (0)
400,000 1213.4 76.1 | 1194.3 1184.3 (99) 1866.3 (0)
1,000,000 3030.5 164.7 | 2989.2 2967.5 (72) 4555.1 (0)

13

TABLE A.5
POSYBL round trip times in milliseconds

Size | Average | Std dev | Median | Minimum Maximum
100 15.9 1.2 15.9 13.9 (3) 194 (77)
400 17.6 14 17.4 153 (6) 224 (88)
1,000 194 5.2 18.8 16.3 (3) 68.0 (99)
4,000 30.5 6.0 29.8 22.2 (16) 79.1 (99)
10,000 64.3 10.7 62.1 526 (4) 130.0 (99)
40,000 273.0 150.5 248.5 173.8 (4) 1471.4 (68)
100,000 1261.8 653.5 | 1048.0 465.5 (70) 45454 (0)
400,000 8466.3 3601.0 | 7682.6 3291.3 (20) 19883.4 (73)
TABLE A.6
PVM 2.4.1 vsnd.vrev round trip times in milliseconds
Size | Average | Std dev | Median | Minimum Maximum
100 5.7 1.1 5.5 54 (20) 147 (0)
400 6.7 0.9 6.6 6.5 (98) 15.1 (0)
1,000 9.2 1.9 8.5 8.0 (30) 22.7 (95)
4,000 17.7 14 17.5 17.0 (44) 295 (0)
10,000 42.5 9.5 40.2 39.1 (83) 1274 (0)
40,000 147.3 11.7 145.0 142.3 (16) 243.9 (0)
100,000 356.3 19.2 3561.7 347.9 (96) 498.7 (0)
400,000 1383.3 62.5 | 1370.3 1356.7 (45) 1914.1 (0)
1,000,000 3479.3 300.4 | 34241 3405.9 (17) 59442 (1)
TABLE A.7
PVM 2.4.1 snd/rcv round trip times in milliseconds
Size | Average | Std dev | Median | Minimum Maximum
100 14.1 0.2 14.1 13.2 (6) 148 (9)
400 16.2 1.2 16.1 149 (21) 274 (78)
1,000 18.5 0.2 18.5 17.1 (61) 19.2 (86)
4,000 43.1 1.1 42.9 419 (52) 514 (0)
10,000 71.6 2.3 71.9 67.1 (50) 87.7 (0)
40,000 246.4 12.5 242.1 229.8 (26) 298.2 (53)
100,000 585.0 31.3 577.1 542.7 (11) 732.2 (75)
400,000 2235.5 66.8 | 2231.2 2125.1 (17) 2716.9 (0)
1,000,000 5652.2 591.7 | 5586.1 5400.9 (80) 11146.0 (1)

14

TABLE A.8
PVM 2.4.1 snd/rcv, no buffers in milliseconds

Size | Average | Std dev | Median | Minimum Maximum
100 13.8 4.0 13.3 11.9 (85) 53.3 (0)
400 12.0 0.3 12.0 10.5 (96) 13.6 (11)
1,000 15.4 0.2 15.3 145 (4) 15.9 (88)
4,000 27.6 3.1 26.6 25.4 (36) 46.2 (28)
10,000 38.3 0.9 38.1 37.2 (35) 453 (0)
40,000 112.8 2.4 113.4 108.9 (31) 1274 (0)
100,000 257.5 18.0 252.9 249.2 (83) 365.4 (0)
400,000 980.2 29.2 970.0 962.7 (49) 1105.5 (1)
1,000,000 2406.2 70.6 | 2385.5 2366.9 (21) 2970.3 (0)

TaBLE A.9
TCGMSG round trip times in milliseconds

Size | Average | Std dev | Median | Minimum Maximum
100 3.6 0.5 3.4 3.3 (63) 6.8 (64)
400 4.9 0.3 4.7 46 (1) 6.7 (1)
1,000 5.9 0.3 5.7 56 (18) 6.7 (2)
4,000 12.6 0.4 124 12.1 (87) 142 (7)
10,000 23.4 0.8 23.2 22.8 (25) 29.8 (81)
40,000 79.9 0.6 79.8 78.8 (60) 83.9 (15)
100,000 201.6 6.1 199.8 197.6 (5) 239.7 (9)
400,000 794.2 20.9 789.8 778.7 (48) 917.0 (69)
1,000,000 1978.0 40.1 | 1964.0 1951.2 (26) 21014 (91)

15

