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Abstract

The notion of self-stablization was first defined by Dijksra in 1974. In this short
note we define, within the framework of Petri Nets, the notion of self-stablizing petri
nets which are nets that can be recover from any possible failure. This notion is similar,
but not identical, to Dijkstra original definition. We prove that not all nets can be
transformed into self-stablizing nets. An example is given and future research directions
are discussed.
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1 Introduction

The design of fault tolerant concurrent system has been an active and creative field of
research in the last several years. One fundamental notion in this field is the paradigm
of self-stabilization which was defined by Dijkstra [Dijl]. A system which is composed of
individual processes operating concurrently is said to be self-stabilizing with respect to some
stable property p ! if starting from any initial state the system is guarantee to converge
within a finite number of steps to state in which p holds. Our intention is to formally define
a similar notation within the framework of Petri Nets.

Self-stabilization is a most desired requirement for systems which are designed to operate
in an environment where failures may occur, since systems which satisfy that requirement
are highly robust. By a failure we understand an unexpected event such as lost or de-
struction of a message, lost of an information kept in the memory of a processor etc. An
occurrence of a failure may leave the system in unpredictable state from which the system
should continue operating. Since we view the state after a failure as a new initial state, it
follows from the above description of self-stablizing systems, that no matter what may hap-
pen to the system as a result of a failure, (if the system is still operating then) it will always
return to normal behavior within a finite number of steps after a failure occurs without the
need for external interference.

As an example consider the case where two processors have to use a single common
printer. In order to avoid the situation where both try to print simultaneously (which will
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1A stable property is a property that once become true it remains true thereafter. The statements “the
system is deadlocked” and “more than five messages have been received” are examples of stable properties.




result a mixed unuseful output), they participate in a mutual exclusion protocol in which the
permission to use of the printer is a critical section. However, it is possible that as a result
of a failure both processors will be in their critical sections trying to print simultaneously.
A self-stabilizing mutual exclusion protocol would ensure that in such a case (where both
processors have the permission to print) the problem will resolve after a finite number of
attempts to use the printer.

Dijkstra’s fundamental paper has inspired other researchers to explore this phenomenon.
While some papers are concern with formal correctness proof and complexity issues of such
systems [Dij2,Er], others include new design of self-stablizing systems [BGW,Go,Kr,La]. In
this short note we define, within the framework of Petri Nets, the notion of self-stablizing
petri nets which are nets that can be recover from any possible failure. This notion is similar
(although not exactly identical) to Dijkstra’s original notion of self-stablizing systems. We
prove that there does not exist a complier which can translate any net to a similar net that
is also self-stablizing. An example of a self-stablizing arbiter is given and future research
directions are discussed.

2 Description of Petri Nets

In this section we give a brief and informal description of (super) Petri Nets (abbv. Nets)
and of net languages. For general and formal definitions we refer the reader to [EY,YE].

A netis a 3-tuple N = (P,T,V) where (1) P is a finite set of places; (2) T is a finite set
of transitions; and (3) V is a function V : (P x T)U(T x P) — {0,1,I}. It is assumed that:
PNnT=0,PUT # 0 and V(T x P) C {0,1}. If V(z,y) # O then we say that there is an
arc from z to y. The symbol I indicating an ‘Inhibiting’ arc. ‘Inhibiting’ arcs are intended
to model the fact that taking a move is enabled only when the value of a counter zero. A
transition t can be fired if and only if there is no token in any place p where V(p,t) = I,
and there is at least one token in any place p where V(p,t) = 1.

We assume that the reader is familiar with the graphical representation of nets and the
concepts of marking, firing, firing sequence, and multiple-firing sequence. Let N be a net
and M its initial marking. For a marked net S = (N, M) we define L(S) to be a (sequential)
language over the alphabet T', consisting of all firing sequences of S. Similarly, we define
7(S) to be a (parallel) language over the alphabet 27 — {0}, consisting of all multiple-firing
sequences of S.

For a marked net § = (M, N), we use the notation M[w > M’ which means that M’
is obtained from M by firing the sequence w, and say that M’ is reachable from M via w.
Also, we use the notation M[w > which means that there exists some marking, say M/,
such that M[w > M’. We call the set of all the markings reachable from M, denoted by
[M]n, the set of the legitimate markings (we omit the subscript N when it is understood
from the context). Finally, M(N ) is used to denote the (possibly infinite) set of all possible
markings of the net N.




3 Self-Stablizing Petri Nets

In this section we introduce the notion of a net that can be recover from any possible failure.
A failure in the context of petri nets means that an arbitrary number of tokens can appear or
disappear. That is, any possible marking of the net may result as a consequence of a failure.
We emphasis that after a failure of a marked net S = (M, N) the net may be marked with
an unlegitimate marking which is a marking that is not reachable from the initial marking
M. Informally, we say that S is a self-stablizing net if after the occurrence of a failure the
net will always reach a legitimate marking in a finite numbers of steps assuming no other
failure occurred in the meantime.

We say that a marking M’ leads to [M], to be denoted M’ ~» [M], iff there exists a
non-negative integer k such that for every sequence w where w € T* it is the case that
(M'[w> M" A|w| > k) = (M" € [M]). That is, after a finite number of steps starting
from M’ the net always reaches a marking which belong to [M]. In the above definition
w is a (single-) firing sequence (i.e., w € T*). However, allowing w to be a multiple-firing
sequence (i.e., w € (2T)") would make no difference.

Definition: A marked net S = (M, N) is self-stablizing iff VM’ € M(N): M’ ~ [M].

The notion of self-stablizing net can be strengthen by requiring that after a failure occurs
the net will always return within a finite number of steps from an unlegitimate marking
to the initial marking. In such a case we call the net a strongly self-stablizing net. On the
other hand it can be weaken by adding the fairness requirement that any transition which is
continuously enabled for some pre-determined (big enough) number of steps must be than
fired. In such a case we call the net a weak self-stablizing net. Other fairness assumptions
can be adopted instead of the previous one.

4 Example: An Arbiter

In this section we show how an arbiter which is not self-stablizing can be transformed into
an arbiter which is self-stablizing. The net in Figure 1, which consists of the thick lines
and circles, is the non self-stablizing arbiter, and the dashed lines describe what should be
added to that arbiter in order to make it weak self-stablizing.

The construction of an arbiter is motivated by the need to synchronize processes that
want to use shared resources. The arbiter in Figure 1, describes two processes each one
of them continuously trying to enter its critical section. The correctness condition for the
arbiter is that the two processes are never in their critical sections simultaneously. In terms
petri nets, this means that markings in which there are tokens in both critical section 1 and
critical section 2 are unlegitimate markings.

5 A Limitation of Self-Stabilization

The problem of constructing (if possible) a self-stablizing net from a net which is not self-
stablizing is an interesting problem. A transaction t is said to be dead at S = (M, N) iff
there does not exists M’ € [M] such that M'[t >. Similarly, an arc is dead if removing it
makes no difference (assuming there are no failures). Let us denote by F(S) the marked
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Figure 1. Weak self-stablizing arbiter.

net which result from S by first omitting all dead transactions and all dead arcs and than
omitting all isolated places. Clearly L(S) = L(F(S)), and also n(S§) = «(F(S)). The
problem of constructing a self-stablizing net from a net which is not self-stablizing can now
be formulated as follows: Given a net S construct a self-stablizing net S’ where S = F(S’).
Next we prove that it is not always possible to do so.

Definition: A marked net S = (M, N) is potentially self-stablizing iff there exists a self-
stablizing marked net S’ such that S = F(S5’).

Theorem: Not all marked nets are potentially self-stablizing.

Proof: The marked nets S; and S; in Figure 2, are examples for nets that are not potentially
self-stablizing. To see that, we observe that each one of these marked nets has only one
possible reachable marking, and the reachable marking of S; is different from that of Ss.
Also, in both marked nets the transition ¢ can always be fired. Now, assume to the contrary
that there exists a self-stablizing net S’; such that S; = F(S’;). From the definition of 5’y
it follows that, if there is a single token in the place p in the net S’; then the transition ¢ will
forever be the only transition that can be fired and there will always be exactly one token
in p (assuming no failure occurs). However, from the definition of Petri nets, it follows that
if (after a failure) there are two tokens in the place p in the net S’; then the transition ¢
will forever be the only transition that can be fired and there will always be two tokens in
p. This contradicts the assumption that S’; is self-stablizing. O

We notice that the theorem holds also if we assume stronger type of nets which have
also emptying arcs, logical arcs and absorbing places and restricted places [EY]. Also, the
theorem holds assuming weak self-stablization.

We say that a language L is self-stablizing iff there exists a self-stablizing net S such
that L = L(S). It is interesting to investigate the properties of self-stablizing languages.
For example, since self-stablizing nets are close under union, it follows that self-stablizing
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Figure 2. Examples for marked nets which are not potentially self-stablized.

Marked net S; Marked net S,

languages are close under the shuffle operator. Another question is how to determine for a
given net wither it is self-stablizing net or not.
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