
In many fields including economics, collection of time series such as stocks or energy prices
are governed by a similar non-linear dynamical process. These time series are often measured
hourly, thus, each day can be viewed as a high-dimensional data point. In this paper, we
apply a spectral method, which based on anisotropic diffusion kernels to the model high
dimensional electricity price data. We demonstrate the proposed method on price data that
was collected from several zones. We show that even though the observed output spaces
differ by local spatial influences and noise, the common global parameters that drive the
underlying process are extracted.
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1 Introduction

Many observed high dimensional time series in science and economics are governed by
an underlying non-linear dynamical process. A fundamental task for understanding the
observed data is to generate a parametrization that describes the non-linear dynamics that
govern the process. In this work we employ a spectral analysis framework, which is based on
anisotropic diffusion embeddings, to extract a set of stable independent intrinsic parameters
from a number of observed datasets that are governed by the same salient modes.

Electricity price curves from zones that are geographically close, are an example of
temporal datasets that are governed by the same set of intrinsic parameters. Although
the price curves are gathered from a number of zones, there is a unique set of parameters
that govern the observed space and is independent of the zone (station). These parameters
capture the physical components such as the season and economical factors, which may
depend on the fuel prices and the stability of the market.

Electricity prices are typically treated as a one-dimensional time series and modeled by
parametric models such as ARIMA processes [5, 1]. A few recent papers proposed the use of
data mining techniques that are based on kernel methods for spike and forecasting analysis
[6, 7]. Chen et al. [4] explored manifold learning with local linear embedding for modeling
electricity prices. In their model, the daily profile, which consists of 24 hourly price values
is considered as a high dimensional data point. LLE then organize the high-dimensional
observed data into an embedded space by using the first top embedding coordinates.

In this paper, we follow the above setting by treating the observed data as high-
dimensional time series, where each point reside in R24 and holds a daily price profile.
We apply a spectral method, which was proposed in [11] by Singer and Coifman for finding
the non linear independent components that govern the high dimensional data. The main
advantage of the proposed method over the common manifold learning techniques is that
the obtained embedding coordinates build an inverse mapping of the observed data into the
parametric space. This framework was been recently applied for earth structure classifica-
tion [3], recovering independent parameters of acoustic channels [10], source localization [9]
and non-linear tracking [12].

2 Modeling electricity prices with diffusion kernels

This section describes the diffusion maps framework for organizing and embedding high-
dimensional time-series into a low dimensional space. Denote the time series of daily elec-
tricity profiles that were collected from the same zone over n consecutive days by

Γ = {x1, x2, . . . , xn}, xi ∈ R24.

Let
C = [c1, c2, . . . , cd]

be the physical parameters (such as the daily temperature, fuel prices, etc.) that control
the observed space. We assume that there is a non linear map between observed data points
xi ∈ Γ and the physical parameters C.
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We first review in Section 2.1 the standard diffusion maps framework, which studies
the geometry of the observable manifold and uses the spectral decomposition to embed the
data into Euclidean space. Next, we describe in Section 2.2 how to construct an anisotropic
diffusion kernel, which is computed based on the geometry of the physical parameters’
manifold. Applying this kernel in the diffusion maps framework, embeds the data into
Euclidian space based on the distances of the controlling parameters C that effect the
observed data Γ.

2.1 Diffusion maps

The diffusion maps framework [2] provide a method for constructing coordinates that pa-
rameterize a high-dimensional dataset according to its geometry. The associated diffusion
distances are a local preserving metric for this data. The intrinsic geometry of the set Γ is
studied by constructing a graph G = (Γ,W ) with a kernel W , w (xi, xj), which serves as

a weight function. A Gaussian kernel W = e
−‖xi−xj‖

2

2ε is a common choice for a weight func-
tion. The kernel is symmetric, positive-preserving and positive semi-definite, as required
for the construction of diffusion maps. The normalized kernel

P , p (xi, xj) = s(xi)
−1w (xi, xj) ,

where s (xi) =
∑
j

w (xi, xj) .
(1)

is a Markov transition matrix. The matrix P consists of nonnegative real numbers, where
each row is summed to 1, thus it can be viewed as the probability of moving from xi to xj
in one time step. The eigendecomposition of the transition matrix P

p(xi, xj) =
∑
k≥0

λkψk(xi)φk(xj). (2)

together with the fact that P is conjugate to a symmetric matrix results in a set of n real
eigenvalues {λk}n−1

k=1 and biorthonormal eigenvectors {ψk} and {φk}. A fast decay of the
spectrum is achieved by an appropriate choice of ε, thus, only a small number of terms are
required for sufficient accuracy in the sum (2). The family of diffusion maps {Ψ(xi)}ni=1,
which are defined by

Ψ(xi) = (λ1ψ1(xi), λ2ψ2(xi), λ3ψ3(xi), · · · ) , (3)

embed the dataset into a Euclidean space.
This embedding parameterizes the data into a new space, in which the distances between

the data points are determined by the geometric structure of the data. Following the
definitions in [8, 2], the diffusion distance between two data points xi and xj is the weighted
L2 distance

D2(xi, xj) =
∑
l∈Γ

(p(xi, xl)− p(xl, xj))2

φ0(xl)
. (4)

In this metric, two data points are close to each other if there exists many paths that
connect them. The value of 1

φ0(xi)
depends on the point’s density. Substituting Eq. (2) in
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Eq. (4) and using the biorthogonality properties, we obtain that the diffusion distance with
the right eigenvectors of the transition matrix P is expressed as

D2(xi, xj) =
∑
k≥1

λk(ψk(xi)− ψk(xj))2. (5)

The Euclidean distance between two points in the embedded space is equivalent to the
distances between the points as defined by a random walk.

2.2 Anisotropic diffusion kernels

This section describes the steps for constructing an anisotropic diffusion kernel as was in-
troduced in [11]. Local covariance matrices are used to approximate the Euclidean distance
in the physical parameters space instead of the distance of the observable space, which is
typically modeled in manifold learning. We assume that there is a non linear map between
observed data points in Γ and the physical parameters C.

We begin by computing the local covariance matrices around points of the observed
data. For each data point {xi}ni=l the local covariance matrix that is associated with xi
is computed by using the local time cloud from the previous L samples {xi−j}Lj=1. This
covariance matrix is denoted by Σi = Cov(xi). The anisotropic diffusion kernel

W̄kl =
π√

det(Cov(xk+xl
2 ))

exp

(
−(xk − xl)T [Σ(xk) + Σ(xl)]

−1(xk − xl)
ε

)
(6)

is constructed. Kushnir et al. [3] showed that by using the metric in (6), the Euclidean
distance between the physical parameters, i.e. ‖Ck − Cl‖2, is approximated by

‖Ck − Cl‖2 ≈ (xk − xl)T [Σk + Σl]
−1(xk − xl). (7)

The kernel is normalized like described in Section 2.1 The spectral decomposition of W̄
embeds the data in terms of its independent physical parameters.

3 Experimental results

In this section, we demonstrate the proposed method on data gathered in four zones: Cap-
ital, Dunwod, Millwd and NPX from New York Independent System Operator. The time
series are the LBMP (locational based marginal prices) data of the day-ahead market of
the four electricity zones from June 1, 2005 to May 31, 2011. Figure 1 displays two weeks
of hourly data from the four stations.
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Figure 1: An example of hourly electricity prices gathered from the four zones Capital (red),
Millwd (green), NPX (black) and Dunwod (blue) for a period of two weeks.

The application of diffusion maps, as described in Section 2.1 to the high-dimensional
price series is presented in Figure 2. The first two diffusion coordinates correlate to the
average daily price. The fifth coordinate captures the season.

Figure 2: The first, second and fifth diffusion coordinates that embed the prices from Capital
zone (red), Dunwod zone (blue) Millwd zone (green) and NPX (black).

The embedding coordinates obtained by applying diffusion maps with the anisotropic
diffusion kernels are presented in Fig. 3. These coordinated find a set of consistent con-
trolling parameters which drive the underlying process of the four time series, and are
independent of the zone. The first two coordinated may describe some global market be-
havior. The third embedding coordinate captures the yearly season. The sharp transition
in the forth coordinate occurs in the beginning of 2009 and may be related to the financial
crisis.
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Figure 3: The first four independent embedding coordinates obtained for modeling the data
with anisotropic diffusion kernels.

Abnormal spikes are easily detected with this representation. Moreover, application of
a standard smoothing filter to the set of embedding coordinates yields a consistent set of
salient modes that can be used for analysis tasks such as price forecasting.
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