
Many databases can be described using a tensor product of metric spaces. The mixed
Lipschitz condition is a natural notion of function regularity in this context, and the norm
dual to the mixed Lipschitz space is a natural distance between measures. In this paper, we
consider the tensor product of spaces equipped with tree metrics and give effective formulas
for the mixed Lipschitz norm and its dual. We also show that these norms behave well
when approximating an arbitrary metric by tree metrics.
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1 Introduction

The space of Lipschitz functions defined on a metric space arises naturally in many areas
of machine learning and statistics. For example, standard models in non-parametric
statistics posit that unknown signals lie in a Hölder space or a more general regularity
class [5, 16]. Extrapolating a function value to new points, or inferring its values from
noisy samples, can only be achieved if some kind of regularity on the function is assumed,
the Lipschitz condition being a natural kind of regularity.

Also of interest is the space dual to Lipschitz. The dual norm of the difference
between two probability measures is equal to their Earth Mover’s Distance (EMD) [17],
a popular metric in areas such as image processing [15]. The dual distance provides a
robust way of comparing two measures on a dataset that is insensitive to perturbations,
a desirable property for many tasks.

The Lipschitz space and its dual are defined with respect to a single metric space.
Many datasets, however, are not modeled well by one metric space, but rather the tensor
product of several metric spaces. Consider, for example, a word-document matrix, with
rows indexed by documents and columns indexed by words. The documents and words
are best described by two separate geometries, each with its own metric. The natural
notion of regularity for a function on the product of metric spaces is the mixed Lipschitz
condition, which requires f to have bounded mixed difference quotients. We define the
mixed Lipschitz space in Section 4.

The space dual to mixed Lipschitz functions is also of interest, as its norm provides
a robust distance between measures on the product of metric spaces. In this paper,
we study the mixed Lipschitz space and its dual when the underlying metrics are tree
metrics, defined in Section 2. In particular, in Sections 4 and 5 we develop norms
equivalent to the mixed Lipschitz norm and its dual that can be computed in linear
time. In Section 6, we relate the space of mixed Lipschitz functions and its dual for
tree metrics to the corresponding spaces for metrics approximated by dominating tree
metrics [1].

2 Tree metrics, martingales, and martingale differences

In this section we introduce the basic notation and definitions that we will be using
throughout this paper. X will denote a finite set that is equipped with a partition tree
T ; that is, T is a collection of subsets of X such that for any two such subsets I and J ,
either I ⊂ J , J ⊂ I, or I and J are disjoint. We will assume that the entire set X is
one of the folders in T , as are all the singletons {x} for x ∈ X.

We can view each folder in the tree, including the singletons, as a point in a graph,
where an edge is placed between folders I and J if I is a child of J (we will also say
J is I’s parent); that is, I ⊂ J and there are no folders in between I and J . In this
sense, we can view the set X as being the leaves of a graph-theoretic rooted tree, the
folder X being the root. Of course, given any set of leaves X of any rooted tree, we can
build a partition tree by assigning to each node of the tree the folder of all leaves that
branch off from that node; so graph-theoretic trees with X as the leaves and partition
trees describe the same structure on X.
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These two different ways of viewing trees give rise to two different notions of a tree
metric, one of which is a special case of the other. In Subsection 2.1 we define these tree
metrics. In Subsection 2.2, we introduce the the martingale and martingale difference
operators on trees, and prove some of their basic properties. In Subsection 2.3, we
generalize these operators to the product of trees.

2.1 Tree metrics

Throughout the paper, we will be considering two kinds of tree metrics, one of which is
a special case of the other. The first metric arises by viewing the points X as the leaves
of a graph-theoretic tree, where each edge of the tree has some positive weight attached
to it. If I is a point in the tree, we will denote by eI the weight on the edge connecting
I to its parent. The distance between any two points in the graph is then the geodesic
distance, which in the simple case of the tree is just the sum of the edge weights on the
unique path connecting the two points. In particular, this gives rise to a distance on X.

Given two points x and y, let Sx,y denote the set of all folders that contain exactly
one of x or y. The following expression for d(x, y) is immediate from the definitions:

Lemma 1. For any two points x, y in X,

d(x, y) =
∑
I∈Sx,y

eI .

Another kind of tree metric arises by taking weights not on the edges of the tree but
rather on the nodes of the trees themselves - that is, on the folders in T . We will denote
by w(I) the weight on the folder I. We think of w(I) as being the diameter of the set
I, and in the metric we define this will be the case. We therefore require that if I ⊂ J ,
then w(I) ≤ w(J). With this, we define the distance between any two points x and y to
be w(Ix,y), where Ix,y denotes the smallest folder containing both x and y.

The following lemma is also trivial:

Lemma 2. Let T be a partition tree on X, and w(I) be any collection of folders weights
satisfying w(I) < w(J) for I ( J , and w({x}) = 0. Then the collection of edge weights
eI = 1

2(w(I ′) − w(I)), where I ′ denotes the parent folder of I, gives rise to the same
metric on X as the folder weights w(I).

In this paper, we will not discuss the important question of how to construct a
partition tree T with edge weights eI . The choice of tree will depend on the task
at hand. For instance, much work has been done in constructing tree distances that
approximate a given metric on X [1, 6, 11]; we will have more to say about this subject
in Section 6. Other methods include clustering the data at different scales using a family
of diffusion operators and taking the weight on a folder to be a power of its measure
[7, 8]. For the remainder of this paper, we will view all trees as given and not concern
ourselves with where they come from.
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2.2 Martingales and martingale differences

In this section, we suppose that X is also equipped with a measure, and that every
singleton {x} has positive measure. We define the martingale and martingale difference
operators and prove some of their basic properties. Given a function f and a folder I,
we let mIf denote the function whose value on I is the mean value of f , and is zero
outside I; that is,

mIf(x) =

(
1

|I|

∫
I
f(y)dy

)
χI(x).

We denote by

mIf(I) =
1

|I|

∫
I
f(y)dy

the unique value that the function mIf achieves on the folder I.
Also define the martingale difference operator ∆If by

∆If(x) =
∑

J child of I

mJf(x)−mIf(x).

Note that ∆If is constant on the child folders of I. If J is a child of I, we will denote
by ∆If(J) the unique value that ∆If takes on J .

We prove some basic properties of the operators mI and ∆I that will be useful in
Section 5.

Lemma 3. For any function f and any (non-singleton) folder I ∈ T ,∫
X

∆If(x)dx =

∫
I

∆If(x)dx = 0.

Proof. By definition, we have∫
X

∆If(x)dx =

∫
X

∑
J child of I

mJf(x)dx−
∫
X
mIf(x)dx

=
∑

J child of I

|J |mJf(J)− |I|mIf(I)

=
∑

J child of I

∫
J
f(x)dx−

∫
I
f(x)dx = 0

=

∫
I
f(x)dx−

∫
I
f(x)dx = 0.

Corollary 1. For folders I 6= J and any functions f, g, we have 〈∆If,∆Jg〉 = 0.

Proof. Clearly, if I ∩J = ∅, the supports of ∆If and ∆Jg are disjoint, and consequently
their inner product is 0. Otherwise, suppose without loss of generality that I ( J . Then
I is contained in (or perhaps equal to) a proper subfolder of J , and so ∆Jg is constant
on the support of ∆If . Since

∫
X ∆If(x)dx = 0, the result follows.
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Lemma 4. The operators mI are self-adjoint; that is,

〈mIf, g〉 = 〈f,mIg〉.

Proof. We have

〈mIf, g〉 =

∫
X

(
1

|I|

∫
I
f(y)dy

)
χI(x)g(x)dx =

1

|I|

∫
X

∫
X
f(y)χI(y)χI(x)g(x)dxdy.

Since the expression on the right is symmetric in f and g, the result follows.

Corollary 2. The operators ∆I are self-adjoint; that is,

〈∆If, g〉 = 〈f,∆Ig〉.

It is also easy to see the following:

Lemma 5. For every folder I ∈ T , m2
If = mIf .

Proof. By definition,

m2
If(x) =

(
1

|I|

∫
I
mIf(y)dy

)
χI(x) =

(
1

|I|

∫
I
mIf(I)dy

)
χI(x) = mIf(I)χI(x)

=

(
1

|I|

∫
I
f(y)dy

)
χI(x) = mIf(x).

2.3 Product of trees

The primary concern of this paper is the product of spaces, each of which is equipped
with its own partition tree. For simplicity, we will consider the case of two spaces, X
and Y , with trees TX and TY and edge weights eXI and eYJ , respectively.

We define the operators

mX,If(x, y) =

(
1

|I|

∫
I
f(x′, y)dx′

)
χI(x)

and

mY,Jf(x, y) =

(
1

|J |

∫
J
f(x, y′)dy′

)
χJ(y).

We will denote mX,X and mY,Y by mX and mY , respectively. Note that mXf is a
function of the y variable alone, and mY f is a function of the x variable alone; we will
therefore also write mXf(y) = mXf(x, y) and mY f(x) = mY f(x, y).

We also define

∆X,If(x, y) =
∑

I′ child of I

mX,I′f(x, y)−mX,If(x, y)

4



and
∆Y,Jf(x, y) =

∑
J ′ child of J

mY,J ′f(x, y)−mY,Jf(x, y).

As for a single tree, these martingale and martingale difference operators are self-adjoint.
The functions ∆X,If and ∆Y,Jf are also mean-zero. Furthermore, we have the identities
m2
X,I = mX,I and m2

Y,J = mY,J , and

〈∆X,If,∆X,I′g〉 = 〈∆Y,Jf,∆Y,J ′g〉 = 0

whenever I 6= I ′ and J 6= J ′. The proofs of these statements are nearly identical to the
corresponding results for a single tree.

3 The Lipschitz class and its dual

In this section we develop characterizations for the Lipschitz norm and its dual with
respect to an arbitrary tree metric on X. Let d(x, y) be a tree metric on X, with edge
weights eI . Define the L∞ variation of a function f on X with respect to the metric
d(x, y) by

‖f‖d = sup
x 6=y

f(x)− f(y)

d(x, y)
.

We define the Lipschitz norm of f to be

‖f‖Λ = max{‖f‖d, ‖mXf‖∞}.

We also define the norm on the space dual to mean-zero functions of bounded L∞

variation by
‖T‖∗d = sup

‖f‖d≤1,mXf=0
〈f, T 〉,

and we define the dual norm to the space of Lipschitz functions as

‖T‖Λ∗ = sup
‖f‖Λ≤1

〈f, T 〉.

We have the following simple lemma:

Lemma 6. For every T ,
‖T‖Λ∗ = ‖T‖∗d + ‖mXT‖1.

Proof. Define f1 = f −mXf and f2 = mXf . Then f = f1 + f2, and

‖f‖Λ = ‖f1‖d + ‖mXf2‖∞.

We then have

‖T‖Λ∗ = sup
‖f‖Λ≤1

〈f, T 〉 = sup
‖f1‖d≤1,|mXf2|≤1

{〈f1, T 〉+ 〈f2, T 〉}

= sup
‖f‖d≤1,mXf=0

〈f, T 〉+ sup
|mXf |≤1,f constant

〈f, T 〉

= ‖T‖∗d + ‖mXT‖1
as claimed.
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Our goal in this section is to develop simple formulas for the dual norms ‖T‖d∗ and
‖T‖Λ∗ . We will do this by use of the following formula for the Lipschitz norm ‖f‖d.

Theorem 1. For any function f on X, let Af denote the set of all sequences of coeffi-
cients {aI}I∈T such that

f(x) =
∑
I

aIχI(x).

We then have the following expression for ‖f‖d:

‖f‖d = inf
{aI}∈Af

sup
I 6=X

|aI |
eI

.

Proof. Let Cf = inf{aI}∈Af
supI 6=X

|aI |
eI

. Suppose first that we have written f =
∑

I aIχI .
Take any two points x and y in X, and denote by Ix,y the smallest folder containing both
points. Then χI(x) = χI(y) if either I ⊃ Ix,y or I is disjoint from Ix,y; consequently,

f(x)− f(y) =
∑

I(Ix,y ;x∈I
aI −

∑
I(Ix,y ;y∈I

aI

≤ Cf
{ ∑
I(Ix,y ;x∈I

eI +
∑

I(Ix,y ;y∈I
eI

}
= Cfd(x, y)

which shows that ‖f‖d ≤ Cf .
For the other direction, let f̄ denote any extension of f to all nodes of the tree (that

is, f̄ is a function on the set of all folders in T ) that has the same variation as f ; in
other words, ‖f̄‖d = ‖f‖d, where

‖f̄‖d = sup
I 6=J

f̄(I)− f̄(J)

d(I, J)

the supremum being over all distinct folders I and J in the tree. A simple formula for
one choice of f̄ is given in the paper [12].

Then if we let I ′ denote the parent of the folder I, we can write f as the telescopic
sum

f =
∑
I 6=X

(f̄(I)− f̄(I ′))χI + f̄(X) ≡
∑
I 6=X

aIχI + f̄(X).

Since ‖f̄‖d = ‖f‖d, |aI | = |f̄(I)− f̄(I ′)| ≤ eI for all I 6= X, which shows Cf ≤ ‖f‖d and
completes the proof.

Corollary 3. We have the following upper and lower bounds for ‖f‖d:

sup
I

‖∆If‖∞
diam(I)

≤ ‖f‖d ≤ sup
I 6=X

|∆I′f(I)|
eI

.

The supremum on the left is over all non-singleton folders I.
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Proof. Take any folder I and let I ′ denote its parent; then for any x, y ∈ I ′, we have
|f(x)− f(y)| ≤ ‖f‖d diam(I ′). Therefore

|mI(f)−mI′(f)| =
∣∣∣∣ 1

|I|

∫
I
f(x)dx− 1

|I ′|

∫
I′
f(y)dy

∣∣∣∣
=

∣∣∣∣ 1

|I ′|

∫
I′

1

|I|

∫
I
f(x)dxdy − 1

|I|

∫
I

1

|I ′|

∫
I′
f(y)dydx

∣∣∣∣
=

∣∣∣∣ 1

|I ′|

∫
I′

1

|I|

∫
I
(f(x)− f(y))dxdy

∣∣∣∣
≤ 1

|I ′|
1

|I|

∫
I′

∫
I
‖f‖d diam(I ′)dxdy = ‖f‖d diam(I ′).

Dividing each side by diam(I ′) and taking the supremum over all I gives the leftmost
inequality.

For the other side, we make use of Theorem 1. For each folder I 6= X, let I ′ denote
its parent, and define aI = ∆I′f(I). It is easy to see that, up to an additive constant,

f =
∑
I 6=X

aIχI

and consequently Theorem 1 yields

‖f‖d ≤ sup
I 6=X

|aI |
eI
≤ sup

I 6=X

|∆I′f(I)|
eI

completing the proof.

We can use the expression for ‖f‖d from Theorem 1 to derive a very simple formula
for ‖T‖∗d.

Theorem 2. For any L1 measure T , we have

‖T‖∗d =
∑
I 6=X

eI |〈χI , T 〉|. (1)

Note that |〈χI , T 〉| = |I|(mIT )(I).

Proof. Take any function f with ‖f‖d ≤ 1. By the previous theorem, we can write

f =
∑
I

aIχI

where 1 ≥ ‖f‖d = supI 6=X |aI |/eI . Since f has mean zero, we can assume without loss
of generality that T has total measure zero when taking the inner product. Therefore,
we have

|〈f, T 〉| =
∣∣∣∣ ∑
I 6=X

aI〈χI , T 〉
∣∣∣∣ ≤∑

I 6=X

|aI |
eI

eI |〈χI , T 〉| ≤
∑
I 6=X

eI |〈χI , T 〉|
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and taking the supremum over all f yields ‖T‖∗d ≤
∑

I 6=X eI |〈χI , T 〉|.
For the other inequality, define the function f̃ by

f̃ =
∑
I 6=X

eI sgn(〈χI , T 〉)χI +K

where K ensures that f̃ has mean zero. The previous theorem shows that ‖f̃‖d = 1.
Again, since f̃ has mean zero, we can assume T also has total measure zero as well when
taking the inner product. Therefore,

‖T‖∗d ≥ 〈f̃ , T 〉 =
∑
I 6=X

eI sgn(〈χI , T 〉)〈χI , T 〉 =
∑
I 6=X

eI |〈χI , T 〉|

which completes the proof.

Corollary 4. For every L1 measure T on X, its dual Lipschitz norm ‖T‖Λ∗ is equal to

‖T‖Λ∗ =
∑
I 6=X

eI |〈χI , T 〉|+ ‖mXT‖1.

Remark 1. Theorem 2 can be easily derived from the formula for Earth Mover’s Distance
given in [3], using the fact that when T is the difference of two probability measures,
‖T‖∗d is equal to the Earth Mover’s Distance between them; this is the content of the
Kantorovich-Rubinstein Theorem [17]. The proof we give here, however, appears to be
new. Furthermore, we will use Theorem 1 in Section 5 to derive equivalent formulas for
the Lipschitz and mixed Lipschitz norms on a special class of trees.

Remark 2. The formula for ‖T‖∗d from Theorem 2 can be computed in cost proportional
to the size of X. To see this, first observe that the number of folders in any partition
tree T on a set of size N cannot exceed 2N − 1. Furthermore, to compute each term
〈χI , T 〉 that appears on the right side of (1), we need to compute the integral of T
on I; we can do this by simply adding up its integral over each of the children of I.
Consequently, we can compute all the terms 〈χI , T 〉 by starting with the N integrals of
T over the singletons, and then recursively computing the integral of T over a folder I
by adding up its integral over the children of I. Each folder is only touched once, in the
computation of its parent’s integral; and so the total cost is linear in N .

4 The mixed Lipschitz space and its dual for general trees

The characterizations of the Lipschitz space and its dual can be extended to character-
izations of the space of mixed Lipschitz functions and its dual. Our setting here is the
product of two spaces, X and Y , each equipped with its own partition tree TX and TY
with weights eXI , e

Y
J and corresponding metrics dX(x, x′), dY (y, y′), respectively.

The mixed variation ‖f‖dX ,dY of a function f on X × Y is defined by

‖f‖dX ,dY = sup
x 6=x′,y 6=y′

f(x, y)− f(x, y′)− f(x′, y) + f(x′, y′)

dX(x, x′)dY (y, y′)
.
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We then define the mixed Lipschitz norm of f to be

‖f‖ΛX,Y
= max{‖f‖dX ,dY , ‖mXf‖dY , ‖mY f‖dX , ‖mXmY f‖∞}.

Note that, since mY f is a function on X alone and mXf is a function on Y alone,
the notation we use is sensible.

We define the corresponding dual norms. First, we consider the norm dual to the
space of functions of bounded mixed difference quotients and zero marginals:

‖T‖∗dX ,dY = sup{〈f, T 〉 : ‖f‖dX ,dY ≤ 1,mY f = 0,mXf = 0}

The dual norm of an L1 measure T to the space of mixed Lipschitz functions is
defined as

‖T‖Λ∗X,Y
= sup
‖f‖ΛX,Y

≤1
〈f, T 〉.

We then have the following lemma:

Lemma 7. For any distribution T on X × Y ,

‖T‖Λ∗X,Y
= ‖T‖∗dX ,dY + ‖mY T‖∗dX + ‖mXT‖∗dY + ‖mXmY T‖1.

Proof. For any function f , let f1 = f −mXf −mY f +mXmY f , f2 = (mY −mXmY )f ,
f3 = (mX −mYmX)f , and f4 = mXmY f . It is easy to see that f = f1 + f2 + f3 + f4,
and that

‖f‖ΛX,Y
= max{‖f1‖dX ,dY , ‖f2‖dX , ‖f3‖dY , ‖mXmY f4‖∞}.

Consequently, we can write

sup
‖f‖ΛX,Y

≤1
〈f, T 〉

= sup
‖f1‖dX,dY

≤1
〈f1, T 〉+ sup

‖f2‖dX≤1
〈f2, T 〉+ sup

‖f3‖dY ≤1
〈f3, T 〉+ sup

|mXmY f4|≤1
〈f4, T 〉

=‖T‖∗dX ,dY + ‖mY T‖∗dX + ‖mXT‖∗dY + ‖mXmY T‖1

which is the desired equality.

From Section 3, we have formulas for ‖mY T‖∗dX , ‖mXT‖∗dY and ‖mXmY T‖1 that can
be computed at cost proportional to the size of X×Y . We now turn to the computation
of ‖T‖∗dX ,dY . We give a formula that approximates ‖T‖∗dX ,dY and that can be computed in
linear time as well, and whose distortion is bounded by a universal constant independent
of T or the tree. As in the proof of Theorem 2, which depended on a formula for the
Lipschitz norm of mean zero functions, this formula is derived from a characterization
of mixed Lipschitz functions with zero marginals, which we present now.
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Theorem 3. For any function f on X × Y , let Af denote the collection of the sets of
all coefficients aI×J such that

f(x, y) =
∑
I∈TX

∑
J∈TY

aI×JχI(x)χJ(y).

Then there is a universal constant C, independent of the trees TX and TY and the
function f , such that

‖f‖dX ,dY ≤ inf
{aI×J}∈Af

sup
I 6=X,J 6=Y

|aI×J |
eXI e

Y
J

≤ C‖f‖dX ,dY .

Proof. Take any {aI×J} ∈ Af . Then

f(x, y)− f(x, y′)− f(x′, y) + f(x′, y′)

=
∑
I∈TX

∑
J∈TY

aI×J(χI(x)χJ(y)− χI(x)χJ(y′)− χI(x′)χJ(y) + χI(x
′)χJ(y′))

=
∑

I∈Sx,x′

∑
J∈Sy,y′

aI×J(χI(x)− χI(x′))(χJ(y)− χJ(y′))

≤ sup
I 6=X,J 6=Y

|aI×J |
eXI e

Y
J

∑
I∈Sx,x′

eXI
∑

J∈Sy,y′

eYJ = sup
I 6=X,J 6=Y

|aI×J |
eXI e

Y
J

dX(x, x′)dY (y, y′).

This proves that ‖f‖dX ,dY ≤ inf{aI×J}∈Af
supI 6=X,J 6=Y

|aI×J |
eXI e

Y
J

.

For the other inequality, we will show that we can extend the function f defined on
X × Y to a function f̄ defined on TX × TY , where the mixed variation of f̄ is no more
than C times ‖f‖dX ,dY . In other words, the function f̄ will satisfy

|f̄(I, J)− f̄(I, J ′)− f̄(I ′, J) + f̄(I ′, J ′)| ≤ C‖f‖dX ,dY e
X
I e

Y
J (2)

where I ′ denotes the parent of I, and J ′ the parent of J .
If we had such an extension, we would be finished, for after adjusting the marginals

of f (which do not affect the norm ‖f‖dX ,dY ), we could expand f in the double telescopic
sum

f(x, y) =
∑
I 6=X

∑
J 6=Y

(f̄(I, J)− f̄(I, J ′)− f̄(I ′, J) + f̄(I ′, J ′))χI(x)χJ(y).

Taking ãI×J = f̄(I, J)−f̄(I, J ′)−f̄(I ′, J)+f̄(I ′, J ′), (2) shows |ãI×J | ≤ C‖f‖dX ,dY eXI eYJ ;
consequently,

inf
{aI×J}∈Af

sup
I 6=X,J 6=Y

|aI×J |
eXI e

Y
J

≤ C‖f‖dX ,dY

which is the desired result.
We now show how to prove the existence of such an extension f̄ . First, by adjusting

the marginals of f we can assume without loss of generality that there is a point y0 ∈ Y
such that f(x, y0) = 0 for all x. We now interpret the function f as a map not from
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X × Y in to R, but rather from X into the space Lip0(Y ) of Lipschitz functions g on
Y that are zero at y0, equipped with the Lipschitz norm ‖g‖dY . More formally, for any
x ∈ X, define the function fx(y) = f(x, y) and the map

F : X → Lip0(Y ), x 7→ fx.

The key observation is that the mixed Lipschitz norm ‖f‖dX ,dY of f is an upper bound
on the Lipschitz norm of F , since by definition

‖F (x)− F (x′)‖dY = sup
y 6=y′

(fx − fx′)(y)− (fx − fx′)(y′)
dY (y, y′)

= sup
y 6=y′

(f(x, y)− f(x′, y))− (f(x, y′)− f(x′, y′))

dY (y, y′)

≤ ‖f‖dX ,dY dX(x, x′).

We now quote the result of the result from [13] that any function on a subspace of a
metric tree to a Banach space can be extended to the entire tree without distorting the
Lipschitz constant by more than a universal constant C1. Let F̄ denote the extension
of F to the entire tree TX . Define f̄(I, y) = F̄ (I)(y) (this notation may be confusing;
F̄ (I) is a function on Y , and F̄ (I)(y) denotes its value at y). Then the mixed Lipschitz
constant of f̄ is no more than C1‖f‖dX ,dY .

This gives us the desired extension of f to TX × Y . Observe that this argument
required only that X be a subspace of a metric tree; we did not exploit anything about
the metric properties of Y . We can therefore repeat the same argument, taking Y in
place of X and TX in place of Y . This yields an extension f̄ to all of TX × TY at the
loss of another factor C1. Consequently, we have found the desired extension f̄ , with
distortion no more than C ≡ C2

1 .

We will now use the formula from Theorem 3 to derive a semi-norm equivalent to
the dual semi-norm ‖T‖∗dX ,dY .

Theorem 4. Let C be the same universal constant from Theorem 3. Then for any
distribution T on X × Y ,

1

C
‖T‖∗dX ,dY ≤

∑
I 6=X

∑
J 6=Y

eXI e
Y
J |〈χIχJ , T 〉| ≤ ‖T‖∗dX ,dY . (3)

Proof. Take any function f with ‖f‖dX ,dY ≤ 1 and zero marginals (that is, mXf =
mY f = 0). By Theorem 3, we can write

f(x, y) =
∑
I 6=X

∑
J 6=Y

aI×JχI(x)χJ(y)

where 1 ≥ ‖f‖dX ,dY ≥ 1
C supI 6=X,J 6=Y |aI×J |/(eXI eYJ ). Since the marginals of f are all

zero, we can assume without loss of generality that the same is true for T when taking

11



the inner product. Therefore, we have

|〈f, T 〉| =
∣∣∣∣ ∑
I 6=X,J 6=Y

aI×J〈χIχJ , T 〉
∣∣∣∣ ≤ ∑

I 6=X,J 6=Y

|aI×J |
eXI e

Y
J

eXI e
Y
J |〈χIχJ , T 〉|

≤ C
∑

I 6=X,J 6=Y
eXI e

Y
J |〈χIχJ , T 〉|

and taking the supremum over all f yields ‖T‖∗dX ,dY ≤ C
∑

I 6=X,J 6=Y e
X
I e

Y
J |〈χIχJ , T 〉|.

For the other inequality, define the function f̃ by

f̃(x, y) =
∑

I 6=X,J 6=Y
eXI e

Y
J sgn(〈χIχJ , T 〉)χI(x)χJ(y) + g(x) + h(y)

where the functions g and h are taken to ensure that f̃ has zero marginals. Theorem
3 shows that ‖f̃‖d = 1. Again, since f̃ has zero marginals, we can assume T does too
when taking their inner product. Therefore,

‖T‖∗dX ,dY ≥ 〈f̃ , T 〉 =
∑

I 6=X,J 6=Y
eXI e

Y
J sgn(〈χIχJ , T 〉)〈χIχJ , T 〉

=
∑

I 6=X,J 6=Y
eXI e

Y
J |〈χIχJ , T 〉|

which completes the proof.

Corollary 5. Let C be the same universal constant from Theorems 3 and 4. Then for
any T in the space dual to Lipschitz on X × Y ,

1

C
‖T‖∗ΛX,Y

≤
∑
I 6=X

∑
J 6=Y

eXI e
Y
J |〈χIχJ , T 〉|+

∑
I 6=X

eXI 〈χI ,mY T 〉

+
∑
J 6=Y

eYJ 〈χJ ,mXT 〉+ ‖mXmY T‖1 ≤ ‖T‖∗ΛX,Y
.

Unfortunately, we cannot take the constant C from Theorem 4 to be 1. However,
numerical evidence suggests that the constant may not be too much bigger than 1.
Figure 1 shows a scatter plot of ‖T‖∗dX ,dY and the approximation from (3) for 1000
random vectors T on the product of two spaces with 8 points each. The trees on each
space are binary trees with all edges equal to 1; that is, eXI = eYJ = 1. The largest ratio
of the true norm over its approximation was about 1.203, and the minimum ratio about
1.044. Other experiments have given similar results.

Remark 3. As with the formula (1) from Theorem 4 for the dual norm to Lipschitz, the
formula from (3) that is equivalent to ‖T‖∗dX ,dY can be computed at cost proportional
to the size of X × Y . The argument is the same as for one tree. If X has M points
and Y has N points, then the total number of products I × J ∈ TX ×TY is of the order
O(M ·N). To compute the integral of T over I × J , we need only add its integral over
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Figure 1: The dual norm and its approximation for 1000 random vectors

the folder I ′ × J ′, where I ′ ranges over the children of I, and J ′ over the children of
J . Consequently, we can compute all the terms 〈χIχJ , T 〉 by starting with the M · N
integrals of T over the singletons, and then recursively computing the integral of T over
the product I×J by adding up its integral over the products I ′×J ′, where I ′ is a child of
I and J ′ a child of J . Each product of folders is only touched once, in the computation
of the integral over the product of their parents; and so the total cost is linear in M ·N .

5 Lipschitz and mixed Lipschitz functions for trees with
geometrically decaying folder weights

In Theorems 2 and 4, we derived simple formulas for the norms dual to the Lipschitz
and mixed Lipschitz spaces. In all cases, the distortion guaranteed by these formulas
does not depend on any features of the tree; the choice of edge weights can be arbitrary.

The characterizations we gave of Lipschitz and mixed Lipschitz functions themselves
in Theorems 1 and 3, however, are not as directly useful, as they cannot be computed
any more rapidly than the original definitions via difference quotients. In this section,
we address this problem for the special class of tree metrics defined by folder weights
w(I), rather than edge weights eI , as defined in Subsection 2.1.

We will assume geometric decay of the folder weights. More precisely, we assume
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that there is a constant 0 < A < 1 such that for any folders I ( J ,

w(I) ≤ Aw(J). (4)

Note that this family of trees includes the theory of k-hierarchically well-separated
trees [1]. Note too that our assumptions are far less restrictive than those found in the
papers [7, 8], in which the weights w(I) are taken to be a power of the measure of I, and
the measure is assumed to satisfy a two-sided decay condition, rather than the one-sided
condition (4). These papers find norms equivalent to ‖f‖d and ‖f‖dX ,dY that use the
coefficients of f in a special orthonormal basis. The formulas we give use the martingale
difference operators in place of the Haar functions.

As in [7, 8], and unlike Theorems 2 and 4 for the dual norms, the constants of
distortion are not universal, but rather depend on the decay constant A from (4).

Proposition 1. Suppose f is any function on X, a set equipped with a tree T . Suppose
the distance on X is defined using folder weights w(I) satisfying the decay condition (4).
Then we can approximate ‖f‖d as follows:

1−A
2
‖f‖d ≤ sup

I

‖∆If‖∞
w(I)

≤ ‖f‖d (5)

where the supremum is over all non-singleton folders I.

Proof. Since diam(I) = w(I), the second inequality follows immediately from Corollary
3. For the other direction, recall that the distance d(x, y) can be defined using the edge
weights eI = 1

2(w(I ′)−w(I)), where I ′ is the parent of I. Since w(I) ≤ Aw(I ′), we have
eI ≥ 1

2(1−A)w(I ′), and consequently from Corollary 3

‖f‖d ≤ sup
I 6=X

|∆I′f(I)|
eI

≤ 2

1−A
sup
I

|∆I′f(I)|
w(I ′)

≤ 2

1−A
sup
I

‖∆If‖∞
w(I)

.

Remark 4. As with the formula (1) from Theorem 4 for the dual norm to Lipschitz,
the formula from (5) that is equivalent to ‖f‖d can be computed at cost proportional
to the size of X. In fact, to compute the middle term of (5), one needs to evaluate the
martingale differences of f on every folder; to do this, it is sufficient to evaluate the
average of f on every folder, and by Remark 2 all integrals, and hence averages, can be
computed in linear time.

Theorem 5. Suppose X and Y are two spaces equipped with trees TX and TY with folder
weights wX(I), wY (J), respectively, each satisfying the decay condition (4). Let dX and
dY be the metrics induced by these weights. Then for any function f on X × Y , we can
characterize its mixed Lipschitz semi-norm as follows:

(1−A)2

4
‖f‖dX ,dY ≤ sup

I∈TX
sup
J∈TY

‖∆X,I∆Y,Jf‖∞
wX(I)wY (J)

≤ ‖f‖dX ,dY (6)

where the supremums are over non-singleton folders only.
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Proof. Fix any point y ∈ Y and any folder J ∈ TY , and consider the function

x 7→
∆Y,Jf(x, y)

wY (J)
.

Applying Proposition 1 to this function yields

sup
I∈TX

sup
x∈X

|∆X,I∆Y,Jf(x, y)|
wX(I)wY (J)

≤ sup
x 6=x′

∆Y,Jf(x, y)−∆Y,Jf(x′, y)

dX(x, x′)wY (J)

= sup
x 6=x′

∆Y,J [f(x, ·)− f(x′, ·)](y)

dX(x, x′)wY (J)
.

Temporarily fix two points x 6= x′. We apply Proposition 1 to the function

y 7→ f(x, y)− f(x′, y)

dX(x, x′)

to obtain the upper bound

∆Y,J [f(x, ·)− f(x′, ·)](y)

dX(x, x′)wY (J)
≤ sup

y′ 6=y′′

f(x, y′)− f(x′, y′)− f(x, y′′) + f(x′, y′′)

dX(x, x′)dY (y, y′)
.

Taking the supremum over all J and y proves the inequality

sup
I∈TX

sup
J∈TY

‖∆X,I∆Y,Jf‖∞
wX(I)wY (J)

≤ ‖f‖dX ,dY .

To show the other direction, we apply the same method of reducing to Proposition 1,
but going in the other direction. Fix any two points y 6= y′ in Y and apply Proposition
1 to the function

x 7→ f(x, y)− f(x, y′)

dY (y, y′)
.

This yields the inequality

f(x, y)− f(x, y′)− f(x′, y) + f(x′, y′)

dX(x, x′)dY (y, y′)
≤ 2

1−A
sup
I∈TX

sup
x∈X

|∆X,I [f(x, y)− f(x, y′)]|
wX(I)dY (y, y′)

=
2

1−A
sup
I∈TX

sup
x∈X

|∆X,If(x, y)−∆X,If(x, y′)|
wX(I)dY (y, y′)

.

Fixing any x ∈ X and any I ∈ TX , we can apply Proposition 1 again to the function

y′′ 7→
∆X,If(x, y′′)

wX(I)

to get the inequality

|∆X,If(x, y)−∆X,If(x, y′)|
wX(I)dY (y, y′)

≤ 2

1−A
sup
J∈TY

sup
y∈Y

|∆Y,J∆X,If(x, y′′)|
wX(I)wY (J)

.
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Figure 2: The maximum ratio (black, backward arrows) and minimum ratio (blue, for-
ward arrows) of the approximate mixed Lipschitz norm to the truth for different A

It follows immediately that

‖f‖dX ,dY ≤
4

(1−A)2
sup
I∈TX

sup
J∈TY

‖∆X,I∆Y,Jf‖∞
wX(I)wY (J)

and the result is proved.

To illustrate the result of Theorem 5, we ran the following experiment. We took
the product of two 16-point spaces with binary trees. For each choice of weight decay
parameter A = i/10, i = 1, . . . , 9 from (4), we compared the true value of ‖f‖dX ,dY
to the approximation from Theorem 5 for 200 random functions. Figure 2 shows the
minimum and maximum ratios of the approximation divided by the true value, both as
functions of A. As predicted by the theorem, the maximum stays more or less constant
(its value is about .25, which is better than the worst-case value of 1 predicted by the
theorem), while the minimum decays as A gets bigger. In Figure 3, we plot the ratios
of the maximum ratio to the minimum ratio (the distortion) as a function of A. As
expected, the distortion grows with A.

Remark 5. The formula from Theorem 5 that is equivalent to ‖f‖dX ,dY can be computed
at cost proportional to the size of X×Y . To compute the middle term of (5), one needs
to evaluate the double martingale differences of ∆X,I∆Y,Jf on every pair of folders
I × J . To do this, it is sufficient to evaluate the integral of f on every pair of folders, as
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Figure 3: The distortion of approximation for the mixed Lipschitz norm for different A

∆X,I∆Y,Jf can be written as a linear combination of such integrals. We have already
seen in Remark 3 that all these integrals can be computed in linear time.

6 Averaging Lipschitz norms and their duals over trees

Partition trees and tree metrics give rise to fast algorithms and simple formulas for the
Lipschitz norm and their duals. However, in many applications from data analysis and
machine learning, tree metrics are not refined enough to adequately capture the true
geometry of the data. It is almost inevitable that any algorithm for constructing trees
will separate points that are quite similar.

A standard way of overcoming this problem is to construct multiple trees on the
same data set and combine the output from each tree. The hope is that the combination
of many trees will “wash away” the artificial boundaries that any one tree will create.
This idea has shown up in various places where trees appear. For instance, tree-based
regression algorithms in statistics are augmented by the use of “random forests” [2], and
in wavelet theory, Coifman and Donoho have proposed “spinning” the dyadic grid on
[0, 1] to smooth out artifacts that would otherwise arise in tasks from signal processing
such as filtering [4].

More relevant to the present work is the problem of approximating an arbitrary
metric by the average of dominating tree metrics. More precisely, given an arbitrary
finite metric space (X, d), the question is how to construct a random family of trees T
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on X so that the corresponding tree metrics dT (x, y) satisfy

d(x, y) ≤ dT (x, y) (7)

for every tree T , and in expectation we have the reverse inequality

ET dT (x, y) ≤ Kd(x, y) (8)

for some constant K > 0.
The problem dates back to Bartal [1]. In Fakcharoenphol et al [6], a construction is

given of trees for which the expected distortion is K = O(log |X|); this is the best one
can obtain in general [14]. In [11], it is shown that the same trees constructed in [6] can
be used to approximate the snowflake metric d(x, y)α, where 0 < α < 1, with a constant
dependent only on the dimension of (X, d), and not on the number of points in X.

For the remainder of this Section, we will therefore assume that we have a metric
space (X, d) that can be approximated by the average of dominating tree metrics. In
other words, we assume we have a family of trees T , each with its own metric dT (x, y)
that satisfies (7), and a distribution over these trees so that (8) holds as well.

Proposition 2. For any function f on X,

sup
T
‖f‖dT ≤ ‖f‖d ≤ K sup

T
‖f‖dT .

Proof. Since every tree metric dT (x, y) dominates d(x, y), we have

f(x)− f(y) ≤ ‖f‖dd(x, y) ≤ ‖f‖ddT (x, y)

which implies that ‖f‖dT ≤ ‖f‖d for all trees T ; consequently,

sup
T
‖f‖dT ≤ ‖f‖d.

For the other inequality, observe that for each tree T , we have

f(x)− f(y) ≤ ‖f‖dT dT (x, y) ≤
(

sup
T ′
‖f‖dT ′

)
dT (x, y).

Taking expectations of both sides gives

f(x)− f(y) ≤
(

sup
T
‖f‖dT

)(
ET dT (x, y)

)
≤ K sup

T
‖f‖dT d(x, y)

implying that ‖f‖d ≤ K supT ‖f‖dT and completing the proof.

Proposition 3. For any T in the space dual to Lipschitz functions on X,

1

K
ET ‖T‖∗dT ≤ ‖T‖

∗
d ≤ inf

T
‖T‖∗dT
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Proof. Since ‖f‖dT ≤ ‖f‖d, we have

‖T‖∗d = sup
‖f‖d≤1

〈f, T 〉 ≤ sup
‖f‖dT ≤1

〈f, T 〉 = ‖T‖∗dT

which yields the inequality ‖T‖∗d ≤ infT ‖T‖∗dT .
For the other direction, fix any ε > 0, and for each T , let fT be defined so that

‖f‖dT ≤ 1 and
‖T‖∗dT = 〈fT , T 〉+ ε.

Now, since fT (x)− fT (y) ≤ dT (x, y), taking expectations gives

ET fT (x)− ET fT (y) ≤ ET dT (x, y) ≤ Kd(x, y)

or in other words ‖ET fT ‖d ≤ K. Consequently, we have

ET ‖T‖∗dT = ET 〈fT , T 〉+ ε = 〈ET fT , T 〉+ ε ≤ K sup
‖f‖d≤1

〈f, T 〉+ ε = K‖T‖∗d + ε.

Since ε is arbitrary, the result follows.

Proposition 3 can also be deduced trivially from Charikar’s paper [3], since the semi-
norm ‖T‖∗ρ, when T is the difference of two probability measures, is equal to the Earth
Mover’s Distance between these two measures with respect to the ground distance ρ(x, y).
However, the proof we have just given, which appears to be new, generalizes to the setting
of mixed Lipschitz functions and their duals. We turn to this now.

For the next two results, we assume that we have two metric spaces (X, dX) and
(Y, dY ), each with a family of dominating tree metrics, denoted TX and TY , respectively,
that approximate dX and dY in the sense of (7) and (8). We assume too that the trees
on X and Y are constructed independently.

We first show that we can approximate ‖f‖dX ,dY by the maximum of ‖f‖dTX ,dTY over
all pairs of dominating trees (TX , TY ). The proof follows from Proposition 2.

Proposition 4. For any function f on X × Y , we have

sup
TX ,TY

‖f‖dTX ,dTY ≤ ‖f‖dX ,dY ≤ K
2 sup
TX ,TY

‖f‖dTX ,dTY .

Proof. For any y 6= y′, let gy,y′(x) = f(x, y)− f(x, y′), and for any x 6= x′, let hx,x′(y) =
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f(x, y)− f(x′, y). Using Proposition 2, we then have

‖f‖dX ,dY = sup
x 6=x′,y 6=y′

f(x, y)− f(x, y′)− f(x′, y) + f(x′, y′)

dX(x, x′)dY (y, y′)

= sup
x 6=x′

1

dX(x, x′)
sup
y 6=y′

hx,x′(y)− hx,x′(y′)
dY (y, y′)

≤ K sup
x6=x′

1

dX(x, x′)
sup
TY

sup
y 6=y′

hx,x′(y)− hx,x′(y′)
dTY (y, y′)

= K sup
TY

sup
y 6=y′

1

dTY (y, y′)
sup
x 6=x′

gy,y′(x)− gy,y′(x′)
dX(x, x′)

≤ K2 sup
TY

sup
y 6=y′

1

dTY (y, y′)
sup
TX

sup
x6=x′

gy,y′(x)− gy,y′(x′)
dTX (x, x′)

= K2 sup
TX ,TY

‖f‖dTX ,dTY .

The other inequality is proved similarly.

Proposition 5. For any L1 measure T on X × Y , we have

1

K2
ETX ,TY ‖T‖

∗
dTX ,dTY

≤ ‖T‖∗dX ,dY ≤ inf
TX ,TY

‖T‖∗dTX ,dTY .

Proof. We essentially repeat the one-dimensional proof of Proposition 3. Since ‖f‖dTX ,dTY ≤
‖f‖dX ,dY , it follows that ‖T‖∗dX ,dY ≤ ‖T‖

∗
dTX ,dTY

, and consequently

‖T‖∗dX ,dY ≤ inf
TX ,TY

‖T‖∗dTX ,dTY

For the other inequality, fix any ε > 0. For any pair of trees (TX , TY ), we can find a
function fTX ,TY with mXfTX ,TY = 0, mY fTX ,TY = 0, and ‖fTX ,TY ‖dX ,dY ≤ 1, such that

‖T‖∗dTX ,dTY = 〈fTX ,TY , T 〉+ ε.

Then for any x, x′ ∈ X and y, y′ ∈ Y , we have

fTX ,TY (x, y)− fTX ,TY (x, y′)− fTX ,TY (x′, y) + fTX ,TY (x′, y′) ≤ dTX (x, x′)dTY (y, y′).

Taking expectations of each side and using the fact that ETXdTX (x, x′) ≤ KdX(x, x′)
and ETY dTY (y, y′) ≤ KdY (y, y′), we can easily see that

‖ETX ,TY fTX ,TY ‖dX ,dY ≤ K
2.

Consequently,

ETX ,TY ‖T‖
∗
dTX ,dTY

= ETX ,TY 〈fTX ,TY , T 〉+ ε

= 〈ETX ,TY fTX ,TY , T 〉+ ε

≤ K2‖T‖∗dX ,dY + ε.

Since ε is arbitrary, we are done.
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