Dynamic Partitioning
of Parallel Lisp Programs

Eric Mohr

YALEU/DCS/RR-869
October 1991

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

Dynamic Partitioning of Parallel Lisp Programs

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by

Eric Mohr
October 1991

Copyright © 1991 by Eric Mohr
ALL RIGHTS RESERVED

Abstract

Dynamic Partitioning of Parallel Lisp Programs

Eric Mohr
Yale University
1991

Many parallel algorithms are most easily expressed at a fine level of granular-
ity, but most parallel systems cannot execute fine-grained programs efficiently. In
search of efficiency, researchers often work to increase the granularity of parallel
tasks by grouping a number of potentially parallel operations together into a sin-
gle sequential thread. Most researchers have relied on either the programmer or a
parallelizing compiler to make such partitioning decisions; this work explores the
alternative approach of dynamic partitioning at runtime. Dynamic partitioning
can simplify parallel programs by eliminating the need for explicit partitioning by
the programmer and can produce a better partition than compile-time methods
which must predict program execution paths and costs in advance.

Two dynamic partitioning strategies are presented and analyzed: load-based
partitioning (LBP), where tasks are combined based on dynamic load level, and
lazy task creation (LTC), where tasks are created only retroactively as process-
ing resources become available. Methods like load-based partitioning have been
proposed before; here I describe several deficiencies of the approach and show
how lazy task creation overcomes them, both theoretically and in practice. In
particular, lazy task creation will never introduce deadlock or worsen load bal-
ancing, as can happen in some programs with load-based partitioning. And lazy
task creation consistently creates significantly fewer tasks than load-based parti-
tioning.

The advantage of LTC over LBP arises because LTC delays all partitioning
decisions and thus can recover flexibly in situations where LBP has made an
unfortunate and irrevocable partitioning decision. Further, LTC performs only
a minimal set of operations when delaying a partitioning decision, allowing sur-
prisingly low runtime overhead. This set of operations is much smaller than in
related approaches because of the key design decision to delay the parent task
rather than the child task at potential fork points.

I present details of a successful implementation of lazy task creation in Mul-T,
an efficient parallel version of Scheme running on the shared-memory Encore Mul-
timax. Measurements of Encore Mul-T demonstrate that absolute performance
and relative speedup are both quite good for a suite of parallel Lisp benchmark
programs run with dynamic partitioning.

Acknowledgments

My advisor Paul Hudak supported me in many ways over the years, not least by
having enough faith in my abilities to let me find my own path at my own speed.
He also taught me about the academic world; about writing papers and giving
talks, and encouraged me to be positive. Thank you, Paul, for truly considering
your students’ best interests.

In many ways Bert Halstead was as much my advisor as Paul. His breadth
of knowledge, incisive observations, scientific and personal integrity, and direct
and thorough communication are a constant source of inspiration. His ideas
motivated much of this work, and his insightful feedback improved it greatly.

Marina Chen rounded out the committee, lending her experience with parallel
computing issues.

Many thanks go to the members of the T project at Yale, both for building
the high-quality T system and compiler which provided the foundation for Mul-
T and for giving their knowledge, advice, and friendship over the years. Early
conversations with Jim Philbin started me thinking about parallel Lisp. Norman
Adams graciously ported his assembler for the NS 32000 processor. Richard
Kelsey taught me about compilers, Scheme, and software engineering, and was
a sounding board for my early bad ideas. He spotted a good one though; when
we kicked around a version of lazy task creation in 1986 he said “Now that
would make an interesting thesis.” David Kranz was a valuable collaborator
throughout the entire project and an invaluable source of information about the
Orbit compiler and Mul-T runtime system. I am indebted to him for developing
the first Mul-T system and for inviting me to Cambridge in 1988 to help finish.it.
Finally, T would not have existed without the creative vision of Jonathan Rees.

This work profited also from conversations with Marc Feeley, Dan Nussbaum,
Randy Osborne, Charles Consel, and Tom Blenko as well as from periodic bouts
with the dreaded Hudak Jello Wrestling Squad.

Many department cohorts helped a long seven years slide by more amiably,
notably Ajit Agrawal, Rob Bjornson, Tom Blenko, Adrienne Bloss, Charles Con-
sel, Chris Darken, Scott Fertig, Jim Firby, Eric Jones, Richard Kelsey, Amir
Kishon, David Kranz, Zhijing Mou, Jim Philbin, Raman Sundaresh, and many
others I must apologize for omitting.

ii

For providing me with a full life outside the department I must thank a whole
New England full of musicians and dancers, notably the members of Froggie on
the Carport and New Haven Morris and Sword. Malcolm Sanders gets special
appreciation for rolling along through all my worlds and helping me avoid ter-
minal seriousness. Nicole Faulkner made the final year and a half a lot more
fun.

Finally I would like to thank my family; my parents Larry and Jean and
my sister Carol, who in their own ways supported me tremendously over the
last seven years. My father’s sustained interest provided a constant basis for
perseverance. This thesis is dedicated to him.

This research was supported in part by the National Science Foundation
(Grant DCR-8451415) and the Department of Energy (Grant FG02-86ER25012).

Contents

Abstract
Acknowledgments i
1 Introduction 1
1.1 The Granularity Problem. 1
1.2 Domain: Parallel Shared-Memory Lisp 3
1.2.1 future: Imperative or Declarative? 3
1.2.2 Dynamic Partitioning with future 4
1.3 AnExample o e 6
14 Encore Mul-T 9
1.5 Scope . v i i e e e e e e e e e e e e e e e e e e 11
1.6 Overview of Main Ideas, Results, and Contributions 12
2 Dynamic Partitioning Methods Described and Compared 14
2.1 Load-Based Partitioning 14
2.1.1 Deadlock. 15
2.1.2 Load Balancing 18
2.1.3 Number of Tasks Created 19
2.14 Programmer Involvement., 21
2.2 Lazy Task Creation 21
221 Deadlock. oo 23
222 loadBalancing, 26
2.2.3 Number of Tasks Created 27
2.24 Programmer Involvement 28

3 Lazy Task Creation: Data Structures, Algorithms, and Imple-

mentation 29
3.1 Why Implementation is a Challenge 30
3.2 The Lazy Task Queue, 31
3.3 Encore Implementation. 34

3.3.1 Data Structures: The Stack and Lazy Task Queue 35

i1l

CONTENTS

3.3.2 Synchronization Between Producers and Consumers

3.3.3 Example of Lazy Future Call and Return
3.34 Steal Operation,
335 Blocking e
3.3.6 Miscellaneous Considerations

4 Implementation: Improvements and Assessment

4.1 Optimizing ETCandLBP
4.1.1 Favoring the Child Task
41.2 FIFOor LIFO Queues?.
41.3 PoliteStealing.

4.2 Runtime Overhead of Partitioning Strategies
4.2.1 Eager Task Creation
422 Lazy TaskCreation

4.3 Overhead of Copying in LTC Steal Operation

Goals and Methodology of Performance Measurements

5.1 Why You Should Believe These Numbers
51.1 OverheadofLisp
5.1.2 Overhead of Sequential Mul-T
5.1.3 Overhead of Parallel Algorithms
5.1.4 Overhead of Multiprocessing

52 Methodology o i

5.3 Benchmark Programs Described,

Benchmark Results

6.1 Overhead of Partitioning Strategies

6.2 How Granularity Affects Efficiency

6.3 How Tree Depth Affects Efficiency.

6.4 Effect of ETC and LBP Scheduler Changes

6.5 Number of Tasks Created

6.6 Performance of Benchmark Programs
6.6.1 fatwalkot
6.6.2 Four Programs with Excellent Speedup
6.6.3 Two Programs with Not Quite as Good Speedup
6.64 NumericalData

Related Work

7.1 Methods Resembling Load-Based Partitioning

7.2 Methods Resembling Lazy Task Creation

7.3 Other Implementations of Lazy Task Creation

7.4 Other Related Methods ¢« v v i i v v v i e e s e

37
43
47
48
50

51
51
52
53
54
54
55
57
57

60
60
61
61
63
64
64
66

71
72
73
75
7
78
82
83
83
86
87

90

CONTENTS

8 Future Work
8.1 Handling Fine-grained Iterative Parallelism

8.2 Implementing LTC in Support of Other Parallel Languages . . .

8.2.1 The Algol Family
8.2.2 Lazy Functional Languages

.............

8.3 Dynamic Partitioning on Larger Parallel Machines

8.4 Demonstrating that Parallel Lisp is Useful
9 Conclusions
Bibliography

Trademarks

.............

96
96
99
99
101
102
103

106
108

114

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

5.1

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8

Toforkormot tofork. 5
Direct execution of psum-tree. 7
BUSD execution of psum-tree on four processors. 8
Program find-primes could deadlock with load-based partitioning. 17

Three lazy task creation scenarios. 22
With oldest-first scheduling a retroactive fork would occur at a. . 23
Stack contains necessary context for retroactive fork. 32
Lazy task queue data structures and operations. 33
Stack and lazy task queue in Encore Mul-T, before and after steal. 36
3 lazy task queue scenarios., 39
“Lockless™ synchronization algorithm. 40
Program fib,compiled. 44
Program pfib, compiled with lazy task creation. 45
Blocking a task by tail-biting. 48
Stealing ataskinpfib.. 49
Standard and revised algorithms for cyclic reduction of tridiagonal

systems. L e e e e e 70
Granularity vs. efficiency for tree benchmark, by partitioning

strategy. L e e e e e 74
Effect of ETC and LBP scheduling improvements on tree bench-

mark. ... e 75
Tree depth wvs. efficiency for tree benchmark, by partitioning

strategy. e e e e e e e 76
Task counts for fixed tree height or fixed processor count. 81
Performanceof rantree. 82
Performance of fatwalk. 84
Performance of abisort, tridiag, queens, and fib. 85
Performance of allpairsandmst. 86

vi

List of Tables

5.1
6.1

6.2

6.3

6.4

6.5
6.6

Overhead introduced by Mul-T compiler in sequential code .

Overhead per call of future and touch in sequential code, in mi-

croseconds, for each benchmark program and partitioning strategy.

How scheduler changes to favor the child task and adopt a FIFO
stealing policy improve performance for tree and rantree. . .
How scheduler changes improve performance for benchmark pro-
e - o 0TS
Number of tasks created in Mul-T benchmarks, by partitioning
strategy. L e s
How task count varies with tree depth and number of processors.
Performance of Mul-T benchmark programs.

vii

62

72

78

79

79
80

Chapter 1

Introduction

Many paralle] algorithms are most easily expressed at a fine level of granularity,
but most parallel systems cannot execute fine-grained programs efficiently. In

“search of efficiency, researchers often work to increase the granularity of parallel
tasks by grouping a number of potentially parallel operations together into a sin-
gle sequential thread. Most researchers have relied on either the programmer or a
parallelizing compiler to make such partitioning decisions; this work explores the
alternative approach of dynamic partitioning at runtime. Dynamic partitioning
can simplify parallel programs by eliminating the need for explicit partitioning by
the programmer and can produce a better partition than compile-time methods
which must predict program execution paths and costs in advance.

This chapter sets the stage for a detailed investigation of dynamic partition-
ing in parallel Lisp systems, introducing two specific dynamic strategies. These
strategies will be explored using Mul-T, an efficient parallel version of Scheme
running on the shared-memory Encore Multimax.

1.1 The Granularity Problem

The problem of specifying how an algorithm’s operations are divided into po-
tentially parallel tasks is commonly known as partitioning; the granularity of
a given partition describes the size of its tasks. Granularity is usually speci-
fied fairly loosely; tasks in a coarse-grained partition perform a relatively large
number of operations while fine-grained tasks perform relatively few operations.

Although an algorithm can often be partitioned in more than one way, there is
often a certain partition which is much easier to express than any others because
it fits compatibly within the algorithm’s control structure. Ideally, a program-
mer should be able to use the most convenient partition without worrying about
granularity. But, executing operations in parallel always involves extra expense
due to synchronization, communication, and/or task creation costs in the un-
derlying parallel system. If a partition is too fine-grained these costs will be

2 Chapter 1. Introduction

overwhelmingly large and the program will perform poorly.

To execute fine-grained programs efficiently some researchers have looked to
hardware specially designed to handle fine-grained tasks [Arvind & Culler 86,
Gurd et al 85). More common are software methods, where an alternate partition
is sought which is coarse enough to allow efficient execution. The question is,
how shall this coarser partition be chosen? The most common approaches involve
a static partitioning of operations to tasks, by either a programmer or compiler.
In this work we will explore the alternative of dynamic partitioning, motivated
by some of the difficulties inherent in static partitioning.

In many systems the programmer is responsible for all granularity decisions,
specifying partitions explicitly in the source code. While specifying an effi-
cient partition can be quite easy for some programs, for other programs this
approach can require substantial programmer effort and can decrease program
clarity. Building tasks of an acceptable size may require additional control con-
structs, making the resulting program more difficult to understand and modify.
For example, a program where each task handles a 10 x 10 section of a matrix
is likely to be much more complex than a program where each task handles one
matrix element. Further, finding the best value for a “chunking” parameter (such
as 10 x 10) may require time-consuming experimentation.

At the other end of the spectrum, the programmer may leave partitioning
decisions to a parallelizing compiler. To achieve good performance the com-
piler must create tasks of sufficient size by estimating the cost of executing var-
ious pieces of code [Goldberg 88, Hudak & Goldberg 85, Sarkar & Hennessy 86,
Debray et al 90). But when execution paths are highly data-dependent (as for
example with recursive symbolic programs) the cost of a piece of code is often
unknown at compile time. If only known costs are used the tasks produced may
still be too fine-grained. And for languages that allow mutation of shared vari-
ables it can be quite complex to determine where parallel execution is safe, and
opportunities for parallelism may be missed.

There are two additional difficulties with static partitioning. First, mak-
ing a good static partition requires the programmer or compiler to have some
knowledge of the amount of processing resources that will be available when the
program is run. But if the code in question is run in parallel with other code
or on a multi-user machine the built-in assumptions will be incorrect because
other tasks will be competing for the same resources. Secondly, some programs
do not lend themselves well to static partitions. Processing resources may need
to be concentrated in different areas as execution progresses; in this case a good
partition needs to change adaptively to maintain a balanced load.

Dynamic partitioning, where partitioning decisions are made on-the-fly at
runtime, has the potential of alleviating all of these difficulties. Programs are
simpler when free of explicit partitioning directives. No parameters need to be
calibrated and no assumptions about available processing resources are built in.

1.2. Domain: Parallel Shared-Memory Lisp 3

And the partition can adapt to actual program behavior, even when execution
paths are highly data-dependent. But, care must be taken to minimize runtime
overhead when building a system using dynamic partitioning; a perfect partition
is of no use if creating it adds overwhelmingly to a program’s execution time.

This discussion of the granularity problem and the various approaches to
solving it has been rather general. After introducing the domain of parallel
Lisp and outlining the specific dynamic partitioning strategies to be explored we
will look at a specific program which clearly shows the granularity problem, the
limitations of static partitioning, and the potential of dynamic partitioning.

1.2 Domain: Parallel Shared-Memory Lisp

Many parallel systems provide some form of lightweight processes to execute the
tasks in a chosen partition of an algorithm’s operations. These tasks or threads
are created at runtime and often have a short lifetime compared to the total
execution time of the program. Lightweight processes are a common imple-
mentation technique for paralle] dialects of languages from both the applicative
family and the Algol family. In the applicative family (Lisp, functional lan-
guages, logic languages), directives to create lightweight processes may appear
as language constructs [Halstead 85, Gabriel 84] or as annotations in source code
[Hudak 86] or may be inserted by a compiler [Hudak & Goldberg 85, Larus 89,
Debray et al 90]. In the Algol family, lightweight processes may be created by
language constructs of the “fork/join” variety or may be provided as part of a
multitasking library or “threads package”.

The granularity problem arises in all of these languages, with potential so-
lutions spanning the spectrum of approaches outlined in the previous section.
Likewise, dynamic partitioning ideas may be applied in any of these languages.

Of the above languages, Multilisp [Halstead 85, Halstead 86, Halstead 89] has
been one of the most influential. Multilisp’s future construct offers a concise
and flexible mechanism for introducing parallelism in a variety of styles. The
dynamic methods explored in this work will use a descendent of Multilisp known
as Mul-T [Kranz et al 89), a parallel version of Scheme [Rees et al 86] based on
future. The applicability of the ideas developed here to other languages will be
discussed in Chapter 8.

1.2.1 future: Imperative or Declarative?

The dynamic partitioning methods we will be discussing are based on chang-
ing the operational interpretation of future. Before discussing the variations
however, let us review the original semantics of future. '

4 Chapter 1. Introduction

In Multilisp, the expression (future X) creates a separate task (the child)
to evaluate X, and returns a placeholder! for the eventual value of X. The
placeholder is said to be unresolved until X’s value has been computed, at which
point the placeholder is resolved. An operation which uses a placeholder’s value is
said to touch the placeholder; any task which touches an unresolved placeholder
will be suspended, or blocked, until the placeholder is resolved.

This original semantics will be called eager task creation (ETC) because exe-
cuting future always causes a fork, that is, always causes a separate task to be
created.

The dynamic partitioning strategies we will be exploring depend on a crucial
shift in how future is viewed. We will shift from viewing (future X) impera-
tively—as a statement that X must be executed in a separate task—to viewing
it declaratively as a statement that X may be executed in a separate task.

With this declarative view the programmer uses future to identify potential
fork points in the source code. The runtime system may choose not to create a
separate task for a given instance of future, thereby increasing task granularity
and decreasing task creation overhead. The programmer takes on the burden of
identifying what can be computed safely in parallel and leaves the decision of
exactly how the division will take place to the runtime system; the programmer’s
task is to ezpose parallelism while the system’s task is to limit parallelism.

There is a conscious choice here that parallelism should be identified by the
programmer rather than discovered by a compiler. It happens that the dynamic
partitioning methods we will be discussing would also be useful with paralleliz-
ing compilers; but, experience with numerous programs written in the “mostly
functional” style common with Scheme suggests that a program’s parallelism
is usually expressed quite easily using a small number of future forms. The
challenge in writing a parallel program usually lies in recasting a sequential al-
gorithm in a way that exposes its parallelism rather than in deciding where to
place future forms. This recasting work must be done regardless of whether the
programmer or a compiler is identifying parallelism, so the programmer must do
roughly the same amount of work in either type of system. Specifying potential
fork points “by hand” allows greater control, as well as insurance that an impor-
tant fork point will not be overlooked by a parallelizing compiler in a program
with complex control structure.

1.2.2 Dynamic Partitioning with future

When future is viewed as a potential fork point the runtime system has two
choices. Figure 1.1 shows these two options for the example code fragment

1falstead uses the term future to describe the object returned by a future form; the term
placeholder is used here to avoid overloading the word “future”.

1.2. Domain: Parallel Shared-Memory Lisp

(+ (future R) L)

Fork

e Parent task handles L

e Child task created to handle R

e R and L evaluated in parallel

No Fork

e Parent task handles R and L

e R is “inlined” — no task creation
overhead

e R and L evaluated sequentially

¢ Granularity of parent task increased

Figure 1.1: To fork or not to fork.

(+ (future R) L) 2

where R and L denote subexpressions to be evaluated. This expression declares
that the subexpressions R and L may be computed in parallel before they are
added. The diagrams show two partitions of the call tree for this expression,
with dotted lines encircling the nodes executed by a single task. If a fork occurs
the parent task computing L and the child task computing R are executed in
parallel; if no fork occurs the parent task computes R “in-line” so that R and L
are evaluated sequentially. This inlining of R by the parent task eliminates the
overhead of creating and scheduling a separate task and creating a placeholder
to hold its value, and increases the granularity of the parent task.

Altering the semantics of future raises the question of whether combining
tasks in this manner is safe, and the related question of what fairness guarantees
are made by the runtime system’s task scheduler. Issues of safety, fairness and
the potential for deadlock will be discussed in Sections 2.1.1 and 2.2.1.

2For simplicity the examples in this chapter are written as if procedure arguments were
evaluated left-to-right; in fact Mul-T’s argument evaluation order is indeterminate and this
example should be written as:
(let* ((r (future R))
(1 1L))
(+r 1)

6 Chapter 1. Introduction

Inlining can mean that a program’s runtime granularity (the size of tasks
actually executed at runtime) is significantly greater than its source granularity
(the size of code within the future constructs of the source program). A program
will execute efficiently if its average runtime granularity is large compared to the
overhead of task creation, providing of course that enough parallelism has been
preserved to achieve good load balancing.

The question is, how shall the runtime system decide whether to fork or
not for a given instance of future? We shall consider two strategies, load-based
partitioning® (LBP) and lazy task creation (LTC) [Mohr et al 90, Mohr et al 91].

With load-based partitioning, the forking decision is based on the system’s
current load of tasks—(future X) means, “If the system is not loaded, make
a separate task to evaluate X; otherwise evaluate X in the current task.” A
load threshold T' indicates how many tasks must be queued before the system
is considered to be loaded. Whenever a call to future is encountered, a simple
check of task queue length determines whether or not a separate task will be
created.

As we shall see, load-based partitioning can produce a satisfactory partition
in many programs. But, difficulties arise because partitioning decisions are based
only on a momentary snapshot of system load and cannot be altered if conditions
change later on (see Section 2.1). Lazy task creation was devised to address these
difficulties by relaxing the constraints on when a partitioning decision must be
made: at every potential fork point LTC chooses not to fork, but saves enough
information so that idle processors can make retroactive forks at a later time.
Tasks are only created lazily as processing resources become available.

With lazy task creation (future X) means “Start evaluating X in the cur-
rent task, but save enough information so that its continuation (representing all
remaining work except X) can be moved to a separate task if another processor
becomes idle.” We say that idle processors steal tasks from busy processors; task
stealing becomes the primary means of spreading work in the system.

The call tree of a fine-grained program has an overabundance of potential
fork points. If each results in a separate task as with the static partition of eager
task creation, bookkeeping costs will be overwhelmingly high and performance
will suffer. With dynamic partitioning our goal is to fork at only a small sub-
set of potential partitioning points, maximizing runtime task granularity while
preserving parallelism and achieving good load balancing.

3This method was referred to as load-based inlining in [Mohr et al 90, Mohr et al 91}; “par-
titioning” seems more descriptive than “inlining” and also avoids confusion with the common
compiler technique of procedure inlining.

1.3. An Example 7

Figure 1.2: Direct execution of psum-tree.

1.3 An Example

Let us consider a simple example of the granularity problem and its potential
solutions. The following Scheme program sums the leaves of a binary tree:

(define (sum-tree tree)
(if (leaf? tree)
(leaf-value tree)
(+ (sum-tree (right tree))
(sum-tree (left tree)))))

(where leaf?, leaf-value, left, and right define the tree datatype). The
natural way to express parallelism in this program is to indicate that the two
recursive calls to sum-tree can proceed in parallel. This is accomplished by
adding one future:

(define (psum-tree tree)
(if (leaf? tree)
(leaf-value tree)
(+ (future (psum-tree (right tree)))
(psum-tree (left tree)))))

The natural expression of parallelism in this algorithm is rather fine-grained.
With eager task creation this program would create 2¢ tasks to sum a tree of depth
d; the average number of tree nodes handled by a task would be 2. Figure 1.2
shows this partition pictorially; each circled subset of tree nodes is handled by
a single task. Unless task creation is very cheap this partition will lead to poor
performance.

What would be the ideal partition of this task tree? The ideal partition would
maximize runtime task granularity while maintaining a balanced load. For a

8 Chapter 1. Introduction

Figure 1.3: BUSD execution of psum-tree on four processors.

divide-and-conquer program like this one, that means expanding the task tree
breadth-first by spawning tasks until all processors are busy and then expanding
the tree depth-first within the task on each processor. This ideal partition will be
called BUSD, for Breadth-first Until Saturation, then Depth-first. Figure 1.3
shows a BUSD partition for a system with 4 processors.

How can this ideal partition be achieved? A parallelizing compiler might
be able to increase granularity by unrolling the recursion and eliminating some
futures, but in this example we want fine-grained tasks at the beginning so as to
spread work as quickly as possible (breadth-first). The compiler might possibly
produce code to do this as well if supplied with information about available
processing resources, but making such a transformation general is a difficult task
and would still have the parameterization drawbacks noted earlier.

What about specifying a partition directly in the source code? In Qlisp
[Gabriel 84, Goldman 88], the programmer may control partitioning by supplying
a predicate which, when evaluated at runtime, will determine whether or not
a separate task is created.? psum-tree could be rewritten using Qlisp’s spawn
construct (equivalent to future with an additional predicate argument), yielding
a program very similar in style to an example in [Gabriel 84):

(define (psum-tree-2 tree cutoff-depth)
(if (leaf? tree)
(leaf-value tree)
(+ (spawn (> cutoff-depth 0)
(psum-tree-2 (right tree)

(- cutoff-depth 1)))
(psum-tree-2 (left tree)

(- cutoff-depth 1)))))

4One such predicate, (gemptyp) [Goldman et al 89], tests the length of the work queue,
achieving the same effect as load-based partitioning.

1.3. An Example 9

In this example, cutoff-depth specifies a depth beyond which no tasks should
be created. The predicate (> cutoff-depth 0) tells spawn whether or not to in-
line the recursive call. A cutoff-depth value of 2 would achieve BUSD execution
similar to that shown in Figure 1.3; below level 2 all tasks are inlined.

This solution has two problems. First, the code has become more com-
plex by the addition of cutoff-depth—it is no longer completely straightfor-
ward to understand what this program is doing. Second, supplying a value for
cutoff-depth may require time-consuming experimentation. And the best value
will vary with the amount of available processing resources, which as argued ear-
lier may not be reliably known until runtime.

It appears that finding an acceptable static partition for this program intro-
duces unattractive difficulties. With a dynamic partition on the other hand we
may be able to achieve the BUSD partition attempted in psum-tree-2 without
sacrificing the clarity of psum-tree. How would execution of psum-tree proceed
under each of our dynamic partitioning strategies?

First let us consider load-based partitioning. In an ideal run of psum-tree on
a four-processor system with LBP the first three occurrences of future (at nodes
a, b, and ¢ of Figure 1.3) find that processors are free, and separate tasks are
created (breadth-first). Depending on the value of the load threshold parameter
T, a few more tasks might be created before the backlog becomes high enough
to suppress task creation. But since there is a large surplus of work, most tasks
are able to defray the cost of their creation by inlining a substantial subtree
(depth-first).

Now consider an ideal run of psum-tree with lazy task creation. At the first
potential fork point a no fork is performed so execution continues with the subtree
rooted at b. But an idle processor immediately imposes a retroactive fork and
takes over execution of the subtree rooted at c. Similarly, no forks occur initially
at b and ¢ but are made retroactively by the two remaining idle processors. Now
all processors are busy so no further stealing takes place and each processor winds
up executing one of the circled subtrees of Figure 1.3.

This execution pattern depends on an oldest-first stealing policy: when an
idle processor steals a task, the oldest available fork point is chosen. In this
example the oldest fork point represents the largest available subtree and hence
a task of maximal runtime granularity.

It appears then that dynamic partitioning can solve the granularity prob-
lem for psum-tree—achieving a BUSD partition without the need for explicit
partitioning—if actual implementations can live up to the ideal presentation
above. Both lazy task creation and load-based partitioning will be examined
much more closely in the coming chapters, after a few more introductory topics
are covered.

10 Chapter 1. Introduction

1.4 Encore Mul-T

All three of the execution strategies under consideration—eager task creation,
load-based partitioning, and lazy task creation—have been built into an im-
plementation of Mul-T which runs on the Encore Multimax system, a shared-
memory /shared-bus multiprocessor. Encore Mul-T is a fully realized system
containing a well-integrated user interface which allows interactive error recovery
in parallel programs.

A primary design goal (and achievement!) of Encore Mul-T was to show
that a parallel Lisp system based on future could give “production-quality”
performance [Kranz et al 89]. Previous implementations of Multilisp had been
interpreter-based and had not performed well in absolute terms. In contrast,
Mul-T uses the T system’s Orbit compiler [Kranz et al 86, Kranz 88], a high-
performance optimizing compiler. In addition, the Mul-T runtime system was
carefully optimized to make (eager) task creation with future as cheap as pos-
sible.

The resulting system achieves its performance goals for medium to coarse-
grained programs, showing that eager task creation can be quite acceptable.
The overhead of creating, scheduling, executing, and retrieving the value from
a task in Encore Mul-T is 143 instructions on the Multimax’s NS 32000 Series
processors. However, this overhead is definitely not acceptable for finer-grained
programs (as will be seen in the performance figures of Chapter 6), motivating
this investigation of alternative partitioning strategies.

The performance of ETC will figure strongly in evaluating the performance
of the alternative strategies, so it is important at this point to cover a few details
about the standard Encore Mul-T scheduler.

Each Mul-T processor (actually a UNIX process acting as a virtual processor)
manages two task queues, its new task queue and its suspended task queuve. When
future is executed by a processor P a child task object is created and placed on
P’s new task queue. P also creates a placeholder object which is returned to the
parent task as the result of the future call. If the parent task touches the place-
holder before the child task has resolved it (or if the parent touches some other
unresolved placeholder), the parent’s state is saved and the parent task object is
placed on a queue of blocked tasks associated with the placeholder. When the
placeholder becomes resolved each blocked task is placed on the suspended task
queue of the processor where it last executed.

Tasks run to completion unless they block. When a processor becomes idle
because its current task either blocks or runs to completion the processor will
search queues for a new task in the following order:

1.5. Scope 11

its local suspended task queue
its local new task queue
remote new task queues
remote suspended task queues

il o

The purpose of the suspended task queue is to increase data locality and reduce
cache turbulence by favoring suspended tasks over new tasks and resisting the
migration of suspended tasks.

All task queue operations follow a last-in-first-out (LIFO) policy, so the most
recently enqueued tasks are executed first. An optimization to this policy, as
well as some other improvements to the standard Encore Mul-T scheduler, were
discovered in the course of this work and are discussed in Section 4.1.

An understanding of the standard Encore Mul-T scheduler at the level pre-
sented here should suffice for the topics covered in this thesis.

1.5 Scope

This work restricts its focus in two important ways. First, lazy task creation
requires a shared-memory hardware model. However, the shared memory need
not be a centralized resource; lazy task creation has also been implemented on
distributed (and therefore scalable) shared memory machines as discussed in
Section 7.3.

Second, dynamic partitioning is only effective when a program’s task execu-
tion tree is fairly bushy as opposed to spindly:

A bushy task tree. A spindly task tree.

Bushy task trees result for example from divide-and-conquer algorithms and re--
cursive search algorithms; spindly task trees result for example from iteration
over a linear data structure.

With both load-based inlining and lazy task creation the efficiency of a fine-
grained program is only increased when most tasks are able to inline a substantial
subtree of other tasks. With spindly task trees there are too few opportunities
for inlining and runtime task granularity remains rather fine.

In evaluating the performance of LBP and LTC we will consider pnma.nly
fine-grained programs with bushy call trees. Ideas for increasing the efficiency of
fine-grained programs with spindly task trees appear in Section 8.1.

12 Chapter 1. Introduction

Still, we will keep in mind throughout that dynamic partitioning must not
degrade the performance of any program—even though efficiency may not be
improved in programs with spindly task trees, we must ensure that efficiency is
not worse than with eager task creation. If this requirement is met, a system may
safely apply dynamic partitioning to all programs. Explicit partitioning may still
be added to some programs (like fine-grained programs with spindly task trees)
if performance is not satisfactory.

1.6 Overview of Main Ideas, Results, and Contributions

As an overview of the entire thesis this section summarizes specific ideas, results
and contributions, with the appropriate section numbers shown in parentheses.

Fine-grained parallel programs are difficult to execute efficiently. Dynamic
partitioning methods have the potential to overcome the limitations inherent
in commonly used methods of static partitioning, if runtime overhead can be
controlled. (1)

Load-based partitioning is an easily implemented dynamic partitioning method.
But LBP has several drawbacks, not usually noted by other researchers. Because
partitioning decisions are based only on momentary load level and are irrevoca-
ble, LBP can lead to bad load balancing and even deadlock. LBP also creates
more tasks than necessary, and requires programmer involvement in setting the
load threshold T'. (2.1)

Lazy task creation addresses the drawbacks of LBP. With LTC no task is
ever irrevocably inlined, solving the deadlock and load-balancing problems. LTC
requires no parameterization and, with its oldest-first policy for task stealing,
creates many fewer tasks than LBP. (2.2)

Although LTC has several advantages over LBP, LBP can be implemented
simply with low runtime overhead, just 2 instructions per future call in Encore
Mul-T. Cheap implementation of LTC is a challenge because of the need to save
information at every potential fork point. In fact though, LTC’s lazy task queue
can be implemented simply as a block of pointers into a task’s stack. Using a
lockless algorithm to synchronize a task producer with stealing consumers, the
overhead of a lazy future call and return in Encore Mul-T is reduced to only 8
instructions. (3)

In 3 areas, insight gained from studying LTC can be used to improve the
performance of both eager task creation and LBP despite increasing the overhead
of task creation. In particular, comparative performance measurements show that
it is better to give scheduling preference to the child task than the parent task
when forking even though the latter strategy requires fewer operations. (4.1)

Performance measurements of Encore Mul-T reveal the benefits of dynamic
partitioning, as well as supporting numerous claims made in the text. Both LTC

1.6. Overview of Main Ideas, Results, and Contributions 13

and LBP perform substantially better than ETC. LTC creates substantially fewer
tasks than LBP and performs better than LBP for all but one of the benchmark
programs; the runtime overhead of LTC has been acceptably minimized. (6)

A study of all potential sources of overhead in the execution of a Mul-T
program shows that the overhead of dynamic partitioning really is low, rather
than just looking low because it is masked by overhead in the rest of the system.
(5.1)

Other research efforts have adopted a strategy resembling LTC whereby the
set of operations executed at potential fork points is reduced to only those needed
if both branches are ultimately executed locally. But LTC is able to reduce the
set substantially more than these other approaches because of the key design
decision to delay the parent task rather than the child task at potential fork
points. Thus the overhead of task creation is significantly lower with LTC than
with these other approaches. (7.2)

The main contributions of this work are a detailed investigation of load-based
partitioning and its drawbacks, a detailed development of the idea of lazy task
creation, a robust and efficient implementation of LTC in Encore Mul-T, and
thorough performance measurements demonstrating the effectiveness of dynamic
partitioning.

Chapter 2

Dynamic Partitioning Methods
Described and Compared

In this chapter load-based partitioning and lazy task creation are considered
in more detail. Several drawbacks of load-based partitioning are identified and
used as the basis for a qualitative comparison of the two strategies; quantitative
comparisons will appear in later chapters.

2.1 Load-Based Partitioning

The idea behind load-based partitioning is to use the system’s workload as a
basis for forking decisions, by forking whenever the workload is light and inlining
whenever the workload is heavy. When the workload is light processors are likely
to be idle; forking supplies them with work and increases parallelism. On the
other hand a backlog of work means plenty of parallelism is available and suggests
that task creation overhead can be saved by inlining.

The idea of using system load information as a basis for dynamic partitioning
is not new. Methods resembling load-based partitioning have been proposed for
systems based on a variety languages from Lisp [Weening 89] to C [Gabber 90].
In most approaches as well as in the Mul-T implementation of load-based parti-
tioning, task queue length is used as a measure of the system’s current workload.

In Mul-T), a threshold parameter T indicates how many tasks must be queued
before the system is considered to be loaded. (future X) means, “If the exe-
cuting processor’s local task queue contains fewer than T tasks, make a separate
task to evaluate X; otherwise evaluate X in the current task.” In fact, load-
based partitioning can be implemented efficiently as a simple macro. Here is an
example expansion:

14

2.1. Load-Based Partitioning 15

(future (f x)) = (if (< (local-queue-length) T')
(eager-future (f x)) ;fork
(f x)) s inline

(where eager-future guarantees that a separate task will be created). Local
queue length is only an approximate measure of system load; however, using
global information would require contention, introducing overhead which would
increase in impact as more processors were added.

Load-based partitioning has an appealing simplicity, and as we shall see later
it performs well for many programs. But there are several factors, not usually
noted by other researchers, which decrease its effectiveness. A major factor is
that partitioning decisions are irrevocable—once the decision to inline a task
has been made there is no way to revoke the decision at a later time, even if it
becomes clear at that time that doing so would be beneficial.

The following list summarizes the drawbacks of load-based partitioning; the
following sections discuss each in turn.

1. LBP can cause deadlock in some programs.

2. LBP can significantly degrade the performance of some programs because
of poor load balancing.

3. LBP creates many more tasks than are necessary for a good partition.

4. The programmer must decide when to apply LBP and may need to set the
load threshold T'.

2.1.1 Deadlock

Perhaps the most serious problem with load-based partitioning is that, for some
programs, irrevocable inlining is not a correct optimization. Load-based par-
titioning can lead to deadlock because the decision to inline a task imposes a
specific sequential evaluation order on tasks whose data dependencies might re-
quire a different evaluation order: the inlined child must complete before its
parent can continue.

We shall consider two examples where load-based partitioning might cause
deadlock in programs which are deadlock-free under eager task creation. The
first example is straightforward: an inlined child waits for a semaphore which
its “welded-on” parent will never be able to release. The second example, a
prime-finding program, shows that deadlock is possible even in programs without
explicit inter-task synchronization. If the wrong tasks are inlined a task testing

16 Chapter 2. Dynamic Partitioning Methods Described and Compared

the primality of a number could deadlock trying to access divisor primes which
haven’t yet been computed by its welded-on parents.

The question of deadlock is related to the concept of fairness in scheduling;
however, because the fairness issue will be more relevant when discussing a solu-
tion to the deadlock problem, a precise characterization of fairness assumptions
is deferred until Section 2.2. A precise understanding of fairness assumptions is
not required to understande the following examples.

The first example of deadlock, due to Halstead, appeared in [Kranz et al 89]:

(let ((s (make-semaphore))
(x 0))
(semaphore-p s)
(let ((a (future (begin (semaphore-p s)
(+ x 1))
(set! x (£ 17))
(semaphore-v s)

(+ a 1)))

The parent creates a semaphore, acquires it, makes a future call, and ul-
timately releases the semaphore; meanwhile the child waits on the semaphore
before proceeding. Deadlock would occur if the future call were inlined; the in-
lined child would block on the semaphore and the welded-on parent would never
be able to reach the semaphore-v operation.

This example suggests that load-based partitioning and explicit inter-task
synchronization do not mix well. A prudent programmer could respond by elect-
ing to forego load-based partitioning in programs with explicit synchronization;
it is possible that dynamic partitioning would not be missed in such programs.
But, as the next example shows, deadlock is possible even without explicit inter-
task synchronization. Recognizing all programs where the potential for deadlock
exists is not a simple task; further, there is no guarantee that some such programs
might not require dynamic partitioning for good performance.

The second example find-primes, shown in Figure 2.1, is rather more com-
plex than the first. It was not contrived to show deadlock however; this algorithm
seemed the most natural way to write a prime-finding program in Mul-T. It uses
a standard (and unsophisticated) prime-finding algorithm, checking each odd in-
teger n for primality by looking for divisors among the primes found so far, up
to v/n. In addition to introducing parallelism future adds a flavor of lazy evalu-
ation; primes are conveniently added to the end of the same list which holds the
smaller primes used in divisor testing.

Initially, al1-primes is bound to a lazily generated list of all the odd primes.’
The function find-primes>=n generates a tail of all-primes—first, a future

14elay, a Scheme primitive which creates a placeholder object but does not spawn a task,
is used instead of future to avoid a race condition in the letrec binding.

2.1. Load-Based Partitioning 17

(define (find-primes limit)
(letrec ((all-primes (cons 3 (delay (find-primes>=n 5))))
(find-primes>=n
(lambda (n)
(if (> n limit)
0
(let ((rest (future (find-primes>=n (+ n 2)))))
(if (prime? n all-primes)
(cons n rest)
rest))))))
(cons 2 all-primes)))

(define (prime? n primes)
(let ((prime (car primes)))
(cond ((> (* prime prime) n) #t)
((zero? (mod n prime)) #f)
(else (prime? n (cdr primes))))))

Figure 2.1: Program find-primes could deadlock with load-based partitioning.

call is made to find all (odd) primes above n; second, n is checked for primality
by walking down the list al1-primes of primes already generated. If n is found
to be prime it is added to the head of the local list of all primes.

With eager task creation a separate task is created to test each value of n for
primality:

-6 6 @ @ e

These tasks could be scheduled in any order, but a task testing a large value of
n might block when walking down the list of known primes if the tasks testing
small values of n had not yet resolved their placeholders. Here is one possible
scenario during eager execution:

STHEE- ()) R e

The tasks for n = 3,5,9,13,15,17 have been executed, while the tasks for n =
7,11 are still unresolved. 5, 13, and 17 have been found to be prime and added
to the list; 9 and 15 have been found to be composite and have not been added.

18 Chapter 2. Dynamic Partitioning Methods Described and Compared

No blocking has occurred; for example, the task for n = 17 was able to run
to completion because only the first two elements of the list of primes (3 and 5)
were needed to determine that 17 is prime.

Next, consider this possible execution snapshot of find-primes with load-
based partitioning:

3= (5} fred (sis) oo

Inlining a future call in find-primes causes the parent task to test an additional
value of n; if several successive future calls are inlined, a single task will test
several values of n. The crucial point to glean from the above picture is that a
task testing several values of n tests the largest value first. This happens because
the parent computation to test n is not executed until after the inlined child
computation (which tests n + 2) has returned.

If the wrong tasks are inlined, deadlock can result:

3] ooo

Here, inlining three future calls has created a task (call it T') to test n = 11,9,7,5
in that order. This task would ultimately resolve a placeholder (the “cloud” in
the above picture, call it P) with its return value, namely a list containing 5, 7,
11, and a second placeholder for the rest of the list. T”s first act will be to call
(prime? 11), which will attempt to access the second element of all-primes.
But this access will cause T to block on the unresolved placeholder P since the
second element of the list has not yet been computed. Unfortunately, T itself is
responsible for computing this second element (5). T has blocked on a placeholder
which only T can resolve, so deadlock has occurred.

A dynamic partitioning method which could be used without the danger of
deadlock would be preferable to load-based partitioning.

2.1.2 Load Balancing

Although designed to balance processor loads adaptively, load-based partitioning
can actually degrade rather than improve the performance of some programs by
creating decidedly unbalanced loads. Because partitioning decisions are based
only on a momentary snapshot of system load, early decisions to inline tasks may
cause processors to be idle at a later time when there are too few opportunities
to create more tasks.

As an example of this effect, consider the following call graph of a coarse-
grained iterative program executed on 4 processors with load-based partitioning:

2.1. Load-Based Partitioning 19

Early partitioning decisions lead to task creation because system load is light;
however, once all processors are busy the processor faced with a partitioning
decision at node a chooses to inline, and proceeds to quickly do the same down
the remainder of the spine. Once the other processors have finished their tasks
they must remain idle as no more opportunities for task creation exist and the
tasks already inlined are inaccessible. The result is bad load balancing and poor
performance.

With eager task creation for the same call graph a task would be created
at each fork point. The coarse task granularity means there will be plenty of
parallelism and that task creation overhead will be minimal, leading to good
performance. So in this case ETC would significantly outperform LBP.

In Chapter 6 we will measure the performance of a program (fatwalk) with
this type of call graph. Tasks in that program are not partitioned exactly as
depicted above, but the general idea is the same; the result is that performance
is degraded with LBP compared to ETC.

Load-based partitioning can also lead to bad load balancing in another way,
although this second effect was not noticeable in any of the benchmarks con-
sidered here. If an inlined child becomes blocked waiting for a placeholder to
resolve (or some other event), the parent is blocked as well and is not available
for execution. As above, this can result in idle processors.

A dynamic partitioning method which did not compromise load balancing
would be preferable to load-based partitioning.

2.1.3 Number of Tasks Created

Although load-based partitioning reduces task creation overhead by eliminating
many tasks, the resulting partition falls short of the ideal BUSD partition de-
scribed earlier. The overall pattern of the partition resembles BUSD somewhat:
early on system load is light and tasks are created breadth-first; later on system
loads are heavier and more tasks are inlined for depth-first execution. But, devi-
ation from BUSD arises because forks can occur at essentially random spots in
the call tree.

To see how this can happen, consider the following scenario of a call tree
expanded using load-based partitioning with a load threshold of T' = 1:

20 Chapter 2. Dynamic Partitioning Methods Described and Compared

Say the executing processor P begins with an empty task queue so that the first
partitioning decision, at node @, results in task creation (indicated by the dashed
line separating nodes a and b). A task representing the subtree rooted at b is
queued and P continues execution with node c. Because one task is now queued
the partitioning decision at node c leads to inlining, and execution continues with
node d. Inlining is chosen there as well, and we proceed to node e. Now suppose
that at this point another processor becomes idle and removes the single task
from P’s queue. Since the queue is now empty, P’s next partitioning decision at
node e will result in task creation—but, the task created will evaluate only the
single node f!

Because partitioning decisions are based only on momentary load level the
call tree position of actual forks is largely a matter of chance, determined only
by the timing of steal operations. Since the majority of potential fork points lie
toward the leaves of the call tree, the tasks created by actual forks are more likely
to represent small subtrees. Thus more tasks are created than would be created
in an ideal BUSD division.

The behavior of load-based partitioning for programs with complete bi-
nary call trees has been analyzed theoretically by Weening [Weening 89,
Pehoushek & Weening 89]. He assumes, as here, that each processor maintains
its own local task queue and that partitioning decisions are based only on the
local queue’s length. He shows two additional ways in which the need to maintain
at least one task on the local queue leads to non-BUSD execution. First, a lone
processor P executing a subtree of height A (with a load threshold of T' = 1)
creates h tasks instead of just one; second, stealing a task from P’s queue at
an inopportune moment (as above) can lead to the creation of O(h?) tasks. He
derives an upper bound of O(p?h3+T) tasks using p processors.

Weening points out that this bound guarantees asymptotically minimal task
creation overhead as the problem size grows exponentially in k. The unstated
implication is that the overhead of task creation with load-based partitioning is
not an issue. While the asymptotic argument is technically true, the performance
measurements in Chapter 6 show that reducing the number of tasks created by

2.2. Lazy Task Creation 21

load-based partitioning would in fact measurably improve the performance of
actual programs.

It is possible that using one central queue instead of several distributed queues
would decrease the number of tasks created, but the contention introduced by this
alternative would probably be unacceptable and would certainly not be scalable.

A dynamic partitioning method which more closely approximated a BUSD
partition would be preferable to load-based partitioning.

2.1.4 Programmer Involvement

The final drawback to load-based partitioning is that even though LBP is an
automatic mechanism, programmer control is still required in two ways. First,
the dangers of deadlock and performance degradation mean that LBP is not
safe in all programs; the programmer must therefore specify on a case-by-case
basis whether or not load-based partitioning should be applied. Second, the
programmer must supply a value for the threshold parameter T. Pehoushek and
Weening found that the best value for T varied substantially among programs and
was difficult to determine except by experimentation [Pehoushek & Weening 89].
Less variation was observed in the programs studied here; all but one ran best
with T = 2, with T = 1 performing better in the one case (see Chapter 6).2

The extra work required to invoke LBP and set the threshold parameter
is unappealing in itself; further, the issue of how best to exercise this control
is also problematic. For example, should control be exercised over individual
future calls, or over entire programs? Annotating individual future calls offers
the most control but also complicates source code (e.g., should future take an
extra parameter?) and contradicts the philosophy that the programmer shouldn’t
have to specify how partitioning occurs. Making one specification for an entire
program (as is done via a compiler switch in the Encore Mul-T implementation
of LBP) is simpler, but may not offer enough control. For example, a single
program could contain instances of future which required different settings.

A dynamic partitioning method valid for all programs and requiring no pa-
rameterization would be preferable to load-based partitioning.

2.2 Lazy Task Creation

We now consider lazy task creation in more detail to evaluate whether it can
address the drawbacks of load-based partitioning. We need an alternate method
of dynamic partitioning which:

2pehoushek and Weening present results for three programs. Of these three, only the syn-
thetic benchmark tak had an optimal threshold higher than T' = 2; in tak T' = 5 through
T = 11 gave the best speedup. My benchmark suite does not contain tak, but in brief experi-
ments using LBP it showed similar behavior.

22 Chapter 2. Dynamic Partitioning Methods Described and Compared

(+ (future R) L)

Figure 2.2: Three lazy task creation scenarios.

e Won’t introduce deadlock
e Won't hurt load balancing
e Creates fewer tasks than LBP

e Requires no parameterization

With lazy task creation, as with load-based partitioning, future is viewed
as a potential fork point. But with LTC partitioning decisions are made lazily
rather than being made when future is executed. When executing future, LTC
always chooses not to fork, but saves enough information so that forks can be
made retroactively later.

Consider Figure 2.2, which shows a task tree for the expression

(+ (future R) L)

in three possible states. The leftmost picture shows an initial stage—the execut-
ing processor P has begun computing the right branch R but has flagged this
branch as representing a potential fork point. The center picture shows what
happens if P finishes computing R without any intervention by idle processors:
P ends up computing the entire expression, thereby saving the overhead of task
creation. The rightmost picture shows what happens if instead an idle processor
I finds the flagged fork point while P is still executing R. I makes a retroactive
fork, creating a task to execute the rest of the expression; this task will compute
the left branch L and sum the results of R and L.

The key feature of lazy task creation vis-d-vis load-based partitioning is that
no task is ever irrevocably inlined. Although every task is inlined initially, this
decision can always be revoked by a retroactive fork. As will be discussed in
detail below, this laziness addresses the problems of deadlock and load balancing
found with LBP.

In addition, when lazy task creation is augmented with an oldest-first schedul-
ing policy, many fewer tasks are created than with LBP. Consider Figure 2.3,

2.2. Lazy Task Creation 23

Figure 2.3: With oldest-first scheduling a retroactive fork would occur at a.

where executing three instances of future has led to three potential fork points
flagged as a, b, and c¢. With the oldest-first policy, a stealing processor would
choose a rather than b or ¢ as a retroactive fork site, thereby transferring the
largest possible subtree and creating a task with maximum potential granularity.

Let us now consider how well lazy task creation addresses each of the draw-
backs of load-based partitioning.

2.2.1 Deadlock

The type of deadlock shown with load-based partitioning can never arise with
lazy task creation. Deadlock arose in both examples when a parent and child
task were irrevocably welded together by an unfortunate partitioning decision;
with LTC a parent and child can always be decoupled. In fact, we shall see that
any program that is deadlock-free with eager task creation is also deadlock-free
with lazy task creation.

A defense of these claims requires a well-defined notion of what standard of
fairness in scheduling is promised by the semantics of the underlying language.
Halstead’s ideas of fairness in Multilisp, as published in [Halstead 89] and com-
municated privately, form the basis for the discussion here.

Both the ETC and LTC schedulers distinguish two task states—tasks are ei-.
ther runnable or blocked. A task becomes blocked by touching an unresolved
placeholder or by attempting to acquire an unavailable semaphore. Such a
blocked task becomes runnable only when the semaphore is acquired or the place-
holder becomes resolved. All tasks which are not blocked are in the runnable
state, including those actually being executed by a processor.

For the purposes of this discussion, deadlock describes the state where no task
is able to make progress. A blocked task is by definition unable to make progress;
in addition, a runnable task which is busy-waiting is not making progress.

24 Chapter 2. Dynamic Partitioning Methods Described and Compared

The ETC scheduler makes only a very weak guarantee of fairness which may
be stated thusly:

o If at least one task is runnable, at least one runnable task will run.

In order to write programs that are deadlock-free under this weak guarantee,
programmers must ensure that their programs fulfill two conditions:

o There is always at least one runnable task.

o Every runnable task will make progress if run.

The first condition reflects the fact that some algorithms can deadlock under
even the strongest guarantees of fairness (e.g., a one-task program performing two
consecutive P operations on a binary semaphore); as in any system, programmers
must use deadlock-free algorithms. The second condition is more restrictive, and
has the effect of prohibiting busy-waiting. The ETC scheduler guarantees only
that at least one runnable task will run, so it could choose to run a busy-waiting
task forever and no other task. The programmer is responsible for ensuring that
this cannot happen. If a program fulfills these two conditions it will be deadlock-
free, since the addition of the scheduler’s guarantee achieves the assurance that
at least one task will always make progress.

The LTC scheduler makes the same weak guarantee of fairness stated above
for the ETC scheduler, and maintains analogous sets of runnable and blocked
tasks. In addition, the LTC scheduler maintains a set of stealable continuations,
and adds a second guarantee:

o If no task is runnable and the set of stealable continuations is non-empty, a
runnable task will be created to execute one of the stealable continuations.

In order to compare the ETC and LTC schedulers on the deadlock issue we
must describe how Mul-T language constructs cause tasks to move among the
scheduler states described above. Actually we need discuss only future, as the
ways in which constructs such as touch, resolve-placeholder, semaphore-p,
and semaphore-v cause task transitions between running and blocked states are
the same for the ETC and LTC schedulers. In particular, note that when a task
becomes blocked with LTC, the set of stealable continuations is not affected.

Let E be the expression (future X), let K be its continuation, and let T'
be the (runnable) task executing it. When E is executed with ETC, a second
runnable task is created to execute X; the original task T’ remains runnable and
will execute the continuation K. When E is executed with LTC, the original
task T remains runnable and will execute X; K is added to the set of stealable
continuations. If K is still in the set of stealable continuations when X completes,
K is removed from the set and executed in task 7.

Armed with all these definitions, we may now prove the following:

2.2. Lazy Task Creation 25

Theorem 1 Any program P that is deadlock-free with eager task creation is also
deadlock-free with lazy task creation.

Proof (by contradiction): We shall assume that executing P with LTC causes
deadlock and show that this assumption contradicts the given axiom that P
is deadlock-free with ETC. Note that this axiom means that no possible task
execution order can produce deadlock with ETC.

Assume that executing P with LTC has caused deadlock, and consider the
entire set of LTC scheduler decisions that led up to the deadlock. We can con-
struct a set of ETC scheduler decisions which exactly parallels the LTC decisions,
so that the order of computation under both schedulers is the same.

As noted earlier, task transitions between running and blocked states are the
same for the ETC and LTC schedulers. Thus to construct a matching execution
order we must merely specify which tasks the ETC scheduler should choose to
execute in each of three scenarios involving the execution of future:

1. Where with LTC the expression (future X) is executed by flagging its
continuation K as stealable and beginning execution of X, the ETC sched-
uler’s matching decision will be to queue the task for K and then create
and execute the task for X.

2. If with LTC X returns before K is stolen, the corresponding ETC task
computing X will complete and the ETC scheduler will choose to dequeue
and execute the task for K.

3. If with LTC a processor completes execution of its current task and steals
K, the corresponding processor with ETC will complete the corresponding
task and the ETC scheduler will choose to dequeue and execute the task
for K.

These guidelines are sufficient to ensure that the chosen order of computation
with ETC exactly matches the deadlock-producing order of computation with
LTC. In particular, there are always as many runnable tasks with the chosen
ETC execution as there are runnable tasks plus stealable continuations in the
LTC execution.

Now consider the state of the LTC scheduler when deadlock occurs. By the
definition of deadlock no task can make progress; but, since P is deadlock-free
with ETC we know that no task can be busy-waiting, so it must be that there
are no runnable tasks. Since in such a state the LTC scheduler converts stealable
continuations to runnable tasks, there must also be no stealable continuations.
At the corresponding point in the chosen ETC ordering then, the ETC scheduler
must also have no runnable tasks because of the task count equivalence argued
in the previous paragraph.

26 Chapter 2. Dynamic Partitioning Methods Described and Compared

Thus we see that the chosen ETC execution order must also lead to dead-
lock. But this contradicts the original axiom that P is deadlock-free with ETC.
Therefore, our original assumption must be false and P must be deadlock-free
with LTC as well. =

The following quote from [Halstead 89] is an appropriate postscript to the
fairness discussion:

The weakness of Multilisp’s scheduling guarantees may seem surpris-
ing when compared with the specifications of other schedulers, such
as those for operating systems or real-time control. It is acceptable
for Multilisp’s scheduling semantics to be weaker because the only
design goal for the basic Multilisp language is to execute mandatory
parallel computations quickly. This definition of Multilisp’s mission
does not include goals that other schedulers must meet, such as ap-
portioning a computer system’s resources fairly among multiple users
or juggling tasks of differing priorities.

The decision to adopt a weak definition of fairness for Mul-T is not radical;
many systems supporting lightweight tasks have similar goals to those described
for Multilisp and a similar (if often implicit) definition of fairness. Because pre-
emptive scheduling is expensive, many systems adopt the policy that a task
will run to completion uninterrupted unless it becomes blocked on a system-
provided primitive. Such a policy implicitly carries a weak guarantee of fairness
in scheduling.

Feeley’s Multilisp system [Feeley 91] makes a strong guarantee of fairness in
scheduling, at some cost in runtime scheduling overhead.

2.2.2 Load Balancing

We saw how performance can suffer with LBP when unfortunate partitioning
decisions leave one processor with many pending inlined continuations while other
processors are idle. In contrast, performance of such a program would not suffer
with lazy task creation because idle processors can always steal continuations by
making retroactive forks.

In a program with a relatively small number of coarse-grained tasks ETC is
likely to perform well because the overhead of task creation is negligible. But
the small number of tasks means that performance will be quite sensitive to
load balancing; combining tasks irrevocably as with LBP can hurt performance.
With LTC the capability of making retroactive forks allows load balancing to be
as good as it is with ETC.

Because idle processors can always make retroactive forks, LTC can be used
with any program without the danger that load balancing will suffer. This con-

2.2. Lazy Task Creation 27

clusion is supported by performance figures for the program fatwalk in Sec-
tion 6.6.1.

2.2.3 Number of Tasks Created

We saw how load-based partitioning creates more tasks than necessary because
partitioning decisions are based only on momentary load level. A much better
alternative is the oldest-first scheduling policy used with lazy task creation; as
will be seen in Section 6.5, LTC results in many fewer tasks than LBP. Tasks
created by oldest-first scheduling tend to encompass larger subtrees, giving a
much better approximation to BUSD execution.

That LTC creates fewer tasks than LBP may also be seen by a theoretical
analysis.

Theorem 2 With lazy task creation and p processors, executing a program with
a perfect binary task tree of height h results in the creation of no more than p*h
tasks.

When compared with Weening’s result of O(p?h3+T) tasks for load-based par-
titioning [Weening 89], this complexity figure shows that LTC creates theoreti-
cally fewer tasks than LBP.

A proof of this theorem depends on an important fairness claim relating to the
scheduler’s policy for stealing tasks. If a processor P; steals a task from another
processor P;, P; must poll all other processors for stealable tasks before stealing
from P; again.

This policy is known as polite stealing and is discussed more fully in Sec-
tion 4.1.3. Such a fairness policy is also crucial to Weening’s analysis but is not
stated explicitly in [Weening 89].

The theorem may now be proved, by a method roughly following Weening’s.

Proof: At any point in the computation, each processor P is either idle or
executing a subtree of height H;, called its local height. The maximum of the
Hs is H, the global height. We will count the number of steals necessary to
reduce the global height in h steps from & to 0.

With lazy task creation using oldest-first scheduling, stealing a task reduces
a processor P,’s local height H; by 1. If H; = H and H; > H; Vj #1 (that is, if
only P; had the global height), then the global height is also reduced by 1.

What is the maximum number of steals s that can happen without reducing
the global height H? If the global height is to be the same after s steals then some
processor P; must have height H before and after the steals. Each of the other
p — 1 processors could steal from all remaining processors except F;, making a
total of s = (p—1)(p—2) steals. After these s steals, H; < H V j # ¢; that is, only
P; can have a subtree of the global height. Since all processors except F; have

28 Chapter 2. Dynamic Partitioning Methods Described and Compared

stolen from all other processors except P;, the polite stealing policy guarantees
that the next steal has to be from P,, reducing the global height by 1. (Or, F;
might reduce the global height by 1 itself by finishing half its tree and starting
in on the other half.)

Since p? steals suffice to reduce the global height by 1 and since the global
height must be reduced by 1 times, a maximum of p*h tasks will be created. B

2.2.4 Programmer Involvement

Lazy task creation requires no parameterization and may be safely used with any
program, so programmers need exercise no additional control.® In particular,
the debate of how to specify when dynamic partitioning should be used (should
control be exercised at the level of individual fork points or entire files?) is moot
because it can be used safely on all programs.

The last four sections have shown that lazy task creation addresses each
of the drawbacks of load-based partitioning. These arguments will be further
supported by performance figures in later chapters; the next chapter paves the
way for these performance experiments by considering several important topics
in the implementation of lazy task creation.

30ne situation requiring programmer awareness arises because of the design choices made
in the Encore Mul-T implementation of LTC and will be discussed in Section 4.3.

Chapter 3

Lazy Task Creation: Data
Structures, Algorithms, and
Implementation

We have seen that lazy task creation has several strong advantages over load-
based partitioning. But, load-based partitioning can be implemented simply with
low runtime overhead, and in fact gives good performance for many programs.
The question becomes: can lazy task creation be implemented efficiently enough
to perform at least as well as load-based partitioning?

Both dynamic methods increase efficiency by converting only selected in-
stances of future to actual forks. But with lazy task creation enough information
must be saved at every future call to allow a retroactive fork at that point; mini-
mizing the cost of maintaining this information is critical to the efficiency of LTC.
By comparison the cost of actually stealing a task is somewhat less critical since
in a fine-grained program few potential fork points will be converted to actual
forks. Still, we would prefer that stealing a task with LT'C have comparable cost
to creating a task with ETC.

This chapter presents details of the algorithms, data structures, and imple-
mentation of lazy task creation, both abstractly and for Encore Mul-T. First, a
brief summary.

The primary data structure for LTC is the lazy task queue, a double-ended
queue supporting push, pop, and steal operations. In Encore Mul-T the lazy
task queue is implemented simply as a block of pointers into a task’s stack; by
using a lockless synchronization algorithm the crucial operations of lazy future
call and return can be performed very efficiently. Salient details are given for all
LTC operations, including lazy future call/return, stealing a task, and blocking
on an unresolved placeholder.

In the following sections an execution of future with lazy task creation is
known as a lazy future call; a processor making lazy future calls is called a

29

30 LTC: Data Structures, Algorithms, and Implementation

producer of tasks and processors making retroactive forks by stealing these tasks
are known as consumers.

3.1 Why Implementation is a Challenge

To see why it might be difficult for LTC to match the efficiency of LBP we will
borrow some figures from the discussion of runtime overheads to be presented in
Section 4.2. To achieve comparable efficiency we must ensure that the runtime
overhead introduced by LTC is no greater than the runtime overhead introduced
by LBP.

With both methods future is treated as a potential fork point so that in
a fine-grained program only a small fraction of all future calls result in task
creation. Thus the runtime overhead of a method has two components: the cost
incurred at potential fork points and the cost of actually creating tasks.! This
overhead O may be expressed as:

O = NspyCrp + NicClc

That is, as the number of potential fork points Ny, times the cost per fork
point Cy, plus the number of tasks created Ny times the cost of task creation
Cic. Using this equation together with the known cost of load-based partitioning
in Encore Mul-T and some assumptions about lazy task creation, we can get a
rough idea of the implementation constraints for lazy task creation.

With load-based partitioning the cost per fork point Cy, is low, just 2 in-
structions to test the local queue length, while C;, is the same as with eager
task creation, 133 instructions. And in a typical program roughly 10% of fork
decisions lead to task creation (see Section 6.5). With lazy task creation, let
us assume that only 1% of fork decisions lead to task creation and that Ci. is
roughly the same as with eager task creation.

From all of this we may conclude that if lazy task creation is to perform
at least as well as load-based partitioning, the cost per fork point of lazy task
creation must not exceed 14 instructions.

What must be accomplished in these 14 instructions? A task encountering
future must save enough information to allow lazy task creation, that is, enough
that an idle processor may make a retroactive fork. One branch of the potential
fork must be packaged up so that execution can begin when a processor becomes
idle. This operation is somewhat similar to lazy evaluation, where one branch
of a computation is packaged up so that execution can begin when its value is
demanded.

10ther runtime overheads are not considered here because their costs are comparable for
the two methods; see Section 4.2.

3.2. The Lazy Task Queue 31

Performing the LTC packaging operation in 14 instructions begins to seem
challenging indeed when one considers that the comparable operation with lazy
evaluation costs about 60 instructions!?> But as we shall see there is an important
difference—with lazy task creation the parent branch must be packaged up while
with lazy evaluation it is the child branch that is packaged up. It is this key
difference which will allow efficient implementation of LTC.

This difference also sets LTC apart from methods developed by other re-
searchers where the child is packaged, discussed in Section 7.2. When the child
is packaged certain bookkeeping operations just cannot be eliminated, but the
parent can be packaged very economically.

3.2 The Lazy Task Queue

Packaging up the parent turns out to be very easy because in most cases it requires
no work at all! The important observation is this: After a lazy future call, the
stack contains all information necessary for a retroactive fork.> For example,
consider again the program psum-tree shown in Figure 3.1, which also shows a
partial call tree and a stack (growing downward). Imagine that we are running
psum-tree with lazy task creation—at each future we provisionally choose not
to fork, instead making the recursive procedure call (psum~tree (right tree))
in the current task.* Before making the first such call (“call 1”7 in Figure 3.1),
we must save on the stack the context necessary to continue execution after
returning from the call. Or, in the parlance of continuations, we must push the
continuation to call 1 on the stack. The frame labelled A contains all information
necessary to execute the continuation to call 1; that is, to sum the left subtree
and add the two partial sums. Likewise, after call 3 the frames labelled A, B,
and C contain all information necessary to execute the continuation to call 3.
This stacked information is exactly what is required for a retroactive fork.
For example, an idle processor could use the information stored in frame A to
begin executing the left part of the call tree while the original processor was still
executing the right part. The only missing link is identifying which points in the
stack represent possible fork points; that is, continuations to lazy future calls.®
For this purpose we define the lazy task queue, whose structure and operations
are shown abstractly in Figure 3.2. It is a double-ended queue where each entry

2With some optimizations to the current implementation, evaluating an expression lazily
using delay in Mul-T would add about 60 instructions of overhead.

3An exception is dynamic binding information, discussed in Section 3.3.6.

“To simplify the presentation I assume once again that + evaluates its arguments left-to-
right.

®1 refer to continuations here and elsewhere only for clarity; packaging up the parent con-
veniently does not depend on the implementation technique of continuation-passing style used
in [Kranz et ol 86).

32 LTC: Data Structures, Algorithms, and Implementation

(define (psum-tree tree)
(if (leaf? tree)
(leaf-value tree)
(+ (future (psum-tree (right tree)))
(psum-tree (left tree)))))

Call Tree Stack

Context]
of call 1

Contoxt
™ of call 3

Figure 3.1: Stack contains necessary context for retroactive fork.

points to a stack frame representing a potential fork point. A task making lazy
future calls (called the producer) pushes and pops items from the tail of the
queue, while idle processors (called consumers) steal tasks from the head of the
queue. Note that the oldest task is at the head (top) of the queue while the
newest task is at the tail (bottom) of the queue.

In Figure 3.2a, the producer has made 3 lazy future calls and is executing
the 4th shaded node of the call tree. Figure 3.2b shows the situation after the
producer makes a 4th lazy future call, executing the code

(future (psum-tree (right tree)).

The producer pushes a new frame D on the stack, representing the call’s contin-
uation

(lambda (rsum)
(+ rsum (psum-tree (left tree)).

The producer also pushes a pointer to D onto the tail of the lazy task queue, and
begins executing the bottom rightmost tree node.

3.2. The Lazy Task Queue

33

Call Tree Stack LTQ Call Tree Stack LTQ
(head) (head)
(tail)
(tail)
| D

(a) The lazy task queue.

(b) Lazy future call.

Consumer’s Producer's

() Placeholder communicates value.

Figure 3.2: Lazy task queue data structures and operations.

Cali Tree Stack LTQ Stack Stack
(head) A A
(head)
(tail) ‘ (tail)
(d) Stealing a task.
Consumer’s Producer's
Stack Stack

34 LTC: Data Structures, Algorithms, and Implementation

In the next scene (Figure 3.2c), the producer returns from the lazy future
call before any stealing has occurred. The producer pops the tail of the lazy
task queue, returns its result (calls the continuation represented by frame D),
and begins to sum the left subtree. Lazy task creation has saved the expense of
creating a separate task!

Next an idle consumer steals a task from our producer’s lazy task queue, by
removing the oldest part of the producer’s stack (Figure 3.2d). The head item
of the lazy task queue points to frame A, representing the continuation to the
very first lazy future call. The consumer pops the head of the lazy task queue,
moves frame A from the producer’s stack to its own stack, and calls the stolen
continuation. The consumer has made a retroactive fork!

But we've skipped an important detail. What will happen when the producer
finishes summing the entire right subtree and tries to return a value rsum to
frame A? The consumer has stolen A, so rsum must somehow be passed to
the consumer. This communication happens through a placeholder P, shown in
Figure 3.2e. When stealing, the consumer must replace frame A on the producer’s
stack with a new frame A’, representing an alternate continuation which will
resolve the placeholder:

(lambda (rsum)
(resolve-placeholder P rsum)).

When the consumer begins executing the stolen continuation, the unresolved
placeholder is used in lieu of an actual return value. When the producer eventu-
ally returns, rsum will resolve the placeholder.

Figure 3.2¢ shows the completed steal operation. The configuration of stacks
after creating a task lazily looks exactly like the configuration of stacks after cre-
ating a task eagerly—one processor evaluates the child (the producer, summing
the right subtree) and passes its result via a placeholder to another processor
which is evaluating the parent (the consumer, summing the left subtree and
adding the results).

This discussion has omitted the details of synchronization between producer
and consumer; in fact, two kinds of race condition are possible during the steal-
ing operation. First, two consumers may race to steal the same continuation;
second, a producer trying to return to a continuation may race with a consumer
trying to steal it. These details will be discussed in the next section. But an
important feature of the stealing operation is evident even now: the consumer
never interrupts the producer.

3.3 Encore Implementation

The lazy task queue and associated operations described abstractly in the previ-
ous section may be implemented in several ways; the remainder of this chapter

3.3. Encore Implementation 35

describes a successful implementation for the Encore Multimax. Implementations
have also been built for the Butterfly multiprocessor [Feeley 91] and the experi-
mental ALEWIFE machine (by David Kranz, reported in [Mohr et al 91]); more
will be said about these implementations in Chapter 7.

The Multimax is a shared-bus shared-memory multiprocessor. Yale’s Mul-
timax system has 18 processors; the National Semiconductor 32332 processors
used have relatively few general-purpose registers (8) but fairly powerful mem-
ory addressing modes. An atomic hardware test-and-set operation provides the
fundamental means of inter-processor synchronization; however, the machine’s
multi-cache coherency also allows flag-based synchronization.

As suggested earlier, minimizing the overhead of lazy future call and return
is critical to an acceptably efficient implementation of lazy task creation; the
implementation strategies presented in the ensuing sections strongly reflect this
concern. In Encore Mul-T a task’s stack and lazy task queue share a contiguous
section of the heap, allowing a lazy task queue entry to be represented very
simply as a pointer into the stack. This representation of the lazy task queue
still allows proper synchronization between producers and consumers—a novel
lockless algorithm is presented (with a correctness proof) which obviates the need
to store a lock with each lazy task queue entry. Using the lockless synchronization
algorithm the critical lazy future call and return sequence can be implemented
with only 8 instructions of overhead, comfortably below the goal of 14 instructions
identified in Section 3.1. The algorithms for stealing a task and blocking on an
unresolved placeholder are straightforward and are presented last.

3.3.1 Data Structures: The Stack and Lazy Task Queue

In “standard” Encore Mul-T each task has an associated stack, stored in a con-
tiguous section of the heap. If a stack overflows its allocated size, its contents are
copied to a new stack of twice the original size. How must this basic data struc-
ture be altered to support lazy task creation? As seen in Section 3.2, stealing a
task requires the producer’s stack to be split into two pieces. If we stick with a
conventional contiguous-memory stack representation, stealing a task will require
a consumer to copy frames from the producer’s stack to its own stack. This seems-
undesirable at first glance because the cost of a steal operation is unbounded.
However, as detailed in Section 4.3, it turns out that this copying does not in fact
add significant overhead. Sticking with a conventional contiguous-memory stack
representation is in fact quite a viable design choice, and is the one chosen for
the Encore implementation. An alternative linked-frame stack representation for
stacks in support of lazy task creation has been built as part of the ALEWIFE
project, and is discussed in [Mohr et al 91].

For lazy task creation each stack must have an associated lazy task queue.
Rather than creating a separate data structure of potentially unbounded size, the

36 LTC: Data Structures, Algorithms, and Implementation

LTQ
c " c *
Stack <
B B
A

Figure 3.3: Stack and lazy task queue in Encore Mul-T, before and after steal.

lazy task queue is stored in the same heap object as the stack (known henceforth
as the stack/ltq object). This combined stack and lazy task queue object is
shown in Figure 3.3; the stack grows upward (from high memory to low) while
the lazy task queue grows downward. Consider the left hand stack/ltq object,
whose stack contains 8 frames. 3 of these, labelled A, B, and C, are continuation
frames of lazy future calls and thus represent potential fork points. Each fork
point is identified by a one-word entry in the lazy task queue which points to the
stealable stack frame; for example, lazy task queue entry &C contains the address
of the top word of frame C. Storing the lazy task queue in contiguous memory
allows efficient push and pop operations, which is important to minimizing the
overhead of lazy future call and return.

3.3. Encore Implementation 37

Three important pointers are stored in the header of the stack/ltq object.
1tq-head points to the head of the lazy task queue, which represents the oldest
potential fork point (A in this case). 1tq-tail points just beyond the tail of
the lazy task queue, which represents the newest potential fork point (C in this
case). Finally, stack-base points to the bottom word of the stack.

An important feature of this implementation of the lazy task queue is that
only the producer modifies 1tq-tail (during lazy future call and return) and
only consumers modify 1tq-head (when stealing tasks). This key observation
leads to the lockless synchronization algorithm presented in Section 3.3.2.

The effect on these data structures of stealing a task may be seen in the right-
hand stack/ltq object of Figure 3.3. A consumer has located the oldest stealable
task A (via the 1tq-head pointer) and has copied the bottom two stack frames
to its own stack, replacing frame A by a new frame A’ as described in Section 3.2.
Finally, the consumer has updated two pointers in the header—stack-base now

~points to the new stack base while 1tq-head points to the next item on the
lazy task queue. We see that stealing effectively shrinks the active area of the
stack/ltq object by removing information from both ends; that is, from both the
head of the lazy task queue and the oldest frames of the stack.

Splitting a stack by copying is safe in Encore Mul-T because the compiler
guarantees that there are no pointers into the stack. Nested lexical environments
are heap-allocated instead of stack-allocated; this introduces little overhead in
the programs studied (see Section 5.1.2).

Stack overflow testing is straightforward with the combined stack/ltq data
structure; we must merely detect when the gap between stack and lazy task
queue falls below a safe threshold. When an overflow is detected, the stack and
lazy task queue may be copied to a larger stack. Or, if the active area of the
stack/ltq object has been substantially reduced by many steal operations, the
stack and lazy task queue may just be re-packed into the same space. Stack
overflows are relatively rare in programs with bushy call trees.

3.3.2 Synchronization Between Producers and Consumers

The lazy task queue is a shared data structure in a multiprocessing environ-
ment. To implement the lazy task queue operations correctly requires proper
synchronization between producers and consumers—we must ensure that only
one processor will claim any given task on the lazy task queue. Two kinds of
race condition are possible. First, two consumers may race to steal the same task;
second, a producer trying to return to a continuation may race with a consumer
trying to steal it.

The potential race between two consumers affects only the steal operation
and thus is not critical to the efficiency of lazy task creation. This race is easily
arbitrated by a single lock on the lazy task queue (see Section 3.3.4). In con-

38 LTC: Data Structures, Algorithms, and Implementation

trast, the race between producer and consumer affects the critical lazy future call
and return sequence; arbitrating this race efficiently is crucial to minimizing the
overhead of lazy task creation. The arbitration of this race must require minimal
work from the producer in the common case where no race in fact exists.

Consider that the producer removes tasks from the tail of the lazy task queue
(by returning to the associated continuation) while consumers remove tasks from
the head (by stealing the associated continuation). Usually the queue contains
several entries and there is no conflict between producer and consumer; how-
ever, when the queue contains just one entry we must ensure that either the
producer or consumer claims it but not both. A simple solution, reported in
[Mohr et al 91], employs a lock on each lazy task queue entry. Before a task is
claimed its associated lock must be acquired, preventing producer and consumer
from both claiming the same task.

This lock-based synchronization method has two undesirable features. First,
the test-and-set instruction needed to implement locks is rather expensive on
the Multimax, taking roughly the same amount of time as 20 register-to-register
moves on Yale’s machine. Second, storing a lock for each lazy task queue entry
increases the storage needed by the lazy task queue.

These considerations motivated the development of an algorithm which elimi-
nates the locks on lazy task queue entries. I will call this the “lockless” algorithm
even though one lock remains—consumers still lock the entire lazy task queue to
ensure that only one consumer at a time may steal tasks from that queue.

The Lockless Synchronization Algorithm

In the lockless algorithm, rather than locking individual queue entries before
claiming them, producer and consumer both claim tasks optimistically and then
check to see if a conflict has occurred, retracting their claim if necessary.® Both
optimistic claiming and conflict detection can be done using only the head and
tail pointers of the lazy task queue.

Recall that a producer’s lazy task queue is stored in a block of adjacent
memory locations and accessed via two pointers (both in global memory) called
head and tail. tail points just beyond the newest task on the queue and is
modified only by the producer; head points to the oldest task on the queue and
is modified only by the consumer.

For example, consider the leftmost scenario in Figure 3.4. In this picture,
the producer returning to C would decrement tail, while a consumer stealing
A would increment head. Since each agent has exclusive control over its pointer,
no additional locks are needed to ensure atomic updates. The middle scenario
shows that the queue is empty when when tail = head; the rightmost shows

€A similar algorithm, discovered independently, is discussed in [Feeley 91).

3.3. Encore Implementation 39

Low memory

A |=—head

B tail —»

C tail —» =— head e— head

tail —»
High memory
tail > head tail = head tail < head
3 tasks queue empty confiict!

Figure 3.4: 3 lazy task queue scenarios.

that there is a conflict when tail < head.

In the common case where the queue contains several tasks no conflict will
occur and no optimistic update will need to be retracted. If on the other hand a
conflict does occur it may be detected by just the producer, by just the consumer,
or by both. If the consumer detects the conflict it yields to the producer. If the
producer detects the conflict it waits to see whether the consumer also detected
it and then acts accordingly.

The lockless algorithm appears in Figure 3.5. The first section of code is
executed by the producer returning from a lazy future call. When the lazy future
call was made, the producer pushed a continuation on the stack and pushed a
task (a pointer to the continuation) on the lazy task queue. Now the producer
must determine whether the task has been stolen by a consumer. The producer
optimistically claims the task by decrementing tail,” and checks for conflict by
a comparison with head. If no conflict is detected, the producer concludes that
the task was not stolen and so returns to the original continuation.

If on the other hand a conflict is indicated, the task in question may or may
not have been stolen yet. A consumer may have stolen the task long ago, or may
have only just claimed the task. After waiting for the stack to be unlocked the
producer can correctly distinguish between these cases by a second comparison
of tail and head. (The producer will wait only a bounded length of time—the
stealing consumer must eventually unlock the stack if it hasn’t already; further,
no consumer will re-lock the stack because of the test at line Cy.) If the com-
parison shows that the consumer has retracted its claim, the producer returns
normally to the continuation in question. Otherwise the steal was successful and
the producer returns to the modified continuation “swapped in” by the consumer
(e.g. frame A’ in Figure 3.3). In this case, the producer needn’t retract its claim
to the stolen task because no more operations are possible on this lazy task queue.

Note that in the common case where no conflict exists, this synchronization
code adds minimal overhead to the return from lazy future call sequence—the

7] have borrowed the shorthand “tail--" from the C programming language to indicate
that tail is decremented. '

40 LTC: Data Structures, Algorithms, and Implementation

{ Ezecuted by producer returning from a lazy future call }

P, tail-- { optimistically claim tail task }
P, if tail >= head then { no conflict }
Py return normally
else { this task may have already been stolen! }

P, wait until stack unlocked
Ps if tail >= head then { the steal was aborted }
P return normally

else { the steal was successful }
P, return to modified continuation

{ Ezecuted by consumer stealing a task }
C, if tail > head then { stealable tasks appear to ezist }

C, acquire stack lock { so other consumers don’t interfere }
Cs if tail > head then { stealable tasks really do ezist }
Ciy head++ { optimistically claim head task }
Cs if tail >= head then { no conflict }
Cs steal the head task
else { producer has already claimed this task }
Cr head-- { retract claim }
Cs release stack lock

Figure 3.5: “Lockless” synchronization algorithm.

producer merely decrements tail and compares it with head.

The second section of code in Figure 3.5 is executed by the consumer stealing
a task. The consumer only locks the producer’s stack if tasks appear to exist
(otherwise it searches for another stack with stealable tasks; see Section 3.3.4).
Locking the stack prevents interference by other consumers and also allows the
consumer to tell for certain whether stealable tasks exist. If tasks exist the
consumer claims one by optimistically incrementing head and then checks for
conflicts by a comparison with tail. If no conflict is detected, the consumer
steals the head task; however, if a conflict indicates that the producer has also
claimed the task the consumer defers to the producer by decrementing head,
retracting its claim. In all cases the consumer finishes by unlocking the stack.

Correctness Proof

The correctness of this lockless algorithm may be stated as a theorem:

3.3. Encore Implementation 41

Theorem 3 The lockless synchronization algorithm ensures that each task on
the lazy task queue is executed by one and only one agent.

Proof: Clearly the theorem holds if only the producer is active or only consumers
are active; it is also clear that the stack lock ensures mutual exclusion among
consumers. Thus we concentrate on the case where a producer and consumer
attempt to claim the same task. We assume that the queue contains a single
entry and show that the theorem holds for all possible interleavings of statements
P; with statements C;. In fact, only interleavings of the crucial statements P,
P,, C,, and Cs must be considered; here these statements are called Peaim, Prest,
Cclaim, and Ctest-

We shall formally consider statement execution order using the “precedes”
relation. A statement A precedes a statement B if execution of A has completed
before execution of B begins. If A does not precede B it does not necessarily
follow that B precedes A; the execution of A and B could overlap.

Three cases must be considered. An agent’s test of tail vs. head will reveal
a conflict only if the other agent’s claim precedes the first agent’s test.

Case 1: Cyuim precedes Piey but Pugim does not precede Cies

Producer Consumer

Ceigim: head++
| Ciest: if tail >= head
time Pyim: tail--
Pyt if tail >= head

In this case, only the producer will discover the conflict. Since Ceiqim precedes
P,..; the producer will discover the conflict, but since P,j4;m does not precede Cey:
the consumer will not discover the conflict. As specified by the algorithm (and
described above), the producer will defer and only the consumer will execute the
task.

Case 2: Puim precedes Cieys but Ceaim does not precede Piey

Producer Consumer

Pgim: tail--
Piest: if tail >= head
time Cegim: head++ '
l Ciest: if tail >= head

42 LTC: Data Structures, Algorithms, and Implementation

In this case, only the consumer will discover the conflict. Since Pejqim precedes
Ctest the consumer will discover the conflict, but since C4im does not precede
P,.,; the producer will not discover the conflict. As specified by the algorithm
(and described above), the consumer will defer and only the producer will execute
the task. It is (remotely) possible in this case that the producer could enqueue
another task before the consumer’s test. That would lead to correct execution
as well; the test would succeed and the consumer would steal the new task.

Case 3: P.4im precedes Ciept and Clgim precedes Py

| Producer Consumer

time Piim: tail-- Cugim: head++
Pieyr: if tail >= head Clest: if tail >= head

In this case, both the producer and the consumer will discover the conflict.
As specified by the algorithm (and described above), the consumer will defer and
only the producer will execute the task.

All possible interleavings of the four expressions are covered by these three
cases, s0 we may conclude that the lockless synchronization algorithm ensures
that each task on the lazy task queue is executed by one and only one agent. B

Practical Considerations

The correctness proof of the lockless synchronization algorithm makes an im-
portant implicit assumption—that if a variable update by one agent precedes a
variable reference by another agent, the second agent will receive the updated
value. When considering an implementation for a given multiprocessor, this will
be true only if the following assumption holds:

Memory Coherence Assumption: If a processor writes a memory location
M, any other processor reading M after the write has completed will receive the
updated value.

One might expect this assumption to hold for the Encore Multimax, whose
cache hardware ensures that a write by one processor to location M causes other
processors to invalidate locally cached copies of M. But it turns out that the
memory coherence assumption does not in fact hold for the Multimax [Wilson 91].
After writing M, a processor does not wait until all caches have been invalidated;
instead, it continues with its next instruction.

As a result, lockless synchronization requires the use of extra instructions to
ensure memory coherence. Applying the method sanctioned by Encore {Wilson 91]
to our lockless synchronization algorithm results in an extra test-and-set instruc-
tion for both producer and consumer:

3.3. Encore Implementation 43

Producer Consumer
P: tail-- C4: head++
test-and-set (dummy) test-and-set (dummy)
P: if tail >= head Cs: if tail >= head

(As a side-effect, the test-and-set causes a processor’s cache invalidation queue
to be flushed; this guarantees for example that the producer will read the most
current value for head in statement P2.) If this extra instruction is not used, it
is possible that neither producer nor consumer will discover a conflict. Unfortu-
nately, this test-and-set is the same expensive instruction we wanted to eliminate
from the original “locking” algorithm!

The result for Encore Mul-T is that the lockless and locking algorithms have
roughly comparable overhead since they both contain the expensive test-and-set
instruction. The lockless algorithm is still the preferred choice however because it
is in fact slightly faster and because it allows lazy task queue entries to consume
less storage space.

3.3.3 Example of Lazy Future Call and Return

With the lockless synchronization algorithm in hand we may proceed to an ex-
ample showing the full lazy future call and return sequence. The trusty doubly
recursive Fibonacci program will serve as our vehicle.

First consider the sequential version f£ib, shown in Figure 3.6 together with
a listing of assembler code generated by the T3.1 compiler. Both have been
slightly simplified for presentation.® f£ib has been written using let* to allow
an easier comparison with pfib; this does not affect the assembler code. In
reading the assembler code, it may help to know the conventions that R1 holds
the first procedure argument or return value, and that RO always points to the
environment of the currently executing procedure. Also, integer constants appear
4 times too big because the two low-order bits are used as a type tag (e.g., the
constant 2 appears as $8).

Consider the block labelled first_call. Before making the recursive jump
to £ib the live registers r1 and r0 and return address second_call are saved on
the stack. Or, equivalently, we may say that a continuation closure (environment
plus code pointer) is created on the stack. The live registers constitute the
environment while the return address constitutes the code pointer. When the

8The sometimes obscure NS32000 Series assembler mnemonics have been replaced by more
meaningful instruction names. The 3-instruction stack overflow check and procedure return
sequences have been abbreviated to one line each. The code blocks have been re-ordered to
match the source program. Finally, the actual source code directed the compiler to use integer
arithmetic and not look up the value of £ib before each recursive call.

44 LTC: Data Structures, Algorithms, and Implementation

(define (fib n)
(if (¢ n 2)
n
(let* ((£1 (fib (- n 1)))
(£f2 (fidb (- n 2))))
(+ £1 £2))))

fib: # entry point

stack overflow check

compare ri1,$8 # isn<2?

jlt returnn # if so, return n
first_call: # make first call

push rl # saven

push r0 # save env pointer

push.addr second call # push return address

subtract $4,r1 # computen —1

jump fid # recursive call to fib
second_call: # make second call

push ri # save f1

push_addr add.results # push return address

move 12(sp),r0 # restore env pointer

move 16(sp) ,r1 # restoren

subtract $8,ri1 # computen — 2

jump fib # recursive call to £ib
add_results: # add results

move 4(sp) ,r0 # restore f1

add ro,r1 # compute f1 4 £2

adjustsp $-20 # pop stack frames

return # return f1 4 f2inri1
returnn: # returnn

return # return nin r1

Figure 3.6: Program fib, compiled.

first recursive call is complete this continuation will be called (i.e., a result will
be returned in r1 and execution will continue at the return address second_call.)

Figure 3.7 shows an analogous compiler listing for the parallel version p£fib,
compiled using lazy task creation. f£ib has been changed only by inserting future
around the first recursive call and touch around the reference to £1.> The com-

$The Mul-T compiler can insert touch operations automatically; an explicit touch was used
in this and some other examples to enhance clarity.

3.3. Encore Implementation

(define (pfib n)
(if (¢ n 2)
n

(let* ((£1 (future (pfidb (- n 1))))

(£2 (pfib (- n 2))))
(+ (touch £1) £2)))))

pfib: # entry point

stack overflow check

compare r1,$8 # isn<?2?

jlt returnn # if so, return n
first.call: # lazy future call

push ri # saven

push 0 # save env pointer

push.addr return from1f call # push return address

subtract $4,ri # computen -~ 1

move 1tq-tail,r6 # get 1tq-tail pointer

move 8p,0(x6) # queue continuation!

add $4,1tq-tail # increment 1tq-tail (4 bytes)

jump pfib # recursive call to pfib
return_from 1f call: # return from lazy future call

subtract $4,1tq-tail # decrement 1tq-tail

test&set dummy # wait for cache coherence

compare 1tq-tail,ltq-head # conflict?

jit resolve_conflict # if so, resolve it
second_call: # make second call

push rl # save f1

push_addr add results # push return address

move 12(sp) ,1r0 # restore env pointer

move 16(sp),r1 # restoren

subtract $8,rl # computen — 2

jump pfib # recursive call to pfib
add_results: # see if £1 is a placeholder

move 4(sp),xr0 # restore £1

test.bit $0,r0 # is r0 a placeholder?

jclear got_value # if not, proceed

jsr get_placeholder_value # if 50, get value
got_value: # add results

add ro,r1 # compute £1 4+ £2

adjust_sp $-20 # pop stack frames

return # return f1 4+ £f2in r1
returnmn: # returnn

return # returnnin ri

Figure 3.7: Program pfib, compiled with lazy task creation.

45

46 LTC: Data Structures, Algorithms, and Implementation

piled code has changed only by the addition of the 3 boxed instructions for lazy
future call, the 4 boxed instructions for return from lazy future call, and the
boxed instructions for touch (of which only 2 are executed in the common case
where no placeholder is found). With these changes, £ib is transformed into an
efficient parallel program! (Performance results for pfib appear in Section 6.6.2.)

Consider again the block labelled first_call. Exactly as before, a continu-
ation closure is created on the stack. But now a pointer to this frame (obtained
from the stack pointer sp) is placed on the lazy task queue.’® Execution contin-
ues as in the sequential version with a recursive jump to pfib; however, with the
sequence shown here all information necessary for an idle processor to steal the
queued continuation has been saved.

The astute reader will have noticed that the return address for the first recur-
sive call has been changed; instead of second_call as in fib, the return address
is now return_from_1f_call. So when the first recursive call is complete, exe-
cution resumes with return_ from 1f_call. This block implements the lockless
synchronization algorithm described in Section 3.3.2, by which the returning pro-
ducer determines whether or not the queued continuation has been stolen. We
optimistically decrement 1tq-tail, synchronize for cache coherence, and check
for conflicts by a comparison with 1tq-head. In the common case where no
steal has occurred, execution proceeds with second_call. If on the other hand a
conflict indicates that a steal is in progress, we jump to resolve_conflict, not
shown here.

Note that if a steal has already been completed the producer will never execute
the return_from_1f_call code because the continuation containing this “return
address” will have been changed by the consumer to resolve-placeholder. The
producer will return to this new continuation instead.

We have now covered the most important points in the lazy future call and
return sequence, although a few interesting details remain.

The very astute reader may be wondering what the consumer will do upon
stealing the continuation we have been discussing—if the consumer began exe-
cution with return_ from lazy future_call (as indicated by the continuation’s
code pointer) some rather unpleasant behavior would ensue since that code must
be executed only by the producer. Instead, the consumer must offset the code
pointer by a known constant (the length of the “return from lazy future call”
sequence) to find the true starting address, second_call in this case.

When calling the stolen continuation, the consumer passes an unresolved
placeholder as an argument. In our example execution would begin at second_call,

10Referencing 1tq-tail and 1tq-head directly in the assembler code is a simplification. In
actuality, these pointers are extracted from the current stack/ltq object, which is ‘accessed
through a block of data kept locally by each processor. This is accomplished economically
using the double indirection capability of the NS 32000 Series processor; as a result however,
return from lazy future call actually requires 5 instructions instead of 4.

3.3. Encore Implementation 47

with the placeholder (representing £1, the result of the first recursive call) stored
in r1. Note that this value is saved on the stack during the second recursive call,
and touched before being used in the block labelled add_results. If a steal has
in fact occurred, the placeholder will be dereferenced by the out-of-line routine
get_placeholder.value, possibly requiring the caller to be blocked until the
value has been computed and the placeholder resolved.

3.3.4 Steal Operation

The algorithm for stealing a task from another processor’s lazy task queue is
shown below; referring to the “before” and “after” pictures in Figure 3.3 may be
helpful. As the algorithm is straightforward and the “stealing story” has already
been told in some detail, further discussion is omitted.

e Allocate and initialize data structures: a placeholder P and a new stack/ltq
object Syew-

o Look for a task to steal.
— Poll other processors to find one whose current stack/ltq object Soiq
has a non-empty lazy task queue (i.e., 1tq-tail > 1tq-head).
— Try to lock S,q4; if it’s already locked, skip to next processor.
— Make sure tasks exist by a second check that 1tq-tail > 1tq-head.
— Optimistically increment 1tq-head to claim head item; if a conflict is

indicated, skip to next processor.

e Steal the continuation. The head item of the lazy task queue is a pointer &A
into the stack S,4. &A points to a stack frame A representing a stealable
continuation. The oldest part of the stack (the portion between A and
S,1a’s stack-base pointer) must be copied to the new stack Snew-

— Copy oldest portion of Sy4 into Spew-
— Update stack-base and 1tq-head pointers in S,q.

— Replace A in S,4 with a new continuation A’, directing
(resolve-placeholder P).

— Unlock stack So4-

— “Return” to continuation A in new stack Sp..,, passing placeholder P
as the argument.

48 LTC: Data Structures, Algorithms, and Implementation

Stack LTQ Stack Lra

(head) ' (head)
(tail) New Stack (tail)
) Placsholder

c R ¢

D b ‘

‘ stored

context
(a) Before tail-biting. (b) After tail-biting.

Figure 3.8: Blocking a task by tail-biting.

3.3.5 Blocking

There is one remaining loose end in this discussion: what happens to the lazy
task queue when a task T blocks by touching an unresolved placeholder? It
is not sufficient to save the lazy task queue as part of T’s state because the
queued tasks would become inaccessible. We would then have the same potential
deadlock problem that arises with load-based partitioning.

The solution adopted here is for T to “bite its tail.” As shown in Figure 3.8,
T7s stack is split at the newest potential fork point (found through the tail of the
lazy task queue), and only the newest piece is blocked. As with a steal operation,
a placeholder is created to communicate a value between the two pieces of the
split stack; in this case a frame R is added to the new stack directing that the
result returned by continuation D should be used to resolve the placeholder.
The producer can continue using the older piece of the stack, which contains all
frames referenced in the lazy task queue. Deadlock cannot be introduced because
all tasks remain accessible to potential consumers. After dequeuing the tail task,
the producer returns to the continuation it represents, passing the newly-created
placeholder as an argument.

In essence, T has stolen a task from the tail of its own lazy task queue.
One problem with this solution is that it goes against our preference for oldest-
first scheduling, since we have effectively created a task at the newest potential
fork point. Performance can suffer because this task is more likely to have small
granularity; also, further blocking may result, possibly leading to the dismantling
of the entire lazy task queue.

3.3. Encore Implementation 49

(define (pfib n)
(if (< n 2)
n
(let* ((f1 (future (pfib (- n 1))))
(£2 (pfib (- n 2))))
(+ (touch f1) £2)))))

Consumer's Producer's
Stack
Placeholder

R
!

Figure 3.9: Stealing a task in pfib.

However, these problems only arise in certain kinds of programs and in fact
caused no difficulty for any of the programs described in Chapter 5. Consider for
example Figure 3.9, which shows the program pfib together with the post-steal
stack configuration from Figure 3.2e. For this program we shall see that tail-
biting can never occur because the lazy task queue of any blocked task is always
empty.

Recall that blocking can only occur as the result of touching a placeholder,
and that placeholders are only created when a task is stolen. When stealing a
task during the execution of pfib the consumer first creates a placeholder to
contain the eventual value of £1. The consumer then begins executing the stolen
continuation A, which will make the second recursive call, touch £1, and add £1
and £2. When the consumer begins executing this stolen continuation, its stack
contains only frame A as shown; the consumer’s lazy task queue (not shown)
is empty. The crucial observation is that these data structures will have the
same configuration after the second recursive call. In particular, the lazy task
queue will be empty when the consumer executes (touch £1); thus if blocking
1s necessary it can be accomplished without tail-biting.

In general, tail-biting will never occur if the value produced by a future form

50 LTC: Data Structures, Algorithms, and Implementation

is used only by the parent task. Tail-biting can only occur if the value is passed
to other tasks or stored in a data structure.

Still, it is interesting to consider algorithms which address the shortcomings
of the tail-biting approach; one such algorithm was implemented as part of the
ALEWIFE project and is described in [Mohr et al 91].

3.3.6 Miscellaneous Considerations

To wrap up this chapter let us briefly consider the relationship between lazy task
creation and the dynamic binding constructs common in Lisp. When restoring
the state of a task from stolen stack frames, the consumer must also be able to
restore any dynamic bindings which were in effect when the task was queued by
a lazy future call. Certainly this could be accomplished if the dynamic state were
stored in the lazy task queue entry as part of the lazy future calling sequence,
but this would add overhead to this crucial sequence for all tasks, not just those
using dynamic binding or even just those stolen. In the alternative solution
developed by Feeley [Feeley 91], the data structure storing dynamic bindings is
augmented by pointers into the lazy task queue. Thus the job of restoring the
correct dynamic state is relegated to the consumer and costs are incurred only
in dynamic binding operations and the stealing operation.

A related issue is maintainence of debugging information. When an excep-
tional condition halts execution of a multi-task program, debugging will be much
easier if the source code corresponding to every extant task can be retrieved.
With eager task creation such information can be stored in the task object and
easily retrieved by a debugger. But with lazy task creation this is more compli-
cated, since the source code corresponding to a given task T' changes when the
oldest continuation is stolen from its lazy task queue. To establish the correct
source code for T after the steal would require saving a pointer to the code X for
each lazy future call (future X). Again, this would add overhead to the lazy
future calling sequence for all tasks, not just for those stolen. The best solution
may be to store this information only when a debugging flag is specified, as the
extra overhead is probably tolerable during program development.

Chapter 4

Implementation: Improvements
and Assessment

Three topics relating to improvement and assessment of our dynamic partitioning
strategies bear discussion before we proceed to benchmark performance results in
the next two chapters. First, it turns out that insight gained from studying lazy
task creation can be used to improve the performance of both eager task creation
and load-based partitioning, even though these changes actually increase the cost
of task creation. After discussing these improvements we begin an assessment of
the runtime overheads of the three partitioning strategies, comparing overhead
here by instruction counts. Finally we consider the Encore LTC implementation
of task stealing, arguing why the cost of copying stack frames from producer to
consumer is not a significant source of overhead.

4.1 Optimizing ETC and LBP

Having spent substantial effort on the optimization of lazy task creation we must
be sure that the “adversary” strategies (eager task creation and load-based par-
titioning) are similarly well-implemented.

A primary goal of the original Encore implementation of Mul-T [Kranz et al 89]
was to show that future could be implemented with low overhead, and design
choices tended to favor the shortest possible instruction sequence for task cre-
ation. Subsequent experience has shown however that several design changes
which actually lengthen the task creation sequence will in fact lead to better
performance results for benchmark programs. Three such improvements are dis-
cussed in this section. To summarize:

Favor child: When forking, queue the parent task and execute the child task.
This policy greatly reduces the number of blocked tasks.

51

52 Chapter 4. Implementation: Improvements and Assessment

Double-ended task queues: Remove tasks from local queues in a LIFO man-
ner, but remove tasks from remote queues in a FIFO manner. Larger
subtrees are executed locally, giving a better approximation to BUSD exe-
cution.

Polite stealing: Remember which processor you stole from previously; poll all
other processors before stealing from that one again. Larger subtrees are
executed locally.

4.1.1 Favoring the Child Task

The first and most important improvement was motivated by the observation
that blocked tasks are rare with lazy task creation but common in standard Mul-
T. For every benchmark program run with either ETC or LBP, the number of
blocked tasks was nearly the same as the number of tasks created; by contrast
only a small percentage of tasks created with LTC would block. Because blocking
is fairly expensive, reducing the number of blocked tasks is important to good
performance.

With any of the partitioning strategies two tasks exist after an actual fork
occurs. Recall that the child task is the one which executes X, while the parent
task executes the continuation to (future X).

These definitions may seem slightly counter-intuitive for lazy task task cre-
ation; one might expect the producer to be the parent since it executes (future X).
But, after a consumer steals the continuation to (future X) the original defi-
nitions are accurate. The producer runs the child task, evaluating X, while the
consumer runs the parent task, evaluating the continuation to (future X).

The important observation in analyzing the frequency of blocked tasks is that
typically the parent task can block waiting for the value of the child task, but not
the other way around. If the child finishes executing before its value is needed
by the parent, the parent will not block. Thus, giving scheduling preference to
the child by starting it immediately is likely to lead to fewer blocked tasks.

This desirable scheduling behavior of favoring the child rather than the parent
is an automatic feature of lazy task ‘creation, since the producer begins executing
the child code immediately after making a lazy future call. The parent code only
begins to run later, after a steal operation or after the child code has completed.
This “head-start” for the child explains the observed behavior that few tasks
block with lazy task creation.

Halstead has discussed the desirability of favoring the child task [Halstead 89,
Halstead 86]; in the Concert Multilisp implementation of eager task creation the
processor executing future always suspends the parent task and begins executing
the child immediately.

However, because suspending the parent task at this time is more expensive

4.1. Optimizing ETC and LBP 53

than suspending the nascent child task, the opposite policy of queuing the child
and continuing the parent was chosen for the original Mul-T implementation.
As detailed in Section 4.2.1, favoring the parent in this way lowers task creation
overhead by 13 instructions.

Experience has shown, though, that favoring the parent carries a high price
tag in task blocking overhead. Because blocking a task costs 84 instructions and
most tasks block, it makes more sense to pay the overhead of 13 instructions
to queue the parent. The performance measurements presented in Section 6.4
support the conclusion that favoring the child leads to greater efficiency; this
experiment provides the first direct evidence I am aware of for this conclusion.

A further advantage of this scheduling change is that it allows processors to
manage just one queue rather than two. Only the “suspended” task queue is
needed since new child tasks are always executed immediately.

4.1.2 FIFO or LIFO Queues?

The second improvement alters the way tasks are dequeued in order to more
closely approximate BUSD execution. Recall that with ideal BUSD execution
single processors execute task subtrees which are as large as possible. Besides
allowing fewer tasks to be created, BUSD execution reduces “cold start” cache
problems by executing tasks locally rather than remotely. Thus BUSD execution
is beneficial even with eager task creation.

With lazy task creation we have seen how oldest-first stealing helps maximize
BUSD behavior: picking the oldest task to steal expands the call tree breadth-
first, increasing the likelihood that a large subtree will be moved to the stealing
Processor.

The same breadth-first effect can be achieved in standard Mul-T by adopting a
FIFO queuing discipline when stealing tasks from remote processor queues; FIFO
is equivalent to oldest-first. Conversely, a LIFO queuing discipline is desirable
when removing tasks from local processor queues; LIFO corresponds to a depth-
first expansion of the call tree on a single processor.

Because operations can be cheaper when tasks are always added and removed
from the same end of the queue, a LIFO discipline was chosen for both types of
dequeuing operation in the original Mul-T implementation. Experiments using
double-ended task queues have shown, however, that the increased cost of queuing
operations is more than compensated by the efficiency of executing larger subtrees
locally. Fewer tasks are created (with load-based partitioning) and fewer tasks
are stolen (with both LBP and eager task creation). See Section 6.4.

54 Chapter 4. Implementation: Improvements and Assessment

4.1.3 Polite Stealing

Any thief knows that robbing the same bank twice in a row is a bad idea. In
the section’s final improvement, this wisdom is applied to the polling strategy
adopted by idle processors. In the original implementation of Mul-T an idle
processor numbered ¢ always begins its search for stealable tasks with processor
number ¢ + 1 (modulo p, the number of processors), polling the other processors
in numerical sequence if the first has no tasks.

The result of this policy is that some processors can be polled more often than
others. For example, if processors 3 and 4 both have a large queue of tasks, idle
processors will always poll 3 before 4 and nothing will be stolen from 4’s queue
until 3’s queue is empty. This unfairness in stealing decreases the likelihood that
the globally oldest task will be stolen and tends to decrease the size of subtrees
executed on a single processor.

To address this problem we adopt a simple “polite” stealing policy, where a
stealing processor stores the number v of the victim processor. When the stealer
is next idle it will begin polling with processor v + 1 (mod p), ensuring that the
original victim will be polled last.

This fairness in stealing improves the likelihood that the globally oldest task
will be stolen, tending to increase the size of subtrees executed on a single pro-
cessor. As the experiments of Section 6.5 show, polite stealing improves perfor-
mance.

4.2 Runtime Overhead of Partitioning Strategies

The prime motivation for investigating dynamic partitioning strategies was to
find an alternative to the high runtime overhead of eager task creation. We may
now begin to evaluate the success of this endeavor by a direct analysis of the
runtime overheads of load-based partitioning and lazy task creation. Here we
will measure overheads by counting machine instructions; benchmark timings
will appear in later chapters.

How much does future cost? The answer depends, naturally, on the program
in question, but we can get a good idea by considering pfib.! For each partition-
ing strategy then, how much overhead is introduced by executing one future in
pfib?

The following table shows the number of instructions of overhead for each
partitioning strategy (the assumptions on which these counts were based are dis-
cussed below). Two implementations of eager task creation are shown; “Old
ETC” is the original Mul-T implementation, while “New ETC” (as well as
“LBP”) includes the changes described in Section 4.1.

1The code for p£ib appeared in Figure 3.7.

4.2. Runtime Overhead of Partitioning Strategies 55

old ETC new ETC LBP LTC
Cost if no task created — — 2 8
Cost if task created 133 153 155 146
Additional cost if task blocks 84 94 94 94

The first line shows the crucial case where no task is created; load-based
partitioning requires 2 instructions of overhead while lazy task creation requires
8. :
The second line shows that the cost of actually creating a task is about the
same for all strategies. This is no surprise with load-based partitioning since it
uses the same implementation as eager task creation, but it is perhaps surprising
that stealing a task with lazy task creation is actually slightly cheaper than cre-
ating a task eagerly. Note also that the cumulative overhead of the optimizations
for “new” ETC is 20 instructions.

The third line shows the additional cost if a task blocks, also about the same
for all strategies.

The cost of the touch operation in pfib has not been counted in the table
because the overhead is the same for all strategies. If no task is created, touch
requires 3 extra instructions (one to move the value of f1 from the stack to a
register). If a task is created, touch must extract the value from the resulting
placeholder, raising the cost to 10 instructions.

The instruction counts for task creation are further broken down in the fol-
lowing two sections.

4.2.1 Eager Task Creation

Implementing lightweight tasks is not-easy. The purpose of the following break-
down of instruction counts for eager task creation is not to defend in detail why
z instructions were required for operation y; rather, the goal is to convince the
reader that ETC is not a straw man. Creating, scheduling, running, and termi-
nating a task that can run on any processor and be blocked or interrupted at any
time requires a significant amount of work in the best of systems.

With another round of fine-toothed optimizations and some nontrivial design
changes, I estimate that the total could be shaved by perhaps 24 instructions.
While this would improve the performance of eager task creation somewhat, effi-
ciency would still lag far behind the average of 14 instructions per task achievable
with dynamic partitioning.

In several cases of the following breakdown a common inexpensive path was
counted rather than a less common, more expensive path:

o Task queue access is arbitrated by spin locks. In the common case a lock
is acquired on the first try (requiring 4 instructions); no busy-waiting time
is included.

56 Chapter 4. Implementation: Improvements and Assessment

e Stacks are placed on a freelist when no longer needed. In the common case
a stack will be available from the freelist so the cost of allocating a new
stack is not included.

e Any tasks waiting for a placeholder’s value must be re-queued when the
placeholder is resolved. In the common case there are no waiting tasks.

e In the common case a processor finds a task on its local queue; polling time
is not included.

Here then is the breakdown for the original Mul-T implementation of eager
task creation, showing the overhead introduced by executing one future and one
touch in pfib:

Creating processor:
17 Build closure (2 slots) for code in future
9 Call task creation subroutine and return
25 Allocate and initialize placeholder + task object
9 Enqueue task on local new task queue
4 Disable and enable interrupts
Ezecuting processor:
14 Dequeue a new task (after finding no suspended tasks)
8 Check for exceptions and initialize processor globals
12 Get stack from freelist and initialize
7 Call the closure and move free variables to registers
12 Resolve the placeholder and check for waiters
12 Prepare the stack for re-use
4 Disable and enable interrupts
Touching processor:
3 placeholder? check on x (includes move from stack to register)
7 Extract value from placeholder object (it might contain another placeholder)
Total:
143 instructions of overhead

As reported in Section 4.1, improving the runtime scheduling behavior of
eager task creation increased its overhead somewhat. When the child task is
given scheduling preference instead of the parent, the parent must be suspended
and restarted. This increases the instruction count by 13. And, using double-
ended task queues raises the cost of queuing operations, increasing the instruction
count by 7.

4.3. Overhead of Copying in LTC Steal Operation 57

4.2.2 Lazy Task Creation

The operations performed when creating a task lazily are mostly similar. As-
suming that a task is actually created, here is a breakdown for LTC showing as
above the overhead introduced by executing one future and one touch in pfib:

CLonsumer:
23 Allocate placeholder + task object, fill with zeros for gc safety
19 Allocate and initialize a stack/ltq object
30 Find a stealable continuation
12 Initialize new task and stack, modify old task object
21 Copy continuation (here, 4 slots) from old stack to new
5 Modify old stack
4 Disable and enable interrupts
5 Call stolen continuation
Producer:
3 Lazy future call (no return because resolve-placeholder swapped in)
12 Resolve the placeholder and check for waiters
12 Prepare the stack for re-use
Touching processor:
3 placeholder? check on x (includes move from stack to register)
7 Extract value from placeholder object (it might contain another placeholder)
Total:
156 instructions of overhead

Lazy task creation seems more complex than eager task creation, so how can
the total here be less than with “new” ETC? Well, queuing a task is certainly
much cheaper with LTC than with ETC, although dequeuing a task (i.e. stealing
it) is more expensive. LTC is also cheaper because there is no need to build a
heap closure to store the state of the child task. With LTC the state of the parent
task is saved in a stack closure, but in pfib (and most other programs studied)
that closure must be built anyway because of the recursive call, so no extra cost
1s incurred.

4.3 Overhead of Copying in LTC Steal Operation

Although the choice of a traditional contiguous-memory representation for stacks
in Encore Mul-T allows efficient stack operations, this design decision also means
that with LT C a retroactive fork must copy stack frames to split an existing stack.
It would appear that the amount of copying required is potentially unlimited so
that the cost of the LTC steal operation is also unlimited, scotching our original
goal to keep the cost of stealing close to the cost of creating an eager task.

58 Chapter 4. Implementation: Improvements and Assessment

While this is technically true it is somewhat misleading; the overhead of
copying when stealing a continuation should be viewed against the cost of creating
the continuation in the first place. A program with fine source granularity does
little work between lazy future calls; thus it is not able to push enough items
onto the stack to require significant copying. A program which creates large
continuations (requiring consumers to copy many words) must do a fair amount
of work to push all that information on the stack; the cost of copying is unlikely
to be significant in comparison.

As evidence of this claim a “worst-case” program was written which creates
large continuations with as little work as possible; timings for this program using
both lazy task creation and eager task creation are shown below.? The programs
used for ETC and LTC are slightly different, but timings for both measure the
cost of pushing n numbers on the stack, creating a task, and adding up the
numbers (all future calls led to actual forks with LTC). For example, the first
row shows the elapsed time for each method to execute 10 tasks of size 1000 while
the last row shows the time to execute 1000 tasks of size 10.

Number Continuation Time (seconds)
of Tasks Size (words) ETC LTC
10 2000 .08 12
20 1000 .08 12
50 400 .09 A3
100 200 .10 14
200 100 12 15
500 40 18 21
1000 20 .28 .30

These figures show that even with a “worst-case” program the costs of task
creation with LTC and ETC are of the same order. With the largest amount of
copying (2000 words), task creation with LTC is only 50% more expensive than
with ETC. And if a real program required this much copying it would probably
do considerably more work in the course of creating such a large continuation.
We can conclude that copying is very unlikely to introduce noticeable overhead
in real programs.

However, one exception to this conclusion can occur when parallel tasks are
created in a particular style from deep within a program. For example consider
parmap-cars, a straightforward parallel version of Scheme’s map procedure which
applies a function f to every element of a list 1:

?Information on timing methodology appears in Chapter 5.

4.3. Overhead of Copying in LTC Steal Operation 59

(define (parmap-cars f 1)
(if (aull? 1)
"0
(let* ((elt (future (£ (car 1))))
(rest (parmap-cars f (cdr 1))))
(cons elt rest))))

In each iteration future specifies that a child task may be created to call £
on the current list element while the parent maps f down the rest of the list.

Now assume that parmap-cars is called from deep within a program after
numerous procedure calls have created a large number of stack frames. With
lazy task creation, stealing the continuation to the first future call will require
copying all of the stack frames. As argued, the cost of this copying is unlikely to
be significant compared with the cost of building up the stack in the first place.
But in this example the stolen continuation (representing the rest calculation)
immediately makes another future call, and the next steal must copy the same
information all over again. In fact, spreading work to n processors in this example
via lazy task creation would require the built-up stack information to be copied
n times.

There are two easy solutions to this problem. First, future could be inserted
around the original invocation of parmap-cars. Stealing the continuation to this
original future call would require copying the built-up stack, but any further
steals would require very little copying.

Second, an alternative parallel version of map could be used:

(define (parmap-cdrs f 1)
(if (null? 1)
49
(let* ((rest (future (parmap-cdrs f (cdr 1))))
(elt (f (car 1))))
(cons elt rest))))

In this version, future appears around the “rest” computation. Stealing the
continuation to the future call in the first iteration would require copying the
built-up stack, but again any further steals would require very little copying.

Although situations such as this should be relatively rare and can be fixed by
either of the suggested methods, identifying such situations still requires a certain
amount of awareness from the programmer. This is a case (the only one I have
encountered) where lazy task creation cannot be applied blindly. The alternative
linked-frame representation for stacks used in the ALEWIFE implementation of
LTC [Mohr et al 90, Mohr et al 91] can alleviate this problem (steals require no
copying); however, the costs of using this alternative stack representation have
not yet been determined precisely.

Chapter 5

Goals and Methodology of
Performance Measurements

Many of the claims made in previous sections remain to be demonstrated by
actual experiments. Specifically, Chapter 6 will present data to support the
following claims:

e Both LTC and LBP perform substantially better than ETC.
e LBP degrades the performance of some programs (compared with ETC).
e LTC creates substantially fewer tasks than LBP.

o LTC performs at least as well as LBP for most programs—the overhead of
LTC has been acceptably minimized.

The design changes for the standard Mul-T scheduler (see Section 4.1)
improve the performance of ETC and LBP.

There are a few topics to consider before getting to the experimental data;
this chapter describes the benchmark programs to be used and discusses how the
experiments were run.

First though, I would like to argue the important point of

5.1 Why You Should Believe These Numbers

Most of the above claims relate to the runtime overhead of the various partitioning
strategies—we will be drawing conclusions about these partitioning overheads
based on various measurements of Encore Mul-T. But since these conclusions will
be based on relative timings we must be careful; it is important to be sure that
the overhead of partitioning really #s low, rather than just looking low because
it is masked by overhead in the rest of the system.

60

5.1. Why You Should Believe These Numbers 61

What other sources of overhead could make a parallel Mul-T program slow in
absolute terms? In comparison with, say, a sequential C program, four categories
of overhead come to mind:

1. The cost of using Lisp instead of a language like C, e.g. automatic storage
reclamation, manipulation of type tags at runtime, and dynamic linking.

2. The cost of using sequential Mul-T instead of T, e.g. runtime checks for
stack overflow.

3. The cost of using a parallel algorithm instead of a sequential algorithm,
e.g. using recursive divide and conquer instead of an iterative loop.

4. The runtime costs of multiprocessing, e.g. contention for shared resources
and cache turbulence.

To ensure that measurements of the partitioning strategies are meaningful we
must distinguish overhead due to partitioning from overhead due to these other
sources; each source is considered in turn. We shall see that although overhead
from some of these categories is noticeable for the benchmarks to be presented,
the impact is not enough to hide the overhead of dynamic partitioning.

5.1.1 Overhead of Lisp

Despite Lisp’s reputation for inefliciency, the first category of overhead is not a
major factor in the benchmarks to be presented. This is true largely because
code produced by T’s Orbit compiler is comparable in quality to code produced
by other compilers for the same hardware [Kranz 88]. In addition, runtime over-
head has been minimized in these programs by using type-specific arithmetic and
avoiding run-time storage allocation in the benchmark code. Finally, the cost of
garbage collection time has been excluded from performance statistics.

As a direct comparison, the “best” version of tridiag (see Section 5.3) was
coded in C (3.33 sec) as well as in sequential T3.1 (3.92 sec). T’s modest slowdown
here arises because Orbit generates code to save and restore live values more often
in this benchmark than the the C compiler does. tridiag has a lot of live data
and Orbit has fewer registers available because several are dedicated to specific
uses. This effect would probably be less pronounced on other processors (which
tend to have more general-purpose registers) or other benchmarks (which often
have less live data). '

5.1.2 Overhead of Sequential Mul-T

Moving to the second category of overhead, we must consider factors that make a
sequential Mul-T program run less efficiently than the same program in sequential

62 Chapter 5. Goals and Methodology of Performance Measurements

Elapsed Time (seconds) Overhead

“Standard” Mul-T Compiler of Compiler
Program T3.1 Mul-T w/ LTC Touches | of Mul-T Touches
abisort 6.91 8.23 8.27 11.78 19% 51%
allpairs | 10.82 11.88 11.93 31.72 10% 183%
fidb 1.40 2.37 2.48 2.70 69% 24%
mergesort | 2.00 2.19 2.21 3.50 9% 66%
mst 20.96 22.68 22.75 35.44 8% 61%
queens 2.46 3.37 3.39 3.98 37% 25%
rantree 1.00 1.21 1.22 1.33 21% 12%
tridiag 10.45 10.69 10.13 15.52 2% 46%
tribest 4.04 3.91 3.94 5.99 -2% 51%

Table 5.1: Overhead introduced by Mul-T compiler in sequential code

T. While the need to support a parallel runtime system introduces potential
overhead in several areas, only two areas have significant impact on the code
generated for the benchmarks to be presented:

e Compiler support for multiple stacks—the compiler inserts instructions
which test for stack overflow.

e Compiler support for future—the compiler may be directed to gener-
ate touch operations automatically (so the programmer needn’t consider
whether a variable might be bound to a placeholder and thus require ex-
plicit dereferencing with touch).

The effects of these sources of overhead for 9 programs are summarized in
Table 5.1. Each program was compiled 4 different ways: in T3.1, in “standard”
Mul-T, in Mul-T with lazy task creation, and in standard Mul-T with compiler
touches enabled. Since these versions were all run using just one processor, any
instances of future and touch were ignored during their compilation.

The elapsed time for each version is shown, along with two overhead figures
derived from the timings. The first overhead column shows the additional cost of
running the program in standard Mul-T as a percentage of its time in sequential
T this essentially measures the cost of stack overflow tests.? The second overhead
column shows the additional cost of running the program with compiler touches

1The programs are described in Section 5.3; benchmarking methodology is described in
Section 5.2.

2The cost of allocating nested lexical environments in the heap instead of the stack is also
a factor here, but is minor compared with the cost of stack overflow checking.

5.1. Why You Should Believe These Numbers 63

enabled, as a percentage of its time in standard Mul-T. The “Mul-T with LTC”
column does not figure in either of the derived columns; it is included to show
that support for lazy task creation introduces only a slight amount of overhead
in sequential code. This overhead arises because the combined stack/ltq object
used in the implementation of lazy task creation (see Section 3.3.1) makes stack
overflow tests slightly more expensive.

The data show that compiler support for both multiplestacks and future car-
ries a modest cost which varies from program to program.®> Even though Encore
Mul-T was engineered to minimize the cost of compiler touches [Kranz et al 89)],
Table 5.1 shows that the overhead can be non-trivial. In order to factor out as
many sources of overhead as possible, all measurements discussed hereafter were
made with compiler touches disabled (see Section 5.2 for a fuller discussion). The
remaining “overhead of Mul-T” averages around 20% for the programs shown;
this is not large enough to obscure the effects of the partitioning overheads we
care about measuring.

Two anomalies in Table 5.1 are probably caused by the mechanisms to be
described in Section 5.2: tridiag appears to be noticeably faster with lazy task
creation than without, and tribest appears to be faster in Mul-T than in T.
The presence of anomalies suggests that these measurements of overhead not be
taken too precisely but rather as a rough guide to the costs involved.

5.1.3 Overhead of Parallel Algorithms

In some cases an efficient sequential algorithm does not parallelize well but a
highly parallel algorithm for the same problem is much less efficient. There are
two ways in which this kind of algorithmic overhead could emasculate claims
made about a benchmark program.

First, if a parallel benchmark using the maximum number of processors didn’t
run significantly faster than the corresponding sequential version there would be
no sense in using the parallel algorithm. Timings of two such parallel/sequential
pairs appeared in Table 5.1—abisort/mergesort and tridiag/tribest (see
Section 5.3 for a description). The table shows that the sequential versions of
these algorithms run between three and four times faster than the corresponding
parallel algorithm on one processor. As will be seen in Section 6.6, speedup of
both abisort and tridiag is close to linear with dynamic partitioning so they
outperform the sequential competition when more than 4 processors are used.
These two programs are the worst cases in this regard for the benchmarks to
be studied; the parallel versions of the other benchmarks have less algorithmic
overhead.

3This set of programs may show a larger-than-average cost for stack overflow tests because
they tend to have rather fine-grained inner loops.

64 Chapter 5. Goals and Methodology of Performance Measurements

Secondly, algorithmic overhead could increase a program’s granularity enough
to mask the effects of partitioning overhead. Although there is no question that
some of the benchmarks have finer-grained sequential versions, we will see that
the granularity of all but one of the benchmark programs is fine enough that eager
task creation performs poorly. In addition we will measure the performance of
the dynamic partitioning strategies using a synthetic program whose granularity
may be made arbitrarily fine.

5.1.4 Overhead of Multiprocessing

The statistics to be presented do not allow precise conclusions about the extent of
multiprocessing overhead from sources such as cache turbulence and contention
for shared resources. However, as Section 6.6 will show, speedup for most of the
benchmarks is close to linear with dynamic partitioning so we can conclude that
the effect of these other sources of overhead is fairly small.

5.2 Methodology

It is perhaps an understatement to say that measuring the performance of com-
plex computer systems is not straightforward. To summarize the behavior of a
complex set of interacting systems into a few numbers for a table or graph, the
effects of many of the interactions must be minimized to achieve a repeatable
result. This section describes some of the steps taken to ensure that the results
reported here are as accurate as possible.

All experiments were run on Yale’s Encore Multimax system, configured with
18 NS-32332 processors and 64 megabytes of memory and running the Umax
4.3 operating system (R4.0.0). In the Encore implementation of Mul-T each of
several UMAX processes acts as a virtual Mul-T processor; all experiments were
run when the Multimax was otherwise empty of user processes, in a mode where
each virtual Mul-T processor was given exclusive access to a physical Multimax
processor. All pages of the processes’ virtual address space were accessed on
start-up to reduce paging effects.

Garbage collection time is not included in any of the performance statistics.
While it might be interesting to include the amortized cost of storage reclamation
when comparing Lisp with C, the cost is less important when making relative
comparisons of partitioning strategies which use the same garbage collector. Ac-
tually, including garbage collection time would make eager task creation look
worse than it already does because of the storage consumed by task objects.
Likewise, lazy task creation would improve slightly relative to load-based par-
titioning; garbage collection is less frequent with LTC because fewer tasks are
created.

5.2. Methodology 65

Unless noted otherwise, all timings of eager task creation and load-based
partitioning incorporate the scheduling improvements described in Section 4.1.

With load-based partitioning, the load threshold T was always chosen to give
the fastest time on 16 processors after comparing trials using T'=1, T = 2, and
T = 3. In most cases T' = 2 performed best though T = 1 was sometimes better;
using T' > 3 always degraded performance. If in this report a value of 7' is not
specified, assume T = 2.

Two attributes of the Encore Multimax architecture make repeatable timings
especially difficult. First, because the caches are physically addressed and direct-
mapped, two trials of the same sequential program with the same data can exhibit
markedly different cache behavior. For example, page swapping may cause the
second trial to run with a different mapping of virtual addresses to physical
memory locations, with the result that two sections of live data which previously
mapped to different cache locations now map to the same cache locations. The
second trial would suffer more cache misses and run more slowly.

To reduce the effects of this variability, all timings reported are the average
of numerous trials. Programs were always re-loaded before a trial so that the
location of program instructions varied more widely between trials.

The second “frustration factor” relates to the decoding of machine instruc-
tions. NS Series 32000 processors have multi-byte instructions, so the time re-
quired to fetch a given instruction may be larger if the bytes comprising the
instruction straddle two words or two cache lines. If a program is compiled in
two different ways (say, once with load-based partitioning and once with lazy
task creation) the inner loop instructions may fall on different word boundaries
in the two object files, complicating a comparison of the two versions.

This dynamic has greatest effect in a very tight loop and did not seem to affect
most of the benchmarks. However, the synthetic program tree (see Section 5.3)
uses a tight delay loop to simulate computations of different granularities. Ver-
sions of tree compiled with different scheduling strategies had to be adjusted to
ensure that the alignment of the delay loop did not adversely affect program tim-
ings. I suspect, but have not verified, that this dynamic is behind the anomalies
observed in Table 5.1. , 4

As mentioned in Section 5.1.2, all measurements were made with compiler
touches disabled. For Encore Mul-T both implicit and explicit touches have
points in their favor, but the decision between them is orthogonal to our pri-
mary topic of partitioning strategies. The important consideration for this study
is to factor out as many sources of runtime overhead as possible, so compiler
touches are disabled in favor of the less expensive explicit touches. This decision
leads to finer-grained inner loops which are a more demanding test of dynamic
partitioning.

As a side note, inserting touch operations explicitly was a trivial task for
the benchmarks used here. Still, even this small amount of work would not

66 Chapter 5. Goals and Methodology of Performance Measurements

be necessary on the ALEWIFE machine [Agarwal et al 91, Agarwal et al 90,
Chaiken et al 91] (once it is built), as implicit touches are supported in hard-
ware and add no overhead to program execution in the common case where the
touched datum is not in fact a placeholder.

5.3 Benchmark Programs Described

Most of the experiments to be presented use a common suite of benchmark pro-
grams. The choice of programs for this suite was primarily influenced by two
factors. First, the program had to be fine-grained enough that it performed
poorly with eager task creation; several programs which appeared at first to be
fine-grained were rejected on closer inspection because a coarse-grained paral-
lelization was easily attainable. One such program, allpairs, is included in the
benchmark suite for comparison. Note also that no program was ever rejected
because it was too fine-grained.

Second, the algorithm had to have the potential of close to linear speedup
on 16 processors. That way, any deviation from linear speedup is attributable
to multiprocessing overheads such as task creation or idle processors rather than
to the algorithm itself. mergesort is one program rejected on these grounds.
Programs containing speculative parallelism such as the Boyer-Moore theorem
prover or travelling salesperson problem were also rejected on these grounds;
ideal speedup is a slippery concept for such problems because the amount of
work varies considerably depending on how the call tree is expanded.

Knowing the source granularity of a benchmark is very important in inter-
preting performance results. Recall from Section 1.2.2 that “source granularity”
measures the work performed per future call in the source code while runtime
granularity measures the work performed per task actually created at runtime.
The quantity g will be used to measure source granularity; g is computed by
dividing the sequential Mul-T execution time of a benchmark (measured in mi-
croseconds) by its total number of calls to future:

_ taeq
9= maztasks
Thus g measures the average amount of work done by a Mul-T program per
future call, excluding partitioning overhead. Finer-grained programs will have
smaller values of g. For the benchmarks measured here Yale’s Multimax delivers
about 1 Mips per processor?, so g is roughly comparable to the average number
of NS32332 instructions per task as well.

4Encore claims 2 Mips per processor, but the benchmark programs used here tend to have
numerous memory referencing instructions, decreasing the execution rate.

5.3. Benchmark Programs Described 67

The programs comprising the benchmark suite are summarized in the follow-
ing table and then described individually. All benchmark code is free of unnatural
parameterized grouping; these are straightforward parallel algorithms with 1 or 2
instances of future and touch. Each program was carefully coded for maximum
efficiency and none uses floating-point arithmetic.

Program g Description
abisort 77 Adaptive bitonic sort
allpairs 875 All-pairs shortest paths (Floyd’s algorithm)

fidb 20 Fibonacci numbers

rantree 63 Sum nodes of a randomly shaped tree

mst 91 Minimum spanning tree (Prim’s algorithm)
queens 97 n queens problem

tridiag 217 Tridiagonal matrix solver

abisort (g = 77) performs an “adaptive” bitonic sort [Bilardi & Nicolau 89] of
n = 16,384 numbers. The adaptive algorithm achieves optimal complexity
(O(nlogn) rather than the O(nlog?n) of the standard bitonic sort algo-
rithm) by storing bitonic sequences in a special tree data structure. Still,
adaptive bitonic sort performs about twice as many comparisons as a merge
sort, and has somewhat greater bookkeeping costs. However, its parallel
divide-and-conquer merge operation allows virtually linear speedup when
n > p. Such speedup is not possible with straightforward implementations
(on machines like the Multimax) of other divide-and-conquer sorts such as
merge sort and quicksort which contain significant sequential phases.

The optimized sequential program mergesort is also measured for compar-
ison with abisort.

allpairs (g = 875) solves the all-pairs shortest paths problem [Aho et al 83]
on a directed linear graph of n = 117 nodes® using a parallel version of
Floyd’s algorithm. Starting with an n X n connectivity matrix C, where
C; ; gives the length of the edge connecting nodes ¢ and j (or 0 if ¢ and j
are not adjacent), execution continues until C;; contains the length of the
shortest path from 7 to j for all 7 and j. The algorithm iterates sequentially
through all vertices k. During step k, all pairs of vertices are checked to see
if going through vertex k produces a shorter path; that is, C;; is updated
if Cix + C,; < C; ;. These operations may all proceed in parallel. To see
why, note that in step k no element of row k or column k will change; this
is so because Cjx = 0. Since all computations in step k will only reference

SWhy 117 nodes? Originally the test graph was to represent 117 cities of the Eastern United
States, but since the algorithm for this problem is essentially oblivious to the connectivity of
the graph, the simpler linear graph was used with the same number of nodes.

68

fib

Chapter 5. Goals and Methodology of Performance Measurements

values from row k and column k, all vertex pairs can be safely handled in
parallel during a given step.

Handling all vertex pair tests in parallel would produce a rather fine-grained
program, but this is not necessary for the Multimax because a coarse-
grained parallelization is easily obtained by having each (potential) task
handle the n vertex pair tests in a single matrix row. This is the strategy
adopted for allpairs, explaining its relatively high g value. Thus the
parallel version of allpairs has n sequential steps separated by barrier
synchronization; in each step there are n potentially parallel tasks. The
tasks are created by a divide-and-conquer traversal of the index set of the
matrix; the additional overhead of such a traversal compared to an iterative
traversal is negligible because of the coarse grain of each task.

(g = 20) is the standard doubly recursive program to calculate the nth
Fibonacci number (n = 25 here), where the two recursive calls may be
performed in parallel. £ib is not a program anyone would use; it is included
mostly as a standard of comparison with other parallel implementations
of applicative languages. Also, £ib has finer granularity than any of the
“real” benchmarks, providing a more demanding test of the partitioning
strategies.

rantree (g = 63) is a synthetic benchmark motivated by the study of parallel

nst

Monte-Carlo particle transport algorithms [Miura 88]. A tree with n nodes
is generated in a random shape using a branching probability of 50%. When
branching is chosen the remaining nodes are divided randomly between the
left and right subtrees. To ensure acceptable pseudo-random behavior, a
pair of matched functions is used to update the “random seed” for the right
and left subtrees. rantree has fairly fine source granularity and a highly
irregular call tree.

(9 = 91) finds the minimum spanning tree of an n node graph using (a
parallel version of) Prim’s algorithm [Aho et al 83]; here the input data is
a fully-connected graph of 1000 points chosen randomly from a unit square,
with edge lengths determined by Euclidean distance. Prim’s algorithm
builds the minimum spanning tree one node at a time; in each of n — 1
sequential steps the node closest to the existing partial tree is added. With
each node 7 not yet in the tree is stored the minimum distance d; to a node
in the tree. In each step, each d; is updated if node 7 is closer than d; to
the node most recently added to the tree, and the node with the smallest d;
is added to the tree. In each sequential step a parallel divide-and-conquer
traversal of the free nodes is used to update the d;’s and find the closest
node. Since the number of free nodes decreases by 1 in each step, the size

5.3. Benchmark Programs Described 69

of the search tree decreases from n — 1 nodes in the first step to 1 node in
the last step.

queens (g = 97) finds all solutions to the n queens problem, where n queens are
placed on an n x n chessboard in such a way that no queen may capture
another. n = 10 was chosen for these experiments. A queen is placed
on one row of the board at a time; each time a queen is legally placed,
future appears around a recursive call to find all solutions stemming from
the current configuration. This.version of n queens uses bit vectors for a
very compact and efficient representation of the placed queens, resulting
in fine source granularity.® Like rantree the call tree of queens is not
well-balanced.

tridiag (g = 217) solves a tridiagonal system of n = 2*¥ — 1 equations using
cyclic reduction [Hockney & Jesshope 88] and backsubstitution. In each of
k phases of standard cyclic reduction half of the remaining equations are
eliminated. Figure 5.1a shows the 3 phases of standard cyclic reduction for
n = 15; a circle represents each equation and the reduction phases proceed
from top to bottom. For example, in phase 2 equations 2, 6, 10, and 14 are
eliminated, yielding new versions of equations 4, 8, and 12. After the final
phase equation 8 may be solved; the other equations may then be solved
by backsubstitution (not shown).

Note that a value computed in one phase may be used by two distinct
computations in the subsequent phase; for example, the updated version
of equation 10 computed in phase 1 is used in phase 2 to update both
equations 8 and 12. This pattern of data dependencies complicates the
synchronization needed for parallel implementations of cyclic reduction.

A novel solution, shown in Figures 5.1b-5.1d was adopted in tridiag to
take advantage of the problem’s natural divide-and-conquer structure. In
a given phase only the “odd” equations (those which will be eliminated in
the subsequent phase) are updated. This means that updating an equation
may require computations at several “levels”, as with the 3 updates shown
for the central equation in Figure 5.1d. But, this approach also allows a
simple control structure using only call/return synchronization. For exam-
ple, to solve the central equation we recursively reduce the right and left
subtrees (in parallel) and then reduce the central spine sequentially as in
Figure 5.1d. This algorithm does have the effect of introducing a sequential
component of O(h) to the computation of a node with height k. In prac-
tice however, parallel efficiency can still be very close to 1.0 when n > p
because processors are only idle during the last few (cheap) phases.

6The version of queens measured in [Mohr et al 90] had substantially coarser granularity.

70 Chapter 5. Goals and Methodology of Performance Measurements

123456789 101112131415
® ® ®
Phase 1
Phase 2
4 i Ll
Phase 3
8 L
(a) Standard parallel algorithm. - (b) Phase 1 of revised algorithm.
0000001

(c) Phase 2 of revised algorithm. (d) Phase 3 of revised algorithm.

Figure 5.1: Standard and revised algorithms for cyclic reduction of tridiagonal
systems.

A rather large value of n = 65,535 was used here, reflecting a preference
for non-trivial problems; performance was comparable for smaller values of
n.

The sequential program tribest is also measured for comparison with
tridiag; tribest solves the same tridiagonal system using standard Gaus-
sian elimination. This algorithm performs fewer operations per equation
than cyclic reduction (8 as opposed to 17) but contains essentially no op-
portunities for parallelism.

Two other synthetic programs will be used in experiments in addition to those
in the standard suite described above.

tree adds up a perfect binary tree of 1’s using a parallel divide and conquer
structure very similar to pfib or psum-tree; however, at each tree node or leaf it
executes a delay loop of a specified length, allowing granularity control. Varying
the granularity, tree depth, number of processors, and partitioning strategy will
produce some revealing comparisons. ‘

Finally, fatwalk (g = 140,000) is a very coarse-grained iterative program
designed as a worst case to show how load-based partitioning can degrade the

5.3. Benchmark Programs Described 71

performance of a program. fatwalk is discussed only in Section 6.6.1 so further
description is deferred until then.

Chapter 6

Benchmark Results

We are now ready to examine the experimental results. As an overview, here is
a list of major conclusions, with section numbers in parentheses:

In sequential code the overhead of ETC is an order of magnitude greater
than the overhead of LTC, which in turn is an order of magnitude greater
than the overhead of LBP. (6.1)

ETC has low efficiency at fine granularities; both LTC and LBP have higher
efficiency across the granularity spectrum. (6.2)

Without the scheduling changes for “standard” Mul-T, LTC outperforms
LBP at all granularities; with the scheduling changes, LTC and LBP have
comparable performance. (6.2)

With the scheduling changes, benchmark performance improves 4-30% with
ETC and 3-43% with LBP. (6.4)

All strategies are less efficient when task trees are shallow; LTC suffers the
least. (6.3)

LTC creates substantially fewer tasks than LBP. (6.5)

Polite stealing significantly reduces the number of tasks created with both

LTC and LBP. (6.5)
LBP degrades the performance of fatwalk. (6.6)

Both LTC and LBP perform substantially better than ETC for the fine-
grained benchmarks. (6.6)

LTC has close to linear speedup for most benchmarks; speedup of LBP is
almost as good. Speedup of both methods suffers on programs with shallow
task trees. (6.6)

72

6.1. Overhead of Partitioning Strategies 73

Overhead of operation (usec)
future touch
Program | ETC LBP LTC |LBP LTC
abisort | 1523 5.1 10.5 14 1.6
allpairs | 177.6 20.6 25.1 | 5.2 3.7
fib 145.1 1.2 9.7 16 1.6
mst 1499 0.2 142 | 27 1.0
queens 149.1 1.1 124 | 14 14
rantree | 1522 1.0 109 | 16 1.6
tridiag | 156.7 6.1 14.6 | 122 0.2

Table 6.1: Overhead per call of future and touch in sequential code, in mi-
croseconds, for each benchmark program and partitioning strategy.

6.1 Overhead of Partitioning Strategies

How much overhead do the partitioning strategies add to the execution of real
programs? Table 6.1 shows one angle on this question, reporting the overhead per
call to future and touch in sequential code for each program in the benchmark
suite. This may be seen as measuring the minimum impact of a partitioning
strategy, as multiprocessing overheads like idle processors or contention for shared
resources are not present.

For each partitioning strategy, three versions of each program were compiled:
one with future and touch ignored, one with just future ignored, and one with
neither ignored. Each version was executed with all three partitioning strategies
using just one processor and averaged over 40 trials. The overhead figures were
derived from these timings; for example, the cost of future was determined by
computing the difference in execution time between the latter two versions and
dividing by the total number of calls to future.

The ETC column shows the overhead introduced when a task is created on
every call to future. The LTC column shows only the overhead of lazy future
call and return; there was no task creation overhead because only one processor
was active. Similarly, the LBP column shows only the overhead of testing the
local task queue length—a threshold of 7' = 0 was used so that no tasks would
be created. :

These figures show a surprising amount of variability. I conclude from this
variability not that the overheads vary highly from program to program, but
rather that these measurements were only partially successful in factoring out
other sources of variability. Support for this conclusion may be seen in the touch
columns for LBP and LTC—the two implementations are executing exactly the

74 Chapter 6. Benchmark Results

same instructions for touch but yet the computed overhead of touch can differ
greatly between LBP and LTC for the same program. This may be caused by
the variability in instruction alignment discussed in Section 5.2, or by some other
dynamic not yet identified.

Despite the variability in Table 6.1, the overall picture which emerges is con-
sistent with what one would expect after considering the instruction counts given
in Section 4.2. LBP has very low overhead, LTC about an order of magnitude
greater, and ETC yet another order of magnitude greater than that. It might
seem surprising that LTC costs 10 times as much as LBP when only 8 instructions
of overhead are required compared with 2 for LBP. The difference is that LTC
requires an expensive synchronization instruction (as explained in Section 3.3.2)
guaranteed to cause a cache miss, while the LBP instructions rarely cause a cache
miss. Still, the gap could likely be narrowed on a machine allowing a less clumsy
method of synchronization than that described in Section 3.3.2.

A somewhat more controlled comparison of the partitioning strategies using
multiple processors is given in the next section.

6.2 How Granularity Affects Efficiency

We observed initially that eager task creation performs poorly with fine-grained
programs. Now we may examine just how poor the performance of ETC actu-
ally is, and how much improvement is seen with dynamic partitioning. Using
program tree (described in Section 5.3), we can measure the effectiveness of the
various task-creation strategies over a range of task granularities. Recall that
tree executes a delay loop of a specified length, allowing granularity control. By
timing trials using a range of granularities we can get an “efficiency profile” for
each task-creation strategy. Note that the first profiles we shall consider were
measured without the scheduling improvements for ETC and LBP.

Figure 6.1 shows these profiles, with source granularity along the the z axis (in
a log scale) and efficiency along the y axis. Each curve shows how efficiency varies
for a particular partitioning strategy as granularity is increased from 3 to 3003
instructions to execute the delay loop at each node in tree. (The instructions
which execute the basic divide-and-conquer loop are not counted here.) The
efficiency F for a given trial is calculated using the formula

E = tseq
Nlpar
where in this case the sequential time t,, is for a Mul-T program compiled with
future and touch ignored and the parallel time t,,, is measured using n = 16
processors. Efficiency of 1.0 means perfect speedup. The tree depth of 16 used in
these trials ensures many tasks so that processor idle time at start-up and tail-off
has minimal effect and close-to-perfect speedup should be achievable.

6.2. How Granularity Affects Efficiency 75

Regular Tree: Granularity vs. Efficiency

1~o T lllllll ¥ T llllll] T T T 7717

° o o
L3 [- 3 (-]

Efficiency on 18 processors

o
[}

1 lllllll 1 i lllllll 1 Illlllll 1 1
0.0 107 T] 10°

10
Source Granularity (number of instructions)

Figure 6.1: Granularity vs. efficiency for tree benchmark, by partitioning strat-
egy.

As expected, the high cost of eager task creation leads to very poor efficiency
at fine granularities. With load-based partitioning 90-95% of the 2'® tasks are
eliminated, improving efficiency substantially. Lazy task creation makes an addi-
tional improvement by eliminating more than 99% of the tasks. Still, the overhead
of lazy future calls is significant, hurting efficiency at the finest granularities.

Figure 6.2 shows the effect of adding the scheduling improvements for ETC
and LBP. In the left-hand plot, the curves from Figure 6.1 for these strategies are
shown with lower case labels while the corresponding curves in the “new” system
have upper case labels. Performance is noticeably improved for both strategies.
The right-hand plot retains these “new” curves and adds the LTC curve from
Figure 6.1, showing that LTC and the improved LBP are essentially equivalent;
both are still significantly better than ETC.

With the exception of Section 6.4, where the effects of the scheduling im-
provements are examined in more detail, all subsequent measurements of eager
task creation and load-based partitioning were made in the “new” system, which
incorporates the scheduling improvements.

76 Chapter 6. Benchmark Results

Regular Tree: Improved Scheduling Regular Tree: Improved Scheduling
1'0 T lllllll T T lllll‘l L4 T T TTTIT7V 1~° T I(I!III T T llllll! T T 7 TV
0.8 0.8 —

0.8

Efficiency on 16 Processors

Efficiency on 16 Processors

B - new LBP (T=2) L - LTC

0.2 0.2 —
b - old LBP (T=2) B — LBP (T=2)
E — new BTC E - BTC
e - old ETC " r 3
oo L ||lllll 1 i Illll\l i 1 lllllll 1 1 00 1 lllllli 1 1 lllllll 1 1 l||llll 1 1
: 107 10° 10° . 107 10% 10°
Source Granularity (number of instructions) Source Granularity (number of instructions)

Figure 6.2: Effect of ETC and LBP scheduling improvements on tree benchmark.

6.3 How Tree Depth Affects Efficiency

tree may also be used to see how efficiency varies with call tree depth. Figure 6.3
shows graphs similar to those in the previous section, except that tree depth varies
along the r axis while granularity is constant at g = 307 for the left-hand plot
and g = 867 for the right.! As before, 16 processors were used for all timings.

Two factors limit efficiency in this benchmark; first there is the familiar over-
head of task creation. With small trees no strategy is particularly efficient be-
cause most potential fork points lead to task creation. But as the tree depth and
thus the number of potential fork points rises, the efficiency of LTC and LBP
also rises—as tasks execute larger subtrees the relative overhead of task creation
decreases.

If this were the only factor however, the ETC curves would be horizontal
because the overhead of task creation is independent of tree depth with ETC.
Since the ETC curves are clearly not horizontal other mechanisms must be at

1For comparison with the previous plots, the delay loop contained 303 instructions for the
left-hand plot and 1003 for the right.

1.0

0.8

0.6

Efficiency on 16 Processors

0.2

0.0

6.3. How Tree Depth Affects Efficiency 7

Tree Depth vs. Efficiency Tree Depth vs. Efficiency
T L] T ‘ 4 T T ¥ ‘ H ‘ o
- - 0.8 -
n
|
[o]
w
- m | _
o
Q
— E 0.8 — —
Lo
©
- -t - -
=
(o]
- 0.4 — -
Q
c
2
) g T -
L - LTC - = 0.2 L - LTC -
B — LBP (T=2) B - LBP (T=2)
E - BTC E — ETC
L i 1 J 1. 1 N3 1 ! i i 1 I i l L 1 Il H] 1
10 15 0.0 5 10 15
Tree Depth Tree Depth
(a) Source granularity g = 307 (b) Source granularity g = 867

Figure 6.3: Tree depth vs. efficiency for tree benchmark, by partitioning strat-
egy. :

work; two likely possibilities are idle processors and cache effects.

During execution of the task tree, processors are idle both at the beginning
(until enough breadth-first expansion has occurred) and end (until the last pro-
cessor finishes). For this benchmark, measurements show that the length of these
periods of idleness is largely independent of tree depth. But since small trees are
executed much more quickly than large trees, the overhead due to a fixed period
of idleness effects efficiency much more for small trees than for large trees.

Cache effects are also likely to degrade efficiency more for small trees than for
large trees, as the cost in cache misses of migrating a subtree of tasks to another
processor is amortized over a shorter period of execution.

So we see that several factors limit efficiency for small subtrees, explaining
the shape of the curves in Figure 6.3. Note also that LBP is only marginally
better than ETC for very small trees and that LTC performs somewhat better
than LBP across the board.

This data will be important when interpreting the results of benchmarks mst

78 Chapter 6. Benchmark Results
and allpairs, where tree sizes are rather small.

6.4 Effect of ETC and LBP Scheduler Changes

Section 4.1 presented three changes to the scheduler used with ETC and LBP,
and claimed that the changes improved the performance of both methods despite
increasing the cost of task creation. Here we consider evidence for this claim,
beginning with a summary of the three changes:

1. Favor child instead of parent. With the old policy a forking processor would
queue the child task and then continue executing the parent task. With
the new policy a forking processor will queue the parent task and execute
the child task.

2. Steal FIFO instead of LIFO. With the old policy an idle processor would
remove tasks from remote queues in a LIFO manner. With the new policy
an idle processor will remove tasks from remote queues in a FIFO manner.

3. Steal politely. With the old policy an idle processor z would poll starting
with processor ¢ + 1 (mod p, the number of processors). With the new
policy an idle processor remembers which processor j was last stolen from
and will poll starting with processor j + 1 (mod p).

The first experiment tests combinations of the first two changes. Table 6.2
shows statistics for programs tree (with depth 14 and ¢ = 307) and rantree,
run with and without each change using 16 processors.

For both programs the fastest time is achieved when both changes are ac-
tive, under both ETC and LBP. Favoring the child task improves performance
substantially because there are many fewer blocked tasks; also, fewer tasks are
stolen. Using a FIFO instead of a LIFO stealing policy has a smaller but still
noticeable effect; fewer tasks are created with LBP and fewer tasks are stolen
with both ETC and LBP.

Evidence that the third change, polite stealing, decreases the number of tasks
created with both LBP and LTC will be presented in the following section.

We now consider the cumulative effect of all 3 scheduling changes for each
program in the benchmark suite. Table 6.3 compares statistics for running each
program in both “old” Mul-T (without the scheduling changes) and “new” Mul-
T (with the scheduling changes), with both ETC and LBP. The parenthesized
figures show the percent improvement in the new system compared to the old—
performance of every program is improved for both partitioning strategies, some
quite dramatically.

A conclusion that the scheduling changes are beneficial seems warranted.

6.5. Number of Tasks Created 79

tree
Partitioning | Scheduling | Stealing || Elapsed Number of Tasks

Strategy Preference | Policy Time | Created | Blocked | Stolen
Favor LIFO .63 16383 16165 2063

ETC Parent FIFO .66 16383 16263 488
Favor LIFO .55 16383 49 1326

Child FIFO .53 16383 53 311

Favor LIFO 41 3018 2909 804

LBP Parent FIFO 41 2773 2654 606
(T =2) Favor LIFO 40 3048 56 556
Child FIFO .39 2321 58 316

rantree
Partitioning | Scheduling | Stealing || Elapsed Number of Tasks

Strategy | Preference | Policy Time | Created | Blocked | Stolen
Favor LIFO .58 19180 17895 | 2842

ETC Parent FIFO .60 19180 18704 1047
Favor LIFO 44 19180 903 2216

Child FIFO 43 19180 289 750

Favor LIFO .19 3835 3429 1234

LBP Parent FIFO .20 3666 3309 1092
(T =2) Favor LIFO A7 3468 294 825
Child FIFO .16 2877 185 536

Table 6.2: How scheduler changes to favor the child task and adopt a FIFO
stealing policy improve performance for tree and rantree.

6.5 Number of Tasks Created

Section 2.2.3 argued why lazy task creation is more effective than load-based
partitioning at eliminating unnecessary tasks. Table 6.4 backs up this claim
by showing the number of tasks created by each partitioning strategy for each
benchmark program. The parenthesized figures give the number as a percentage
of the total possible number of tasks. (For LBP, T = 2 gave the best time on 16
processors for all programs except abisort, where T' = 1 was used.)

For all programs, LTC creates substantially fewer tasks than LBP. LTC elim-
inates 99% of all tasks for all programs except mst and allpairs, which have
shallower trees than the other programs. (A fuller discussion of the performance
of these two programs appears in the following section.)

80 Chapter 6. Benchmark Results
ETC LBP
Elapsed Time Elapsed Time Tasks Created
Program | Old New (saved) | Old New (saved)| Old New (saved)
allpairs| 1.39 1.33 (4%) |1.35 1.30 (3%) | 11616 10964 (6%)
mst 10.22 9.43 (8%) | 7.64 7.18 (6%) | 151319 154216 (-1%)
tridiag 1.86 1.44 (23%) | .85 .75 (12%) 6671 4637 (30%)
abisort 3.35 249 (26%) | 1.08 .92 (15%) | 17862 16241 (9%)
rantree 55 .41 (25%) | .18 .13 (28%) 3934 2564 (35%)
queens 1.10 .85 (23%) | 41 .29 (28%) 6318 2673 (58%)
fib 3.28 230 (30%) | .47 .27 (43%) | 11291 3021 (73%)
Table 6.3: How scheduler changes improve performance for benchmark programs.
Number of Tasks Created

Program ETC LBP LTC

fib 121392 (100%) 3021 (2%) 160 (0%)

queens 34814 (100%) 2673 (8%) 361 (1%)

tridiag | 49150 (100%) 4637 (9%) 357 (1%)

abisort | 106496 (100%) 10810 (10%) 704 (1%)

rantree | 19180 (100%) 2564 (13%) 224 (1%)

mst 249001 (100%) 154216 (62%) 29210 (12%)

allpairs| 13572 (100%) 10964 (81%) 4673 (34%)
Table 6.4: Number of tasks created in Mul-T benchmarks, by partitioning strat-
egy.

Table 6.5 shows another angle on this issue, counting the number of tasks
created in program tree as the tree height A and number of processors p are
varied. The table’s four blocks show this data for both LTC and LBP, with
and without the polite stealing policy described in Section 4.1.3. Polite stealing
sharply reduces the number of tasks created under both strategies, especially as
tree size and number of processors increase. '

As expected, LTC creates substantially fewer tasks than LBP across the
board. For example, LTC creates fewer tasks with 16 processors than LBP creates
with just 2 processors, for all tree sizes (with polite stealing).

These task counts may also be compared with the worst-case theoretical pre-
dictions from Section 2.2.3 of O(kp?) tasks for LTC and O(h®p?) tasks for LBP
with 7' = 2. While the actual task counts are certainly lower than the worst-case

6.5. Number of Tasks Created 81

Tree Height h
(with Polite Stealing) (without Polite Stealing)
p| 6 8§ 10 12 14 16| 6 8 10 12 14 16
211 1 2 1 1 211 1 1 1 2 1
41 6 7 8 9 12 131 5 6 7 9 12 9
L} 6{12 18 25 32 43 5212 18 26 36 51 67
T} 8115 22 40 50 61 72114 20 33 54 69 111
Ci10}18 30 46 73 90 114 |18 32 54 92 139 214
12121 37 58 8 110 13721 36 61 102 202 415
14123 43 69 110 147 185|23 42 72 123 277 578
16 |25 46 77 117 155 218 |24 45 84 147 275 580
2{32 63 104 161 219 294133 63 102 154 219 278
L{ 4142 106 211 434 691 106543 106 215 38 664 909
B 6147 127 298 621 1170 1998 | 47 128 302 682 1252 2437
P| 8|51 138 334 748 1341 2438 {50 140 347 750 1607 3212
10 | 54 149 358 789 1553 2990 | 53 151 382 896 2122 4079
T|]12(56 159 390 868 1718 3274 |56 160 408 975 2256 5317
2114 |58 165 401 921 1882 3868 | 58 167 435 1023 2463 5733
16 | 60 172 416 963 1997 4005 | 59 173 445 1091 2562 6226

Table 6.5: How task count varies with tree depth and number of processors.

predictions, the conclusion that LBP has a higher exponent on k than LTC is
supported by looking at various cross sections of the data.
Figure 6.4 shows four such cross-section plots of task counts from Table 6.5.

The upper two plots show data for LTC while the lower plots show data for LBP;
the left-hand plots vary p for fixed h while the right-hand plots vary h for fixed
p. For example, plot (a) shows how the number of tasks created with LTC varies
with the number of processors for trees of height 8, 12, and 16.

One could make a very rough estimate based on these graphs of the proper
exponents on p and h for LTC and LBP. The curves for LTC are close to linear,
suggesting that the number of tasks created in the tree benchmark is roughly
O(hp). With LBP the curves appear essentially linear in p (or perhaps with an
exponent slightly less than 1) but at least quadratic in h, suggesting that for
LBP the number of tasks created is roughly O(h®p) for some a > 2.

—
[+
o

Number of Tasks
S
o

50

4000

3000

2000

Number of Tasks

1000

82 Chapter 6. Benchmark Results

T T 1 T l T ¥ T 1] T
200 [~ ‘ -
2150 —
o - -
o
ol '
[+] r -
b - -
B1oo -
E } §
E]
2t .
50 | -
Lt g
- -
I 1 1 H l 1 I3 1 i [1
s 10 15
Number of Processors Tree Height
(a) LTC: p varies for h = 8,12,16. (b) LTC: h varies for p = 6,11, 16.

. 4000]
- 3000 -
]

]

L wm 4

. ®
B~
Lo
o
— L, 2000 -
Y
L
E
- = K
4
- 1000 I
} 8 2 R
[-G AN A T 0
5 10 15
Number of Processors Tree Height
(c) LBP: p varies for h = 8,12, 16. (d) LBP: A varies for p = 6,11, 16.

Figure 6.4: Task counts for fixed tree height or fixed processor count.

6.6. Performance of Benchmark Programs 83

rantree (g=63)

ll T T T lIIllI

10" lon

Time (seconds)

107 107

1 l 3 1 1 i I 1 i 1 l
10° 107
Number of Processors

Figure 6.5: Performance of rantree.

6.6 Performance of Benchmark Programs

Finally we arrive at the long-awaited benchmark speedup curves. For the bench-
mark programs, how does performance improve as processors are added for the
various partitioning strategies? Consider Figure 6.5, which shows the perfor-
mance of rantree as well as introducing the format used in all subsequent
speedup plots.?

A log/log format was chosen for these plots because it presents information
about both absolute times and relative speedup in a single plot [Halstead 91].
The horizontal line labelled “Seq” shows the sequential time, that is, the elapsed
time using one Mul-T processor for a version of rantree compiled with future
and touch ignored. The curve labelled “E” shows times for rantree run using
eager task creation on 1, 2, 4, 8, 12, and 16 processors; we see that the sequential
time is only equalled after 4 processors are used to make up for the high overhead
of eager task creation. The curves labelled “L” and “P” show times for rantree
compiled for lazy task creation and load-based partitioning (T’ = 2) respectively.

2The data presented in the speedup plots also appears in Table 6.6 at the end of this section.

84 Chapter 6. Benchmark Results

Both curves begin close to “Seq”, showing that dynamic partitioning has much
lower overhead than ETC, with LBP lower than LTC. As processors are added,
LTC makes up for this initial deficit and surpasses LBP; LBP loses efficiency by
creating more tasks than necessary.

A dotted line showing ideal linear speedup for LTC extends from the first
“L” but is only visible at the lower right of the plot; we see that the speedup of
LTC is much closer to linear than the speedup of LBP for this program. Only
this single reference line is drawn to avoid cluttering the graph. A line beginning
at “Seq” might seem more honest, but the point here is to judge the relative
speedup of the partitioning strategies rather than to discuss issues of sequential
overhead and absolute performance. These latter issues are discussed in detail
elsewhere (e.g. Sections 5.1 and 5.1.2)

6.6.1 fatwalk

Next we consider program fatwalk, a very coarse-grained iterative program de-
signed as a worst case to show how load-based partitioning can degrade the
performance of a program. 100 coarse-grained tasks are created in an iterative
loop resembling parmap-cdrs (see Section 4.3); the results are accumulated in a
list which is walked sequentially to detect termination.

Consider Figure 6.6. All 3 curves begin right at the “Seq” line—coarse gran-
ularity means that task creation overhead is negligible for all strategies. Speedup
is nearly linear with both ETC and LTC, with slight deviation due to idle pro-
cessors in the “tail-off” phase. But performance is much worse with LBP; with
16 processors fatwalk takes 4 times longer than with ETC or LTC. Very bad
load balancing due to irrevocable partitioning decisions explains the slowdown,
as predicted in Section 2.1.2.

The astute reader may complain that choosing T = 1 for this program stacks
the deck against load-based partitioning, since it presumably leads to the fewest
number of actual forks and the most “welding” of parent and child. But, the
point of this benchmark is to demonstrate that a value like T' = 2 which works
well for many programs will work badly for others, so only T = 1 — —3 were
tried. In fact, T = 1 performed better than either T = 2 or T' = 3 for fatwalk.
The conclusion is that users of LBP must think about setting T'; certainly in this
program LBP would perform quite well (in fact be equivalent to ETC)if T =100
were chosen.

6.6.2 Four Programs with Excellent Speedup

That dynamic partitioning allows efficient execution of fine-grained programs 1s
clearly shown by the four plots in Figure 6.7. ETC performs poorly for these four
benchmarks due to high task creation overhead—in abisort for example, creat-

6.6. Performance of Benchmark Programs 85

fatwalk (g=140,000)

l' T T T llllll

X Seq

10t

Time (seconds)

10° -
L

1 I 1 1 1 i 1 1 1 1 I
10° 10!
Number of Processors

Figure 6.6: Performance of fatwalk.

ing tasks eagerly more than triples the sequential running time. The overhead of
dynamic partitioning is much smaller, and LTC gives nearly linear speedup since
task creation costs rise very slowly as processors are added. LBP shows greater
variation, but its performance is essentially comparable to LTC’s for these pro-
grams.

In £ib, the large tree height caused by using n = 25 allows LBP to elimi-
nate 98% of the possible tasks and come out ahead of LTC with 16 processors.
In abisort and queens the speedup gained with LBP becomes less linear as
processors are added. In general, LTC shows better relative speedup than LBP,
suggesting that LTC will scale better to larger systems.

For abisort and tridiag the “Best” line shows the time to run a good se-
quential algorithm using one Mul-T processor, mergesort and tribest respec-
tively. As mentioned earlier, speedup of both abisort and tridiagis close to
linear with dynamic partitioning so they outperform the sequential competition
when more than 4 processors are used. ‘

Time (seconds)

Time (seconds)

86
abisort (g=77)
T ¥ ¥ T ¥ T T T I
10t K —
L Seq]
E - ETC
10° - P - LBP (T=1) -
r L - LTC b
,L i 1 1 1 1 1 1 1])
10° 10f
Number of Processors
queens (g=97)
10‘ [T l T T H T T 7T I]
10°
-y l 1 1 1 1 1 J. 1 L I
10° iof

Number of Processors

10t

10°

10t

10°

Time (seconds)

Time (seconds)

10!

10°

10t

...
2

Chapter 6. Benchmark Results

tridiag g=217

]lll'

T

T T L ZNNINEE SN SN S B |

I

k Seq
Best
E - ETC
P - LBP (T=2)
L - LTC

i 1 | SR W SO N S|

]

10!

. |

1

Il

10°

Number of Processors

fib (g=20)

10?

llll!'

] i S S N S S

|

10!

10°

Number of Processors

10¢

Figure 6.7: Performance of abisort, tridiag, queens, and fib.

Time (seconds)

10!

10°

6.6. Performance of Benchmark Programs 87

allpairs (g=875) mst (g=91)

T T L) Illll] _ll 1] T |l lllll!

Seq
10!

g d

Time (seconds)
°

T ER T |

E - ETC)
P - LBP (T=2) \

L - LTC \
- 10°

L L NS ST S S | > 2 1 1 ! IV S VTR S T BN

10! 10° 10

Number of Processors Number of Processors

Figure 6.8: Performance of allpairs and mst.

6.6.3 Two Programs with Not Quite as Good Speedup

It is hard to find fault with the performance of dynamic partitioning for the
programs in Figure 6.7. Next we consider two programs where the picture is not
quite as rosy, allpairs and mst, shown in Figure 6.8.

Because allpairs has relatively coarse granularity the overhead of ETC is not
a large factor; dynamic partitioning does improve performance modestly, but the
curves for the three strategies are quite similar. The small margin between LTC
and LBP widens slightly as more processors are added so that LTC is marginally
better on 16 processors. Perhaps more significantly though, speedup is not quite
as good for this program as previously observed with dynamic partitioning. Here
we see the effect of the choice to have each (potential) task handle all n vertex
pair tests in a single matrix row. Since there are 117 rows, the divide-and-conquer
task tree is fairly shallow. As we saw in Section 6.3, dynamic partitioning is less
efficient for shallow trees both because a higher percentage of fork points lead
to task creation and because processor idleness at start-up and tail-off is more
significant. Another interpretation of the latter factor is that processors spend
more time waiting at barriers between the sequential steps.

10!

38 Chapter 6. Benchmark Results

These factors could be avoided by using a finer-grained parallelization where
each potential task handles just one vertex test. The problem with this approach
is that adding divide-and-conquer control structure to the inner loop would in-
troduce significant runtime overhead. Here we begin to get into issues of how to
deal with fine-grained iterative parallelism; let us postpone this discussion until
Section 8.1. Of course, each potential task could handle several vertex tests, but
that would require introducing explicit parameterization into the source code.

Like allpairs, mst is structured as a sequence of parallel steps separated by
barrier synchronizations. The problem size of n = 1000 used here means that the
average step handles 500 items (recall that one item is eliminated in each step)
so the average task tree is somewhat larger in mst than in allpairs (500 wvs.
117). But mst is also substantially finer-grained than allpairs, so the effects
of shallow trees are more pronounced. The result, seen in the right-hand plot of
Figure 6.8, is that speedup tails off sharply with all partitioning strategies. Still,
dynamic partitioning performs better than ETC, and LTC is significantly better
than LBP.

mst is a fine-grained iterative program, about which more will be said in
Section 8.1.

6.6.4 Numerical Data

For completeness, performance statistics for all programs in the benchmark suite
appear in Table 6.6. For each program and each partitioning strategy the elapsed
time and number of tasks created are shown as the number of processors p in-
creases. An additional quantity is added, namely the number of “steals”, or
tasks transferred from one processor’s queue to another. With LTC this column
is omitted since it is the same as the number of tasks created (every task creation
involves a steal). The number of steals is roughly comparable among partitioning
strategies, except that LTC always has fewer than both ETC and LBP.

With LBP, T = 2 was used for all programs except abisort, where T = 1
was used.

The rows labelled “seq” and “best”show the same quantities as the lines
labelled “Seq” and “Best” in the plots—“seq” gives the elapsed time using one
Mul-T processor for a version of the program compiled with future and touch
ignored, and “best” gives the Mul-T time for running the best sequential version
of the benchmark.

If one had to pick a single strategy to use for all programs—referring to the
data in this chapter as a guide—LTC would clearly be the best choice. After
considering all of the different angles, the cumulative performance of LTC is
superior to the performance of LBP.

6.6. Performance of Benchmark Programs

ETC LBP LTC
Program p It time tasks steals { time tasks steals | time tasks
abisort | best 2.19 2.19 2.21
(g =17) seq || 8.23 8.23 8.27
1|l 26.15 106496 0} 9.12 104 0| 9.83 0
2 |l 12.37 106496 81 4.58 535 10 | 5.00 9
4| 6.51 106496 106 | 2.40 2215 127 | 2.57 72
8 3.58 106496 395§ 1.43 7761 1075 | 1.33 259
16 || 2.49 106496 1115 .87 10810 2105 .76 704
allpairs | seq || 11.88 11.88 11.93
(g = 875) 1] 1450 13572 04 12.99 2691 01} 12.94 0
2 7.31 13572 205 | 6.71 4433 232 | 6.42 120
4 391 13572 1520 ; 3.68 6861 1305 | 3.53 924
8 2.17 13572 3442 | 2.06 8809 3398 | 1.94 2606
16 1.33 13572 5629 | 1.30 10964 5509 | 1.19 4673
£ib seq || 2.37 2.37 2.48
(g = 20) 110 21.24 121392 0 3.42 90 0] 4.06 0
2 1| 10.72 121392 91 174 471 91 2.07 6
4 5.58 121392 37 .90 1209 56 | 1.04 23
8 3.10 121392 .94 .49 2518 192 .54 70
16 2.30 121392 268 27 3021 286 31 160
mst seq || 22.68 22.68 22.75
(g =63) 111 61.99 249001 0] 28.37 29746 01 27.13 0
2 1l 31.59 249001 3331 | 17.85 59557 3156 | 14.74 2344
4| 18.33 249001 11218 | 11.98 92539 10413 | 8.71 7384
8 Il 11.27 249001 25175 | 8.08 122215 23065 | 5.89 15942
16 || 9.43 249001 48085 | 7.18 154216 39439 | 4.74 29210
queens seq || 3.37 3.37 3.39
(¢ =91) 1 8.54 34814 0} 3.56 82 0| 4.01 0
2|l 4.38 34814 21| 1.75 340 18| 2.03 14
4 2.23 34814 76 91 830 71| 1.02 62
8 1.21 34814 194 .48 1498 181 .52 169
16 .85 34814 432 .30 2673 455 .30 361
rantree seq 1.21 1.21 1.22
(g=97) 1 4.21 19180 0} 1.29 40 0] 1.49 0
2 2.11 19180 10 .67 258 8 .74 6
4 1.10 19180 48 .38 1106 96 .38 34
8 .59 19180 124 22 1939 244 .20 90
16 41 19180 328 13 2564 424 11 224
tridiag | best 3.91 3.91 3.94
(g =217) | seq {| 10.69 10.69 10.13
1 17.71 49150 "0 10.76 225 0 | 10.98 0
2 8.80 49150 81 540 454 71 5.53 5
4] 4.54 49150 54 | 2.78 1651 55 | 2.78 29
8 2.39 49150 167 | 1.45 3042 1771 141 127
16 1.44 49150 394 .75 4637 360 74 357

Table 6.6: Performance of Mul-T benchmark programs.

89

90 Chapter 6. Benchmark Results

A summary of important conclusions will appear after the following discus-
sions of salient related work and future work.

Chapter 7

Related Work

Several categories of research in dynamic partitioning deserve consideration in
comparison to the dynamic methods explored here. First, some systems imple-
ment methods very similar to load-based partitioning. Second, there are several
methods resembling lazy task creation in that some task creation overhead is
postponed until it is clear that a task will be executed remotely. Third, two
other researchers have implemented full lazy task creation as presented here.
Finally, some other more distantly related dynamic methods are considered.

7.1 Methods Resembling Load-Based Partitioning

Methods like load-based partitioning have often been proposed as an easy way
to reduce overhead in task-based parallel runtime systems. In many cases the
method is mentioned only in passing; here we shall consider two works where
LBP-like methods receive more detailed attention. In both, LBP is referred to
as simply “dynamic partitioning”.

Weening made a detailed study of load-based partitioning in Qlisp [Weening 89,
Pehoushek & Weening 89], finding that it gave better performance while requir-
ing less work from the programmer than the cutoff-based methods originally pro-
posed for that language. His insightful analysis of the number of tasks created
with LBP points out some of the difficulties with that method, and motivated my
analysis of the number of tasks created with LTC (Section 2.2.3). However, his
conclusion that task creation overhead becomes asymptotically minimal as prob-
lem size increases must be set against actual performance results; the graphs of
Chapter 6 show that program speedup with LBP suffers when more processors
are used and the number of tasks created increases.

Pehoushek and Weening studied the performance of three programs (boyer,
£ib, and tak) in an implementation of Qlisp with LBP running on an 8-processor
Alliant FX [Pehoushek & Weening 89]. They point out that the need to set
the threshold parameter T is a drawback of LBP. However, although the dan-

91

92 . Chapter 7. Related Work

gers of deadlock and performance degradation put forth here (in Section 2.1)
could definitely arise with LBP in Qlisp, neither [Pehoushek & Weening 89} nor
[Weening 89] mentions these drawbacks.

Another system implementing load-based partitioning is VMMP [Gabber 90].
Gabber makes a distinction between “tree” algorithms and “crowd” algorithms
similar to the distinction made here between bushy and spindly task trees. In
VMMP load-based partitioning is only used with the Vcall primitive, which
_is intended for use only with tree algorithms. As the dangers of deadlock or
performance degradation do not generally arise in tree algorithms, Gabber may
perhaps be excused for not discussing these issues.

VMMP is intended as a portable parallel platform for both shared-memory
and distributed-memory machines, although {Gabber 90} reports only shared-
memory implementations using a maximum of 6 processors. These implementa-
tions maintain both a global count of busy processors and a global task queue,
allowing a better estimate of system workload than when only local informa-
tion is used. This may allow LBP to be more effective in reducing the number of
tasks created; however, the overhead due to contention in maintaining this global
information is likely to become an issue as the number of processors increases.
The reported speedup of benchmark programs is excellent, although evaluation
is difficult because no “sequential” time appears as a check on system overhead
and only 6 processors are used.

The investigation of dynamic partitioning in this work grew out of Halstead’s
“optimization of future” discussion for Mul-T in [Kranz et ol 89], which did
raise the possibilities of performance degradation and deadlock with load-based
partitioning (referred to there as “inlining”). One intent of the present work was
to provide compelling examples (such as find-primes and fatwalk) of these
and other drawbacks of LBP. [Kranz et al 89] also introduced the idea of “lazy
futures”, which led to the development of lazy task creation as published in

[Mohr et al 90, Mohr et al 91].

7.2 Methods Resembling Lazy Task Creation

Lazy task creation takes advantage of two observations. First, executing a task
remotely requires a large number of bookkeeping operations but executing a task
locally needn’t require any bookkeeping operations (as for example with inlining).
Second, when parallelism is abundant most tasks can be executed locally. The
essence of lazy task creation is to do as few of the bookkeeping operations as
possible when processing a potential fork point while preserving the option to do
them later if executing the task remotely becomes desirable.

Several other researchers have derived a similar philosophy based on similar
observations and have pared down somewhat the set of bookkeeping operations

7.2. Methods Resembling Lazy Task Creation 93

performed at potential fork points, but none has reduced the set quite as far as
has LTC. The four systems described here all have a flavor of lazy task creation
and succeed in reducing task creation overhead somewhat; however, all require
more bookkeeping operations than LTC for the common case when tasks are
executed locally.)

The key difference between LTC and these other systems lies in which branch
of a potential fork (the parent or the child) is continued immediately and which
is packaged up for possible migration—with LTC the parent is packaged while
with the other systems the child is packaged. When the child is packaged, certain
bookkeeping operations just cannot be eliminated. First, a closure (or similar
object) must be allocated and initialized to contain the code pointer and free
variables (or procedure arguments) for the child task so that a stealing processor
will have the information necessary to run it. Next, the existence of the child
must be publicized by placing some “task” object (usually also newly allocated
and initialized) on a queue. Finally, even when the child is ultimately executed
locally the task must still be dequeued and the information necessary to run the
child must be extracted from the closure.

Actually, similar operations are required when packaging the parent. But
the key difference is that in most cases, even if the potential fork point were
completely ignored, the parent would have to be packaged up anyway. In the
kinds of programs studied here as well as by these other researchers, potential
fork points invariably occur at calls where the parent’s return address and live
registers must be stored on the stack. In other words, a stack-allocated closure
for the parent already exists so only the queuing and dequeuing bookkeeping
remain. With LTC as implemented in Encore Mul-T this is accomplished by
storing a single pointer, resulting in very low overhead when tasks are executed
locally.

Each of the following four systems have a form of lazy task creation in the
sense described above. At potential fork points the child task is packaged up; it
will be executed either remotely if a processor becomes idle or locally otherwise.

o WorkCrews [Vandevoorde & Roberts 88] is built on top of Modula-2+, a
version of Wirth’s Modula-2 supporting lightweight threads. Here much
of the mechanics of lazy task creation must be specified directly in the
source code. To initiate lazy task creation at a certain procedure call
point the programmer builds a data block containing the call’s arguments
and calls RequestHelp(proc, data). The programmer must also determine
later whether the resulting task was stolen using a call to GotHelp and
call proc(data) directly if not; if so, the programmer must supply code to
synchronize with and retrieve a value from the stolen task. In Mul-T the
programmer’s job is much simpler (just inserting future) because LTC is
integrated directly with the compiler and runtime system; in addition, LTC

94

Chapter 7. Related Work

has lower overhead for the reasons given above.

Still, although the mechanics of the two systems are rather different their
underlying philosophies are quite similar. The authors briefly consider and
reject a method resembling load-based partitioning as well as arguing in
favor of oldest-first scheduling.

SOS [Jagannathan & Philbin 91] is a parallel Scheme system also based
on T’s Orbit compiler, allowing different styles of parallel constructs to be
built using a basic thread object and associated operations. The authors
show how future and touch can be built and explain how efliciency is
improved by “lazy thread creation”. Essentially they have pared down
thread creation to the set of bookkeeping operations described above. The
system is still under development, but early measurements suggest that
lazy thread creation eliminates about 40% of the overhead of task creation
[Jagannathan 91]. This reduction in overhead is not as dramatic as that
achieved with lazy task creation in Mul-T.

GRIP is a multiprocessor built to execute functional programs by parallel
graph reduction; [Peyton Jones et al 89] describes a parallel graph reduc-
tion strategy for GRIP where tasks are represented by closures. As with
the other systems discussed here a task will be evaluated locally if it is
touched by its parent before it has been stolen; this local evaluation saves
some bookkeeping operations but the cost of building a closure for the task
is still incurred. Realizing the significance of this cost the authors propose
to augment their strategy with a method resembling load-based partition-
ing, where no closure will be built if the system’s load is above a certain
threshold.

The final method, discussed in [Pehoushek & Weening 89] and built into
an implementation of Qlisp, is restricted to programs programs with a
fork/join style of parallelism. The authors explain how in such programs
the closure for the child task can be stack-allocated, although they do not
explain how a stealing processor gains access to such a task. The mechanism
could very well resemble that used for LTC in Encore Mul-T, with the
producer posting a queue of stack locations of stealable child tasks and
consumers copying out the relevant information. Still, as expected from
the argument above, LTC appears to be the more efficient method; also,
LTC can be used safely -on non-fork/join programs.

7.3. Other Implementations of Lazy Task Creation 95

7.3 Other Implementations of Lazy Task Creation

In addition to the Encore Mul-T implementation described here, two other imple-
mentations (built respectively by David Kranz and Marc Feeley) were motivated
by the idea of “lazy futures” first published in [Kranz et al 89)].

In Kranz’s Mul-T implementation of LTC (described in [Mohr et al 90,
Mohr et al 91]) for the impending ALEWIFE machine, a stack is represented
as a doubly linked list of stack frames. This stack representation avoids the
need to copy frames during a steal operation—since adjacent stack frames are
linked by pointers, splitting a stack during a retroactive fork requires only pointer
manipulation. '

The linked-frame stack representation, together with judicious use of ALE-
WIFE’s special machine instructions which trap when the full/empty bit of a
memory location is not as expected, allows lazy task queue operations to be im-
plemented somewhat more efficiently than in Encore Mul-T. This is not the whole
story however, since the cost of stack operations in sequential sections of code
is different with the linked-frame stack representation than with a conventional
contiguous-memory representation. The ALEWIFE Mul-T implementors have
been careful to minimize the cost of such operations, but no direct comparison
with conventional stacks has yet been performed.

Direct comparison is also difficult because as yet ALEWIFE Mul-T has only
run on a detailed simulator. However, it appears that both stack representa-
tions allow quite viable implementations of lazy task creation. The presence of
full/empty bits and hardware traps in ALEWIFE make the linked-frame repre-
sentation perhaps more attractive on that platform than on machines like the
Encore Multimax without such hardware support.

Feeley has also implemented lazy task creation, in his parallel “Gambit”
Scheme system which runs on the BBN Butterfly [Feeley 91]. The greater cost
of accesses to shared memory on the Butterfly motivated some different design
choices, but in rough outline Feeley’s system and Encore Mul-T are rather similar.

Feeley discovered independently a lockless synchronization algorithm similar
to the one presented here (Section 3.3.2) as well as an alternative method where
consumers interrupt producers to steal tasks. This second method achieves very
low overhead at potential fork points, although there is some hidden overhead
in polling for interrupts. In addition; his parallel Lisp system provides an effi-
cient integration of LTC with dynamic binding, a strong concept of fairness in
scheduling, and coexistence of future and call-with-current-continuation.

Although there is some overlap between Feeley’s work and my own, there is
a difference in emphasis. Feeley’s emphasis is on providing a “general” imple-
mentation of futures so that many other features (such as those listed above)
can coexist and on addressing the issues of large-scale shared memory machines.
My work emphasizes the development, analysis, and evaluation of dynamic par-

96 Chapter 7. Related Work
titioning methods in the context of parallel Lisp.

7.4 Other Related Methods

For logic programming languages Debray et al present a strategy of static parti-
tioning based on compile-time cost estimates augmented with dynamic runtime
tests of quantities such as the size of input to a procedure [Debray et ol 90]. The
work is primarily devoted to describing cost-estimation techniques, and includes
a good set of references for other work in that domain. The authors state the goal
of minimizing runtime overhead, and the runtime tests in the examples shown
appear to be fairly cheap. Performance statistics are given using 4 processors
on a Sequent Symmetry. Although some speedup is shown there is not enough
data to judge how good a partition is created by their method. Also it appears
that the underlying Prolog implementation contains substantial overhead so it is
difficult to verify their claim that runtime tests have low cost.

“Throttling” (as pursued in systems based on dataflow [Culler 89,
Ruggiero & Sargeant 87] or graph reduction [Greenberg & Woods 90] tech-
niques) has some similarities with load-based partitioning, as system workload
information is consulted at runtime as a basis for scheduling decisions. However,
the purpose of these scheduling decisions is not to change the partition of op-
erations to tasks, as task granularity is fixed at compile time in these systems
(at a very fine granularity in the case of dataflow). Rather, these scheduling
decisions improve load balancing (by directing tasks to less-loaded processors),
improve data locality (by resisting task migration), or control memory usage
(by deciding whether to evaluate the branches of a fork sequentially or in paral-
lel). For the latter purpose BUSD execution is best; after expanding a call tree
breadth-first to provide work for all processors, processors expand local trees
depth-first so as to avoid swamping task queues and exhausting available mem-
ory [Greenberg & Woods 90].

A promising method not directly related to dynamic partitioning is the work
of Vivek Sarkar, where information gleaned from execution profiles is used to
inform compile-time partitioning decisions [Sarkar 87, Sarkar & Hennessy 86).

Finally, “Guided Self-Scheduling” [Polychronopoulos & Kuck 87]is a dynamic
partitioning method developed specifically for programs with loop parallelism,
identified in this work as programs with spindly task trees. Here blocks of loop
iterations are doled out to requesting processors; the size of each block is de-
termined dynamically by the number of remaining iterations and the number
of processors. This method could be used as an alternative “back end” for the
spindly task tree strategies discussed in Section 8.1.

Chapter 8

Future Work

Four categories of future work are considered: handling a larger class of programs
(those with fine-grained iterative parallelism), using lazy task creation with other
parallel languages, using dynamic partitioning on larger parallel machines, and
demonstrating that parallel Lisp is useful.

One topic not considered is the possibility of using some global information
to reduce the number of tasks created with load-based partitioning. While ex-
ploring the tradeoff between contention and task creation overheads might prove
interesting, gaining a minor speedup of LBP seems moot because the important
problems of deadlock and performance degradation make the method unattrac-
tive.

8.1 Handling Fine-grained Iterative Parallelism

For programs with bushy call trees the programmer can use future to identify
parallelism, effectively ignoring granularity considerations. A remaining challenge
are fine-grained programs with spindly call trees, such as those with data-level
parallelism expressed iteratively

For example, consider a procedure doall which performs a fine-grained op-
eration on all elements of an array. The obvious parallel version of doall would
create one task per element using an iterative loop, but this version would not
execute efficiently in parallel unless its granularity were increased so that tasks
handled several array elements instead of just one. Unfortunately, dynamic meth-
ods alone cannot partition such a program effectively because they are unable to
change program structure. If the iterative structure of this program is obeyed,
parallelism is inherently limited.

If instead of using iteration this program were restructured to perform a
divide-and-conquer division of the array’s index set, we know that lazy task
creation could achieve an efficient partition. But such a restructuring has two
problems: divide-and-conquer divisions are both more complex to program (and

97

98 Chapter 8. Future Work

understand) and less efficient to execute than iterative loops.

To address the complexity problem such parallel operations on data aggre-
gates could be expressed at a higher level and converted to appropriate divide-
and-conquer divisions at compile time. Ideas for how to express such high-level
operations appear in [Waters 90, Steele & Hillis 86, Sabot 88]. One effort assum-
ing such a high-level expression of parallelism [Chatterjee et al 91] uses a static
compiler-based approach to the partitioning problem. In order to use the more
flexible dynamic partitioning methods developed here the efficiency problem of
divide-and-conquer divisions must be solved. This problem arises because the
execution overhead of a divide-and-conquer division is large compared to the
low overhead of an iterative loop. When loops are fine-grained this additional
overhead is unacceptably high.

For example, let us compare the sequential overhead of an iterative vs. a
divide-and-conquer implementation of doall. In Encore Mul-T a simple iterative
loop is compiled optimally to 3 instructions; executing these instructions costs 1.4
microseconds per array element on the Yale Multimax. By contrast, the obvious
divide-and-conquer division (where the index range is repeatedly divided in half)
introduces 19.3 microseconds of overhead per element. However, this overhead
can be reduced by half to 9.7 microseconds by using recursive doubling, where a
task handling an array element ¢ spawns children to handle elements 2¢ and 2:+1.
And, in the proposed system where such traversals are generated by compiler
from high-level operations in the source code, significant further optimizations
are possible.

As an experiment, a hand-written assembler version simulating such compiler
output for doall was written using lazy task creation. This version, highly
optimized but still general, achieves an average overhead per element of only 12
instructions. (Lazy future calls account for 4 of these instructions; there are half
as many lazy future calls as array elements). This program, dynamic-doall,
was timed using 16 processors on a 100,000 element array and compared with
static-doall, which makes a static partition of array elements to 16 tasks. In
both versions, each array element was incremented by one after executing a delay
loop of a specified length (to allow granularity control).

The following plot shows an efficiency profile for each program. As with the
similar plots of Section 6.2, source granularity is plotted along the z axis (in a log
scale) with efficiency along the y axis. The curves show how efficiency varies as
granularity is increased from 7 to 3007 instructions to process an array element
and execute the delay loop. The sequential time used in the efficiency calculation
measures a sequential iterative version of doall with no futures.

8.1. Handling Fine-grained Iterative Parallelism 99

Efficiency of Iterative Parallelism

1.0

o
»

Efficiency on 16 processors

02 § -~ Static Partitioning .
D - Dynamic Partitioning

0.0 11111 1 IR t 1 lll,'i‘oa L 1

Source Granularity (number of instructions)

No program could be better suited to static partitioning than doall, so this
comparison shows dynamic partitioning in the worst possible light. Although
dynamic partitioning performs decently, static partitioning performs better at
all granularities because it still has less runtime overhead. But, other programs
might be more difficult to partition statically than doall, and might not perform
as well if task execution costs were data-dependent. Dynamic partitioning would
handle such programs well.

Still, dynamic-doall does not perform well at finer granularities, with effi-
ciency below 50% when task granularity is below 20 instructions. How can over-
head be reduced at the finest granularities? One observation is that a fine-grained
inner loop is very likely to contain straight-line code rather than additional loops
or calls to unknown procedures, so estimating its cost at compile time should be
straightforward. When such estimates indicate a very fine-grained loop the com-
piler could unroll a few loop iterations to raise the granularity to a satisfactory
level. Such an optimization meshes easily with the recursive doubling algorithm
for divide-and-conquer partitioning.

To summarize then, fine-grained data-level parallelism could be handled by
specifying parallelism in terms of high-level operations on data aggregates and
compiling these specifications into efficient divide-and-conquer traversals. For
very fine-grained operations the compiler can ameliorate the the overhead of
such traversals by a small amount of loop unrolling.

100 Chapter 8. Future Work

8.2 Implementing LTC in Support of Other Parallel Lan-
guages

From handling a wider class of programs we proceed to handling a wider class of
languages. Load-based partitioning places few constraints on a parallel runtime
system and has been implemented in support of several types of parallel language.
In contrast, fully general implementations of lazy task creation have been built
only for Lisp systems based on future. Here we explore how well LTC fits in
with other parallel languages and runtime systems using a dynamic task or thread
creation model.

First, LTC should fit in easily to any parallel Lisp system based on dynamic
task creation. LTC does not depend on the unlimited task lifetimes provided by
future, and could be implemented as described here to support constructs with
implicit join points such as Multilisp’s pcall or Qlisp’s qlet.

8.2.1 The Algol Family

Languages in the Algol family (such as Pascal, C, and Modula) provide greater
challenges, as their runtime systems do not typically offer as much functionality
as Lisp runtime systems. Can fully general lazy task creation be implemented for
languages in the Algol family? WorkCrews (discussed in Section 7.2) provides a
start in this direction, but would have to be improved in several ways to approach
the flexibility and efficiency of full LTC. Four changes would be required to
upgrade WorkCrews to full LTC:

1. Automate the mechanics of lazy task control which must currently be spec-
ified by the programmer.

2. Allow child tasks to execute arbitrary expressions in addition to procedure
calls.

3. Package up the parent task for stealing instead of the child task.

4. Lift the fork/join restriction to allow unlimited task lifetimes.

The first change could be made in a fairly straightforward manner by adding
compiler support for task control primitives. The compiler could generate code
to allocate and initialize a data block using an argument list, to call the child
task “in-line” at the join point if it had not been stolen, and to deallocate the
data block after the join point.

The last change on the other hand would require fairly extensive modifica-
tions to a conventional compiler and runtime system by introducing the need for
garbage collection.

8.2. Implementing LTC in Support of Other Parallel Languages 101

If the last restriction (fork/join) were retained however, changes 2 and 3 would
be feasible with moderate compiler and runtime system modifications. The need
for modification arises because conventional compilers use stack-allocated storage
for procedure arguments and local variables. Allowing arbitrary expressions in
the child task would introduce complications if both parent and child needed to
modify a stack-allocated variable. And packaging up the parent for stealing in-
stead of the child could lead to overwhelming copying costs in the steal operation
if for example there were a large stack-allocated array.

These difficulties don’t arise in Mul-T because nested lexical environments and
mutable storage are always heap-allocated, and because procedure arguments and
local variables are stored in registers (actual machine registers or pseudo-registers
in a memory block). So mutable variables shared between parent and child have
a single heap location; also, the only variables which are stack-allocated and thus
copied in a steal operations are live variables needed to continue executing the
parent.

To implement changes 2 and 3 efficiently in the Algol world, local variables
and procedure arguments accessed by both parent and child must reside in a
single location.

This could be accomplished by the following method which involves a a com-
piler change of moderate complexity and assumes that a task’s entire address
space resides in shared memory, making its stack and heap accessible to other
tasks. Since there is a known join point, a stolen parent task could continue to
reference stack-allocated variables in their original locations on the producer’s
stack. The producer executing the child task would refer to the same locations
and would not deallocate them until after the join point.

A compiler change would be necessary because code generated for the parent
task would have to alter the way local variables and procedure arguments were
referenced. Instead of using the current stack pointer as a base from which to
apply offsets, the parent would have to use a pointer to the appropriate frame
in the producer’s stack. This would add moderately to the complexity of the
compiler and possibly increase the cost of executing the parent somewhat.

Several advantages would accrue, however. The child task could contain ar-
bitrary expressions because it would be executed locally by the producer, refer-
encing all variables in their usual locations. This would eliminate the need for a
separate data block or closure for the child task. Also, the overhead of creating a
task lazily could be substantially reduced, by using a lazy task queue of pointers
into the stack as in Encore Mul-T and analogous operations to lazy future call
and return. Because of the fork/join restriction the amount of copying required in
a steal operation would decrease significantly, since only the live variables needed
to continue executing the parent would need to be copied.

In the resulting system lazy task creation would have comparable overhead
to LTC in Encore Mul-T, although there might be additional overhead due to

102 Chapter 8. Future Work

the changed method of accessing variables in the parent task. The flexibility of
LTC would be almost as good as in Mul-T, as programs with bushy call trees
often obey the fork/join restriction.

8.2.2 Lazy Functional Languages

Finally let us consider lazy functional languages. Traditionally implementa-
tions of these languages have used either graph reduction [Peyton Jones 87] or
else conventional compilation optimized to support lazy evaluation using delays
[Bloss et al 88], though in recent years the distinction between these methods
has become somewhat blurred. As suggested in Section 7.4, pure graph reduc-
tion is not amenable to dynamic partitioning since building the program graph at
compile time effectively establishes a fixed partition of the program’s operations.
The task structure is built into the program graph so there is no way to increase
granularity by combining tasks dynamically at runtime. Runtime decisions can
in fact be made to decide whether to reduce a node locally or remotely, but the
savings of local execution arise from data locality rather than from a difference
in task creation costs—with both remote and local execution the “task object”
(a closure, perhaps) has already been built and must be placed on a queue.

On the other hand, implementations using delays are quite amenable to dy-
namic partitioning and their runtime systems often contain the same features as
Lisp runtime systems. Delays implement lazy evaluation by building a “package”
containing all information necessary to evaluate an expression; the expression is
only evaluated when its value is needed by a strict operation like +. There is a
very close analogy between delays and futures; packaging up an expression for
remote execution requires the same operations as packaging up an expression
for delayed evaluation. In the parlance of this thesis a delay may be seen as a
packaged-up child task.

Thus an implementation based on delays could easily be extended to use
futures for parallel execution, as the “packaging-up” mechanism would already
exist. (“Modern” graph reduction systems resemble rather closely systems using
delays; [Peyton Jones et al 89] describes one such system which does implement
dynamic partitioning.) Such a parallel implementation could be used in support
of both languages where parallel tasks are identified by the compiler and where
they are identified by the programmer. Dynamic partitioning (both LTC and
LBP) could be implemented as in Encore Mul-T to decrease the overhead of task
creation. But, efficiency issues must be carefully considered given the presence
of delays.

Creating a delay for every expression in a functional program leads to unac-
ceptable overhead for the same reason as with eager task creation in a fine-grained
program—the lion’s share of execution time is spent creating tasks rather than
executing them. For this reason researchers have developed methods for strict-

8.3. Dynamic Partitioning on Larger Parallel Machines 103

ness analysis or annotations, to identify which expressions can be safely eval-
uated immediately rather than packaged up for delayed evaluation. Although
optimizations based on strictness analysis significantly reduce the cost of using
lazy evaluation, analysis of programs containing data structures such as lists is
difficult and the cost of creating delays remains a major source of overhead in
the execution of lazy functional programs.

The goal of both LTC and LBP is very similar to the goal of strictness opti-
mizations: to eliminate the overhead of packaging up an expression by evaluating
it immediately instead. But, both optimizations (strictness and dynamic parti-
tioning) are necessary if a fine-grained functional program is to run efficiently
in parallel. Dynamic partitioning will not increase efficiency much if delays are
present in fine-grained tasks—most of the cost of packaging up an expression for
remote execution has already been paid if the expression is delayed, and little is
left to be saved by dynamic partitioning. At best the cost of executing a delayed
expression locally is about half the cost of executing it remotely; in a fine-grained
program this overhead would still be unacceptable. However, if the fine-grained
tasks of a functional program are free of delays both LTC and LBP could be very
effective at decreasing task creation overhead.

To summarize, dynamic partitioning is quite compatible with delay-based par-
allel implementations of lazy functional languages, but its effectiveness is greatly
hindered if delays are present in fine-grained parallel tasks. Since most real pro-
grams involve traversals of data structures where strictness analysis has limited
effectiveness, my opinion is that efficient parallel (and sequential!) implemen-
tations of lazy functional languages will require language support, perhaps in
the form of strictness annotations and/or strict versions of data constructors.
The para-functional approach [Hudak 86, Hudak 91], based on programmer an-
notations to control evaluation order, may supply the needed control. However,
control of evaluation order in a lazy language is a slippery subject and delays
may be created far from the place where their parallel evaluation is directed.

8.3 Dynamic Partitioning on Larger Parallel Machines

Machines like the Encore Multimax (or its newer workstation cousins made by
Silicon Graphics and Digital) will probably not disappear; architectures where
several processors share a common bus and i/o facilities will continue to occupy
an attractive price/performance niche. The dynamic partitioning techniques de-
scribed here have been shown to be effective for such machines and thus will
always have some utility. Still, scalability is a prime consideration for any paral-
lel strategy. '

Because of the access bottleneck inherent with physically shared memory,
larger machines tend to have distributed memory. Such memory can still be

104 Chapter 8. Future Work

logically shared however, as with the BBN Butterfly, IBM RP3, and the ex-
perimental ALEWIFE machine [Agarwal et al 91]. ALEWIFE’s directory-based
cache-coherency scheme [Chaiken et al 91] promises to provide a shared address
space more cheaply than existing machines. But as Feeley has shown, lazy task
creation can be effectively implemented even on the Butterfly [Feeley 91].

Issues of data locality become more important on distributed-memory ma-
chines because of the increased cost of remote memory references. Lazy task
creation can be helpful in this regard, improving data locality by executing an
" entire subtree of tasks on a single processor. For example, in tridiag when a
processor handles a subtree of tasks it localizes access to a contiguous section of
the original array. The dynamic nature of the partition could also hurt locality
though. During the backsubstitution phase of tridiag a second partition is cre-
ated; chances are good that a given data element will be handled by different
processors in the two phases.

To combat such problems the ALEWIFE researchers are experimenting with
future-on, which allows a task to be assigned to a specific processor. Using
this construct is likely to improve efficiency but also represents a step away
from declarative programming and toward explicitly-specified static partitioning.
Preserving data locality across a distributed memory using a language without
a concept of locality remains a definite challenge.

Still, the locality offered by subtree grouping may suffice for many programs.
And, the advantages of lazy task creation over load-based partitioning will likely
become more pronounced on larger machines since adding additional processors
causes the number of tasks created (and therefore the overhead due to task cre-
ation) to increase less with LTC than with LBP.

8.4 Demonstrating that Parallel Lisp is Useful

Having considered three rather specific areas for future work let us consider a
rather general one. Much of the driving force behind the development of parallel
hardware and software has come from the scientific computing community, where
numerous applications exist which take too long to execute on even the fastest
sequential processors. Parallel versions of many such applications have been built
and executed, showing real speedup over sequential versions on uniprocessors. In
some cases parallel machines are now being used for everyday execution of such
problems.

In contrast, demanding symbolic applications have been much less visible.
Usable, efficient parallel Lisp implementations have existed for at least a few
years, yet I know of no examples where application developers have used them
successfully for real problems. People tend to sniff out systems that fill a need
they have; my conclusion is that parallel Lisp systems don’t yet fill any existing

8.4. Demonstrating that Parallel Lisp is Useful 105

needs.

One explanation is that the small-scale multiprocessors used thus far to imple-
ment parallel Lisp systems don’t offer enough advantages over personal worksta-
tions. Because designing a multiprocessor takes longer than designing a unipro-
cessor, available uniprocessors tend to have more recent (and thus more powerful)
processors than available multiprocessors. As a personal example of this, I was
approached by a researcher who wanted to use Encore Mul-T to speed up a pro-
gram which had to interrogate a large database. When we compared the speed
of the Multimax with the speed of his Sun Sparcstation we decided that the
small potential speedup didn’t justify the work of porting his program. Mul-T’s
features for easing parallel programming didn’t even enter the debate because a
viable sequential alternative was handy.

The Encore’s multi-user nature also influenced that decision. The researcher
would have to compete with other users for the Encore processors, while he was
guaranteed exclusive access to his workstation. This factor could be eliminated
by the advent of personal multiprocessor workstations, but it remains to be seen
whether such machines will see widespread use.

One potential platform which avoids the above problems is a network of work-
stations. With a distributed operating system providing friendly and flexible ac-
cess to the available processing resources and a shared virtual memory system
[Li 86, Li & Hudak 89] providing a shared address space, a parallel Lisp system
could make the processing resources easily exploitable.

But unless parallel Lisp is to be a solution looking for a problem, a real need
must be demonstrated. A crucial challenge for future parallel Lisp researchers
is to demonstrate useful speedup on an important problem. Specifically, can we
find a compute-intensive symbolic application (or 57 or 10?) which is important
enough that speeding it up would make a qualitative improvement in the ability
to solve some problem? Many such scientific applications exist. If so, can we write
a program in parallel Lisp which executes 20-50 times faster on a multiprocessor
than an optimized sequential version on a top-of-the-line workstation?

Assuming that such an application can be found (and I consider this to be a
very important prerequisite), achieving large speedups will involve several chal-
lenges. First, obviously, the underlying system must execute on a multiprocessor
larger than the Encore Multimax. Some of the challenges involved in that en-
deavor were outlined in the previous section.

Another very important question is whether “real-world” symbolic applica-
tions are amenable to large-scale parallelism. The programs described in Sec-
tion 5.3 are a step more realistic than the usual fib/tak/boyer group, but
probably still do not reflect all the demands of real applications. For example,
symbolic applications often use large DAGs to represent data, e.g. representing
program code in compilers or representing relationships between objects in artifi-
cial intelligence programs. Typically sequential programs will repeatedly traverse

106 Chapter 8. Future Work

the graphs, destructively modifying the nodes during each traversal. Performing
such traversals in parallel requires the careful addition of explicit inter-task syn-
chronization, making program development and debugging much more difficult.
Also, the dynamic methods discussed here work much less well when programs
contain explicit synchronization. A possible alternative is to write the traversal
functionally so that new nodes are created rather than old ones modified, but
the copying required by such a method could add significant overhead. Also, a
parallel functional traversal of a graph with shared nodes is complex at best.

On small-scale machines such complications may sometimes be avoided by
coarse-grained partitions, as for example by compiling several files in parallel
or compiling all procedures within a file in parallel, but on larger machines the
partition must become finer-grained and the complications will be less easily
avoidable.

A specific example of these problems is the speech benchmark used to mea-
sure Mul-T performance in [Mohr et al 90, Mohr et al 91]. The initial version of
this program had a lot of parallelism but ended up doing much more work than
necessary. Subsequent re-implementations were able to reduce the work required
but also resulted in a more complex control structure requiring synchronization
which was not at all amenable to dynamic partitioning.

So it appears that to achieve good performance of real applications on large-
scale multiprocessors the programmer will tend to need code for explicit partition-
ing and explicit synchronization. If the parallel Lisp version of our hypothetical
application can in fact be made to execute 20-50 times faster than its sequential
competition, we must then evaluate what price has been paid in coding it.

I believe that the challenges outlined in this section should be the primary
focus of future research in parallel symbolic computing.

Chapter 9

Conclusions

These final paragraphs highlight the important results gleaned from studying
dynamic partitioning in paralle] Lisp.

The benchmark results show that when fine-grained programs are partitioned
in a straightforward way—using future to identify parallelism without grouping
operations together explicitly in the source code—performance is not acceptable.
This is true even though the overhead of (eager) task creation in the underlying
system (Encore Mul-T) has been carefully minimized.

But, with dynamic partitioning the same programs exhibit virtually linear
speedup with very acceptable runtime overhead. A satisfactory partition can be
created dynamically at runtime using either load-based partitioning or lazy task
creation, without complicating the source code by explicit repartitioning.

The performance of the two methods is fairly close for many programs. LBP
has less overhead per potential fork point and thus is faster when few processors
are used; however, LTC creates fewer tasks and thus exhibits more nearly linear
speedup.

But a close examination of load-based partitioning reveals unexpected defects,
most notably that it degrades the performance of some programs and introduces
deadlock in others. One could perhaps live with these defects by being careful to
use LBP only where it is safe, accepting the extra work of specifying on a case-
by-case basis whether LBP should be applied, and the responsibility of making a
correct decision. But fortunately taking on this burden is not necessary because
LTC repairs all of the defects of LBP, meanwhile performing as well or better
than LBP and scaling better as processors are added.

The advantage of LTC over LBP arises because LTC delays all partitioning
decisions and thus can recover flexibly in situations where LBP has made an un-
fortunate and irrevocable partitioning decision. Also very important is the fact
that LTC performs only a minimal set of operations when delaying a partitioning
decision, allowing runtime overhead to be low enough that LTC performs com-
petitively with LBP. The set is minimal because of the key design decision to

107

108 Chapter 9. Conclusions

package up the parent and continue the child at potential fork points rather than
the other way around. Other systems which delay partitioning decisions haven’t
made this key change and have paid the price by performing a much larger set
of operations at potential fork points, as described in Section 7.2.

It would be quite difficult to pare down the set of operations any further
than LTC has while retaining the important property that deadlock will never
be introduced. However, there is room for improvement in how efficiently the
operations are performed; machines with better hardware support for synchro-
nization and cache management would allow LTC to be implemented with less
overhead than on the Encore Multimax.

Still, the benchmark results show that the overhead of LTC in Encore Mul-
T is low enough to give excellent performance. If LTC fails to improve the
performance of a program the reason is usually something other than overhead
introduced at potential fork points. Another result of this study is increased
knowledge about the kinds of programs where dynamic partitioning is and is
not effective. It is not effective when task trees are spindly because it can only
combine tasks rather than restructure trees; also it is less effective when task
trees are shallow because fewer tasks can be inlined and processor idleness is
higher.

But we must keep in mind that the methods used to increase the efficiency of
such programs in other parallel languages may also be used in Mul-T. Dynamic
partitioning successfully shrinks the set of parallel programs which require fine-
tuning for good performance, but the remaining programs in the set are still
amenable to other methods. Dynamic partitioning works very well when task
trees are bushy and moderately deep; programs like abisort and tridiag may
be coded much more simply for execution with dynamic partitioning. Static
partitioning would make these programs more complex and the partition achieved
might not be as satisfactory. '

In addition to the points made above, a few other important results of this
work deserve highlighting. Not least is the existence of a robust and efficient
implementation of lazy task creation in Encore Mul-T. Also useful are the ETC
scheduling improvements resulting from insights gained in studying LTC; future
implementors of task-based systems may refer to some hard evidence advocating
polite stealing, favoring the child task, and using double-ended task queues with
a FIFO stealing policy. Finally, I have added a few programs to the rather small
set of benchmarks usually seen in parallel Lisp studies.

The dynamic partitioning strategies developed here enlarge the set of parallel
Lisp programs which can be handled efficiently and safely. LTC is preferred
over LBP because it has better overall performance, eliminates the potential for
deadlock, and needn’t be applied selectively.

I look forward to the day when complex symbolic applications run with sat-
isfying speedups on large parallel processors.

Bibliography

[Agarwal et al 91]

[Agarwal et al 90]

[Aho et al 83]

[Arvind & Culler 86]

[Bilardi & Nicolau 89]

[Bloss et al 88)

[Chaiken et al 91]

[Chatterjee et al 91]

A. Agarwal, et. al., “The MIT Alewife Machine: A
Large-Scale Distributed-Memory Multiprocessor,”
in M. DuBois and S. Thakkar, eds., Scalable Shared
Memory Multiprocessors, Kluwer Academic Pub-
lishers, 1991.

A. Agarwal, B. H. Lim, D. Kranz, and J. Kubiatow-
icz, “APRIL: A Processor Architecture for Multi-
processing,” 17th Annual Int’l. Symp. on Computer
Architecture, Seattle, Wa., May 1990, pp. 104-114.

A. Aho, J. Hopcroft, and J. Ullman, Data Structures
and Algorithms, Addison-Wesley, 1983, pp. 208-212.

Arvind and D. Culler, “Dataflow Architectures,”
Annual Reviews in Computer Science, Annual Re-
views, Inc., Palo Alto, Ca., 1986, pp. 225-253.

G. Bilardi and A. Nicolau, “Adaptive Bitonic Sort-
ing: An Optimal Parallel Algorithm for Shared-
Memory Machines,” SIAM J. Comput., 18:2, April
1989, pp. 216-228.

A. Bloss, P. Hudak, and J. Young, “An Optimising
Compiler for a Modern Functional Language,” The
Computer Journal, 31:6, 1988, pp. 152-161.

D. Chaiken, J. Kubiatowicz, and A. Agarwal, “Lim-
itLESS Directories: A Scalable Cache Coherence
Scheme,” 4th Int’l. Conf. on Architectural Support
for Programming Languages and Operating. Sys-
tems, Santa Clara, Ca., April 1991.

S. Chatterjee, G. Blelloch, and A. Fisher “Size

and Access Inference for Data-Parallel Programs,”

109

110

[Culler 89]

[Debray et al 90]

[Feeley 91]

[Gabriel 84]

[Gabber 90]

[Goldberg 88]

[Goldman 88|

[Goldman et al 89]

BIBLIOGRAPHY

ACM SIGPLAN ’91 Conference on Programming
Language Design and Implementation, Toronto,
Canada, June 1991, pp. 130-144.

D. E. Culler, “Managing Parallelism and Resources
in Scientific Dataflow Programs,” Ph.D. thesis,
M.L.T. Dept. of Electrical Engineering and Com-
puter Science, Cambridge, Mass., June 1989.

S. Debray, N. Lin, and M. Hermenegildo, “Task
Granularity Analysis in Logic Programs,” 1990
ACM Conf. on Programming Language Design and
Implementation, White Plains, NY, June 1990,
pp. 174-188.

M. Feeley, “Efficient and General Implementation
Strategies for Futures on Large Shared Memory
MIMD Computers” Ph.D. thesis, Brandeis Univer-
sity (in preparation).

R. P. Gabriel and J. McCarthy, “Queue-based
Multi-processing Lisp,” 198/ ACM Symp. on Lisp
and Functional Programming, Austin, Tex., Aug.
1984, pp. 25-44.

E. Gabber, “VMMP: A Practical Tool for the De-
velopment of Portable and Efficient Programs for
Multiprocessors,” IEEE Trans. on Parallel and Dis-
tributed Systems 1:3, July 1990, pp. 304-317.

B. Goldberg, “Multiprocessor Execution of Func-
tional Programs,” Int’l. J. of Parallel Programming
17:5, Oct. 1988, pp. 425-473.

R. Goldman and R. P. Gabriel, “Preliminary Re-
sults with the Initial Implementation of Qlisp,”
1988 ACM Symp. on Lisp and Functional Program-
ming, Snowbird, Utah, July 1988, pp. 143-152.

R. Goldman, R. Gabriel, and C. Sexton, “Qlisp: An
Interim Report,” in T. Ito and R. Halstead, eds.,
Proceedings of U.S./Japan Workshop on Parallel
Lisp (Springer-Verlag Lecture Notes in Computer
Science 441), Sendai, Japan, June 1989, pp. 161-
181.

BIBLIOGRAPHY

[Greenberg & Woods 90]

[Gurd et al 85

[Halstead 85)

[Halstead 86]

[Halstead 89]

[Halstead 91]

[Hockney & Jesshope 88]

[Hudak 86]

[Hudak 91]

[Hudak & Goldberg 85]

111

M. Greenberg, and V. Woods, “FLAGSHIP—A
Parallel Reduction Machine for Declarative Pro-
gramming,” Computing and Control Engineering
Journal, 1:2, March 1990.

J. Gurd, C. Kirkham, and 1. Watson, “The Manch-
ester Prototype Dataflow Computer,” Comm. ACM
28:1, January 1985, pp. 34-52.

R. Halstead, “Multilisp: A Language for Concur-
rent Symbolic Computation,” ACM Trans. on Prog.
Languages and Systems T:4, October 1985, pp. 501~
538.

R. Halstead, “An Assessment of Multilisp: Lessons
from Experience,” Int’l. J. of Parallel Programming
15:6, Dec. 1986, pp. 459-501.

R. Halstead, New Ideas in Parallel Lisp: Lan-
guage Design, Implementation, and Programming
Tools,” in T. Ito and R. Halstead, eds., Proceedings
of U.S./Japan Workshop on Parallel Lisp (Springer-
Verlag Lecture Notes in Computer Science 441),
Sendai, Japan, June 1989, pp. 2-57.

R. Halstead, Religious Preference, February, 1991.
But obviously correct.

R. W. Hockney and C. R. Jesshope, Parallel Com-
puters 2, Adam Hilger, Bristol and Philadelphia,
1988, pp. 475-83.

P. Hudal;, “Para-Functional Programming,” Com-
puter, 19(8):60-71, August 1986.

P. Hudak, “Para-Functional Programming in
Haskell,” in B. Szymanski, ed., Parallel Functional
Languages and Compilers, ACM Press, 1991.

P. Hudak and B. Goldberg, “Serial Combina-
tors: ‘Optimal’ Grains of Parallelism,” Functional
Programming Languages and Computer Architec-
ture, Springer-Verlag LNCS 201, September 1985,
pp- 382-388.

112

[Jagannathan 91]

[Jagannathan & Philbin 91]

[Kranz 88]

[Kranz et al 89)

[Kranz et al 86)

[Larus 89]

[Li 86]

[Li & Hudak 89]

[Miura 88]

[Mohr et al 90]

BIBLIOGRAPHY

S. Jagannathan, Personal Communication, August
1991.

S. Jagannathan and J. Philbin, “A Foundation for
an Efficient Multi-Threaded Scheme System,” NEC
Research Institute Technical Report 91-009-3-0050-
2, March 1991.

D. Kranz, “ORBIT: An Optimizing Compiler for
Scheme,” Ph.D. Thesis, Yale University Technical
Report YALEU/DCS/RR-632, February 1988.

D. Kranz, R. Halstead, and E. Mohr, “Mul-T, A
High-Performance Parallel Lisp”, ACM SIGPLAN
’89 Conference on Programming Language Design
and Implementation, Portland, OR, June 1989,
pp- 81-90.

D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin,
and N. Adams, “Orbit: An Optimizing Compiler for
Scheme,” Proc. SIGPLAN ’86 Symp. on Compiler
Construction, June 1986, pp. 219-233.

J. Larus, “Restructuring Symbolic Programs for
Concurrent Execution on Multiprocessors,” Ph.D.
Thesis, Univ. of California at Berkeley, Report
UCB/CSD 89/502, May 1989.

K. Li, “Shared Virtual Memory on Loosely Coupled
Multiprocessors,” Ph.D. Thesis, Yale University
Technical Report YALEU/DCS/RR-492, Septem-
ber 1986.

K. Li and P. Hudak, “Memory Coherence in Shared
Virtual Memory Systems,” ACM Transactions on
Computer Systems 7:4, November 1989, pp. 321-
359.

K. Miura, “Tradeoffs in granularity and paralleliza-
tion for a Monte Carlo shower simulation code,”
Parallel Computing 8:1-3, 1988, pp. 91-100.

E. Mohr, D. Kranz, and R. Halstead, “Lazy Task
Creation: A Technique for Increasing the Granu-
larity of Parallel Programs,” Proceedings of ACM

BIBLIOGRAPHY

[Mohr et al 91]

[Pehoushek & Weening 89)]

[Peyton Jones 87)

[Peyton Jones et al 89)]

113

Symposium on Lisp and Functional Programming,
June 1990, pp. 185-197.

E. Mohr, D. Kranz, and R. Halstead, “Lazy Task
Creation: A Technique for Increasing the Granular-
ity of Parallel Programs,” IEEE Trans. on Parallel
and Distributed Systems 2:3, July 1991, pp. 264-
280.

J. Pehoushek and J. Weening, “Low-cost pro-
cess creation and dynamic partitioning in Qlisp,”
in T. Ito and R. Halstead, eds., Proceedings of
U.S./Japan Workshop on Parallel Lisp (Springer-
Verlag Lecture Notes in Computer Science 441),
Sendai, Japan, June 1989, pp. 182-199.

S. Peyton Jones, The Implementation of Func-
tional Programming Languages, Prentice-Hall Inter-
national, Englewood Cliffs, NJ, 1987.

S. Peyton Jones, C. Clack, and J. Salkild, “High-
performance parallel graph reduction,” Springer-
Verlag LNCS 365, PARLE: Parallel Architectures
and Languages Europe, Eindhoven, The Nether-
lands, June 1989, pp. 193-206.

[Polychronopoulos & Kuck 87] C. Polychronopoulos and D. Kuck, “Guided Self-

[Rees et al 86)

[Ruggiero & Sargeant 87]

[Sabot 88]
[Sarkar 87]

Scheduling: A Practical Scheduling Scheme for Par-
allel Supercomputers,” IEEE Trans. on Computers,
(C-36:12, December 1987, pp. 1425-1439.

J. Rees, W. Clinger, et. al., “Revised® Report on the
Algorithmic Language Scheme,” ACM SIGPLAN
Notices, 21:12, December 1986.

C. A. Ruggiero and J. Sargeant, “Control of Par-
allelism in the Manchester Dataflow Machine,”
Springer-Verlag LNCS 274, Functional Program-
ming Languages and Computer Architecture, Port-
land, Oregon, September 1987, pp. 1-15.

G. Sabot, The Paralation Model, M.L.T. Press, 1988.

V. Sarkar, “Partitioning and Scheduling Parallel
Programs for Multiprocessors,” London: Pitman,

114

[Sarkar & Hennessy 86]

[Steele & Hillis 86]

BIBLIOGRAPHY

and Cambridge, Mass.: MIT Press, 1989. This is
a revised version of the author’s Ph.D. disserta-
tion published as Technical Report CSL-TR-87-328,
Stanford University, April 1987.

V. Sarkar and J. Hennessy, “Compile-time Parti-
tioning and Scheduling of Parallel Programs,” SIG-
PLAN ’86 Symposium on Compiler Construction,
July 1986, pp. 17-26.

G. L. Steele, Jr. and W. D. Hillis, “Connection Ma-
chine Lisp: Fine-Grained Parallel Symbolic Process-
ing,” 1986 ACM Symp. on Lisp and Functional Pro-
gramming, Cambridge, MA, August 1986, pp. 279-
297.

[Vandevoorde & Roberts 88] M. Vandevoorde and E. Roberts, “WorkCrews: An

[Waters 90]

[Weening 89]

[Wilson 91]

Abstraction for Controlling Parallelism,” Int’l. J. of
Parallel Programming 17:4, August 1988, pp. 347-
366.

R. C. Waters, “Series”, in G. Steele, Jr., Common
Lisp: the Language, Second Edition, Digital Press,
Maynard MA, 1990, pp. 923-955.

J. Weening, “Parallel Execution of Lisp Programs,”
Ph.D. Thesis, Stanford Computer Science Report
STAN-CS-89-1265, June 1989.

D. Wilson, Encore Computer Corporation, Personal
Communication, March 1991.

Trademarks

Multimax and UMAX are trademarks of Encore Computer Corporation.
Series 32000 is a trademark of National Semiconductor Corporation.

Sparcstation is a trademark of Sun Microsystems, Inc.

UNIX is a trademark of AT&T Bell Laboratories.

115

	1
	2

