Cooley-Tukey FFT on the Connection Machine

S. Lennart Johnsson, Robert L. Krawitz,
Roger Frye and Douglas MacDonald

YALEU/DCS/TR-750
November 1989

This work has been supported in part by the Air Force Office of Scientific
Research grant number AFOSR-89-0382.




Cooley-Tukey FFT on the Connection Machine

S. Lennart Johnsson, Robert L. Krawitz, Roger Frye and Douglas MacDonald

Thinking Machines Corp.
245 First Street,
Cambridge, MA 02142

Abstract

We describe a radix-2 FFT implementation on the Connection Machine. The FFT
implementation pipelines successive FFT stages to make full use of the communication
capability of the network interconnecting processors, when there are multiple elements
assigned to each processor. The number of twiddle factors stored in each processor is
5%.— + logy N for an FFT on P complex points equally distributed among N processors.
No communication of twiddle factors is required. The radix-2 FFT computations local
to a processor has a peak performance of about 3 Gflops/s. The global FFT has a peak
performance of about 1.7 Gflops/s.

1 Introduction

The Fast Fourier Transform (FFT) is one of the most important algorithms in signal
processing and the solution of partial differential equations. This paper describes the
data mapping and control structures used in the implementation of a radix-2 FFT on the
Connection Machine. Special attention is given to the effective use of the communication
system, and to computation and storage of the twiddle factors.

The Connection Machine has up to 64k processors. Each processor has 8k bytes of
primary storage using 256 kbit memory chips for a total of 512 Mbytes of storage, and 2
Gbytes using 1 Mbit memory chips. There are 16 processors on each processor chip, and
two such chips share a floating-point unit. The processor chips are interconnected as a 12
dimensional Boolean cube. The floating-point units form an 11 dimensional cube, with
two communication channels between each pair of processors. The FFT described below
is developed for the Connection Machine with hardware floating-point processors.

The data allocation and scheduling of computations for the radix-2 FFT implemen-
tation on the Connection Machine pipelines the FFT stages as described in [19]. We
first review the mapping of the radix-2 FFT to Boolean cube networks with particular
emphasis on effective use of the communication system, and coefficient computation and
storage [19]. Radix-4 and radix-8 FFT implementations on the Connection Machine are

described in [9].




2 The Cooley-Tukey FFT

The Discrete Fourier Transform (DFT) is defined by

X() = E Bz(j), Wle[0,P—1], wp=e P

The Cooley-Tukey Fast Fourier Transform [3] is obtained by a factoring of P =
P

PoPl . P,_, and using the properties of the “twiddle factors” wp. For instance, w3 = —1,

P .
w; = (—1i)*, and wP = (=), These properties are used in the derivation of

radix-2, -4, and -8 FFTs. For the derivation of the radix-2 FFT we let P = 2?7 and
P, = 2,Vm € [0,p — 1]. Then,
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The computation of a DFT on P data elements is replaced by the computation of
(2(5) + 2(j + £)) and wh(e(5) — 2(5 + £)) for j € [0,£ — 1], plus the computation of
two half-sized transforms. Repeating this procedure results in a decimation-in-frequency
(DIF) FFT [21] after p steps. The number of complex multiplications is ~Pp, and the
number of complex additions is Pp, compared to (P — 1)* complex multiplications and
P(P — 1) complex additions for the DFT computed as a matrix-vector product. The
computations in each step constitutes a “butterfly”. All butterfly computations in the
first step are performed on the highest order bit of the data index. The result of the FFT
is obtained in bit-reversed order with the ordering implied in the derivation above, Figure
1.

An alternative way of deriving an FFT is to let j = 25 for j even and j = 25’ + 1 for
j odd. Then,
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Continuing this derivation leads to a decimation-in-time (DIT) FFT. The recursive
derivation proceeds from the input towards the output for the decimation-in-frequency
FFT, and from the output towards the input for the decimation-in-time FFT. In either
case the butterfly computations proceed from the highest order bit towards the lowest
order bit in the data index. However, the ordering made in the above derivation of the
decimation-in-time FFT results in a requirement for a data input vector in bit-reversed
order, but yields an output vector in normal order.

3 Boolean Cubes and Address Maps

The network interconnecting processor chips in the Connection Machine is a 12-dimensional
Boolean cube. In a Boolean cube of N = 2™ nodes, n bits are required for the encoding
of the node addresses. Every node v = (#n—1%p_3...Upn, ... up) is connected to nodes
¥ = (Un-1Un—2 ... T ... %), Vm € [0,n — 1]. Every node has n neighbors. The distance
between a pair of nodes u and v is Hamming(u,v) = Y% (tm ® vm). The maximum
distance between any pair of nodes is n.

The address field of the Connection Machine is divided into three parts:
(off-chip|on-chip|memory). The off-chip field consists of 12 bits that encode the Con-
nection Machine processor chips, the on-chip field encodes the 16 processors on each Con-
nection Machine processor chip, and the lower order bits encode the memory addresses
local to a processor. The lowest order off-chip bit encodes pairs of processor chips shar-
ing a floating-point unit. On-chip communication is considerably faster than inter-chip
communication. On-chip communication is a local memory reference. Off-chip communi-
cation is slower due to the limited bandwidth at the chip Boundary. The Non-Uniformity
in access time impacts the optimum data allocation [12, 14].

3.1 Configuring the address space

The default data allocation scheme on the Connection Machine first determines how
many data elements need to be stored in each processor for an equal number of elements
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Figure 1: Decimation-in-Frequency and Decimation-in-Time FFT.
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per processor, then stores that many successive elements in each processor, consecutive
storage [12]. With the n highest order bits encoding the processors and the lower order
bits encoding memory addresses in each processor, the consecutive assignment can be
illustrated as follows.

Consecutive assignment:(ZmZm—1--- Tm_ni1 Em-nTmen_1... m@

v v

rp vp

The rp-field encodes real processor addresses and the vp-field encodes local memory
addresses. For a data set of M = 2™ complex points m + 1 address bits are required, n of
which are processor address bits with the data set distributed evenly across processors.
There are m — n + 1 local storage address bits. In cyclic assignment the lowest order
address bits determine the real processor address.

Cyclic assignment:(icmwm_.l T T 1Tpz :cg).

N

vp rp

All data elements in a processor have the same n low order bits. In the consecutive
assignment the elements in a processor have the same n high order bits. The cyclic
allocation scheme currently is not supported on the Connection Machine system. However,
it offers a performance advantage in some situations, as described below.

The Connection Machine languages encode each axis of a multi-dimensional array
separately. [log,P| address bits are assigned to the encoding of the elements along an
axis of length P thereby extending it to the nearest greater power of two, if P is not
a power of two. The consecutive allocation scheme is used for each axis. The default
encoding of the axes in the total address space attempts to configure each part of the
address space (off-chip, on-chip, and memory) to conform with the array. To the extent
possible, all axes have a segment of each address field, and the ratio of the lengths of
segments for different axes is the same as that of the length of the axes.

In CM-Fortran compiler directives allow a user to change the default axes encoding by
specifying an axis as serial, which implies that the axis is allocated to a single processor.
*Lisp provides in-processor arrays. In PARIS (PARallel Instruction Set), the Connection
Machine native language, a user has full control over what dimensions of the address space
an axis occupies. But, only consecutive allocation of data to processors is supported.

If an array has fewer elements than the number of real processors in the configuration
the array is extended such that there is one element per real processor. In CM-Fortran
a new first axis is added to the array with a length equal to the number of instances of
the specified array that matches the number of real processors. In *Lisp the axis length
is extended.




Algorithm Arithmetic Op’s/ | Arithmetic Op’s/
Element Elem. communic.
Matrix-vector mpy 2 vM
Matrix-matrix mpy %\/]T vM
Relaxation 5-point stencil 1.6/iter. vM
Radix-2 FFT 1.25log, N 1.25log,(M/2)

Table 1: The effect of a local storage of size M in computations on N elements.

3.2 Encoding of array axes

Since local memory references are significantly faster than inter-chip communication in
most cases because of technological limitations, it is of interest to preserve locality of
reference in the index space when mapped to the machine address space. Many algorithms
for solving partial differential equations make extensive use of local references along the
different axes of array data structures. But, the same data set may also be used for
FFT computations, as for instance in the solution of Poisson’s equation. The potential
performance benefit from preserving locality is illustrated in Table 1 for some frequently
occurring computations.

In the binary encoding successive integers may differ in an arbitrary number of bits.
For instance, 63 and 64 differs in 6 bits, and hence are at a Hamming distance of 6 in
the Boolean cube. A Gray code by definition has the property that successive integers
differ in precisely one bit. The most frequently used Gray code for the embedding of
arrays in Boolean cubes is a binary-reflected Gray code [12, 20, 22]. This Gray code is
periodic. The code preserves adjacency for any loop (periodic one-dimensional lattice) of
even length, and for loops of odd length one edge in the loop is mapped into a path of
length two [12]. For the embedding of multi-dimensional arrays each axis may be encoded
by the binary-reflected Gray code. The embedding of an N; X N X ... X N, array requires
E;-Ll [log, N;] bits. The ezpansion, i.e., the ratio between the consumed address space,
and the actual array size, is 92X i1 oga Mi1 JIL,, which may be as high as ~ 22 [5, 6].
The expansion can be reduced by allowing some successive array indices to be encoded
at a Hamming distance of two. The dilation is the maximum Hamming distance between
any pair of adjacent array indices. Every two-dimensional array can be embedded with
minimum expansion and dilation 2 [1]. Minimum expansion dilation 2 embeddings for
a large class of two-dimensional arrays are given in [6], which also provides a technique
for reducing the expansion of higher dimensional arrays. Minimal expansion dilation 7
embeddings are possible for all three dimensional arrays [2]. Embeddings with dilation 2
for many three dimensional arrays are given in [8].

In the programming systems on the Connection Machine data sets configured as arrays
have their axes indices by default encoded in a binary-reflected Gray code for the off-chip




segment of the address field of each axes. In the other languages the Gray code encoding
is invoked by configuring the Connection Machine as a lattice of the appropriate number
of dimensions.

4 Radix-2 FFTs on Boolean Cubes

4.1 Mapping Butterfly Networks to Boolean Cubes

A radix-2 butterfly network for P inputs and outputs has P(p+ 1) nodes. These nodes
can be uniquely encoded with a total of p + [log,(p + 1)] bits. With node addresses
(Yp-1Yp—2 - -+ Yo|Zt-12¢-2 . . . z0), the butterfly network is defined by connecting node (y]2)
to nodes (y ® 2°7'"*|z + 1) and (y|z + 1), z € [0,p — 1], where ¢t = [log,(p + 1)] and
@ denotes the bit-wise exclusive-or operation. For the computation of the radix-2 FFT
the last ¢ bits can be interpreted as time. The network utilization defined as the fraction
of the total number of nodes that are active at any given time is }. During step z the
communication is between ranks z and z + 1. Complex multiplications are made in rank
z for decimation-in-time FFT and rank z + 1 for decimation-in-frequency FFT.

By identifying all nodes with the same y value and different z values node y becomes
connected to nodes y @ 2%, Vz € [0,p — 1], which defines a Boolean p-cube. All nodes
participate in every step in computing an FFT on P elements on a p-cube. In step
z all processors communicate in dimension z. Only %th of the total communications
bandwidth of the p-cube is used. The full arithmetic power, instead of only half, can
be used by splitting the butterfly computations between the pair of nodes storing the
data (done on the CM-1). The parallel arithmetic complexity for computing an FFT on
P = 27 complex elements on a Boolean n-cube is 5[7}:,-] log, P real arithmetic operations
with splitting of complex multiplications, ignoring lower order terms. The speed-up of
the arithmetic time is min(P, N) The communication complexity is 3[%] log, N element
exchanges in sequence.

With P complex elements distributed evenly over N = N < P processors there
are % elements per real processor. If the cyclic data assignment is used, then the first
p — n ranks of butterfly computations are local to a processor. The last n ranks require
inter-processor communication. For consecutive assignment the first n steps require inter-
processor communication, and the last p — n steps are local to a processor. If the data
is allocated in a bit-reversed order, then the order of the inter-processor communication

and the local reference phases are reversed.

The embedding defined above is the binary encoding of array indices. Every index is
directly identified by an address in the address space. For arrays embedded by a binary-
reflected Gray code array elements that differ by a power of two greater than zero are at a
distance of two, i.e., Hamming(G(3),G(i +27)) = 2,3 # 0 [11]. Even though the elements
to be used in a butterfly computation are at a Hamming distance of two it is still possible

7




to perform an FFT with min(p,n) nearest neighbor communications [17].

If there is only one element per processor, then every element is either involved in a
computation or a communication. With multiple elements per processor the communica-

tion efficiency can be increased from min%p - to nﬁn,(f ) [19], which for p > n is one.

4.2 Maximizing the communication efficiency

We first consider one-dimensional arrays encoded in binary code. For each of the n inter-
processor communication stages increased utilization of the communication system can
be achieved by

e pipelining the computations for successive butterfly stages

e radix-2" FFTs locally and data reallocation in r-dimensional subcubes by all-to-all
broadcasting [18] between successive radix-2" computations.

o using n address maps. The set of inter-processor dimensions used for different
address maps use every inter-processor dimension for every butterfly stage.

The radix-2 FFT implemented on the Connection Machine makes use of pipelining.
Two different pipelined algorithms are presented below. They differ by a factor of two in
arithmetic load balance and communication efficiency. High radix FFTs are discussed in

[9].

4.2.1 Pipelining successive butterfly stages

With N processors performing _Izy_ butterfly computations concurrently, —11\3,- butterfly com-
putations must be performed sequentially in each stage. In the first n butterfly stages the
lowest order p — n bits are identical for all data elements that interact in any butterfly
computation. The first n butterfly stages can be viewed as consisting of -1% independent
FFTs, each of size N and identified by the lowest order p— n bits [10]. In the consecutive
data allocation scheme each of these FFTs has one complex data element per proces-
sor. Every FFT performs communication in processor dimensions n — 1,n — 2,...,0.
By pipelining the communications for the different FFT computations all communication
channels required for the FFT are used if n < %, except for the pipeline start-up and
shut-down phases. Figure 2 illustrates the independent FFTs during the inter-processor
communication phase. After the n butterfly stages with inter-processor communication,
the remaining p — n stages are entirely local. The high order n bits identify N different
FFTs of size % each.

The number of complex data element transfers in sequence for the pipelined FFT is
n+ % — 1. The communication efficiency, measured as (the sum of the communication
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Figure 2: Partitioning of a one-dimensional FFT with multiple elements per processor




resources used over time)/((total number of available communication resources)*(time)),
P

for the stages requiring communication is &, p > n. The efficiency is approximately
N

one for —11;- > n.

Pipelining can also be applied in the cyclic allocation scheme. The first p — n stages
consist of N independent FFTs of size %— each. The latter stages consist of % independent
FFTs, each of size N with one complex data element per processor.

4.2.2 Improved communication efficiency with full arithmetic load balance.

With a single exchange of complex data points the complex addition/subtraction can be
performed concurrently in the two processors exchanging data, but sharing the complex
multiplication requires additional communication. By recursively partitioning the set of
-11;,- FFTs during the n inter-processor communication stages, such that one half of the
FFTs are computed in a half-sized Boolean cube, and the other half of the FFTs in the
other half perfect arithmetic load balance is achieved. The number of complex element
transfers in sequence for this pipelined, recursive partitioning FFT is 5%.——}-7&—— 1[19], which
is approximately half of the number of element transfers of the straightforward pipelined
algorithm. The recursive partitioning doubles the number of elements per processor of a
given FFT in every step, and reduces the number of FFTs serviced by a processor. The
recursive partitioning technique was also used in [13, 15] for Balanced Cyclic Reduction
on Boolean cube networks.

The recursive partitioning strategy for computing a radix-2 FFT with two complex
data elements per real processor, p—n = 1, and cyclic allocation of elements to processors
is illustrated in Table 2 and below

Initial allocation: (\fﬁzw""lz’tz . wg) (p—1=n).
vp rp
Step 1: (TaiTnZn s ... To).
N’
vp p
Step 2: (Tr2 TnTn—1Tn-3...Zo)
——’ ™ g /
vp rp
Step n: (Ewn_l L TT).
vp rp

The bits of the address space on which the exchange in each step takes place are
marked by Z;. Since one of the dimensions is a local memory address half of the local
data is exchanged between adjacent processors. The dimension representing the virtual
processors is successively moved to the lowest order bit position. The exchange sequence
in the illustration converts the cyclic allocation to consecutive allocation. It is also an
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Proc. id Po P1 Pz P3 P4 P5 Pe P7
initial 0|12 |3 (4|5 ]|6]|7
alloc. 8 9 |10]11 1213|1415
after 01|23 |89 ]10]11

lstexch. | 4 | 5 | 6 | 7 (12|13 |14 |15
after 0|14 |5 (|89 ]12]|13

2nd exch. | 2 | 3 | 6 | 7 [10 |11 |14 |15
after 0|2 |46 |8 (|10]12]|14
3rdexch. | 1 [ 3 | 5 | 7|9 |11|13 |15

Table 2: The data distribution for the recursive partitioning, radix-2, FFT for two virtual
processors.

unshuffle. For p —n > 1 there exist many exchange algorithms that yield the correct
partitioning, but the final permutation differs. A permutation that yields a consecutive
data allocation (after possibly a local permutation) is obtained, if real processor bit k
is exchanged with memory address bit k mod p — n [12]. In any butterfly step only one
dimension is used, and successive steps can be pipelined. The numbers in Table 2 denote
the initial data indices. The transformed data items are obtained in bit-reversed order
with respect to this ordering.

The recursive partitioning algorithm for more than two elements per processor can be
illustrated as follows for p — n > n. A local unshuffle of order p — 2n — 1, or shuffle of
order n establishes a consecutive data allocation. If p — n < n, then the local memory
address bits are traversed cyclically in the exchange sequence.

Initial allocation: (zp—1Zp-2...%n Tnoi... w@.

vp P
1st exch. (Zna1Tp—2Tp-3. .. Ty Tp_1Tp_3...To).
N ~ Y . 0,
2nd exch. (icn_lzn_zmp_swp_,; T Tp1Tp 2Tz . :cq).
vp p
nth exch. (icn_lil!n_g f TOTpn1 -+ TnTp_1Tp-z ... w?‘”,)'
vp p

If the initial data ordering is consecutive, then the recursive partitioning of the data
set moves lower order, memory address bits into the real processor address field such that
p inter-processor exchange steps are required (instead of n such steps and p — n local
steps).
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4.2.3 Concurrent communication by reallocation through shuffle operations

By dividing the local data set into n sets and performing a reallocation by cyclic rotation
of the addresses m steps for set m (with the sets numbered consecutively from 0) the
communication required for any rank is in different dimensions for the different sets. The
communication system is fully utilized for every butterfly step. A final reallocation is
required after the completion of the computations to realign the data. A one step address
rotation is a shuffle operation sh(u) = (Up—2Un—3...UgUp_1), Where ¥ = (Up_1Up_3...Up).
A rotation of j steps is defined by sh? = sh o sh’~!. The communication time required
for the two sets of shuffle operations and the FFT computation is at least 2- 5%"%1 + %.
This bound is obtained by dividing the local data set into n subsets and noticing that

the average communication distance is . An FFT based on shuflle operations is clearly
inferior to the pipelined algorithm.

4.3 FFT on multi-dimensional arrays

Performing an FFT along a single axis of a multi-dimensional array implies a number of
independent one-dimensional FFTs. The number of FFTs is determined by the product
of the length of the axes on which the FFT is not performed.

Multi-dimensional FFTs can be performed as a number of independent one-dimensional
FFTs along one axis followed by a number of independent one-dimensional FFTs along the
other axes in succession. Pipelining can be performed over all inter-processor dimensions
being part of any FFT as long as the inter-processor dimensions are not mixed with local
FFT computations. Any axis with local memory address bits breaks the communication
pipeline, if it requires an FFT.

4.4 Twiddle Factors

The total number of twiddle factors needed for a radix-2 FFT of size P = 2P is % —1. For
the computation of an FFT on a distributed memory machine it is important to minimize
the need either for redundant storage of twiddle factors, or for communication of twiddle
factors when required in a processor different from the one in which they are stored.

4.4.1 Decimation-in-frequency

All twiddle factors wh = e~ %7, € [0, £ — 1] are used in the first rank of a radix-2 DIF
FFT. As the computation proceeds from the input to the output, the number of distinct
twiddle factors needed decreases. For the radix-2 DIF FFT the exponent of the twiddle
factors needed for the butterfly on elements z(j) and z(j + %) is (jp—1) X (Jp-2p—3 - - - Jo)s
where j = (Jp-1Jp-2...Jo). For the second rank the exponent of the twiddle factor
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wp is (Jp—2) X (Jp-3Jp—4-..Jo0) for the pairs in locations j and j + £. In general, for
an in-place DIF radix-2 FFT [21] the twiddle factor required for the computation of a
butterfly on the elements in position 7 and j + Ealjr_l’ i.e., butterfly stage ¢ € [0,p — 1] is
wg”'“'l) X(Gp=a-2dp=g-3-30)2  Ppe firgt butterfly stage is stage zero. The exponent of the
twiddle factor is simply the common address below bit p — ¢ — 1 of the pair of complex

elements in a butterfly computation, shifted left ¢ steps with an end-off shift.

If the FFT of size P = 27 is computed on a Boolean p-cube, then node P — 1 requires
p— 1 distinct twiddle factors. If the FFT is computed on an n-cube, n < p, and the allo-
cation of data to processors is cyclic, then the set of twiddle factor indices required for the
stages local to a processor is ({Jp-2Jp-3+- Jn}ldn-1---J0)s ({Jp—3Jp-a---In}ldn1---J0)2,
......... y (Jn-1++-70)2°"™"1, or a maximum total of 3277 2P~"—™ — % — 1 for any pro-
cessor. The notation {jp_2jp-s...Jn} denotes the set of all values that can be assumed by
the number of bits within the braces. After the first p — n stages the remaining n stages
consist of % independent FFTs of size N, each with one element per processor. All -1%
FFTs have the same twiddle factor for a given butterfly stage. A total of n — 1 twiddle
factors are needed for the inter-processor communication stages, one for each butterfly
stage, except the last. Hence, for cyclic data allocation and a radix-2 DIF FFT of size
2P computed on N processors, n < p, the maximum number of distinct twiddle factors
needed in a processor is % +n — 2. Allocating twiddle factor storage uniformly across all
processors yield a total twiddle factor storage of P+ (n —2)N, which for P >> N is about
twice the storage required on a sequential computer. For P = N uniform twiddle factor
storage across processors yields a total storage of (n — 1)N, which exceeds the sequential
storage by a factor of approximately 2(n — 1).

With a consecutive data allocation 1% twiddle factors are needed in at least one proces-
sor for every stage of the first n — 1 stages. The sets of twiddle factors for different stages
are disjoint. For instance, consider the processor with address (jp_17p_3.-- Jp-—n)sJk =
0,ke{p—n+1,p—n+2,...p— 1} and j, = 1. This processor contains the data
indices (00...01|{jp—n—1jn—2...J0}). Shifting this set of addresses left by one step yields
a completely new set of addresses, since the leading one defines a new range disjoint from
the previous range. This observation is true for every inter-processor butterfly stage. The
twiddle factor index for the remaining stages form subsets of the set of twiddle factors for
the last inter-processor communication stage.

4.4.2 Decimation-in-time

For a DIT radix-2 FFT, the exponent of the twiddle factors can also be computed from
the addresses of the elements of an in-place algorithm. The twiddle factors for stage g
are wg”'"l)(j”"‘j"’“'"j”"l)zp_l_q, g € [0,p — 1]. Note, that the address is bit-reversed
and shifted for the proper exponent. For the radix-2 DIT FFT the twiddle factors for
stage 0 are all w}. With a consecutive data allocation to processors the processor address
bits form the high order bits of the element index. The first stage does not require any
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twiddle factors. The following n — 1 stages require one twiddle factor per stage. All —1{'}
different FFTs of size N require the same twiddle factors, since the local addresses do
not enter into the index computation. The last p — n stages are local, and the maximum
total number of twiddle factors required per processor is —]1\-3,- — 1, as in the case of cyclic
allocation and decimation-in-frequency FFT.

With cyclic allocation the local addresses enter into the twiddle factor index computa-
tion immediately. The need for twiddle factors is the same as in the consecutive allocation
of data and computing the FFT by a decimation-in-frequency algorithm.

4.4.3 Bit-reversed input

With the input in bit-reversed order the traversal of the bits in the address field is from the
lowest order to the highest order bit. With the data indices being bit-reversed with respect
to the addresses the decimation-in-frequency FFT requires addresses in bit-reversed order
instead of normal order for the twiddle index computation. Similarly, the decimation-in-
time FFT requires addresses in normal order instead of in bit-reversed order for normal
order inputs. With these differences the consecutive ordering yields the smallest require-
ments for twiddle factor storage for the decimation-in-frequency FFT, and cyclic storage
for the decimation-in-time FFT. The preferred combinations of data allocation and FFT
type are opposite to those preferred with normal order input.

4.4.4 Inverse FFT

The Inverse Discrete Fourier Transform (IDFT) is defined by

= j e
2(5) = > wp'X(1), Vie[0,P-1], wp= e F

=0

It is easy to show that Z(j) = Pz(j). For the computation of the IDFT we notice
that w;lj = wg,P_l)j . Hence, the IDFT can be computed by either using P — [ as the
index of the twiddle factors used for the DFT, or by using the conjugates of those twiddle
factors. The scaling can either be made by v/P during both the DFT and the IDFT, or
by P during either the DFT, or the IDFT. With exception of the twiddle factor index the
computations are identical.

4.4.5 Multi-dimensional FFT

In general, each axis has its own set of twiddle factors. The twiddle factors are a function
of the axis length. The twiddle factor for an axis is a subset of the twiddles for the
longest axis. With axes of length P; X P, X ... P} the minimum number of twiddle factors
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is %ﬂl. With separate storage of the twiddle factors for each axis the total storage is

Z—éﬁ, which is less than the required storage for a one-dimensional FFT of size II, P,.

4.4.6 Reduced twiddle factor storage

For the consecutive data allocation, normal order input, and decimation-in-time radix-2
FFT, the set of twiddle factor indices in the last stage is {jiJs...jn-1}|dn .-+ Jp—1. The
highest order bit j; corresponds to bit position p — 2. Hence, {1j5...n-1}|Jn.--Jp-1 =

+Z 2ni P

2+ {0j2...Jn-1}in- - Jp-1. But, wp * = wh-e FT = —i-wh. Half of the twiddle
factors can be obtained from the other half without any arithmetic. This property is true
for all on-processor stages. The same property is true for

e decimation-in-frequency FFT, cyclic data allocation, and normal input order,
e decimation-in-time FFT, cyclic data allocation, and bit-reversed input order,

e decimation-in-frequency FFT, consecutive data allocation, and bit-reversed input
order.

The observation can be generalized to bits p — 3,p—4,... in the twiddle factor index,
but complex arithmetic is required for all of them. Bit p—3 is associated with a 45-degree
rotation, i.e., —%.

4.5 Summary of algorithmic and data layout issues

A butterfly network can be effectively emulated on a Boolean cube network by mapping
the butterfly stages into time. The butterfly interconnections correspond to intercon-
nections in the Boolean cube. With multiple elements per processor the communication

P
efficiency can be improved from L for an n-dimensional cube to -_,;—ELI by pipelining.
Nt

For normal order input and cyclic data allocation a recursive partitioning of the data
set yields a reduction in the number of element transfers by a factor of two compared
to the straightforward pipelined algorithm, and a perfect load balance. The optimum
partitioning is an N-way partitioning. Second to that is 4-way partitioning, and with an
insignificant additional expense 2-way partitioning. If the data allocation is consecutive,
then the recursive partitioning requires additional inter-processor communication. For bit-
reversed input order the data allocation shall be consecutive for optimum effectiveness of
the recursive partitioning technique.

The preferred combinations of data allocation, input order, and FFT type with respect
to twiddle factor storage for the pipelined algorithm are:
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FFT | Data Twiddle Max. number
alloc. index of twiddles
stage ¢ per proc.
DIT | consec. | {jp—gJp—g+1-++Jp—n-1}Jp-n---Jp-122"1"7 | £ +n—2
cyclic Jo-aJo—gt1 -+ Jn-1[{Jn ... Jp-1}2P717¢ (n— 1)%
DIF | consec. | Jp—q—2Jp—g—3- -+ Jp—n|{Jp-n—1---J0}2? (n— 1)z
cyclic {Ip—q—2Tp—g—3 -+ In}In-1---Jo2? z+n—2

Table 3: Radix-2 twiddle factor storage, normal input order.

FFT | Data Twiddle Max. number
alloc. index of twiddles
stage q per proc.
DIT | consec. | Jg—1Jq-2 - - Jp—nl|{Jp—n—1- - Jo} 2P~ 11 (n—1)%
cyclic {Ja=1Jq—2 -+ Jn}|dn-1...Jo2P 177 z+n—2
DIF | consec. Jat1Jat2 -« Jne1|{In -+ - Jp—1129 Z+n—2
cyclic | Ugtiders - donilpn-ip12' | (n=DE

Table 4: Radix-2 twiddle factor storage, bit-reversed input order.

The storage requirements and the formula for the twiddle factor index computations
are summarized in Tables 3 and 4. The storage requirements for on-processor twiddles can
be reduced by a factor of two, by computing half of the twiddles by performing 90-degree

rotations “on-the-fly”.

With the exception of the twiddle factors there is no essential difference between a
multi-dimensional FFT and a one-dimensional FFT. Pipelining can be extended across
axes of the array on which the FFT is performed, as long as there are no on-processor

dimensions inter-mixed with inter-processor dimensions.
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normal input order, consecutive data allocation, decimation-in-time FFT
normal input order, cyclic data allocation, decimation-in-frequency FFT
bit-reversed input order, consecutive data allocation, decimation-in-frequency FFT

bit-reversed input order, cyclic data allocation, decimation-in-time FFT




5 Implementation

The FFT implementation for which performance measurements are given below is a radix-
2 FFT. Radix-4 and radix-8 FFT on the Connection Machine are described in [9]. The
standard scheme for allocation of multiple elements to processors on the Connection Ma-
chine is the consecutive scheme. A decimation-in-time radix-2 FFT is used for data in
normal input order, and a decimation-in-frequency radix-2 FFT for bit-reversed input
order. The twiddle factor storage is 5%— + log, N — 2 in each of N processors for an FFT
of size P with the data uniformly distributed across the processors. The inverse Discrete
Fourier Transform is computed by a FFT using the conjugated twiddle factors. The inter-
processor communication stages are pipelined. For multi-dimensional FFTs each axis is
treated independently. No sharing of twiddle factors between axes takes place.

The FFT routine is a complex-to-complex FFT. The data is assumed to be mapped
into the address space by a binary encoding. For arrays mapped to the address space
by a binary-reflected Gray code a remapping to binary encoding is made prior to the
computation of the FFT, or the inverse FFT. The remapping is currently not optimized.
It is performed by a call to the Connection Machine router. For normal order input the
output is in bit-reversed order. If the output is desired in normal order a reordering
is made after the FFT is computed. An optimized bit-reversal routine based on the
algorithms in [4, 23, 7, 16] is under development.

For the description of the implementation and the explanation of some of the perfor-
mance data it is necessary to present one more architectural feature of the Connection
Machine. The software systems allocate data serially to the processors. But, 32 processors
share a floating-point unit that can access the memories of the 32 processors in bit-slices.
Transposing the data of 32 processors from field-wise to slice-wise allocates each word
across the memories of groups of 32 processors sharing a floating-point unit. The FFT is
developed with this view of the Connection Machine. In the following a processor refers
to a floating-point processor.

The change from field-wise to slice-wise storage interchanges the lowest order off-chip
bit and the processor bits (5 bits) with the memory address field. A 5-shuffle is performed.
For a one-dimensional array the memory stride for bit k, with the lowest order bit being
bit zero, is 2(k+8)mod(i+chiptmemory bits)  The stride for successive array elements is 32.
The stride is increasing for elements at increasing distance up to a point. The stride
for the fifth highest order bit (the lowest order real processor bit)is one. In the case of
multidimensional arrays the stride of the different axes becomes fairly complex. Therefore,
a memory reordering is performed such that the stride of the first array axis is one, the
stride for the second equal to the length of the first axis, etc.

The conversion from field-wise to slice-wise storage is performed after a potential
remapping to binary encoding, and before the local memory reordering. If the array is
encoded by a binary-reflected Gray code, then the transposition from field-wise storage
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to slice-wise storage also needs to convert the lowest order off-chip bit, which encodes the
chip pairs sharing storage, from Gray code to binary code. Algorithms for the conversion
are described in [12, 14].

Any decimation-in-frequency FFT has unique twiddle factors for every butterfly com-
putation in the first step. The second step of a radix-2 FFT consists of two half size
FFTs, and the set of twiddle factors are used twice. All butterfly computations have the
same coefficients in the last step. The local loops are ordered such that the total number
of twiddle factor loads is % — 1. The same property is true for decimation-in-time FFT.
The local FFT is computed one stage at a time, and for each stage a stride is determined
for butterfly computations requiring the same twiddle factors, as well as for butterfly
computations requiring successive twiddle factors. In the event of a multi-dimensional
array, a number of local FFTs are performed, with the number being determined by the
product of the length of the axes currently not subject to an FFT. The local FFT kernels
for decimation-in-time and decimation-in-frequency FFT are almost identical, with the
exception that the pipelines in the floating-point unit are organized slightly differently,
resulting in a performance difference of up to ~ 3%.

For the FFT stages requiring inter-processor communication the sign change is inte-
grated with the communication such that one processor involved in the exchange per-
forms a complex addition while the other performs a complex subtraction. Only one
of the processors performs a useful complex multiplication. Data exchange in different
inter-processor dimensions is pipelined. For each exchange of a pair of complex elements
across a set of inter-processor dimensions butterfly computations are made on local data
and exchanged data. The data exchange - butterfly computation is repeated until all data
elements along every instance of the axis subject to an FFT computation is treated. The
communication pipeline is active for all array elements in memory.

For ease of implementation the current butterfly computations for the inter-processor
communication phase are organized into groups of size four, one for each of four inter-
processor dimensions. This detail explains some of the performance data presented below.
If the number of non-local dimensions is an exact multiple of four, then the data is moved
into and out of the floating point unit from and to the memory allocated to the array.
However, if the number of dimensions is not an exact multiple of four, a temporary storage
area is used. The size of this storage area corresponds to four butterfly computations.
Data for each inter-processor dimension subject to a butterfly computation is moved to
the temporary storage area. Then four butterfly computations are performed on the data
in the entire temporary storage area, and the result returned to the storage area. The
desired results are then returned to the appropriate memory locations. Hence, the time
for butterfly computations is the smallest when the use of temporary storage is avoided,
and increases with the number of inter-processor dimensions in the range one to three.

In the current implementation the decimation-in-frequency butterfly computation is
performed as a single floating-point pipeline, but the decimation-in-time butterfly opera-
tion consists of two pipelines, resulting in a performance difference of up to ~ 15%.
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5.1 Twiddle factor computation

For the stages requiring communication between different floating-point units, the twiddle
factors depend only on the stage and the unit. The twiddle factor index can be computed
by

e extracting the p—1 highest order bits of the data element index, i.e., bits 1 through
p — 1 into a word ¢ with bit locations 0 to p — 2.

e bit-reverse the extracted word ¢.

e perform p— g — 1 steps of end-off left shifts of ¢ with bits p— ¢ — 2 to 0 set to zero,
g=1{0,1,...,n —1}.

Each value of ¢ corresponds to a different butterfly stage. For the first stage ¢ = 0. The
computation is performed by all floating-point units concurrently. The computations are
completely uniform.

The computations in the local stages of the FFT and the table of twiddle factors are
organized such that, regardless of stage, successive butterfly computations in the same
reduced size FFT (there are %’- FFTs of size two in the first stage of a DIT FFT, and one
FFT of size N in the last stage) accesses the twiddle factors within the table with a stride
of one complex number. The twiddle factors for the first local stage of a decimation-
in-frequency radix-2 FFT forms the first block in a table. The twiddles for the second
local stage form a second block in the table, etc. For the decimation-in-frequency FFT
the blocks of twiddle factors are accessed in order. For the decimation-in-time FEFT the
blocks are accessed in reverse order. Within a block the twiddle factors are stored in
bit-reversed order.

All floating-point units concurrently compute the same number of twiddle factors,
but the indices differ. The twiddle factors are computed in-place, and accounts for the
shuffle operation taking place in conversion from the field-wise to the slice-wise repre-
sentation. The twiddle factor indices for the local stages are computed in the field-wise
representation, assuming a cyclic storage scheme on each pair of processor chips sharing
a floating-point unit. After transposition to slice-wise storage the order is consecutlve
Moreover, the twiddle factors for the largest block is computed by the first set of
processors in this ordering, the second largest block (the second stage in a dec1mat10n-m-
frequency FFT) by the next ;% processors, etc. The field-wise to slice-wise transposition
can be represented as:

(:c:c:c:cwy[ yyyy |zzzzzz) — (:c:c:c:c:cz | zzzzzyyyyy)

off chip on—cth memory °f f—chip memory

The twiddle factor computation that precedes the transposition is as follows:
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1. Form a number with the local memory address appended to the processor address
with the memory address forming the high order part, i.e., form (2zzzz2yyyyy).

2. Let g be the number of leading ones in (22zz2zyyyyy). ¢ is the local stage number
for a decimation-in-frequency FFT.

3. Set the leading ones to zero. (00...0zzyyyyy).
q

4. Bit-reverse (00...0 zzyyyyy) to (yyyyyzz00...0).
q q

5. Append n low order bits with value zero. (yyyyyzz 00 + .0).
g+n

6. Bit-reverse the floating-point unit address, and shift it left ¢ steps, and perform a
logical-or operation with (yyyyyzz 00 + .0).
g+n

All the above steps can be performed concurrently. The only processor dependent
operation occurs in steps two and three. The result is the twiddle exponents as described
in section 4.4, in order of stage number, and for each stage number in bit-reversed order.

The maximum number of complex data elements per floating-point unit with the
reduced twiddle factor storage scheme is 16384 for a one-dimensional FFT, the same as
for two- or more dimensions, for 64k words of local memory (512 Mbytes of total memory).

5.2 Performance measurements

The performance measurements have been made on Connection Machine configurations
with 32-bit floating-point processors. A fully configured Connection Machine has 2048
such processors. The performance of the local kernel for different sizes is given in Table
5 and Figures 3 and 4. All reported timings and Mflop rates include the time for con-
version from field-wise storage to slice-wise storage. This time amounts to about 15%
of the total time. The times for a potential reordering from Gray code to binary code,
or from bit-reversed to normal order if needed, are not included. With the organiza-
tion of the current implementation the time for the local part is of the following form
co + (number of FFT of sizeN)(c¢; + czlog, N + c3N + ¢4 N log, N), where ¢; models the
initialization for each independent FFT as defined by the input array, c, models the ini-
tialization time for a FFT stage, c; models the time for twiddle factor loading, and c,4
models the time for a butterfly computation. The time for each butterfly computation is
approximately 5.05 usec, and the time for the loading of a twiddle factor 2.2 usec.

For a one-dimensional FFT there is only one phase with inter-processor communi-
cation. The performance for the inter-processor communication stages is considerably
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Axis Time | Mflops
length msec | per sec
2 0.944 347

4 1.050 624

8 1.076 914

16 1.005 1304
32 1.062 1543
64 2.026 1941
128 3.879 2366
256 8.397 2497
512 | 17.436 2706
1024 | 38.629 2714
2048 | 79.704 2894
4096 | 169.333 2972
8192 | 353.905 3081

Table 5: Performance for 2048 concurrent local radix-2 DIF FFT.

Time (msec)
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Figure 3: The execution time for local radix-2 DIF FFT.
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Figure 4: The performance of 2048 concurrent local radix-2 FFT.

less than for the local stages. Some performance data for a purely inter-processor, one-
dimensional, radix-2 DIF FFT are given in Table 6 and Figures 5, 6, and 7. The behavior
of the execution time clearly reflects the additional memory moves when the number of
inter-processor communication stages is not a power of four, and the increased effective
use of the floating-point unit as the number of inter-processor dimensions approaches a
multiple of four. As the number of elements along the sequential axis increases the pipeline
start-up and shut-down phases become less significant, and the performance measured in
Mflops/s increases.

The performance for a single one-dimensional radix-2 DIF FFT as a function of Con-
nection Machine system size, and FFT size for a few fixed ratio’s of FFT size to machine
size are given in Table 7 and Figures 8, 9, and 10 for a few different machine sizes. The en-
try for one floating-point unit gives the performance for the local FFT. The performance
for this part of the total FFT increases with size to 3081 Mflops/s. The performance
variation in the inter-processor communication part of the FFT is apparent.

Table 8 and Figures 11 and 12 shows the performance for fixed size DIF FFT of
size 8k, 128k, and 2048k as a function of the number of floating-point units used for
the computation. For a given size FFT the efficiency for the local part decreases as the
data set is allocated to more processors. For the inter-processor communication part the
efficiency increases with the number of inter-processor dimensions, and decreases with
a reduced number of data elements per floating-point unit. The net effect is that for
one to three inter-processor dimensions the efficiency is approximately constant. For four
dimensions the efficiency increases by about 10%, due to the significantly more efficient
computation of the butterflies for the inter-processor dimensions. Tables 9 and 10 give
performance data for FFT sizes in the range of 1M — 16M points. The execution times
and floating-point rates are shown in Figures 13 and 14 for a 64k CM-2 system.

Some sample timings for two- and three-dimensional radix-2 FFT are given in Tables
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Seq | fpu/ | Number of | Time | Mflops
axis | FFT | conc. FFT | msec | per sec
2 1024 | 2.552 128

4 512 | 2.764 237

8 256 | 2.990 328

16 128 | 2.950 444

32 64 | 3.583 457

32 64 32 | 3.819 514

128 16 | 4.053 566

256 8 | 4.092 641

512 4| 4.816 612

1024 2 | 4.870 673

2048 1| 5.136 702

2 1024 | 39.92 131

4 512 | 41.18 255

8 256 | 42.43 371

16 128 | 39.32 533

32 64 | 49.32 532

512 64 32 | 51.16 615
128 16 | 52.43 700

256 8 | 49.30 851

512 4 ] 59.29 796

1024 2 |61.12 858

2048 162.42 924

2 1024 | 628.9 133

4 512 | 658.7 255

8 256 | 668.9 376

16 128 | 608.9 551

32 64 | 778.9 538

8192 64 32 | 798.7 630
128 16 | 828.9 708

256 8 | 758.9 884

512 4 1928.8 812

1024 2 | 948.7 884

2048 1|978.7 943

Table 6: The performance of inter-processor, one-dimensional, radix-2 DIF FFT.
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Figure 5: The execution time of one-dimensional radix-2 DIF FFTs with one complex
point per processor. Sequential axis length 32.
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Figure 6: The execution time of one-dimensional radix-2 DIF FFTs with one complex
point per processor. Sequential axis length 8192.

24




Mflops/s

1000 4 °~ Seq. axis length = 8192
* — Seq. axis length = 32 o
900 | . .
800 o
700 ] ) L
600 ° * .
500 — ° o,
400 - L
300 - .
200 — ¢
100 - ©
B e e e B N o
0 5 10 Log(FFT size)
11 6 1 Log(# FFT)

Figure 7: The floating-point rate for inter-processor, one-dimensional, radix-2 DIF FFTs
with one complex point per processor.
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time for a single one-dimensional, radix-2 DIF FFT with 32

25



Elements FFT | No. of | Number of | Time | Mflops
per fpu size fpu | conc. FFT | msec | per sec
32 1 2048 | 1.073 1527

64 2 1024 | 3.036 648

128 4 512 | 3.270 701

256 8 256 | 3.500 749

512 16 128 | 3.482 847

32 1024 32 64 | 4.092 801
2048 64 32 | 4.325 833

4096 128 16 | 4.557 863

8192 256 8 | 4.592 928

16384 512 4 15.106 898

32768 1024 2 | 5.381 913

65536 2048 1|5.620 933

512 1 2048 | 18.01 2619

1k 2 1024 | 52.49 999

2k 4 512 | 54.31 1062

4k 8 256 | 55.57 1132

8k 16 128 | 52.42 1300

512 16k 32 64 | 62.44 1175
32k 64 32 | 64.19 1225

64k 128 16 | 66.04 1270

128k 256 8 | 61.82 1442

256k 512 4 | 72.43 1303

512k 1024 2 | 73.68 1352

1024k 2048 1| 74.94 1399

8k 1 2048 | 358.7 3040

16k 2 1024 | 928.8 1277

32k 4 512 | 948.7 1326

64k 8 256 | 968.8 1385

128k 16 128 | 908.8 1569

8192 256k 32 64 | 1069 1413
512k 64 32 | 1099 1451

1024k 128 16 | 1109 1513

2048k 256 8 | 1059 1664

4096k 512 4| 1219 1514

8192k 1024 2| 1239 1558

16384k 2048 1{ 1269 1587

Table 7: Performance for a single one-dimensional radix-2 DIF FFT distributed over a
number of floating-point units.
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Figure 9: The execution time for a single one-dimensional, radix-2 DIF FFT with 8192
points per fpu.

Number | Number Time (msec) I Mflops/s
of fpu’s | of FFT FFT size
per FFT 8k | 128k | 2048k | 8k | 128k | 2048k
1 2048 | 358.9 3040
2 1024 | 449.4 1213
4 512 | 224.3 1215
8 256 | 114.8 1187
16 128 | 52.39 | 908.7 1301 | 1569
32 64 | 31.20 | 524.4 1092 | 1360
64 32 | 16.07 | 264.7 1061 | 1347
128 16 | 8.66 | 133.6 984 | 1334
256 8| 4.63 [ 61.80 | 1059 [ 919 | 1442 | 1664
512 4 36.20 | 604.4 1231 | 1457
1024 2 18.88 | 302.2 1180 | 1457
2048 1 10.22 | 153.6 1090 | 1434
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Table 8: Execution time and floating-point rates for a 64k processor CM-2.
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Figure 10: The floating-point rate for one-dimensional radix-2 DIF FFT of a size propor-

tional to the number of fpu’s per FFT.

Number | Number FFT size

of fpu’s | of FFT | 1024k | 2048k | 4096k | 8192k | 16384k
per FFT

128 16 | 1.119 — — — —
256 8| 0.519 | 1.059 —_ — —
512 41 0.297 | 0.604 | 1.218 — —
1024 2] 0.150 | 0.302 | 0.614 | 1.248 —
2048 1| 0.075 | 0.154 | 0.307 | 0.624 | 1.259

Table 9: Execution times for a 64k processor CM-2.
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Number | Number FFT size

of fpu’s | of FFT | 1024k | 2048k | 4096k | 8192k [ 16384k
per FFT

128 16 | 1500 — — — e
256 8| 1615 | 1664 — — —
512 4| 1411 | 1457 | 1515 — —
1024 2 | 1400 | 1457 | 1502 | 1545 —
2048 1] 1399 | 1434 | 1502 | 1545 1600

Table 10: Execution rates for a 64k processor CM-2.
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Figure 11: The execution time of one-dimensional radix-2 DIF FFT of size 8k, 128k, and
2048k as a function of the number of fpu’s.
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Figure 12: The floating-point rate for one-dimensional radix-2 DIF FFT of size 8k, 128k,
and 2048k as a function of the number of fpu’s/FFT for a 64k processor CM-2.

30




Time (msec)

1300 —
1200 -
1100 —
1000 —
900
800
700
600 — .
500
400 —
300 — .
200
100

0- FFT size in

N e .
0 2 4 6 8 10 12 14 16 18 20  “illions of points

Figure 13: The execution time of one-dimensional radix-2 DIF FFT on a 64k CM-2
system.
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Figure 14: The execution rate for one-dimensional radix-2 DIF FFT on a 64k CM-2

system.

31




FFT Number of fpu
size 64| 128 | 256 [ 512 | 1024 | 2048
128x128 33.77 | 16.53 | 13.17 | 7.01
256256 139.0 | 70.34 | 31.17 | 24.65 | 13.18 | 7.25
512x512 575.4 | 291.6 | 136.0 | 72.43 | 51.53 | 26.29
1024x1024 2328 | 1194 | 562.9 | 317.0 | 149.9 | 114.0
2048 %2048 2292 | 1298 | 646.9 | 307.2
4096 x 4096 2686 | 1343
32x32x 32 |96.96 | 49.07 | 23.04 | 13.00 | 7.29
64x64x 64 | 544.4 | 404.4 | 195.5 | 105.8 | 51.53 | 28.22
128x128x128 2319 | 1589 | 873.9 | 436.7 | 208.8
256256256 3569 | 1788

Table 11: Execution time in msec for some two and three dimensional radix-2 DIF FFT.

11 and 12.

5.3 Optimizing the configuration of the address space

The execution time for a one-dimensional FFT is normally minimized by spreading the
data over as many floating point units as possible, as this permits use of the maximum
number of processors. The only exception to this rule is if an FFT can be spread over
either one or two processors; in this case, it is usually more efficient to arrange the data
so that the entire vector fits on a single unit, as no communication takes place. FFT’s
that are short enough to fit inside a single processor should be performed in that manner
if the number of instances is at least one-half of the number of FPU’s in the system. This
allocation makes the computation “embarrassingly” parallel.

If it is necessary to allocate an axis to more than a single processor, or the number of
instances desired is less than half of the number of processors available, the data should be
spread over as many processors as possible to minimize the the number of data elements
per processor. Due to the current implementation, efficiency is greatest if the number of
non-local dimensions is a multiple of four (either four or eight).

To optimize a multi-axis FFT, similar principles should be followed. Optimal efficiency
is attained by firstly minimizing the number of axes that have any non-local component,
then by minimizing the number of axes that have neither four nor eight non-local dimen-
sions.

With a fixed number of processors N the optimum assignment of processors Ny to the
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FFT Number of fpu
size 64 | 128 | 256 | 512 | 1024 | 2048
128x 128 1089 [ 1110 | 698 | 656
256x256 1207 [ 1193 | 1346 | 851 | 796 | 723
512x512 1312 | 1295 | 1388 | 1303 | 916 | 897
1024x1024 | 1441 | 1405 | 1490 | 1323 | 1399 | 920
2048x2048 1610 | 1421 | 1426 | 1502
4096 x4096 1499 | 1499
32x32x 32 811 | 801 | 853 | 756 | 674
64x64x 64 | 1387 | 933 | 965 | 892 | 916 | 836
128x128x128 1519 | 1108 | 1008 | 1008 | 1055
256x256x256 1128 | 1126

Table 12: Floating-point rates in Mflop/s for some two and three dimensional radix-2 DIF
FFT.

Number M No
of fpu 1 2 4 8 16 32 64 128 256 512 1024 | 2048
128 256 | 16.20 | 50.57 | 50.57 | 51.11 45.86 | 56.82 | 58.94 | 59.01
1024 | 308.9 | 838.9 | 838.8 | 848.7 | 748.7 | 905.6 | 923.7 | 950.9
512 512 17.45 | 51.73 | 51.82 | 52.43 | 47.34 | 56.48 | 58.86 | 60.80 | 55.53 59.28
2048 | 318.8 | 858.8 | 858.7 | 857.9 | 776.4 | 928.8 | 937.1 | 942.8 | 894.3 | 1053.3
2048 | 1024 53.06 | 53.08 | 53.06 | 48.68 | 57.43 | 57.94 | 60.59 | 56.37 64.37 | 61.18
4096 | 339.0 | 868.9 | 878.9 | 879.0 | 799.0 | 949.0 | 949.0 | 959.0 | 877.7 1076 1072 1066

Table 13: Execution time (msec) for a one-dimensional FFT on a square array as a
function of processor configuration.

axis of the FFT and N; to other axes can be determined by an expression of the form

% M; log, 2 log, No

(—% ;
N 7'[(%) /pc(]_ogz NO) EkEAOT.Af‘_’_)

where the length of array axis j is M}, and the number of axis is k. The local floating-point
rate is denoted r;, and the rate for inter-processor communication is .. An example of
the sensitivity to the total performance as a function of the shape of the configuration of
the address space is given in Table 13 and Figure 15. The array is assumed to be square
of size M x M, and the set of floating-point units is configured as Ny x N; processors.

The optimum machine configuration for multi-dimensional FFT can be found in much
the same way as in the one-dimensional multi-axes FFT case. With a fixed number of
processors N the optimum assignment of processors IN; to array axis j < m on which an
FFT shall be computed and all other axes, can be determined by an expression of the
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Figure 15: Total execution time for a one-dimensional FFT on a square array as a function
of the configuration of 2048 fpu’s.

form
M;

gz“" m-l log, N;
w3 &2

=0 7 N,-) i=0 r,(log, N; —L)

where the length of array axis j is M;, and the number of axis is k. The local floating-
point rate is denoted 7,, and the rate for inter-processor communication is r,, as before.
An example of the sensitivity to the total performance as a function of the shape of the
configuration of the address space is given in Table 14 and Figures 16 and 17. The array
is assumed to be square of size M x M, and the set of floating-point units is configured
as Ny X N; processors.

Number M No
of fpu 1 2 4 8 16 32 64 128 256 512 | 1024 | 2048
128 256 | 69.79 | 103.8 | 102.4 | 92.45 | 92.71 103.1 104.2 | 71.20
1024 1183 1697 1679 1539 1539 1689 1712 1178
512 512 72.39 | 101.5 | 107.3 | 105.6 | 99.16 | 99.87 | 106.8 | 107.7 [ 102.3 | 72.45
2048 | 1304 | 1691 1739 | 1739 | 1639 | 1637 1737 | 1743 | 1694 | 1313
2048 | 1024 108.7 | 114.1 105.0 | 104.2 111.7 | 111.0 | 104.2 | 105.5 | 113.1
4096 1342 1888 1872 1698 1678 1829 1829 1698 1705 1877 | 1894 | 1348

Table 14: Execution time (msec) for a two-dimensional FFT on a square array as a
function processor configuration.
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Figure 16: Total execution time for a two-dimensional FFT on a square array as a function
of the configuration of 512 fpu’s.
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Figure 17: Total execution time for a two-dimensional FFT on a square array as a function
of the configuration of 512 fpu’s.
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6 Summary

We have presented a radix-2 FFT for the Connection Machine that efficiently uses the
communication system in Boolean cube networks. With the combination of consecutive
storage, normal order input, decimation-in-time FFT, and bit-reversed input, decimation-
in-frequency FFT, the requirements for twiddle factor storage is 5% + log, N — 2 twiddle
factors per processor for a data set of P elements uniformly distributed across N proces-
sors. A performance of 3 Gflops/sec for the local FFT is achieved, and for the global FFT
the peak performance is 1.7 Gflops/s. The maximum size FFT that can be performed in
512 Mbytes of storage is 32M complex points.

The performance can be enhanced by using higher radix FFT. For the local FFT
a performance enhancement by a factor of about three is possible with the register set
on the currently used floating-point unit. For the inter-processor communication the
performance can also be enhanced by a higher radix FFT by improving the load balance.
The performance enhancement compared to a radix-2 FFT will not be as significant as

for the local FFT.

The performance of the radix-2 FFT can also be improved somewhat by removing
some coding deficiencies. The number of twiddle factor loadings during the local FFT
can be reduced for higher dimensional FFT by computing the same butterfly stage for all
independent FFTs in succession, instead of complete FFTs in succession. For the inter-
processor communication phase, performing individual butterflies instead of sets of four,
or four butterflies for the same communications channel instead of different channels, will
enhance performance somewhat. The expected performance gain from improvements of
the code is at most 10%.
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