Abstract

We present an algorithm for computing the eigendecomposition of a symmet-
ric rank-one modification of a symmetric matrix whose eigendecomposition is
known. Previous algorithms for this problem suffer a potential loss of orthogo-
nality among the computed eigenvectors, unless extended precision arithmetic
is used. Our algorithm is based on a novel, backward stable method for com-
puting the eigenvectors. It does not require extended precision and is as
efficient as previous approaches.
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1. Introduction

Given a real scalar p, a real n-vector u, and the eigendecomposition of a real n x n
symmetric matrix B, the rank-one modification of the symmetric eigenproblem is to find the
eigendecomposition of the matrix B + puu”.

This is an important problem in numerical linear algebra. Applications include divide-
and-conquer algorithms for the symmetric tridiagonal eigenproblem [8, 9, 14, 17], the bidiag-
onal singular value decomposition (SVD) [2, 3, 4, 13, 18, 19], and the unitary and orthogonal
eigenproblems [1, 4, 12]; updating the SVD [6, 16]; and various stationary value problems [10].

The problem can easily be reduced to the following special case (see [7]):

Given a diagonal matrix D = diag(d;,d;,...,d,) with d; < d; < ... < d,, and
a real vector z = (2, 23,...,2,)7 with z; > 0, find the eigendecomposition

D+ zzT = QAQT

of A= D + 22T, where A = diag(A1, Az, . .., An) with A < X3 < ... < \;, and Q is
orthogonal. The diagonal elements of A are the eigenvalues of A, and the columns
of Q) are the corresponding eigenvectors.

From now on we focus on this reduced problem, yet still refer to it as the rank-one modifi-
cation problem.

Since error is associated with computation, a numerical eigendecomposition of D + zzT
is usually defined as a decomposition of the form

D + 22" = QAQT + O(e(I Dl + I2I12)) (L.1)

where € is the machine precision, A = diag(:\l, Az, ... ,:\n) with My < Ay < ... < XA, and §
is numerically orthogonal. An algorithm that produces such a decomposition is said to be
backward stable [25].

While the eigenvalues of A are always well-conditioned with respect to a symmetric
perturbation, the eigenvectors can be extremely sensitive to such perturbations [11, 23, 25,
26). That is, A is guaranteed to be close to A, but Q can be very different from Q. Thus
one is usually content with a backward stable algorithm.

The problem can be further simplified in light of (1.1). Given any rank-one modification
matrix D + 227, we can use the deflation procedure in [9] to reduce the eigenproblem to one
that satisfies '

djy1 —d; 2 (| Dll2 + llz]l7) and 2; > 74/|[Dll2 + 2]} ,

where 7 is a small multiple of € to be specified later.




The basic tool for the rank-one modification problem is an algorithm developed by
Bunch, Nielsen, and Sorensen [7] and inspired by earlier work of Golub [10]. Dongarra and
Sorensen [9] propose a more liberal deflation process to make the algorithm more efficient
and more stable. We refer to the algorithm in [9] as Algorithm I.

While Algorithm I always computes the eigenvalues to high absolute accuracy, in the
presence of close eigenvalues it can have difficulties in computing numerically orthogonal
eigenvectors [7, 8, 9]. This instability affects all algorithms using rank-one modification
techniques.

To overcome this instability, Kahan [20] proposes using extended precision arithmetic
to compute some key quantities more accurately. Independently, Sorensen and Tang [24]
develop a new version of Algorithm I that uses simulated extended precision and show that
it is stable. The problem with extended precision is that it results in machine-dependent
software [5, 24].

In this paper we present a new algorithm for solving the rank-one modification problem.
Since Algorithm I works well for finding the eigenvalues, the new algorithm uses a similar
approach. But it uses a completely different approach to finding the eigenvectors, one that
is backward stable. The amount of work is roughly the same as for Algorithm I, yet the new
algorithm does not require the use or simulation of extended precision arithmetic. We refer
to this new algorithm as Algorithm II.

Section 2 introduces Algorithm I and points out how it can fail. Section 3 introduces
Algorithm II. Section 4 proves the numerical stability of Algorithm II. Section 5 reviews pre-
vious results on the stability of Algorithm I and shows why they require more accuracy than
necessary. Section 6 presents some numerical results. Section 7 points out some extensions.

Throughout the paper we assume that the elements of D and z are given in floating
point representation. We take the usual model of arithmetic:!

flzoy)=(z0y)(1+¢) ,

where z and y are floating point numbers; o is one of +,—, x, and +; fl (z oy) is the floating
point result of the operation o; and |¢| < e. We also require that

AWE) = V(1 +€)

for any positive floating point number z. For simplicity, we ignore the possibility of overflow
and underflow.

! This model excludes machines like CRAYs and CDC Cybers that do not have a guard digit. Algorithm
II can easily be modified for such machines.




2. How Algorithm I Can Fail

The following lemma characterizes the eigenvalues and eigenvectors of D + zzT.

LEMMA 1 (BUNCH, NIELSEN, AND SORENSEN [7]). Assume thatd, < d; < ... < d,
and that z; > 0. Then the eigenvalues {\;}%, of D + z2T satisfy the interlacing property

di<h<dy<A<...<d, <\,

and are the roots of the secular equation

f(,\)-l+zd 1=

i=1

For each eigenvalue );, the corresponding eigenvector is given by

21 4 T = 2?
;= i E i . 2.1

Algorithm I uses a rational interpolation strategy to solve for {A}2, (see [7]). For each
eigenvalue );, it finds a numerical approximation J\; and approximates ¢; by

1 7 2z \T = 7
R V7 T i Doy wy
1= A n = Ai o3 (di— )

In other words, the ezact ); is replaced by the approzimation ; in (2.1).

In pathological cases, even though J; is close to );, the approximate ratio z;/(d; — A)
is very different from the exact ratio z;/(d; — A;), resulting in a computed eigenvector very
different from the true eigenvector. More importantly, when all the eigenvectors are com-
puted, the resulting eigenvector matrix is far from orthogonal.

3. Algorithm II

3.1. Computing the Eigenvectors
For each eigenvalue );, the corresponding eigenvector is given by

T n 2
L 21 Zn Zj
q'_(dl—)\;""’d,,-—,\,-) / Z(dj-,\;)

J=1

(see Lemma 1). Observe that if ); was given ezactly, then we could compute each difference,
each ratio, each product, and each sum in this formula to high relative accuracy, and thus
compute ¢; to component-wise high relative accuracy.




In practice we can only hope to compute an approximation ); to );. But suppose that we
could find a # such that {);}7, are the ezact eigenvalues of the new rank-one modification
matrix A = D + 357. Since

A = D427
= D+ 77 + 22T — 557

= A+(2=5)T+2(z- 35T — (2= 5)(z - 3T ,

A will be close to A as long as Z is close to z. Moreover, the formula

e 2! 5\ ~_ %
1 = e G 3.1
& (d1 -\ d, — /\4) / Z (d; — X)? 1)

J=1

gives the ezact eigenvector corresponding to the eigenvalue X; of A. As we observed before,
g!! can be computed to component-wise high relative accuracy. Thus, when all the eigen-
vectors of A are computed, the resulting eigenvector matrix will be numerically orthogonal.

We now show why such a # exists. By definition,

det(A — A1) = ﬁ(x,- -

i=1

On the other hand,

n ~2, n
det(A — AT) = det(D + 237 — \]) = (1 +y d‘z, A) II@-»
J_

j=1 j=1

Combining these relations,

H(:\j - = (1 + z djzi /\) H(dj =)

I=1 =1 i=1

Setting A = d;, we get

~2 HJ(:\J - d')
2 = m——
Hj;éi(dj - di)

If the computed eigenvalues {);}7, satisfy the interlacin property?
g =1 g

(3.2)

di<h<d<M<..<dy<h |,

2 Since the exact eigenvalues satisfy the same interlacing property (see Lemma 1), this is only an accuracy
requirement on the computed eigenvalues and is not an additional restriction on A.




then the expression on the right-hand side of (3.2) is positive and

5 i-1 Xj—d n-1
iR\t H(dﬂ—d) =) &9

i=1
Working backward, if % is given by (3.3), then the eigenvalues of D + 357 are N,

Each difference, each ratio, and each product in (3.3) can be computed to high relative
accuracy. As a result, # can be computed to component-wise high relative accuracy. Substi-
tuting the computed Z into (3.1), §/? can also be computed to component-wise high relative
accuracy. Consequently, when all the eigenvectors are computed, the resulting eigenvector
matrix { = (@’,...,§!7) will be numerically orthogonal.

To show that QAQT is a numerical eigendecomposition of A, we must show that 7 is

close to z. We do so in Section 4.

3.2. Computing the Eigenvalues

In order to guarantee that 7 is close to z, we must ensure that the approximations
{ }, to the eigenvalues are sufficiently accurate. The key is the stopping criterion for the
root-finder, which requires a slight reformulation of the secular equation (cf. [7]).

Consider the eigenvalue \; € (d;,di41), where 1 < i < n — 1; the case i = n is considered
later. ); is a root of the secular equation

(,\)—1+Zd =

=1

We first assume that® ); € (d;, %‘il—). Let 6; = d; — d; and let

YW= 5 and 8(x) Z 4
p) = an K =
i=1 6'1 —H I=i+1 6" K

Since

flp+d)=1+9%(p)+ é(p) = g(u)
we seek the root p; = A; — d; € (0,6;41/2) of g(u) = 0.

An important property of g(p) is that each difference §; — p can be evaluated to high
relative accuracy for any p € (0,6;41/2). Indeed, since &; = 0, we have Al — p) = =A(p);
since fi(6i+1) = fi(dis1 — di) and 0 < g < (diy1 — d;)/2, we can compute fi(biy1 — p) as
A(Ai(diy1 — di) — fi(y)); and in a similar fashion, we can compute §; — u to high relative
accuracy for any j # 1,7 + 1.

3 This can easily be checked by computing f(‘i +d"“‘) If £( d‘“"“) > 0, then X; € (d;, M‘l’--), otherwise

A € [d'—".& d:+1)




Because of this property, each ratio z?/(6; — ) in g(1) can be evaluated to high relative
accuracy for any p € (0,6,41/2). And, since both 9(u) and ¢(u) are sums of terms of the
same sign, we can bound the error in computing g(u) by

(1 + |[$(p) + [e(w)])

where 7 is a small multiple of € that is independent of n and p.

We now assume that ); € [é‘—"';i-‘—"’-‘—,d.-.,.l). Let 6; = dj — d;41 and let

i 22 n 22
¢(u)EZ5,i” and ¢(p)= Y 5.1”
j=1 7 j=i+1 7

We seek the root p; = \; — d;y; € [6;/ 2,0) of the equation

9(u) = f(p+di) =14+ 9(u) + ¢(u) =0

For any 4 € [6;/2,0), each difference §; — p can again be computed to high relative accuracy,
as can each ratio 2?/(6; — p); and we can bound the error in computing g(u) as before.

Finally we consider the case : = n. Let §; = d; — d,, and let

n 2
¢(u)525,2_’_” and ¢(u) =0
=17

We seek the root p, = A\, — d,, € (0, ||2||3) of the equation

9(p) = flp+da) =14 9(p) + () =0

Again, for any p € (0, ||z||2), each ratio z3/(6;—p) can be computed to high relative accuracy,
and we can bound the error in computing g(u) as before.

In practice the root-finder cannot make any progress at a point y where it is impossible
to determine the sign of g(x) numerically. Thus we propose the stopping criterion

lg(e)l < mn (1 + [o(p)| + |6(w)]) (3.4)

where, as before, nn(1+[1(u)|+|4(x)|) is an upper bound on the round-off error in computing
g(#). Note that for each i, there is at least one floating point number that satisfies this
stopping criterion numerically, namely fl(y;).

We have not specified the scheme used to find the root of g(u). We used the rational
interpolation strategy in [7] for the numerical experiments, but bisection or the improved
rational interpolation strategy given by Kahan and Li [21] would also work. What is most
important is the stopping criterion and the fact that, with the reformulation of the secular
equation given above, we can find a y that satisfies it.




4. Numerical Stability of Algorithm II

In this section we show that Algorithm II computes the eigenvalues to high absolute
accuracy and that # is indeed close to 2.

Since f(A;) = 0, we have

and the stopping criterion (3.4) implies that the computed eigenvalue }; satisfies
22
%

n 22
If(/\)|<7)n (Z - |+ZE—-_J_:\|)

i=1

Since

FOW) = fR) = FO) = (K= X )Z

J-l dj -

(d—A) !

it follows that

i A:‘IZ I(dj - X;)zd,- - /\;)I s m (Z + Z l ] —J i ) . (4.1)

Ji=1 j—1 J j=1
Thus
1A Alf: 5 (|d x|+ |d “)i %
i — A < qn max | |d; — k- -
57 1(d5 = A)(d; = X = 1(d; = X)(d; = X))
or
3 Y 2nn -
[Ai = M| < 9n Jax (ldk — Al + |de — /\il) S T 22 e = A5

i.e., all the eigenvalues are computed to high absolute accuracy.

To show that % is close to z, we note that for any j,

1 I 2 N 1A = Al
d; = Xl 1ds = Xl ™ |(d; = X)(d; = M))E T |(d; = X)(dj — N)]|

Substituting this into (4.1), we get

i=1

2nn %
"El(d A)(d )] s l—nnz__-;l(d,--—j\;)(dj-&”%

2

\JE (d5 = X)(d5 = X))




or

5 217n - z?
[di = Al < ~ |z llz/ —
,; |(d; — X)(d; — M)l

< (f’ﬁ‘ﬂ;"’ Vit =% =2

Letting 8; = 2nn||z||2/((1 — nn)z;), this implies that

K= M < ld; = A (4.2)

J
1-38;
for every 1 < j < n, provided that 8; < 2.

Let A, — \; = @;j(d; — X;)/zj for all 1 and j. Suppose that we pick 7 = 2nn? in the
deflation procedure of Section 1. Then z; > 2nn?||z||;. Assume further that gn < 1,/100.
Then B; < 2/3, and (4.2) implies that |a;;| < a = 4nn||z||; for all i and j. Thus

Z = | I, (s = d) = I1; (A = di)(1 + i/ ) . n i
" J [jgilds —d) [lw(di—di) 'JH (l T )

and

|2 — 2| = z

< Zi(eg’% -1)<(e—1)an/2
< gzl (4.3)
where we have used the fact that an/(2z;) < 1 and that (e —1)/z <e—1for0 < z < 1.

One factor of n in 7 and (4.3) comes from the stopping criterion (3.4). This is quite
conservative and could be reduced to log, n by using a binary tree structure for summing
up the terms in ¥ (u) and @(p). The other factor of n comes from the upper bound for
I1;(1 + @ji/2:). This also seems quite conservative. Thus we might expect the factor of n2
in 7 and (4.3) to be more like O(n) in practice.

5. Another View of Numerical Stability

In this section we review previous results on the numerical stability of the eigenvector

computation and show why they impose unnecessary requirements on the accuracy to which
the eigenvalues are computed.




The following lemma bounds the lack of numerical orthogonality in the eigenvectors
computed by Algorithm I.

LEMMA 2 (DONGARRA AND SORENSEN [9]). Let Ax and )¢ be distinct eigenvalues of
D+ 22T, Let § = Ui /||tk|l2 and Ge = tp/||tiel|2, where

T
X (z1 z2 Zn
Uy = | 3y yeeey T
k1 bk2 Okn

T
« 21 22 2n
u¢=(~—-,~—,...,,——) ’
6n bp btn
be the computed eigenvectors corresponding to the ezact eigenvectors g and qo. If
bij = (dj — X)(1 + myj)
where |;;| <y < 1 for all i and j, then

1+
drdge <2+ )( ;)

and

Thus numerical orthogonality can be assured for Algorithm I whenever it is possible to
compute all of the differences d; — ); to high relative accuracy. Sorensen and Tang [24] show
that in pathological cases one encounters enormous difficulties meeting this condition, and
thus advocate the use of extended precision arithmetic.

But what does this condition imply about Algorithm II? Recall that

_ I i=d) T d;)
z£_\11:11(d1‘d) 1—‘[(d+1"d) (O~ di)

and

=1

. -1 (/\J'-d) n-1
“=\Ua=a) H(dﬁl—d) e =)

Thus if we compute all of the differences A; —d; to high relative accuracy, then 3; will be close
to z; to high relative accuracy. In contrast we have shown only that the stopping criterion
guarantees that 2; is close to z; to high absolute accuracy, but this is enough for Algorithm
IT to be backward stable.

6. Numerical Results

In this section we present some numerical results for Algorithms I and II. The tests
were run on a SPARCstation 1 in double precision arithmetic. The machine precision is
€~ 2.2 x 107%, 7 was taken small enough that no deflation occurs.
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We define the scaled orthogonality and residue measures

~T~-_ . A~'—x-~~
0 = max M and R = max " qi thIIZ
1sin ne 1<i<n  nel|All2

O and Oy are the orthogonality measures for Algorithms I and II, respectively; R; and

Ri1 are the residue measures for Algorithms I and II, respectively. We also define

Z = max ____IE.' — zi|
1sicn nellz|

which measures the scaled absolute error in replacing z by 3.

We use three sets of test problems:

TEST 1 [24]: These problems arise in applying Cuppen’s divide-and-conquer algo-
rithm [8, 9] to the matrix

(W 6 \
B Wy B
T = b W’I_ ,
B
\ B Wy )

where Wy, is the symmetric tridiagonal matrix of order 21 with diagonal elements
10,9,...,1,0,1,2,...,10 and off-diagonal elements all 1. As B becomes smaller and
the number of copies of W5, becomes larger, more and more difficult rank-1 modifica-
tion problems arise.

TEST 2 [24]: D = diag(1,2 — 3,2 + $,10/3) and z = (2,5,5,2)T. This example
illustrates how badly Algorithm I can fail in computing the eigenvectors.

TEST 3: n =202;d; = 1,d, = 10/3, and the rest of the d;’s are of the form 2 + j 4, for
J=12,...,100; and z = (2,8,...,5,2)T. As B > 0 becomes very small, this matrix
has 101 as an isolated eigenvalue; the remaining eigenvalues are clustered around 2.

This generalization of TEST 2 is designed to show the stability of Algorithm II in the
presence of an extremely large and tight cluster.

Tables 1, 2, and 3 summarize the results. For Algorithm II, the orthogonality and residue

are small, and the vectors z and Z agree to machine precision. For Algorithm I, the residue

is small, but the orthogonality can be very poor.

7.

Some Extensions

In this paper we have presented a novel, backward stable algorithm for solving the rank-

one modification of the symmetric eigenproblem. The techniques developed have also been




n 20 20 20 48 36
—log,y 8 7 7 7 7 7
0; 1.1 x10* |1.9x10° |32x102 |2.0x10" |8.3x10°
Ri 42x107%|38x107%[3.8x1072|1.8x107%| 1.6 x 10~2
z 88x107*[1.8x1073|1.8x10°3[1.5x%x107* |55 x 10~*
On 1.1x107" [1.3x107! | 9.3x1072 8.1 x 1072 |6.9 x 1072
Rir 7.5% 1072 | 4.0x 1072 | 4.8 x 1072 | 2.1 x 1072 | 5.2 x 102
Table 1: Results for TEST 1
n 4 4 4 4 4
—log,, B 1 4 7 10 13
O 1.0x10° |1.7x10%® |[14x10° [9.6 x10% | 1.7 x 102
Ri 35x1072(2.2x107! {89 %1072 [2.0x 107! 2.0 x 107!
VA |] 12x1072 | 44 x1072 [4.4x107% | 4.4 x 1072 | 4.4 x 102
On_ [26x107[52x1077 [4.2x 107" [42x 107" | 3.2 x 102
R [[1.0x107[23x1077[20x 107" [ 1.6 x 10 | 2.2 x 10~
Table 2: Results for TEST 2
n 202 202 202
—log,, B 3 8 15
Z  [|[69x1075 |6.1x10° | 1.6 x 102
On  [[8.7x1072[25x107% [ 4.5 x 102
Ru [ 14x102[3.6x 107 [ 1.7 x 10~2

Table 3: Results for TEST 3

11
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extended to the following:
o Cuppen’s method for the symmetric tridiagonal eigenproblem 8, 9, 14];

® an algorithm for the eigendecomposition of symmetric arrowhead matrices [22]; this is
in turn the basic tool in the arrowhead divide-and-conquer algorithm for the symmetric
tridiagonal eigenproblem [3, 14, 17);

e algorithms for updating the SVD [6, 16);
e a divide-and-conquer algorithm for computing the bidiagonal SVD [2, 4, 13, 19];
e algorithms for downdating the SVD [6, 15].

Moreover it should be easy to apply these techniques to the divide-and-conquer algorithms
for the unitary and orthogonal eigenproblems developed in [1, 4, 12).
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at Berkeley for sending them a copy of [21]; and Shivkumar Chandrasekaran and Ilse Ipsen
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