The Pseudopolar FFT and its Applications

Amir Averbuch, Ronald Coifman, David Donoho,
Moshe Israeli, and Johan Waldén

Research Report YALEU/DCS/RR-1178
May 1999

THE PSEUDOPOLAR FFT AND ITS APPLICATIONS

AMIR AVERBUCH*, RONALD COIFMAN!, DAVID DONOHO!, MOSHE ISRAELIS, AND
JOHAN WALDENY

Abstract. We present a two- and three-dimensional Fast Fourier Transform, where the result in
the 2-D dimensional case is contained in coordinates that are “close to polar,” while in the 3-D case
they are “close to spherical.” We call these transforms the pseudopolar FFT and pseudospherical
FFT, repsectively. The move from Cartesian coordinatesto polar coordinates is algebraically accurate
and no interpolation is needed. We give examples of applications to computer tomography.

Key words. Fast Fourier Transform, Radon transform, computer tomography, Fractional
Fourier Transform

AMS subject classifications. 44A12, 65R10, 65T20, 92C55

1. Introduction. There are several applications where we would like to know
the Fourier transform of a function, in polar coordinates. One important application
is if we want to do computer tomography. The Fourier slice theorem establishes
a relationship between the Fourier transform in polar coordinates and the Radon
transform of the function. Another example is when we analyze wave front sets,
where we are interested in “cutting out cones” of the Fourier transform of a function.

Ideally, we would like to have a version of the Fast Fourier Transform (FFT) that
produces a result in polar coordinates. As points in polar coordinates are unequally
spaced (compared with our original Cartesian data), one approach would be to use
an unequally spaced FFT (see [2, 4, 5, 9]) to get the result in polar coordinates.
With such an approach we make a trade-off between accuracy and complexity. If we
want an algebraic method, we lose the “fastness” and the complexity will be O(n%)
(compared with @(n?logn) for a two-dimensional FFT), for an n x n image.

In this paper we present an algebraic method that uses the fractional FFT (the
FRFT) and is O(n?logn). We accomplish this by redefining the grid points as in
Figure 1.1. We call the new grid a pseudopolar grid and the transform the pseudopolar
FFT.

We note that the pseudopolar grid is close to the polar grid in the following senses:

e Asin polar coordinates, we get transformed values along rays passing through
the origin. Furthermore, Ar (the distance between two points in the radial
direction) is constant along each ray, permitting us to perform an FFT (or
FRFT) in this direction which, by the Fourier slice theorem, gives us the
Radon transform.

e Unlike in polar coordinates, in pseudopolar coordinates, Ar is different for
different rays. However, it varies slowly, and we have Armax/Armin = V2.

e Similarly, the change in the angular direction, A®, varies slowly, and we have
A@max/Aemin < 2.

*School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Istael
(amir@math.tau.ac.il).

tYale University, Department of Mathematics, 10 Hillhouse Avenue, P.O. Box 208283, New Haven,
Connecticut 06520 (coifman@math.yale.edu).

tStanford University, Department of Statistics, Stanford, CA 94305 (donoho@stat .stanford .edu).

§Faculty of Computer Science, Technion, Haifa 32000, Israel (israeli@cs.technion.ac .il).

9Yale University, Department of Mathematics, 10 Hillhouse Avenue, P.O. Box 208283, New Haven,
Connecticut 06520 (jvalden@math.yale.edu).

L Y A A A
117777
17777
T
LT/
U7/
U777/
Iz
\\\\ //// 1
W
Il 1 T HTTT]
i I S
W S o,ll, | LH N
N 7 L
\\\\\§$5=i"9, I] TN
\\\\\\\\ ////// 7NN Y
N ZHITTTY
A ANNRRRANY
77
777 T
77 7T
777 71T
a b

Fi1G. 1.1. Polar grid a) and Pseudopolar grid b).

o As when working in polar coordinates, it is simple to “cut out” cones in the
transformed space.
Thus, the pseudopolar FFT has many properties in common with a polar transform.
The rest of the paper is organized as follows. In Section 2 we introduce some
preliminary notation. In Section 3 we define the transform, derive an error estimate,
and show some numerical examples. We also define a three-dimensional transform.
Finally, in Section 4 we construct an algorithm to calculate the inverse transform. In
particular, we show numerical experiments for the inverse Radon transform, which
can be used to perform computer tomography.

2. Preliminaries. We define the continuous Fourier transform of a function,
f €LY (RN) by

f&) = [f@)emi) aa.

We will work mainly with discrete functions (vectors) of length n (where n = 27,
p integer). We denote the kth element of a vector, u by ug or by u(k). It will be
natural for us to let indices of vectors be centered around zero, i.e., k € {-n/2,—n/2+
1,...,n/2 -1}

We now define the Discrete Fourier Transform (the DFT):

nf2-1
@1) Fu)R)E S wem k= a9, -n/2+1,...,0/2-1.
j=-n/2

We can compute the DFT with 5nlogn arithmetic operations by using the Fast
Fourier Transform (FFT) [3]. Here, and in the rest of the paper, logn means log, n.

2

The Fractional FFT (the FRFT) is defined by

n/2-1
(Fau)(k) o Z Uje”“’z”ik/", k=-n/2,-n/2+1,...,n/2-1, a € [-1,1],
j=-n/2 .
(2.2)
(note that, again we have arguments between —n/2 and n/ 2 — 1 instead of the more
common 1 and n). The FRFT can be computed with 20n logn operations (disregard-
ing lower order terms) [1]. If we need to stress the size of the transform, we write F'
and F?, respectively.
We denote the identity operator by I and define the zero—paddlng operator, F :
C™ — C? (or, if we want to stress the size, I", E™) by

0, -n __<_ k < —-Tl/2,

(2.3) (Eu)(k) déf{ ug, -n/2 <k< n/2-1,
0, n/2 <k< n

More generally, we can zero-pad m times, giving

df{ 0, -mn/2 <k< -n/2,

(2.4) (En)() 4 wp, —n/2 <k< n/2-1,

0, n/2 <k< mn/2.
We define the diagonal operator diag(A_n/2, A-n/241, -5 Anj2-1) by

(2.5) (diag(A—nj2, Anf2t1, -+ An/Q—I)u)(k) L \ug.

In particular, we will use the ramp-functions,

(2.6) D ¥ diag(n/2,n/2-1,...,2,1,1/4,1,2,...,n/2 = 1),

@27 VDY diag(\/n]2,\/n]2=1,...,V2,V1,/1/4,V1,V2,...,\/n/2),
and

Do diag(y/TH /P TT (= DF, .., I P,
(2.8) VI+(0/n)2,V/1+(2/n)%,..., /14 ((n—2)/n)?),

(also denoted D", /D", and D). Note the 1/4 factor for the zeroth coordinate of
D. It is needed as we will otherwise “miss” the zero-frequency component when we
define the inverse pseudopolar FFT.

We will be concerned with two-dimensional discrete functions w € C™*", and we
have the tensor product of two one-dimensional functions (u ® v)(j,k) = u(j)v(k),
-n/2 < j,k,<n/2—1. Here, j is the argument along the z-axis, and k along the y-
axis. We also have the restriction operators that “pick out lines” from two-dimensional
discrete functions: (RZu)(j) = u(j, k) and (Rju)(j) = u(k,j) for all u and v.

As we will work with two- and three-dimensional discrete functions, it is more
straightforward to define linear algebraic operators directly, not using a matrix inter-
pretation, which is artificial in higher dimensions. For linear operators, we use the
standard {2 inner product to define the adjoint operation, *. We define the direct sum
of two operators, G : Ly — Ly and H : L} — L3 as (G® H)u = (Gu) @ (Hu), and for
G:Ly — Lzand H : Ly — L3 as (G&® H)(u® v) = Gu+ Hv. These definitions are
similar to vertical and horizontal concatenation of matrices in the one-dimensional
case. We also define the tensor product of two linear operators, G @ H as the linear
operator, such that (G ® H)(u ® v) = (Gu) ® (Hv) for all u and v.

3

3. The Pseudopolar Transforms.

3.1. The Pseudopolar FFT. We shall now define the pseudopolar FFT in a
way such that it can be computed with a sequence of fast operations. The idea is
to view the pseudopolar grid as a union of two subgrids as in Figure 3.1. We start

D1 D2
F1G. 3.1. Pseudopolar grid viewed as union of two grids.

with the left of these subgrids, D;. In the untransformed domain, we have a two-
dimensional discrete function, u € C™*™. We zero-pad the function and perform an
FFT in the y-direction, forming (I" @ (F?"E"))u. In the z-direction, we use the
FRFT to perform a transform evaluating with an « that decreases as we get closer to
the center. We call this operation Z, and it is defined by

(Zu)(j, k) E (F) (REW))(),

where we have chosen the letter Z as it looks like the domain D; we are working on.
The total operation is defined by

2(j, k) & % (Z(I" ® (F"’"E"))).

Similarly, for the second subgrid we do the zero-padding and FFT in the z-
direction, followed by an FRFT part in the y-direction. We call this operation N,

.\ def
(Nu)(G, k) = (Ffyn(RIu))(k),
and we define
def 4
N ;E(N((Fz"E")@) I")).
If we put all the steps together, we get:

(3.1) F¥zoN= % (Z(I ® (FE))) ® (N((FE) ®1)).

We call this the Pseudopolar FFT, and the following remarks are valid:
o The transform takes an n x n grid function to a 2n x 2n. If u(ky, k) =
F(2k1/n,2ks/n) is a discretization of a function, f, then (Fu)(j1, j2) approx-
imates f in the following way:

(Zu)(j1, 2) & f(—mjija/n, mj2/2),

(Nu)(j1, j2) = f(m41/2, mjrda/n).
We shall show this shortly.

o The transform is made up as a composition of fast operations, and can be
computed with 100n2logn arithmetic operations (disregarding lower-order
terms). If u is real, the transform can be computed with 50n? log n operations.

o Except for Z and N, all operations are one-dimensional (i.e., tensor products
of identity and one-dimensional operator). :

o The transform performs the following operation

4 nf2-1 nf2-1 _
(Zu)(jl)jZ) = 'n_z Z Z e-%(12k2’2]2]1kx/n)u(k1,k-z)’
k1=-n/2 kz:—n/?

n/QS]lsn/Q—la —n<_j2§n_1)

and

4 n/2-1 n/2-1 v
(Nu)(1, 42) = = Z Z e~ U kit2iuiaka/n)y (k) ko), _
ki=—n/2ks=—n/2

-n<ji<n—-1 -n/2<j<n/2-1

Remark. In our implementation of the algorithm, the result is stored in a 2n x 2n ,
matrix, A, where A; j is the kth element along the jth angle. |
We now show an approximation theorem.
THEOREM 3.1. Ifu is a discretization of a function, f (i.e., u(j1,j2) = f(2j1/n,2j2/n),
-n/2<j1,j2<n/2-1)and f € C2™+2((=1,1) x (=1,1)) (i.e., f has its support
izsz’de (-1,1) x (-1,1) and %ﬁf is a continuous function for r +q < 2m + 2),
then

(14 lj152/n))(A + Ij2/n|)> mH
n? ’

(W), 2) — F(xiujalm inf2)| < C (

1+)1 + 1jljz/n|)>’”“
n? ’

(V)i da) = F(mia /2, misia/m)] < € (

where C depends on f but not on ji, j2 orn. Thus, the pseudopolar FFT gives an
approzimation of the Fourier transform (in pseudopolar coordinates), that pointwise
s of order 2m + 2.
Proof. Similarly to a standard way of proving that the FFT gives a high-order ap-
proximation of the Fourier transform for functions with compact support, we use the

Euler-MacLaurin summation formula.
We prove the theorem for the A" part. The proof for the Z part is completely
similar. We start by defining

(3:2) o(2, v, 51, 72) % f(z, y)e~ TG/,

and we note that g(-, -, ji, j2) is a periodic function on (—1,1) x (=1, 1) (as f’s support
is contained within (—1,1)x(—1,1)). We define Az = Ay = 2/n. Now, (3.2) together
with using the Euler-MacLaurin summation formula in both the z and y direction
gives us

nf2-1 n/2-1

(Fu)Gnid= Y. (v Y Acghidz,kAy, i)
ko=—n/2 ki=-n/2

1 1
- / / 0, 1, j2) dz dy + (Az)™ (Ag)™
-1J-1

1 m 1
(3.3) x /_ J+1(m/2) ,:H / P,+1(ny/2) m+1(w y,yl,yz)dy)dx

Here, P.(z) is deﬁned as P.(z — |z] — 1/2) where P, is the rth-order Bernoulli poly-
nomial.

Now, the first term on the right-hand side of (3.3) evaluates to the Fourier trans-
form we are looking for. As g is smooth, and we are integrating over a compact
interval, we can change the order of integration and differentiation for the second

term to get

e & (Fu)(j1, j2) — F(751/2, mjrga/m)
1 1 - -
= @ea)y™ [[Baatw/Dnine/2)

02m+2g
xa m+la mF1 ('7" y:]l;]?)dydl'

We use Holder’s inequality for the right-hand side and get

a2m+2

el < (A2ag)™* | Pras(ne/2) P na /)| | gmerggmer G
9*m+2g ..
(3.4) < Const(A:cAy)mH“WT(" ',.71,]2)”00

. . . m+
Finally, we use Leibniz’ formula to expand %ﬁ,—_ﬁ- and get

62m+2g
"W(, ,11,12)“00

m+1m+1 a,.

<ZTZ o

(35) < Const(l+ |ji])™ (1 + [jrj2/nl)™

““"(112'/24']1]2?!/")

62m+2 r—q
g o],

Oz 8y‘1

f(z y)"

0<q, r<m+l “ 61'"63/9

Now, by replacing Az and Ay with 2/n, and inserting (3.5) into (3.4) we arrive at

le| < <(1 +) + |j1j2/n,>m+1 |

n?

and we have proved the theorem. -

Remark. If we want a higher resolution in Fourier space, we zero-pad u before trans-
forming. A straightforward generalization of the previous theorem gives

(14 [+ ljga/n))™
n2s;s9 ’

[(2(E2, ® 7,)u)(i1, 2) = f(migz/(ns1)), mja/(252))] < C (

(1 + [jrga/nD(@ + [i2\ ™
~ n2s1s ’

(W(ET, ® E7)u)(j1, 2) = f(m51/(251)), a2/ (ns2)| < © <

We compute the pseudopolar FFT of a discretized Gaussian,
flz,y) = ¢=200((z=0.1)*+(y=0.05)") f5r n = 32 — 256. The program is written in C,
compiled with SUN’s compiler with the -fast flag, and run on an UltraSPARC 1.
All computations in this and following examples are carried out in double precision.
The results are shown in Table 3.1. We see that the error (the difference between the
pseudopolar FFT and the Fourier transform of f) is of machine precision, for the size
128 x 128, and that the method clearly is of complexity O(n?logn).

n lelloo CPU (s)
32 [6.67x10"% [0.01
64 |5.12x 1078 | 0.05
128 | 1.37 x 1071 | 0.24
256 | 2.25 x 10~16 | 1.16
TABLE 3.1)
Error and CPU-time for approximation of Fourier transform by pseudopolar FFT for
Gaussian.

3.2. The Radon Transform. The Radon transform of a function is defined as

p(r,6) d-f-f/ f(z,y)ds = //f(a:,y)é(x cos § + ysiné — r) dz dy,
L(r,6)
-0 < <00, 0<b<m,

which is interpreted as the line integral along the ray at distance » and angle §. By
the Fourier slice theorem, it is know that

(3.6) f(61,6) = p(w,0), & =wcosh, & =wsind,

where p is the (one-dimensional) Fourier transform of p in the radial direction, and fis
the (two-dimensional) Fourier transform of f. Thus, if we have the Fourier transform
in some radial (e.g. pseudopolar) coordinates, we can find the Radon transform by
computing a one-dimensional inverse Fourier transform along each ray.

We could perform an FFT along each ray, but as the spacing Ar is different along
different rays, the result would not be equidistant for different rays. Instead, we use
an FRFT with an appropriate scaling factor along each ray to correct this. Thus, we
define

(Azw)(i, k) & (F2M(RYw)) (),

[2
o= _1__-_l-__(_22_kﬁl_)__’ -n<j<n-1, —n/2gk§n/2—1,

7

and
(3.7) (Anu)(, k) & (F20(REw)) (),

‘ Y .
a__.,ll_'l'__@;/_"), -n/2<j<n/2-1, - n<k<n-1.

The total pseudopolar Radon transform is defined as,

(3.8) R & (’Rz ® RN), where,

1
Rz = Z(DZ@I%)AZZ, and Ry = %(Iz"@DZ)ANN.

Here, D (defined in (2.8)) appears as we have different Aw along different rays, when
we approximate the inverse Fourier transform in (3.6). With this definition, and the
discretization u(kq, k2) = f(2k1/n,2ks/n), —n/2 < k1, k2 < n/2—1, we will have the
approximation

(RZU)(j1,j2) ~ p(le"'r 0.72))

with
Ar= \/75' and 0, = —m/2+tan"(2j2/n),
-n<j<n-1, -n/2<jy<nf2-1,

and similarly for R 7, but with
6;, = m+tan"1(2j2/n).

Assuming that f is a real function, we can compute the pseudopolar Radon
transform with 130n?logn operations (disregarding lower-order terms and using the
symmetries that arise when f is real). We compute the pseudopolar Radon transform
of the Shepp-Logan phantom (which can be seen as a model of a head and, e.g., is
defined in [8]). The Shepp-Logan phantom, shown in Figure 3.2 is defined as a sum
of characteristic functions on ellipses, and the Radon transform can be calculated
analytically. In Table 3.2 we show the error in maximum norm and the CPU-time
for sizes 32 — 256. We see that we have first-order convergence in 2-norm and 1-

n_ | lells [lell2 llelleo | CPU (s)
32 | 36x102 [59x10-2 [041 |0.03
64 |15x1072|29x1072|0.25 |0.13
128 | 7.5x 1073 | 1.5x 1072 | 0.21 | 0.55
256 | 3.3x 1073 | 7.0x 1073 | 0.15 | 2.76

TABLE 3.2
Error and CPU-time for approximation of Radon transform by pseudopolar transform
for Shepp-Logan phantom.

norm, whereas it is slower in co-norm. This comes from the Shepp-Logan phantom
having low regularity (it is not even continuous). In Figure 3.3 we show the exact
and the approximated transform along one line, R f(-,0). We see that we have a
good approximation except where p has a sharp derivative. This explains the poor
performance in oco-norm.

Fi6. 3.2. Shepp-Logan phantom. The function varies between 0 (black) and 2 (white).
The part inside the “skull” varies between 1 and 1.04.

3.3. The Three-Dimensional Transform. We can use the same idea to define
a transform in three dimensions. We have three directions of doing the transform,
each consisting of two pyramids, as shown in Figure 3.4. In Table 3.3 we show the
error when performing this transform for (a discretization of) the function f(z,y,2) =
e=30((#=0.1*+(y=0.05)"+2") e call this transform the pseudospherical FFT.

n_ | llefleo
8 |0.47
16 | 0.34
32 121x%x10°8
64 | 2.5x 10712

TaBLE 3.3
Error for approximation of Fourier transform by pseudospherical FFT for Gaussian.

4. Inverse Transforms.

4.1. A First Approximation. We wish to compute the inverse of the pseu-
dopolar FFT. A good starting point is Figure 3.1. From the continuous theory, we
know that

. 1 P 1 o
=L e y)wrwa) | 1 (2,9 w1 w)
faw =5 | fe g L

Now, the discrete version of these integrals will be to perform a FRFT in one direction,
with a scaling factor corresponding to Aw. In the other direction, we perform an

9

. 1.5 1.2 = T T T T T
1 1.52} -
1 -
% o
05 Q@ 1.5F .
0.8fF %
o | . O
o 5 1.48P % o
® °
a 0.6 o %2
15 ® 1.46 H
' @
/ 0.4} &
1 J 1.44}
: 0.2} 5
0.5 142} ,
o)
0 O L 1.4 ' 1
-1 0 -055 -05 -0.45 -0.05 0 0.05
b c d

FiG. 3.3. a) Radon transform of Shepp-Logan phantom Rf(-,0), b) Pseudopolar trans-
form, c) blow-up around left edge of skull (exact is *+’, and approximation is ’o ’), d) blow-up

in smooth region.

1.54

F1G. 3.4. Transform defined in three dimensions.

10

inverse FFT. The total approximation is defined as:
~ 1
@y F=o ((e'Fyenz 19 D))o (1o (EF)N (Do n),
(with D defined in (2.6)) and for the Radon transform:
(42) R=
\/5 AL * * * 1k * *
sz ((FFyenzuen)r)e ((teEFr)V(Den)ay).

We note that the complexity for these transforms basically are the same as for the
forward transforms.

We test the approximative inverse pseudopolar FFT. The result is shown in Ta-
ble 4.1. The results are similar for the pseudopolar Radon transform. We see that
the error is 3-5 % and nondecreasing in all norms. Thus, the approximative inverses
are not very exact.

n | el [le]l2 [lefloo

32 [29x1072 [30x%x10"2]3.7x10"2
64 | 29%x1072[3.0x10"2|3.9x10"2
128 | 3.0x 1072 | 3.1 x 1072 | 4.3 x 10~2

TABLE 4.1
Error and CPU-time for inverse approximation F for different problem sizes.

We can understand that this will be the case by investigating the eigenvalues of
the FRFT. The continuous transform, F~1((F f) x xp) has eigenvalues that are either
one (for frequencies inside the domain of integration) or zero (for frequencies outside).
In Figure 4.1 we have ordered the eigenvalues of F* 12F1/2 /128, for the 64-point FRFT.
Ideally, we would like to have 32 eigenvalues equal to 1 and 32 equal to 0. However,
there are some eigenvalues in a transition region, and the result is that our “cutting”
of the total square into D; and D; makes the discrete approximation rather crude.

1 T T T O
0.9 °
o8
0.7p)
0.6
05
04F
0.3f

0.2

01 o

o Q L L 2
10 20 30 40 50 60

FiG. 4.1. Eigenvalues for F',F1/,/128 and the 64-point FRFT.

We therefore seek a way of improving the results.
11

4.2. An Iterative Approach. We may think of F as a preconditioner, and
use an iterative algorithm to find an inverse. From the previous section, we expect
the condition number, fc(.’F.’F) to be small, and we also have the property that the
preconditioner works as a symmetrizer:

THEOREM 4.1. FF is Hermitian.

Proof. Define

QY \/21? (tevD)z(FE) o 1) & (VDo DN(I @ (FE))).

Then, we directly get Q*Q = FF and as (@*Q)* = Q*Q the theorem is proved.

(]

Remark. Another way of proving the theorem is to look at the elements of F.F.
We have:
_ 1 n/2-1 nf2-1
(43) (ffu)(81,82) = —2-7—7'3(Z Z A(Sl,SQ,k‘l,kz)u(kl,kg));

ki=—n/2ka=—n/2
with
nf2-1 p-1)
(44) Als,sa, b k)= Y. > (d(jz)e%(jz(sz—k2)+2j2j1(s1-k,)/n)
ji=—n/2j2=-n
+d(j2)ei,?(jz(sx—kx)—2j1jz(52—k2)/n))’

di7)=1il, J#0,
d(j)=1/4, j=0.

Remark. From (4.4) we see that FF is a Toeplitz operator. We can use this to
compute FF in a more efficient way by embedding it in a circulant operator. Using
this trick, #Fu can be evaluated with 80n2 log n operations, (instead of 200n?log n).

Remark. We can interpret the construction of @ as if we are computing a scaled
pseudoinverse. The scaling is performed by introducing the ramp-filter, D. It comes
natural, as points close to the origin, where the density of points is high, will have
less influence on the result.

We use the Hermitian property to calculate the inverse with the Conjugate Gra-
dient method. We do this for the pseudopolar FFT, the pseudopolar Radon and the
pseudospherical FFT. In Figure 4.2 we have plotted the error in co-norm as a func-
tion of the number of iterations. We see that the preconditioning is nearly perfect. In
particular, the error decreases to machine precision in few iterations (about 10 for the
two-dimensional transforms and 20 for the three-dimensional) regardless of problem
size. If we are content with an error of 1075, then 3-4 iterations is enough.

Finally, we use the inverse pseudopolar Radon transform to do computer tomog-
raphy. We calculate the inverse transform of the analytic Radon transform of the
Shepp-Logan phantom. The results are shown in Figure 4.3. We see that the recon-
structed image (apart from some Gibb’s related phenomena close to the skull) does a
good job, and that the 256 x 256 example resolves all the important features of the
image. In Figure 4.4 we plot the reconstructed image across the line f(-,0). compared
with the exact function. We see that the different ellipses have been “found.”

The method described here is closely connected to the so called Linogram method
which was derived from a different point of view in [6, 7).

12

10“"—;E RPN

B IR Soeve N .
15 20 25

I R 10 i
2 4 6 8 10 12 14 2 4 6 8 10 12 14 5 10
a b c

F1G. 4.2. Error of inverse in co-norm as a function of iterations for: a) pseudopolar FFT
(’X’=32 x 32, ’+’=64 x 64, ’0’=128 x 128), b) pseudopolar Radon ("X’=32 x 32, '+’=64 x 64,
'0’=128 x 128), and c) pseudospherical FFT ("X’=16 x 16 x 16, *+’=32 x 32 x 32, ‘0’=64 x
64 x 64).

5. Conclusions. In many applications, computing a transform in pseudopolar
coordinates is as good as doing it in polar coordinates, e.g. when doing computer
tomography or analyzing wave front sets. The pseudopolar transforms presented in
this paper offer fast and algebraically correct methods for computing these transforms.
Other application areas will be investigated in forthcoming papers.

REFERENCES

[1] D.H. Bailey and P. Swarztrauber. The fractional Fourier transform and applications. SIAM
Review, 33(3):389-404, 1991.

[2] G. Beylkin. On the fast Fourier transform of functions with singularities. Appl. Comput. Har-
mon. Anal., 2(4):363-381, 1995.

[3] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex Fourier
serier. Math. Comput., 19:297-301, 1965.

[4] A.Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. STAM J. Sci. Comput.,
14(6):1368-1393, 1993.

[5] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data, II. Appl. Comp.
Harmon. Anal., 2:85-100, 1995.

[6] P. Edholm and G. T. Herman. Linograms in image reconstruction from projections. IEEE Trans.
Med. Imag., MI-6(4):301-307, 1987.

[7] P. Edholm, G. T. Herman, and D. A. Roberts. Image reconstruction from linograms: Implemen-
tation and evaluation. IEEE Trans. Med. Imag., 7(3):239-246, 1988.

[8] D. Gottlieb and B. Gustafsson. On the direct Fourier method for computer tomography. Tech-
nical Report 207, Dept. of Scientific Computing, Uppsala University, 1998.

[9] J. Waldén. Analysis of the direct Fourier method for computer tomography. Technical Report
YALE/DCS/RR-1163, Yale University, Department of Computer Science, 1998.

13

Fic ’4 3. a) The Shepp-Logan phantom, b) Inverse with 64 x 64 pomts c) Inverse with
128 x 1&8 points, d) Inverse with 256 x 256 points.

14

25 . 25— . 1.08 ~——r—————
+ +
. ol 1.06F i
i 1.04} 4
15} L 15}
1.02 ot
1} p—--# 1t e
Wt]
os| ost
o8} E
O'H R
+ +
096} 1
05 . _oslu . , e
2 0 07 -06 -05 -04 02 0 02 04
a b c

F1G. 4.4. Reconstructed (*+’) and exact (>-’) Shepp-Logan phantom along the line f(-,0).

15

