RELATIONAL QUERIES COMPUTABLE IN
POLYNOMIAL TIME

By
Neil Immerman
YALEU/DCS/TR 393
August, 1985

Relational Queries Compufable in
Polynomial Time

Neil Immerman*
Computer Science Department
Yale University
New Haven, CT 06520

August 28, 1985

Abstract

We characterize the polynomial time computable queries as those ex-
pressible in relational calculus plus a least fixed point operator and a total
ordering on the universe. We also show that even without the ordering
one application of fixed point suffices to express any query expressible
with several alternations of fixed point and negation. This proves that
the fixed point query hierarchy suggested by Chandra and Harel collapees
at the first fixed point level. It is also a general result showing that in
finite model theory one application of fixed point suffices.

Introduction and Summary

Query languages for relational databases have received considerable attention.
In 1972 Codd showed that two natural languages for queries — one algebraic
and the other a version of first order predicate calculus — have identical powers
of expressibility, [Cod72]. Query languages which are as expressive as Codd’s
Relational Calculus are sometimes called complete. This term is misleading
however because many interesting queries are not expressible in *complete”
languages. . .

In 1979, Aho and Ullman, [AU79] noted that relational calculus does not
suffice to express the transitive closure property. They suggested adding a least
fixed point operator to relational calculus in order to create a query language
which can express transitive closure. In 1980, Chandra and Harel, [CH80b],
studied the expressive power of relational calculus with added primitives such
as a least fixed point operator. They define a Fixed Point Hierarchy of query

*Research supported by NSF Grant MCS81-05754 and by an NSF postdoctoral fellowship.

classes, the queries in each particular class being those expressible with a certain
number of applications of the least fixed point operator, followed by a certain
number of alternations of of ordinary quantification and negation. In this paper
we show:

Theorem 2. The Fixed Point Hierarchy collapses at the first fixed point level.

That is, any query expressible with several applications of least fixed point
can already be expressed with one. We also show:

Theorem 1. Let L be a query language consisting of relational calculus plus
the least fixed point operator, u. Suppose that L contains a relation symbol for
a total ordering relation on the domain (e.g. lexicographic ordering). Then the
queries expressible in L are exactly the queries computable in polynomial time.

Theorem 1 was discovered independently by M. Vardi [Va82]. It gives a syn-
tactic categorization of those queries which can be answered in polynomial time.
Of course queries requiring polynomial time in the size of the database are usu-
ally prohibitively expensive. We also consider weaker languages for expressing
less complex queries.

1 Background and Notation

This section will briefly define and give examples of the objects under con-
sideration. The reader is referred to [Ull80], [End72], [AHU74], and [Mo74] for
excellent discussions of relational query languages, first order predicate calculus,
computational complexity, and least fixed points, respectively.

First, a relational database, B = (U, Ry*,...,Rg*,¢o,...,¢,), is simply a
first order structure with finite universe, U. For i = 1...k, R is an g;-ary
relation on U, i.e. R; € U%. The superscripts, a;, will be omitted where
confusion does not arise.

The constants, ¢g...c, are elements of U. As an example we can consider a
database By = (Uo, Fo, Po, Ho, Abraham); where U is a finite set of people,

U = {Abrabam, Isaac, Sarah, Leah, ...}
Fp is a monadic relation true of the female elements of U,
Fp = {Sarah, Leah, ...}
Po and Hy are the binary relations for parent and husband, respectively, e.g.
Po = {(Abraham,Isaac), (Sarah,Isaac),...}

A similarity type, 7 = (R{',...,Rf* co,...,¢,), is a finite list of relation
and constant symbols. R™ is an a,-ary relation symbol. For example, By is a
database of type 7, = (F?, P?, H? c,).

Define Domasn Relational Calculus to be the query language consisting of
first order predicate calculus. Thus if 7 = (R;,..., R, ¢q,...,¢,) is any simi-
larity type, then £(r), the relational calculus for r, consists of all well formed
formulas built up in the usual way from the symbols of r, together with equal-
ity: =, logical connectives: A, -, variables: z,y, 2, .. ., and quantifiers: ¥, 3. For
example we can express the grandparent relation as the following wif

(z,9) = (32)[P(z,2) A P(z,4)]

The wif 4 € L(7/) has free variables, z,y. If 4 is thought of as a query to
By, then the response is the set of all pairs, (a,b) € (Up)?, such that a is a
grandparent of b. More formally this is the set of all pairs (a,b) such that B,
satisfies y(a, b). In symbols:

° = {(a,b) € (Uo)’lBo = (s, b)}

First order logic gives a rich class of database queries, but some plausible
queries are not first order expressible. For example it is impossible to express
the relation “ancestor(x,y)” in £(7/). Aho and Ullman [AU79] suggest adding a
least fixed point operator to relational calculus so that transitive closures such
as *ancestor” may be expressed. ’

For example, let R be a new binary relation symbol and consider the follow-
ing first order formula: .

e(R)[z,9] = (z =y v (32)[P(z,5) A R(z,9)])

For any database B of type 77, ¢ induces a mapping, Fg of each binary relation,
R, on the universe of B to the binary relation:

T2(R) = {{2,4) | B »(R)|z,y]}

The operator T2 is monotone, i.e. if Ry C Rp then I'E(R;) C TE(R;). I
follows that for any database, B, I'Z has a least fixed point, i.e. a minimal
binary relation, Ry with the property that I'g (Ro) = Ro. It can be shown that
the least fixed point of the above , denoted (uR)p, is just the ancestor relation
- the transitive closure of P.

A syntactic criterion which assures that the operator, I“g , is always mono-
tone is that is R positive, i.e R always appears within an even number of —’s
in . Asin [AU79] and [CH80b] we define the fized point language, L,(7), to be
the closure of £(r) under the operation of taking least fixed points of R positive
formulas, ¢(R).

Notation: Given a formula (R, 2) where R is a relation symbol of arity a
occuring positively in ¢ and 2 is an a-tuple of distinct variables, we will write

(l.uR(2))¢

to denote the least fixed point of ¢ with the a-tuple 7 of terms, (i.e. variables
and constants), substituted in. For simplicity we will often write (uR)p for

(t.uR(2))p}

Definition: Given a similarity type, r, let £,(7) be the closure of £(r)
under the usual operations of conjunction, negation, and quantification, and
also under u: If (R, 2) € L,(r) is as above, then (uR)y is also in L,(7).

Constant Assumption: We assume in the sequel that every similarity
type, 7, under consideration has at least one constant symbol, 9. Without this
assumption there is no way to write a boolean query in the form (T.uR(2))¢
simply because any such expression will have free variables. Without the con-
stant assumption Theorems 1 and 2 must be modified to allow a single quantifier
after the application of u to get rid of the free variables.

2 The Complexity of Fixed Point Queries

In L,(r) we have a very rich class of queries, including but not restricted to
all first order queries and transitive closures. It is interesting to consider the
complexity of evaluating queries in £,(r). Chandra and Harel show that all
fixed point queries are computable in polynomial time:

Fact 2.1 [CH80b] . If ¢ € L,(7) is any fixed point query, then there is a
polynomial, p, such that if B is any database of type r with universe U, then
#P, i.e. the query p evaluated on B, may be computed in time p(|U]).

The idea behind the proof is as follows: Let n = |U| be the size of the
database and let ©(R) be R positive, where the arity of R is . Then (uR)y
evaluated on B is equal to p{**)(8), i.e. to @ applied n® times to the empty
relation. The reason that n® applications suffice is that until the least fixed
point is reached each application adds at least one a-tuple, (remember that ¢
is monotone!); and B has at most n® a-tuples.

Let QPTIME be the set of all queries computable in time polynomial in the
size of the database:

QPTIME = {¢ | graph(y) € PTIME }

where graph(p) = {(B,2)|B | ¢(2)}2. Write £, for the set of all fixed point
queries with 7 unspecified. Thus Fact 2.1 says that £, € QPTIME. Chandra
and Harel also show that equality does not hold:

1See [CH80b] for a more complete explanation of least fixed point operators. We have \
adopted their notation except that we write y where they write Y.

3We are implicitly identifying a database B with its encoding as a binary string listing the
characteristic functions of all of its relations.

Fact 2.2 [CH80b] . £, # QPTIME.

Their proof shows that queries in £, don’t necessarily have the ability to
count. Thus for example the query concerning family databases, “Are there an
even number of females?” is not expressible in £,(rs).

The inability of fixed point queries to count can be eliminated by adding
an ordering of the universe to the language. Such an ordering, e.g. by bit
representation, is always available in real databases. Let us assume that every
database has a total ordering, <, on its universe. Let £ (<) be the set of

fixed point queries which may include the logical relation, <, which must be
interpreted as a total ordering on the universe. We will show in the next section
that £,(<) = QPTIME.

~ In fact we will see that any polynomial time query may be expressed as a
simple least fixed point, i.e. in the form (uR)p where ¢ is first order. Let
us first describe the proposed Fized Point Hierarchy of Chandra and Harel.
They considered a classification of queries in £, by the number of alternate

applications of quantification and of u. Let

o = {M € L,|M is quantifier and pu free}
)| I = {""PI‘P € 20}

Zatr1 ={(3z)plp €T}

Zon ={(pR)¢lp € E4,a <wn}

Thus X, is the set of first order queries with m alternations of quantification
begining with existential; and I., is the set of queries expressible using n
applications of p with intermediate applications of quantification and pegation.
Since our queries must be finite we have £, = L_2. It is known that additional
alternations of first order quantification give increased expressibility. This is
proved in [CH80b] for languages without ordering. In [Si83] Sipser showed that
polynomial size bounded depth circuits form a strict hierarchy for depth. A
corollary of this result as noted in [Im83] is the strict first order hierarchy for
alternation of quantifiers where any fixed set of logical relations including < is
used. It is also known that transitive closure is not first order expressible with
or without ordering: see [AU79] or [Im81]. Thus we have

Pact 2.3 . The fixed point hierarchy is strict up to and including T, i.e. all
the following containments are strict:

L cc...c|Eics,

=0

2 So(S) € Ba(S) € .. € [BlS) € Bul(s)

=0
Chandra and Harel ask whether the hierarchy continues past £,. We will
show that it does not. In the next section we show that in the presence of

ordering the hierarchy stops at I, (<) and is equal to the polynomial time
computable queries. In section 4 we will show the more subtle fact that even
without ordering the hierarchy stops at T,,.

3 In the Presence of Ordering

In this section we prove our first main result,
Theorem 1. L,(<)= QPTIME= L,(X)

proof: We have already seen that £,(<) € QPTIME. We must show that
QPTIME C I,(X). To make our presentation slightly simpler we will only
consider boolean queries. Let S be a set of databases, B, of type 7. Let M be a
Turing machine which accepts S in time less than n*. Here n is the size of the
universe of the input database, B, being tested for membership in S. We must
show that there is a query a € T (<) which expresses S, i.e.

S={B|BEca}={B | M acepts B}

We will show that M’s computation on input B can be described in I,,(<). To
do this, we will build a first order formula s whose least fixed point evaluated
on any B is a coding of M’s computation on input B. There are two steps to
writing the formula). First we show in Lemma 3.1 that the first line of M’s
computation, i.e. the input database, B, can be described in a first order wil.
Second we show that given one line of M’s computation we can describe the next
line in a first order way. Thus @) will determine a monotone operator which
given any partial computation, R, will add the first line of M’s computation
on B that has not yet been filled in. Thus the least fixed point of was will be
the entire computation. Then we can read the answer of whether M accepts or
rejects B from (uR)on.

Now let’s look at some of the details. Each candidate for S is a database B
which has a finite universe, U, with a total ordering, <, on it. Let n = |U|. We
can think of U as the set of integers from 0 to n — 1 with the usual ordering, We
will use k-tuples of variables to denote numbers between 0 and n* — 1. Using
one application of y we will form the relation Cas = (uR)pa¢ which codes M’s
computation. That is: B = Car(p1,-.-+Prst1,--.,tk,8) if and only if in M’s
computation on input B, the contents of the cell p; ...p; at time ¢;...¢; is ‘a’.
Once we have written Cys we can let

a= CM(09nk - 11QI)
Here o says that M is in its accept state, gy, after n* — 1 steps. Thus as

desired
BEa & BeS

The first step in building @ is to write the sentence My (P, a) meaning that
at time 0, cell p is a. We will show in Lemma 3.1 that for any Turing machine,
M, the wil Mp is first order expressible.

Lemma 8.1 . My(p,a) is first order expressible, i.e. My € L(r,<).

proof: This is a matter of encoding and decoding B. Suppose for concreteness
that k = 8 and that r consists of a single binary relation symbol, E. We code B
on M’s input tape with a sequence of n? bits coding E, followed by a sequence
of n® — n? blanks. Before we write M, we must know how the symbols of M’s
instantaneous description are coded. Assume, for example, that 0 and 1 code
themselves, 2 codes ‘blank’, 3 codes the start state looking at a 0, and 4 codes
the start state looking at a 1. Using the ordering on B’s domain we may assume
that we have symbols for these numbers. Note: In writing a we may assume
that n is larger than a given constant k. We can assure this by listing all the
element of S whose size is at most k. We then say, “Either B is on this list, or
B has more than k elements and a holds.”
Now M for the above example is given as follows:

MO(PI:P?;P&“) =
(b= p2=ps =) A ((BQ.0) Aa=9)v (-E0,0)Aa=3)] (1

V[i=0A #0ve #0)A(@=0va=)A(Errs) ~a=1)] @)
v [p;#OAa=2] : (3)

The above mess says (1): “The first tape symbol is M’s start state looking at
the first bit of E,” (2): “The next n? — 1 tape cells are 1 or 0 according as the
corresponding bit of E holds or doesn’t hold,” and (3): “The last n3 — n? cells
are blank.” We hope the reader can generalize from this example to arbitrary
r. |

Now that we have expressed the input tape, we can complete the description
of . e will have a relation variable, R, of arity 2k + 1. If R codes a partial
computation of M, then) (R) codes one additional step of this computation.

Let the notation “(zyz) — w” mean that if at a given moment the tape cells
§—1,1,94 1 contain the letters z,y, z, respectively, then at the next move of M
cell ¢ will contain the letter w. Thus “(zyz) — w” is just an abbreviation for
the following disjunction:

(zyz) =w = V (z:c-;Ay:coAz=c1Aw=c)
(‘—l 'cﬂychc)eaﬂ

where §)s is the appropriate finite set of quadruples. Thus ©m(R) codes the
input tape and includes those tuples (p,7,a) whose precursors, a—y,ap, and a;

-~

already appear in the computation coded by R. In symbols,

vm(R)|p,T,a] = (T=0AMo(p,a))V [Ba-laoal ({(a-1a08;) — a
AR(p—-1,1-1,a1)AR(p,I-1,a0) AR(p+ 1,T — l,a;))]

Note that the crucial use of < is in expressing the motion left or right on
the input tape, i.e. to write p—~1orp+1.
Let Cx = (uR)en and put a = Cp(0,n*~1, q;). Thus:

BEa® BeS

as desired. It is in this last step that we need the constant assumption. If we have
at least one constant symbol, ¢, then we can do our coding so that ¢, means
the correct thing in each place, i.e. so that Cp(0,n*~1,g;) = Cp(co, ..., c0)3
and we are done. Otherwise as mentioned above an additional quantification is
necessary. ' |

4 One Fixed Point Suffices

If we do not have access to an ordering on the universe then it is not in general
possible to simulate a computation, so Theorem 1 fails (cf. Fact 2.2). We can
still show, however, that the hierarchy collapses at the first fixed point level:

Thﬁoremz. £“=2“,'

To prove this theorem we will use some of the machinery developed in
[Mos74]. Moschovakis considers inductive definitions on a fixed infinite struc-
ture and he assumes that L contains a constant symbol for each element of
the structure. We consider uniform inductive definitions for all finite relational
structures of a given similarity type and we assume only that at least one con-
stant symbol exists. We must thus check that Moschovakis® results remain true
in this new setting. We derive the facts we need in 4.1 through 4.7, below.

The outline of the proof of Theorem 2 is as follows. We want to show that
several applications of u are no more expressive than one. Following [Mos74]
we show that two simultaneous inductions can be combined into a single one,
(Lemma 4.1 - Simultaneous Induction Lemma). Next we show that two nested
applications of 4 with no occurrences of negation may be combined into a single
one, (Lemma 4.2 — Transitivity Theorem). It immediately follows (Corollary
4.3) that T, is closed under conjunction, disjunction, and quantification. Third

3That is we use a slightly different ordering for position inwhich ¢ is the first element; for
time inwhich ¢g is the last element; and coding symbols so that co codes the accepting state,
qs. Of course there are more straight forward ways of doing the same thing by increasing
the arity of the fixed point by one.

we show that L, is closed under negation. This surprising fact is true because
in a finite structure any least fixed point will be reached after a finite number of
iterations. Furthermore we can express in L, the relations 2 <, g, (and 2 <,
§), meaning that in the computation of (uR), the tuple 2 enters the relation
and does so before g, (resp. no later than §). This is the Stage Comparison
Theorem (Fact 4.4). Using <, and <, we can express MA X, () meaning
that 2 is of maximal rank with respect to ¢, i.e. it comes in on the last round of
the computation of (uR)e. Finally once we have a tuple, 2, of maximum rank,
anything of greater rank will never enter the fixed point, i.e. negation may be
expressed as follows:

~(g.uR)p =32(MAX (2) A2 <,)

Before we prove our first lemma we make a few convenient definitions. If
a(T) is any formula where T is an r-ary relation symbol and if R is an r+ m-ary
relation symbol and 7 is an m-tuple of terms then the notation

o({s|R(,8)})

will mean the result of replacing each occurrence of T'(t) in a(T) by R(%,®).
Let a(R, 2) be any R positive formula where the arity of R is |[2]. When the
structure, 4, is understood we will follow Moschovakis and use the notation I?
to denote the nth iterate of a, inductively:

B=9, I*'={a4ka(la)
Also define the closure ordinal of o in A, in symbols cl((p), to be the first ordinal
a such that
A= (£9(0) ~ o=+ (@)

Note that if 4 is finite then so is cl(p). We also write I, to denote IS, i.e.
the least fixed point of ¢ in 4.

The following lemma shows that two simultaneous inductions may be com-
bined into one:

Lemma 4.1 (c¢f. Simultaneous Induction Lemma, [Mos74]). Suppose
¥(9,S,T) and ©(2,85,T) are first order formulas that are positive in S and T.
Let ry = arity(S) = |g|, and ry = arity(T) = |2|. For any finite structure 4
define the relations Iy and Iy by simultaneous induction:

B =1 =8
sely & ARvy@,RL,57Y
BEI;‘ « -‘F‘P(EJE‘I,I?-I)

o

= Unr k=01

n=l

Then both I§ and I are uniformly inductive, i.e. they are expressible in T,
and the same formula works for all structures A.

proof: Following [Mos74] first assume that we have constants cq and ¢; which
are guaranteed to refer to distinct elements of A.

Let 2* and §°* be any sequence of constants of lengths rz and r, respectively,
for example 2* could be an ra-tuple of ¢o’s. Let U be a relation symbol of arity
r1+ rz3+ 1. Put

X(ta 9.2, U) = t=co A 10(9, {VIU(CO, D’s :.)}s {l‘"U(chg‘,k’)})
Vv [t=ane(z 71U, 8,2 21U, 57, 7))

Then for all n and 4,
: VET & (co,9,2°) .

This is a straightforward induction, see [Mos74] for details.

If we don’t have the distinct constants ¢g and c¢; available then the proof
can be modified as follows. We increase the arity of U by one and replace
occurrences of ¢ by the pair #;,t;. Each clause of the form ¢ = ¢ is changed to
t; =t3;t = c; is changed to t; # ;. Where before we substituted c,, we now
existentially quantify a 3 not equal to ¢, and substitute this new pair.

The next result shows that two uses of u are no more powerful than one
assuming that there are no intervening negations.

Lemma 4.2 (cf. Transitivity Theorem, [Mos74]). Suppose that R and
S occur only positively in ¢(R,S) and ¢(R). Then the nested fixed point
(uS)e((sR)v, S) is expressible in L., i.e. there is a positive wif x such that

(6S)e((uR)y, S) & (uU)x(U).

proof: If we assume that there are two constants, ¢ and ¢;, always repre-
senting distinct elements then Moschovakis’ defintion of x and his proof goes
through without any change: .

Let r = arity(R), and s = arity(S). Let y* and 2* be an r-tuple and an
s-tuple of constants. Put

x(t,5,2,U)= |[t=cA ab(g. {g’[U(co,g’,t')})] v
t=e (2 (71000, .20, (210 er 57, 2)))]

10

Let A be any finite structure and let m be the closure ordinal of in 4. The
formula x simultaneously simulates ¢ and . Thus for all naturals n

={7]|(c¥.2) e} | (1)

After m iterations the computation of I, is complete so the simulation of ¢ can
begin in earnest. We have for all n:

nc{z|(ng e}t (2)

Thus in particular
I, = {2'|{e1,9",2') € I,}}

d we have
" [(2"-69)e(WRI,5)] = [(e1,57,2".u0)x]

i.e. (4S)p is computed as a single fixed point as desired. Equations 1 and 2 are
proved by inductions, see [Mos74] for further details. Note that if constants are

pot available then the result still holds; we modify the proof as in Lemma 4.1.
|

Another way of stating lemma 4.2 is to say that T, is closed under least
fixed point. Note that y is at least as powerful as quantification, conjunction,
and disjunction. For example we could write (Vy)R(y, 2) as (2.p(S)(VyR(y, 2)).
Thus the following is immediate:

Corollary 4.8 . L, is closed under quantification, disjunction, conjunction,
and taking of least fixed points.

Let ¢(z;...2,, R) be an R positive formula and let 4 be a finite structure.
Each tuple (a; ...a,) € I, comes in at some stage of the induction. Let |a|,,
the rank of @ with respect to o, be the step at which 2 enters I,

_fn aEI"—Ig"
lalv“{m a¢1:

Define the relation 2 <,y § to mean 2 € I, and |2|, < |ply. Similarly
2 <,y § means that |2|, < |g|y. A powerful result is that even though we may
not have an ordering on the universe we can express propositions concerning
‘the relative times at which tuples appear in fixed points.

Fact 4.4. [Mo74: Stage Comparison Theorem| Given positive formulas p(R)
and ¥(S) the relations <.y, and <,y are uniformly inductive, i.e. expressible
inZ%,.

Moschovakis’ proof goes through without change, except for reading all or-
dinals as finite.

Let ¢(z,S5) be S positive and let <y, (resp. <y), abbreviate <y, (resp.
<yy). The following are simultaneous inductive definitions for <y and <.

11

These definitions will be used in the proof of Lemma 4.7. Note that unlike the
inductions in [Mo74] they only work for finite structures because in an infinite
structure z may not have an immediate predecessor, z.

z<yy= 9(z,0)vIz(z <y yAY(z, {Z]|2’ <y 2}))
ZT<gy Y= (¢E3$ ’) A =¥(y, 0)) v
3z[z <y y A (2, {Z|2 Sy 2}) A (v, {z']-2 <y 2'}))]

Note that the above equations fit into the form of lemma 4.1. We can rewrite
them in the more familiar form:

G(Is'y, S, n = 'p(:v 0) v BZ(T(Z, y) A ¢(z’ {:,’S(z" 2)}))
ﬂ(z’ Y, S, T) = (¢fza 6) A ."k(ya B)) v
3z|T(2,y) A (2, {Z'|S (2, 2)}) A =y, {z'|-T (2, 2')})]

Claim . For all k,

Ik = f(z,y)
Iy ={(z,y)

lzlv < k and |z]y < M.u;
|zly < k and |z|y < |yly

proof: By induction on k. This is clear for k=0, 1. Let k£ > 1 and |z]y = k+1.
Let z be such that |z|, = k. Then a(z,y, I3, I}) (resp. a(z,y,I%, I%)) holds iff
it holds with z as a witness iff |y|y 2> k + 1 (resp. |y|ly > k+1). B

In order to negate fixed points we need a slight modification of the above
fact. Let 2 «, § mean {2|, +1 < |g|.. Then

Lemma 4.5. If ¢(2, R) is R-positive then the formula <€, is first order ex-
pressible using positive occurrences of <, and <.
proof:
€, § & 25,2 A (s {62 <, 8))
B

As we have already pointed out, if £ is finite then cl(i0), the closure ordinal
of ¢, is also finite. Thus there must be at least one tuple 1 of maximal rank,
namely |, = cl(p). In the next lemma we show that we can say in T, that m
is of maximal rank. We can thus express the negation of a fixed point: the tuple
2 will never come into the fixed point if it’s rank is greater than the maximum
rank.

Lemma 4.8. T, is closed under hegatibn.
proof: Let (2, R) be R-positive. We must show that ﬂ[(pR)(p] eXr,.
Let

MAX,(9) = [¥2(2 <, 5V <, 2)]

12

Note that MA X (§) says that § has maximum rank. Put

v(z)= SQ(MAxp(Q)Aﬂ<9)

¥(2) says that there exists a tuple § of maximum rank, and that the rank of
2 is greater than the rank of §. Thus

v(z) & ~[(uR)y]

It follows from 4.1 through 4.6 that v € I, |

I had thought that the proof of theorem 2 was now complete. However a
referee pointed out the following problem. Consider the formula a € T, 3:

a = (u5)[¥(= (~WwR)e(w, S, R),S)]

Altbough S occurs positively in a, it occurs positively and negatively in <
and <,.* Thus it remains to be shown that:

Lemma 4.7 . The above formula a is equivalent to a formuls in £,,.

proof: We have already seen how to define MAX, s(u) meaning that u
enters the fixed point I, s at the final stage. It follows that we can express the
condition that the fixed point is finished, and we can express its negation. Now
we wish to describe a two level fixed point computation: Compute Ry = I, ¢,
then So = Iy r,, then R, = I, s,, and so on. To do this we define the following
six relations by simultaneous induction:

Sp,n <g,23 Sp.h <p.$ <v» <¢

Here u <, ; v (resp. u <, v) means that u enters I, and does so at least
as soon as (resp. sooner than) v does, where

S={yly S¢ 2},~S = {y'|z <y ¥}

Also u <, ¢ v and u <, ¢ v are the analagous relations when § = @. The
positive inductive definitions of <, , and <, , using <, and <, are immediate
from Fact 4.4. For example the definition of z <, y is the conjunction of

“z <y 2” with the old definition of “z <, y” where the above expressions have
been substituted for S and -S.)

4See [GSBS] for a more general result than lemma 4.7 concerning making monotone fixed
points positive.

13

Put

MAXp,(u) =uZe,s uAVulw <p,0 uV —p(w, {2|-2' <y 2}, {"Tu <p.s v'})]

~(wr) = 3u[MAX,,. () Ay {v']u <ps v}, (2]’ <y 2})

Ay, 2) = 3u[MAX,:(u) A~9(y, (W]’ <p,s 1}, {2']-2 <y 2})]
Y8 =3u[MAXge(u) Ay {v']u <pp v}, 0)]

5(v.9) = 3u[MAX,(u) A~y (o]’ <0 6}, 0)]

The above formulas are all positive in the relations being inductively defined.
Note that ¥(y, z) (resp. (y, 2)) is equivalent to ¥(y, ~(pR)p(-S, R),S) (resp.
-¥(y, -:(uR)cp(ﬁS, R),S)) where § = {z'|2’ <y z}. Thus if we substitute v
(resp. 7) for ¢, (resp. =) in the equations following Fact 4.4 we arrive at
inductive definitions for <y and <y

z<yy =7(z,0)Vv3z(z <y yA(z,2)) ;
z<yy = (2(z,0)AF(y,0) vz éz <v yA(z,2) Ay, z))

It now follows from lemma 4.1 that <y and thus o are expressible in T,,.

A formuls with fiwed roints and nmesztiors nested
tc a2 derth ereater tharn 7 can be handled by
rereatedly veins lemma 4.7 from the inzides out.
Note that the rarameter F from an cuter

am
m

ixed FoOint (/4F7€} mavy arresr both Posit
rneeatively in an inner fixed rFcoint curins the
cenpstruction. However when we substituie
F=iv | vie = and yF={v | zigv] =3
farmulas thev become Frozitiv
the rroof of thecrem 2.

n
[(L]
w
Mo
[
a
0

It should be noted that Theorem 2 is a general result saying that in finite
model theory any property expressible with several alternations of u and = is
already expressible with one positive application of . This result is not true
for infinite models, cf. [Mo74].

5 Relations to Previous Work

Another way to view p is as an operator that iterates a given formula a poly-
nomial number of times. More precisely, let ©(z1,.-.,Zq, R) be positive in R
where R has arity a. Let (™) (@) denote the formula applied to itself m times
and then applied to the empty set. Inductively,

#(2,0) =En#Fn
e9(z,R) = R(2)
M+ (2,R) = (2, {nle™ (s, R)})

We have already noted the following in our discussion of Fact 2.1:

14

Proposition 5.1 . Let ¢ be as above and let 4 be a structure of size n for the
language of . Then
1k (WR)p — ¢ (0))
Thus as stated u is an iteration operator One problem with this proposmon
is that if R occurs more than once in p then the formula p"‘) will be of size
exponential in n®. It is not hard to show however that o is always equivalent

to a formula in which R occurs only once.
In the next few arguments it will be convenient to use the following notation:

(Vv.A)a = (Vo)(A —~ a), (3v.A)a= (v)(4Aa)

Fact 5.2 [Canonical Form for Positive Formulas, Mo74] . Let © be R
positive. Then there is a quantifier and R free formula 6(2, 2,8) and a block of
quantifiers Q,, ..., Qs such that

p(2,R) = [(Qﬂx)(Qan) oo+ (Qeze)(Yu1) ... (Vua 8(2,2, ﬂ))] R(e)
To make things neater we can requantify the variables, z; ...z.. Note that
o(2R) = [(@151)(Qaz2) .- (Quz) (Vo) .. (Yot 8(2,2,0)) 32121 =). . (B2 = wa)| R(2)
Now combining 5.1 and 5.2 we see that the p operator can be thought of as a

quantifier block repeater:
Corollary 5.8 . Let ¢ be as above and Jet

QBLOCK = {(Q, 21)(Q223) .- (Qeza)(Yu1) ... (Yun .0(2, 2,8))(3z1.21 = w1) ... (32a.2n ==‘u.‘)]
Then for any structure A of size n
4 = ((R)e = QBLOCK®™)(z, # 21))

The above formulation makes our results about u fit in with some of our
previous work concerning expressibility and complexity, [Im81,Im82a]. In par-
ticular an immediate corollary of Corollary 5.3 and Theorem B.5 from [Im82a]
is another proof of Theorem 1.

Since u is an iteration operator we propose a new query hierarchy based on
such iterations:

Definition: Let JQ[f(n)] be the set of queries expressible by iterating a first
order query f(n) times. An equivalent formulation is the set of queries whose
value on a structure of size n is equivalent to some quantifier block repeated
J(n) times:

1Q[f(n)]
{¥ | (3QBLOCK)(vV4)(4 k= (¢ — QBLOCKV M) (z, 2 2,))}

15

As an example let
a(R,zy,23) = (z, = z3 V E(2;,23) v (32)[R(z),2) A R(z, zg)]) |

It is easy to see that E*, the transitive closure of E, is equal to (uR)a which is
in turn equal to a(°€") for graphs of size n. Thus the transitive closure query
is in JQ(logn). 4

Let JQ(<) be the set of iterated queries which include the logical relation
< denoting a total ordering on the universe. The following Fact summarizes
some of the known facts concerning JQ. The proofs (though not quite these
statements) may be found in [Im81,Im82a).

Fact 5.4 . »
1. 1Q(£)[1] = First Order Queries C# QSPACE|logn)
2. Transitive Closures C IQ]log n]

3 D IQ[log* n] c# IQ|n]

k=1

4. O 1Q(g)In*] = £4(<) = QPTIME

b=l X
5. IQ(<) = QPSPACE

6 Conclusions, and Directions for Future Work

We have shown that all queries using first order quantification and a least fixed
point operator, u, may be expressed with a single occurence of y applied to
a first order expression. Furthermore, in the presence of a total ordering, <,
the queries so expressible are exactly the polynomial time computable queries.
Finally, a further study of the number of iterations needed to compute fixed
points is desirable. The following open problems should be considered:

1. One attraction of Theorem 1 is that it shows that £,(<) is a very general
query language in which the complexity of a given query is clear from its
syntax. The problem is that queries that take even quadratic time in the
size of a database are not feasible. It is very desirable to find a fairly rich
query language such that the complexity is still clear from the syntax, but
the complexities involved are feasible.

2. Show that JQ(<)[f(n)] forms a hierarchy as f(n) increases. This of course
will be extremely difficult as it would imply a corresponding hierarchy
result for complexity classes.

1€

8. Prove the following conjecture: If f(n) and g(n) are reasonable functions,

no larger than 2"", and such that limp~oo(f(n)/g(n)) = 0 then IQ[f(n)]
is strictly contained in IQ|g(n)].

4. Study and compare potential hierarcies obtained by restricting the number
of distinct quantified variables and the arity of fixed points, cf. [dR84,
Im82a].

5. An issue raised by Chandra and Harel among others is that languages
with an ordering such as £,(<) treat differently numbered isomorphic
databases differently. That is, the answer to some queries will depend
on the ordering. It is extremely desirable to have a language without this
problem and yet still rich enough to simulate computation. One possibility
would be instead of ordering to add variables ranging over {1.. .n} with
<, +, - available over this domain. We would also add counting quantifiers,
(3iz’s) P(z), meaning that there exist § s such that P. I am anxious to
know whether or not £, plus counting quantifiers is equal to polynomial
time.

Acknowledgements: The preliminary version of the present paper appeared
as [Im82b]. Sometime later my only electronic copy of the revised paper was
destroyed in a disk crash. After the referees received the first draft of the present
paper they took quite a while to decide that the proofs were too sketchy. They
were certainly right, but it took me a little while to get back to revising it.
Over this period there were many people who have read drafts in various states
and given belpful comments. I apologize for those Pve forgotten, but people
who come to mind include: Yuri Gurevich, Evangelos Kranakis, John Mitchell,
Adi Shamir, and Venkataraman. I would especially like to thank David Harel
for his continual urging of me, in his role as editor, to get this paper out.
Thanks to Michel de Rougement for his observation that without something
like the ‘Constant Assumption’ Theorems 1 and 2 are false. Thanks to Yiannis
Moschovakis who once talked to me for over an hour about the results in [Im82b),
and never mentioned that the proofs could be greatly simplified by referring to
his book, (as I have done in the present paper.)

References

[AHU74] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis
of Computer Algorithms, Addison- Wesley, 1974.

[AU79] A.V. Aho and J.D. Ullman, “Universality of Data Retrieval Languages,”
Sizth Symp. on Prineiples of Programming Languages, 1979, (110-117).

[Ch81] Ashok Chandra, “Programming Primitives for Database Languages,”
8th Symp. on Principles of Programming Languages, 1981, (50-62).

[CH80a] Ashok Chandra and David Harel, “Computable Queries for Relational
Databases,” JCSS 21, No. 2, October, 1980, (156-178).

|CH80b] Ashok Chandra and David Harel, “Structure and Complexity of Rela-
tional Queries,” £1st Symp. on Foundations of Computer Science, 1980,
(333-347). Also appeared in JCSS 25, 1982, (99-128).

[Co72] E.F. Codd, “Relational Completeness of Database Sublanguages,” in
Database Systems, R. Rustin, ed., Prentice-Hall, 1972, (65-98).

[dR84] Michel de Rougemont, “Uniform Definability on Finite Structures with
Successor,” 16th ACM STOC Symp., 1984, (409-417).

[En72] H. Enderton, A Mathematical Introduction to Logic, Academic Press,
1972.

[Fa74] Ron Fagin, “Generalized First-Order Spectra and Polynomial-Time Rec-
ognizable Sets,” SIAM-AMS Proc. 7, 1974, (43-73).

[FSS81] M. Furst, J.B. Saxe, and M. Sipser, “Parity, Circuits, and the Polynomial-
Time Hierarchy,” £22nd IEEE FOCS Symp., 1981, (260-270).

[GS85] Yuri Gurevich and Saharon Shelah, *Fixed-Point Extensions of First-
Order Logic,” to appear in £6th Symp. on Foundations of Computer Sci-
ence, 1985.

[Im81] Neil Immerman, “Number of Quantifiers is Better than Number of Tape
Cells,” JCSS 22, No. 8, June 1981, (65-72).

[Im82a] Neil Immerman, “Upper and Lower Bounds for First Order Express-
ibility,” JCSS 25, No. 1, 1982, (76-98).

[Im82b] Neil Immerman, “Relational Queries Computable in Polynomial Time,”
14th ACM STOC Symp., 1982, (147-152).

[Im83] Neil Immerman, “Languages Which Capture Complexity Classes,” 15th
ACM STOC Symp., 1983, (347-354).

[Mo74] Yiannis N. Moschovakis, Elementary Induction on Abstract Structures,
North Holland, 1974.

[Si83] Michael Sipser, “Borel Sets and Circuit Complexity,” 15th Symp. on
Theory of Computation, 1983, (61-69).

[U182] J.D. Ullman, Principles of Database Systems, Computer Science Press,
1982,

18

[Va82] M. Vardi, “Complexity of Relational Query Languages,” 14th Sympo-
stum on Theory of Computation, 1982, (137-146).

19

