Response Time of Parallel Programs

Richard J. Lipton

Frederick G. Sayward
Research Report #108

June 1977

Response Time of Parallel Programs

Richard J. Lipton

Frederick G. Sayward

Computer Science Department
Yale University
520 Dunham Laboratory

10 Hillhouse Avenue

New Haven, Connecticut 06520

ABSTRACT

The response time of a parallel program is defined to be the maximum
delay between successive activities of an event. Response times are de-
pendent on two factors: the parallel program's structure and the program's
scheduler policies. It is shown that under weak assumptions about the
scheduler policy, the imposition of an N-fair policy in which each event
gets a chance to execute at least every N scheduler steps, the response
time becomes dependent only on program structure: either the response
time is infinite or it is linear in N (i.e., <cN for some c>0). Also pre-
sented are decision procedures for determining whether or not the re-
sponse time is infinite and for determining the exact linear relationship
in N (i.e., the minimum c).

This work is sponsored in part by ONR Grant N00014-75-C-0752.

L

e g S s i R S

SECURITY CLASSIFICATION OF THIS PAGE (When Data _Enlered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’'S CATALOG NUMBER
108

A R T A A

. PORT & PERIOD COVERED
4. TITLE (and Subtitle) 5. TYPE OF REPOR

Response Time of Parallel Programs Technical

6. PERFORMING ORG. REPORT NUMBER -

X TRACT OR GRANT NUMBER(s)
7. AUTHOR(s) 8. CONTRAC (

Richard J. Lipton

Frederick G. Sayward : . N00014~75~C~0752
: RAM ELEMENT, PROJECT, TASK
3. PERFORMING ORGANIZATION NAME AND ADDRESS 0. PROGRAM ELEMENT, PROJEC]

Yale University
Department of Computer Science
10 Hillhouse Ave,, New Haven, CT 06520

11. CONTROLLING OF FICE NAME AND ADDRESS 12. R.EI:Z%ZT 106;5
Office of Naval Research
Information Systems Program 13. NUMBER OF PAGES

Arlington, VA 22217

3. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

N-fair ' © schedulers
parallel programs - . scheduling policies
résponse time vector addition systems

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The response time of a parallel program is defined to be the maximum delay between
successive activities of an event. Response times are dependent on two factors:
the parallel program's structure and the program's scheduler policies! It is
shown that under weak assumptions about the scheduler policy, the imposition of an
N-fair policy in which each event gets a .chance to execute at least every N shed-
uler steps, the response time becomes dependent only on program structure: eithet
the response time is infinite ot it is linear in N (i.e., <cN for some c>0). Also
presented are decision procedures for determining whether or not the response time

DD ‘FJ'(A’:N_'B 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

1.0 Introduction

The response time of a parallel program is the maximum time that an
event in the program may ever wait for a chance to execute. Response time
is clearly important in realtime programs: large or unbounded reponse
time may cause the program to fail. Even nonrealtime programs may be ser-
iously degraded if the response time is too large.

Response time of a parallel program is not easily computed. Often it
is only determined by empirical observation. The fundamental gquestion

addressed in this paper is:
How can one compute the response time of a parallel program?

Previous studies of this question [1,4,8] have shown that, under certain
assumptions about how programs are scheduled, one can show that particular
events - execute infinitely often. While this type of information is useful,
there are situations where it ia inadequate: e.g., in a realtime program
for data aquistion, knowing that an event will eventually execute does not
guarantee that data (for example) will not be lost.

In order to get a more useful analysis of the response time of a parallel

program, i.e., to avoid answers of the form
"...executes infinitely often."

we will make stronger assumptions about how our parallel programs get sched-
uled. In all of the previous work very weak scheduling assumptions have
been made. Here we will assume instead that we have scheduling where each
event of the parallel program gets a chance to try to execute at least

every N scheduling steps (N>0), in the worst case. To avoid scheduling

anomalies, it is necessary that N be at least as large as the number of
events in the program. Even in this case, of course, some events may get
their chances faster than others; however, no event ever waits longer than
N steps to be "looked" at by the scheduler.

Clearly, an event may not be able to execute every N steps; it may
have to wait for some other event to occur. 1In particular, if r is the
response time of some event, then r > N is possible. A basic gquestion is

then:
As a function of N, what values can r take?

For example, can r be N square, i.e., can r grow non-linearly in N? The
answers to these questions are contained in the response time theorem: as

N grows, either

(1) the response time of an event becomes infinite (i.e., in the
worst case it can wait forever), or
(2) the response time is linear in N (i.e., it is bounded by cN,

for some constant c).

To fully describe the response time behavior of a parallel program we
must consider the question of how one can compute the smallest such c (our
main theorem gives an upper bound) after having determined that the response
time is finite? The answers to these questions are given by providing

decision procedures for the following questions:

(1) given an event e of a parallel program, can e ever have
infinite response time?

(2) given a constant c¢>0, is the response time of e < cN for all N?

These questions are reduced to questions about suitably encoded vector
addition systems [10].

The remainder of this paper has the following organization. In
section 2 we give a formal model of parallel programs and their compu-
tations and show how this model relates to the parallel programming no-
tations found in the literature. The scheduler of a parallel program is
presented in section 3. A scheduler is shown to be just an alternative
characterization of a program's computations. In section 4 we introduce
the scheduler restrictions necessary for our main result. The response
time definition and the response time theorem are given in section 5. 1In
section 6 this result is shown to include as special cases several sched-
ulers used in actual systems. In section 7 the afore-mentioned decision

procedures are presented.

2.0 Parallel Programs

One of the problems in the area of parallel programming is that the
literature in this area is filled with definitions of the form: "a para- .
llel program is...". Of course, we must also supply such a definition:
however, we will try to make our definitions simple enough so that they
can model a wide variety of situations.

A parallel program P, as used here, is a finite directed graph G, a
distinguished node ql of G, and edges which are labelled with elements

from a finite set E. Intuitively, the nodes of G are the states of P,

while the elements of E are the events of P. If

is an edge, then we have the following semantics:

"If P is in state qi, then event e can occur resulting in P

going into state ql."

Clearly, so far, P is nothing more than a finite state diagram. As an
aside, while our main theorem depends on the assumption of finite state,
our basic definitions and indeed several of our results can be generalized
to allow infinite state parallel programs.

Formally, a parallel program P is a 4-tuple P = (Q,E,ql,T) where:

(1) Q is a finite set of states, denote Q = {ql,qz,...,qn}.

{1,2,...,m}.

(2) E is a finite set of events, denote E
(3) q1 is a distinguished start state.

(4) T is the state transition function: T:Q X E =--=> Q.

It should be noted that this definition is by no means novel. It
links well with path expressions [1] and many other such definitions. Also,
note that we have deliberately defined a parallel program to be a rather
unstructured object. The usual notions of process, semaphores, instruction
counters and so forth, are implicit rather than explicit.

As an example of a parallel program, consider the following directed

graph, which we will call example 1:

This corresponds to a parallel program represented in the semaphore notation

of [5] as follows:

semaphore s (initially 1);
parbegin
repeat 1: P(s); 2:V(s) forever;
repeat 3: P(s); 4:V(s) forever;

parend;

Indeed, our model of parallel programs is capable of representing the
control aspects of any parallel program which uses bounded value sema-

phores.

2.1 Parallel Program Computations

In order to study the response time of parallel programs, it is
necessary to introduce the notion of an event blocking. Thus our def-
inition of a parallel program's computations must include both event
execution and event blocking. To this end, let the elements of E be
called event executions. Then the elements of the following set are

called event blockings:
E' = {e'|e is in E}

The elements of the following set are called event activities:
EA=EUE'

We will define a parallel program's computations to be certain finite
and infinite strings over EA. Intuitively, an event e may execute whenever

the program's control is in a state g where e is eligible to execute (i.e.,

t(g,e) is defined). An event e may block whenever the program is in a
state where e cannot execute, the program has passed through a state
where e could have executed but didn't, and e hasn't executed in the
meantime. To formally define those strings over EA which satisfy this

intuitive notion, we introduce the following function on EA*:

Definition: The function state:EA* ---> Q is defined as follows:
(1) state(A) = ql)

(2) For e in E and x in EA*, state(xe) = T(state(x),e)

(3) For e' in E' and x in EA*, state(xe') = state(x) only if
(a) T (state(x),e) is undefined, and
(b) for some event £, x=yfz such that t(state(y).,e) is

defined and not substr(fz,e).

where substr is the usual substring predicate.

Note that the ways in which state can be undefined correspond to
illegal event executions and blockings. For example, if P is in state g
and t(g,e) is undefined, then e is not eligible to execute. Likewise, if
t(g,e) is defined, then e can't block. We are now in ready to define the

computations of a parallel program.

Definition: The computations of a parallel program P are members of the

set C, the union of the following two sets:

(1) CF = {x in EA* | state(x) is defined}.

(2) CI = {x an infinite string over EA [state(y) is defined for

all finite prefixes y of x}.

The set CF is called the set of finite computations of P and CI the infinite

computations. Note that CI may be empty and that C is closed under

finite prefix.

For later use, we distinguish a (possibly empty) subset of the

finite computations:

Definition: A finite computation x in CF is called terminating if for
all events e of P both state(xe) and state(xe') are undefined. A com-

putation terminates when no further event activity is possible.

The following are examples of legal and illegal computations, in terms

of regular expressions, for the parallel program presented above.

Legal
(1) (12 + 34)* - no event ever blocks
(2) 13'2(12)* - event 3 remains blocked forever
(3) 123(1')* - event 1 is forever blocking
Illegal
(1) (2' + 4')+ - events 2 and 4 may never block

(2) 12341' - event 1 is ineligible to block since it can execute.

Note that example 1 has no terminating computations.

2.2 Parallel Program Total State

At any point during the execution of a parallel program P a (possibly
empty) subset of the events will be blocked. We define the total state of
the program to be the state of P's control coupled with the subset of cur-

rently blocked events.

Definition: A total state of a parallel program P is a member of the set

T = {(q,B)lq is in Q and B is a subset of E}.

Note that T is finite for finite state parallel programs. Given

any computation we can compute the total state via the following function:

Definition: The total state function tstate:C ---> T is defined as:
(1) tstate(A) = (q;,9)
(2) Let xf be in.C, B a subset of E, g in Q and tstate(x) = (g,B).
(a) If £ = e then tstate(xf) = (t(g,e),B-{el}).

(b) If £ = e' then tstate(xf) = (q,B u {el}).

3.0 Parallel Program Schedulers

We have defined the computations of a parallel program P to be
sequences of event executions and blockings. Which particular computation
is produced by the execution of P is determined by the decisions made in
an agent entirely external to P; namely, by the scheduler. The scheduler
maintains a data structure that contains information such as the state in
which P's control lies and the blocking status of P's events. We will call
this data structure the scheduler state. A scheduler step consists of the
scheduler determining which events are eligible for event activity, using
a scheduling policy to determine which one of those events will execute or
block, and then reflecting this decision by appropriate changes to the data
structure (i.e., making a scheduler state transition). The scheduler re-
peats this cycle as long as there are events eligible for event activity.

In this section we will formally define the scheduler of a parallel

program independently of any scheduling policies. We show that this is

just an equivalent characterization of a parallel program's computations.
Thus, in subsequent sections when scheduling policies are introduced, we
will be effectively restricting the computations that parallel programs

produce.

3.1 Scheduler State

Let P be a parallel program having n states and m events. The

scheduler state will consist of three types of information:

(1) The program state.

(2) For each event, a delay which indicates the number of
scheduler steps which have passed since the event's last
activity.

(3) An event status set which indicates whether or not an event

is eligible to block.
Accordingly, we have the following formal definition:

Definition: Let P be a parallel program having m events. A scheduler state

S is an element of the set SS = Q X D X B where:

(1) Q is the state set of P.

(2) D=NNXNN X ... X NN (m times) where NN = {0,1,2,...}.

(3 B={0,1} x {0,1} x ... x {0,1} (m times).

The ith member of D indicates the delay of the ith event and the ith member
of B indicates the blocking status of the ith event, with O indicating in-

eligibility.

- 10 -

In order to facilitate future presentation, we now introduce sev-
eral projection functions on scheduler states. Let S = (q;dl,dz,...,d ;
m

bl’bz""'bm) be an arbitrary element of SS. We have

(1) pstate:SS ---> Q by pstate(S) = q.

(2) delay:SS x E ---> NN by delay(S,i) = di.

(3) blocked:SS X E ---> {true,false} by blocked(S,i) = {if b =1
then true else false}.

(4) blockedset:SS ---> 2(E) by blockedset(S) = {i I blocked(S,i)}
where 2(E) is the power set of E.

(5) totalstate:SS ---> T by totalstate(S) = (q,blockedset(S)).

3.2 Schedules and the Scheduler

A schedule for a parallel program P will be the non-empty sequence of
scheduler state that correspond to a particular computation of P and the
scheduler of P will be all schedules. We will show that, appropriately

defined, P's scheduler is isomorphic to P's computation set.

Definition: Let P be a parallel program which has m event. Let Z = Sl’s2"'

be a finite or infinite sequence of scheduler states. Then Z is a schedule
for P if and only if

(1) S1 = (ql; 0,0,...0;.0,0,...,0) (Zm zeroes)

(2) For i>1, lgt Si = (qg; dl,...,dm; bl,...,bm) and

S = (q'; dl',a-o'dm';b

i+l ',...,bm'). Exactly one of the

1

following two cases must hold:

(a) There is an event e in P such that

(1) 7t(g,e)=q'.

- 11 -

(ii) dj' {if j=e then 0 else dj'+ 1}

{if j=e then 0 else {if 1(qg,j) is defined

iii b.'
then l else b.}}l.

In this case we say e executes and denote by Si R(e) Si+l

(b) There is an event e in P such that

(i) t(g,e) is undefined and q' = q.
(ii) dj' = {if j=e then 0 else dj + 1}.
(iii) bj' = {if j=e then 1 else bj}.

In this case we say e blocks and denote by Si R(e'") Si+1'

Definition: Let P be a parallel program. Then the scheduler for P is the

set S = {Z a sequence of scheduler states Z is a schedule for P}.

Theorem: Let P be a parallel program. Then the set of P's computations C

is isomorphic to P's scheduler S.

Proof:

We only sketch the proof. Define the function makesch:C ---> S as

follows:

(1) makesch(A) = (ql; 0,0,...0; 0,0,...,0)
(2) For xf in C where f is in EA and makesch(x) = S,

makesch(xf) = S' such that S R(f) S'.
It should be clear that makesch is well-defined, one-to-one, and onto.
Notation: We let makecomp denote the inverse function of makesch.

As with computations, we will talk of finite, infinite, and terminating

schedules.

- 12 -

4,0 Initial Scheduler Policies

In this section we introduce three scheduling policies, the first
two are common in the literature - the third new, which allow us to

develop our concept of response time.

4.1 The Busy Wait Free POlicy

Recall that in example 1 we had z = 123(1')* as a legal computation
in which event 1 is forever blocking. Although the program is technically
executing, it is essentially doing nothing. This phenomenon has been
dubbed busy wait [5] and great care has been taken to avoid it in the
design of operating systems [3,6,9]. Hence, our first scheduling policy

will be a "busy wait free" policy.

Definition: Let Z = Sl 82 ... be a schedule for a parallel program P.

Z is called busy wait free if for all ix1, Si R(e') Si+ implies not

1
blocked(Si,e).

Intuitively, under the busy wait free policy once an event e blocks
e may not block again until e has executed at least once. This rules out
123(1')* as a computation but 1231'(43)* is still legal. The busy wait free

scheduler for P is then

Definition: The set SF = {Z in s Z is busy wait free} is called the

busy wait free scheduler for P'.
and the allowable computations under the busy wait free policy are

Definition: The members of the set CF = {makecomp(Z) l Z is in SF} are

- 13 -

called the busy wait free computations of P.

The following result is immediate from the definitions of busy wait

free schedules and computations.

Lemma 1l: w in C is in CF if and only if for all events e and decompositions

w = xe'ye'z, we have substr(y,e).

4.2 The Release Policy

As noted above, even with the busy wait free policy we have z = 1231'(43)*
as a legal computation for example 1. In z event 1 blocks but is never re-
leased (i.e., it never executes again even though it is capagle of doing so).
This is, in general, unacceptable. For example, event 1 could represent a
data recording process and we would want it to ewventually be executed if it
has data to record. Satisfying this criterion has been called showing
that an event executes "infinitely often" (if it is capable of doing so)

[1,4,11]. Necessary for showing that an event executes infinitely often

is the imposition of a "release" scheduling policy.

Definition: Let Z = Sl 82 ... be a busy wait free schedule for a parallel
program P. Z is called a release schedule if for all i>1 and arbitrary

distinct events e and £, we have Si R(e) Si+l’ not blocked(Si,e), and

blocked(Si,f) imply (pstate(silhf) is undefined.

Intuitively, under the release scheduling policy when there is a
choice between executing either a blocked or non-blocked event the blocked
event is chosen. Thus 1231'(43)* is ruled out as a computation for example

1 since for the second and subsequent executions of event 3 the blocked

- 14 -

event 1 could have been executed. We now have

Definition: The set SFR = {Z in SF | Z is a release schedule} is called

the release scheduler for P.

and the allowable computations under the busy wait free scheduling policy

are:

Definition: The members of the set CFR = {makecomp(Z) I Z is in SFR} are

called the release computations of P.

The following result is immediate from the definitions of release

schedules and computations:

Lemma 2: w in CF is in CFR if and only if for all distinct events e and f
and decompositions w = xey, we have xfy in CF and blocked (x,f) imply

blocked (x,e) .

Here, blocked(x,e) is the expected predicate on tstate(x).

4.3 The N-Fair Policy

Under the release scheduling policy we still have z = (1231'(43)%*4)*
as a legal computation for example 1. In z event 1 executes infinitely
often but from any blocking of 1 to its subsequent execution an arbitrary
number of scheduler steps may pass. In certain applications this would
be intolerable. To remedy this situation we introduce an "N-fair"

scheduling policy.

Definition: Let Z = Sl 82 ... be a release schedule for a parallel program

P. Let N be a fixed integer > 1. Z is called an N-fair schedule if for

- 15 -

all izl and all e in E, not blocked(si,e) implies delay(Si,e) < N.

Intuitively, under the N-fair scheduling policy events which are not
blocked will undergo event activity (execute or block) within N scheduler
steps from the point of their last execution. Of course, blocked events
may have to wait longer than N scheduler steps or forever, depending on
the structures of the particular program. Thus in z event 1 would remain
blocked for at most N/2 executions of event 3 since the N-fair policy
coupled with the release policy would force the scheduler to consider

event 1 at that time. We now have the following definitions:

Definition: For fixed N21, the set SN = {Z in SR Z is an N-fair

schedule} is called the N-fair scheduler for P.
and the allowable computations under the N-fair scheduling policy are:

Definition: For fixed N1, the members of the set CN = {makecomp (Z) | Z

is in SN} are called the N-fair computations of P.

The following results are immediate from the definitions of N-fair

schedules and computations:

Lemma 3: For fixed N21, w in CFR is in CN if and only if for all events
e in E and decompositions w = xyz with |y|>N, not substr(y,e), and not

substr(y,e'), we have blocked(x,e).
Here |y| denotes the length of the string y.

Lemma 4: For fixed M > N 2 1, we have CN is a subset of CM.

Before proceeding, we present a lemma which will be crucial in proving

- 16 -

our response time results.
Lemma 5: For a fixed N =2 1, let x be in CN with the following properties:

(1) X = yz with |z] = M > N.

(2) tstatel(y) = tstate(z).
Then for all i2l, X, is in CM where X, = yzz...z (i copies of z).

Proof :

Note that by the determinism of T we have tstate (x) tstate(xi) for

all izl. For i=1, xi = x is in CM by Lemma 4. Fix i>1.

(1) 1If x, is not in C, then we contradict x being in C.

(2) If xi is not in CF, then we contradict Lemma 1.

(3) 1If X, is not in CR, then we contradict Lemma 2.

(4) Suppose that event e is the reason why X, is not in CM.

There are three subcases:

(a) If substr(z,e), then we contradict Lemma 3.

(b) If not substr(z,e) and blocked(x,e), then we contradict
Lemma 3;

{(¢) If not substr(z,e) and not blocked(x,e), then we contra-

dict xz being in CN.

4.3.1 Implementation Considerations

Implementing the busy wait free and release scheduling policies is a
rather trivial task: the decisions to be made in a scheduler step can be

determined entirely from the scheduler state independently of past or

- 17 -

future decisions (i.e., the scheduler would be a Markov process). Note,
however, that this is not true when an N-fair policy is in effect. When
making a decision on event activity the scheduler must consider not only
past decisions (i.e., event delays) but also the structure of the parallel
program under consideration since a faulty decision might make violation

of the N-fair policy inevitable. Thus, some degree of "lookahead" must

be done. While this can always be done for finite state parallel programs,
there will be some infinite state programs which require infinite lookahead
and thus N-fair scheduling becomes impossible.

As can readily be seen in example 1, low values of N can severely
restrict the scheduler. For example, under 2-fair scheduling there are
only four computations: 12, 13', 34, and 31'. Since each computation is
non-terminating, we have an anomalous situation. In general, we should

choose N at least as large as the number of events in the program.

5.0 Response Time of Parallel Programs

Recall in the computation z = (1231'(43)*4)* for example 1, under
N-fair scheduling once event 1 blocks it will wait at most N scheduler
steps to execute (i.e., respond). We cali this time of waiting the
response time of an event. We will be concerned with the worst case response
time of an event for all possible schedules since a parallel program with
acceptable worst case behavior is acceptable in general.

In most applications we would like all events to have finite response
times. Moreover, we would like these finite response times to be "acceptable"
in some sense. Suppose we have g two event parallel program P in which it

is known that both events, say e and f, have finite response time for all

- 18 -

values of N. Suppose further that event e has acceptable response time
r(e) for N = t but f's response time is unacceptable for N < 5t. Hence,
we must adopt a 5t-fair scheduling policy to have any hope that both
events will have acceptable response time. A basic question is: how is
event e's response time affected by this increase in N? In this section
we answer the question by showing that e's response time will increase
only linearly in N.

We have the following definitions:

Definition: Let e be any event of a parallel program P and for N1, let
7 = S1 82 ... be in SN. The response time of e in Z, denote r(e,N,Z), is

case 1: 2Z is a terminating schedule with S, the final scheduler state
and blocked(Sn,e). Then r(e,N,Z) is infinity.

case 2: Otherwise,

r(e,N,Z2) = max{delay(si,e) | i>1}.
The N-response time of e, denote r(e,N), is

r(e,N) = max{r(e,N,Z2) l 7 is in SN}.

Hence, there are two ways that r(e,N) might be infinite: the program
could terminate with e blocked, or e might block and never execute again in
spite of the fact that the program never terminates. This latter condition

has been defined as "individual starvation" [7].
The following result is immediate from the definitions:

Lemma 6: Let e be any event of a parallel program P and for N1, let

- 19 -

7z = Sl 82 «e. be in SN. If r(e,N,Z) > N then e is blocked in Z for

r(e,N,Z) consecutive scheduler steps.

5.1 Response Time Theorem

We first prove the following lemma, which holds for general string

systems.

Lemma 7: Let A be a finite set, w in A*, and N>2. If |w| = 2|A|N + 2,
then there exist an a in A such that w can be decomposed as w = xayaz

with |y| > N.

Proof: (by induction on |A])
If |A] = 1 then |w] 2 2N + 2. The form of w must be w = aya where

ly] =z 2N > N.

Assume the result holds for |A| < k, for fixed k > 2. If |A| =k
then Jw] 2 2kN + 2 > 2N + 2. Assume a is the first character of w and

decompose w as w = axy where |x| = N + 1. We have two cases:

(1) If substr(y,a) we are done.
(2) 1If not substr(y,a) then y is in (A-{a})* and]A-{a}f =k - 1.

We have
Ja] + |x] + |y] = 2kN + 2.
Thus
]Jy] 2 2kN +2-1-N-1=2kN - N.

Since 2 = N < 0, we have

- 20 -

lyl 2 2kN - N+ 2 - N = 2(k - 1)N + 2.

By the induction hypothesis on y, there is a b in A-{a} such that

N

y can be decomposed as y = x'by'bz' and |y'| > N.
We are now ready to prove our main result.

Response Time Theorem: Let P be a parallel program having n states and

m events. For any event e of P either:

(1) There exist N=2 such that for all M2=N r(e,M) is infinity, or

(2) For all N22 there is a constant ¢ > 0 such that r(e,N) < cN.

Proof :
Assume that r(e,N) is finite for all N22. Suppose there is an M=22

such that for all constants c>0 we have r(e,M) > cM.

m
Let d = n2 = |T| be the number of total states of P and look at
the constant c¢' = 2d + 1. There must be a schedule Z in SM such that

r(e,M,Z) > ¢c'M. Let Z = Sl 82 ... and let ¥ = totalstate(Sl) totalstate(Sz) ces

By Lemma 6 we can decompose Y as Y = Xl X2 X3 where IX2| = ¢c¢'M and e

is ‘always blocked in X Thus,

5
|x2| =c¢c'M= (24 + 1)M = 2dM + M > 2dM + 2.

Applying Lemma 7 to X2, there is a total state X such that X2 = X4 X X5 X X6

and |X_| > M. Clearly, e is blocked in X.

5!

Rewriting Y, we have Y = Xl X4 X X5 X X6 X3 as the sequence of P's total

states which correspond to the schedule Z.

L =
Let L1 {xl X

4 X| - 120and L2 =]X5 X|] - 1 > M. Look at the com-

- 21 -

putation corresponding to the schedule Z: 2z = makecomp(Z). We can de-

= =L =L.
compose z as z = 2z, 2z, Zg where]zl] 1l and Izzl 2

By the above arguments we have tstate(zl) = tstate(z2), blocked(zl,e),

and e doesn't execute in z_, (i.e., not substr(zz,e)). Also, is in CM

2 212y

and |z.| = L2 > M. Hence, by Lemma 5, ee. is in CL2 and it

2 21 2y 2y %y

follows that r(e,r2) is infinity. Thus, with this contradiction, r(e,M) < cM

for all M>2.

As an interesting sidelight of this proof we have established an

m+l
upper bound on ¢ to be 1 + #2 -,

6.0 Additional Scheduler Policies

We have defined only the minimum amount of scheduler policies needed
to prqof the response time theorem. Observe that the N-fair scheduler will
make an arbitrary choice when more than one blocked event is capable of
executing. Because of this, it is possible that an event may have an
infinite response time even though it is always capable of executing. A
way to avoid this is by a FIFO scheduling policy, as has been suggested in

[6,9]. We have

Definition: Let P be a parallel program and for fixed N = 2,

let 2 = Sl 82 ... be in SN. Z is called an N-fair FIFO schedule if for all

i > 1 and arbitrary distinct events e and £, the following holds: Si R(e) si+l'
blocked(si,f), and'T(pstate(Si),f) defined imply delay(si,e) 2 delay(si,f).

In this definition note that the release policy guarantees blocked(si,e).

Intuitively, in FIFO scheduling when there is a choice of executing several

- 22 -

blocked events, an event which has been blocked for a maximum number of
scheduler steps is chosen. Since the FIFO policy is a restriction of

N-fair scheduling, we have the followiﬁg corollary:

Corollary l1: The response time theorem holds under an N-fair FIFO

scheduling policy.

In certain applications it is desirable that the choice among
blocked event be made on the importance of the events rather than on the
egalitarian FIFO rule. This called priority scheduling [3]. Each event

is given a priority as follows:

Definition: Let P be a parallel program. A priority function is a total

mapping 6:E —--> NN.

When several blocked events are capable of executing, the choice is made

on the basis of maximum priority:

Definition: Let P be a parallel program with priority
function 6. For fixed N 2 5, let Z = Sl 82 ... be in SN. Z is called an

N-fair 0 priority schedule if for all i 2 1 and arbitrary distinct events

e and f, the following holds: Si R(e) Si+ R blocked(si,f), and T(pstate(si),f)

1
defined imply 6(e) > 6(f). |

Note, unlike FIFO scheduling, it is possible under priority scheduling
for an event to have infinite response time even though it is always

capable of executing. Since priority scheduling is a restriction of the

N-fair policy, we have

Corollary 2: The response time theorem holds under an N-fair priority

- 23 -

scheduling policy.

7.0 Response Time Decision Procedures

There are two additional questions we must answer in order to com-

pletely describe the response time behavior of a parallel program:

(1) Given an event e of a parallel program P, is the response
time of e ever infinity?
(2) What is the minimum constant ¢>0 which describes the linear

growth of r(e,N) as N grows?

We will answer these questions by providing decision procedures for the

following:-

(a) Does there exist an N=2 such that r(e,N) is infinite?

(b) Given c¢>0 is r(e,N) < cN for all N = 27

The answer to question 1 follows directly from (a). Question (2) is

answered by (b) and the observation in section 5 that the minimum constant

is bounded above by 1 + n2m+l.

The decision procedures for (a) and (b) will be by reduction to

questions about suitably encoded vector addition systems.

7.1 Vector Addition Systems

In this section we briefly review the definition of vector addition
systems [10], their decision procedures that we will use, and relate these

systems to our definition of a parallel program's scheduler.

- 24 -

Definition: A vector addition system of degree k, denote VAS, is a

2-tuple W = (v,V) where:

. k .
(1) The start vectar v is in NN = NN XNN X ... X NN (k times).
(2) V is a finite set of vectors, each in 2Z X 2Z X ... X 22 (k times)

where 22 = {...,-2,-1,0,1,2,...}.

Definition: The reachability set of a VAS W, denote R(W), is a subset of

NNk recursively defined as follows:

(1) v is in R(W).

(2) for x in R(W) and w in W, x+w is in R(W) iff. x+w = 0.

We will be using the following two problems which are concerned with

the reachability set of a VAS.

Definition: The boundedness problem: given an arbitrary x > 0 is there a

y in R(W) such that y = x?

Definition: The reachability problem: given an arbitrary x = 0, is x

in R(W)?

A decision procedure for the boundedness problem can be found in [10]. The
decidability of the reachability problem has recently been claimed in [13].
The following lemma, given without proof, provides a link between

the scheduler of a parallel program and vector addition systems. The
lemma holds since vector addition systems can represent any.finite state

control [10].

Lemma 8: Let P be a parallel program and SR its release (and busy wait

- 25 -

free) scheduler. Then there is a VAS W and a homomorphism h:SR ---> W

such that Z in SR implies h(Z) is in R(W).

7.2 A High Level VAS Language

Rather than work with vectors of integers, it will be more convenient
and convincing to give the VAS reductions in terms of a "high-level" non-
deterministic VAS language. This approach has been previously used in [12].

There are five statement types in the language: initialization of
variables, assignment, non-deterministic branch, testing the finite state
control, and updating the finite state control. All but the first state-
ment types may'have a statement label. The syntax and semantics are as

follows:

Initilization

va.r vi=al,v5=a2,...,v5=an
The distinct variables Vl'v2""’vn are initilized to the respective natural

numbers al,az,...,an. Variables not initilized start at =zero.

Assignment

V), <=== V., + C.;e..,V_<=== vV + C
1 1 1’ "“n n n

where the v's are distinct variables and the c's are integers. The assign-

ment can take place only if xi+ciZO for all i. Otherwise, the VAS compu-

tation terminates.

Guessing

guess(sl,sz,...,sn)

This statement causes a non-deterministic branch to one of the statements

- 26 -

labelled s._,s

1 2,...,sn. If n=1 then the branch is deterministic.

Testing Event Activity

event (character)
This statement is used to see which events are eligible for event
activity. It returns a list of eligible events, each prefixed by the
supplied character. If no event activity is possible (i.e., the parallel
program has terminated), then the list consists exclusively of the supplied
character. For example, if events 1 and 2 can execute and event 3 can

block, then event(s) returns sl,sz,s If no event activity can take

3°
place, the list would be s. Event is always used in conjunction with

the guess statement, e.g., guess(event(s)).

Testing for a Blocked Event

blocked (e,s)
‘This statement causes a branch to statement s if event e is blocked. If

e isn't blocked then the statement acts like a no-op.

Updating the Control

update (£)
Here f is either an event execution (e) or an event blocking (e'). This

statement reflects in the finite state control the result of event activity f.

Globally, VAS programs are listed one statement per line and execution
commences at the first statement. Execution proceeds sequentially until a
guess is encountered, whence several non-deterministic computations may be
spawned. A computation may terminate in the ways listed above or by exe-

cuting the last statement in the list (when it is not a guess statement).

- 27 -

Although not listed above, we have also a no-op statement with the

obvious semantics.

7.3 VAS Reductions

We now show that the questions posed above are reducible to questions

about suitable VAS systems.

Theorem 2: Let P be a parallel program having n states and m events.
For an event e of P the question of whether or not there is an N22 such

that r(e,N) is infinity is reducible to a boundedness question.

Proof:

The vector addition system will have the following coordinates:

<finite state control, local control,dl,...,dm,M ,...,Mm,B>

1

N

To facilitate the presentation of the VAS program we will employ obvious

abbreviations described in comments and the following two macros:

zerodelay (<1>,<2>)
1: d<l> <=-- d<1> = 1,M<1> <-=- M<1> + 1 |

guess (1,<2>)

The macro takes two string inputs and does the usual concatenation. Its

function is to try to set the delay counting variable d<1> to zero.

sucdelay (<1>)
blocked (<1>,1)
d<1> <=== d<1> + 1,M<1> <=== M<1> - 1

1: no-op

- 28 -

The purpose of this macro is to increase the delay count variable d<1>

of a non-blocked event.

The
var

comment:

10:

comment:
20:

2:
comment:
2i:

2ii:

comment:

comment:

to e.
2i':
2ii':

comment:

2e':

2ee':

VAS program is as follows:

Ml=l,M2=l,...,Mm=1

guess N
- + .es <=== +
M1 < Ml 1, ,Mm Mm 1
guess (10, 20)
Simulate P - guess to start phase 3 whenever e blocks

guess (event (2))

guess (20) f

the following group of statements is repeated for I<i<m.
zerodélay(i,2ii)

update (1)

the following statement is repeated for each j not equal to i.
sucdelay(j)

guess (20)

the following group of statements is repeated for each i not equal

zerodelay (i,2ii"')

update(i')

the following statement is repeated for each j not equal to i.
sucdelay (j)

guess (20)

zerodelay(e,Zee')

update (e')

- 29 -

comment: the following stateﬁent is repeated for each j not equal to e.
sucdelay (3)
guess(20,30)
comment: simulate P assuming that e never executes again.
30: B<---B + 1
guess (event (3))
3: guess(30)
comment: as in phase 2, the following group of statements is repeated.
However, here it is repeated for each i not equal to e.
3i: zerodelay(i,3ii)
3ii: update (i)
comment: the following statement is repeated for each j not equal to i.
sucdelay(j)
guess (30)
comment: the following group of statements is repeated for each i not
equal to e.
3i': zerodelay(i,3ii')
3ii': update(i')
comment: the following statement is repeated for each j not equal to i.
sucdelay(j)
guess (30)
comment: by busy wait free, 3e' is impossible.
3e: guess(3e)

The result follows since r(e,N) is always finite iff. B is bounded.

Several comments are in order about this VAS program. In phase 1,
by non-determinism, every value of N22 is considered. In phase 2, the

N-fair execution of the parallel program is simulated. An event activity

- 30 -

as dictated by the finite state control is non-deterministically chosen
and appropriate event delay counts are performed on the d variables. The
variéble pairs di and Mi play a crucial role in that they‘force only
N-fair computations to be considered. Note that di + Mi =N is‘invariant.
When an event is executed or blocked we try to set di to zero. The
crucial part of the simulation is to observe that even if di isn't set
exactly to zero (it will be in some computation) we still get N-fair
computations since M-fair computations are N-fair computations for M<N.
Similarly, di is increased by 1 whenever event i is blocked and another
event activity takes place.

Phase 3 is started non-deterministically whenever event e blocks
in phase 2. The purpose of phase 3 is to assume e will never execute
again and reflect this in variable B. If e does execute, then phase 3
loops forever and B is bounded. If the pargllel program terminates (i.e.,
no event activity with e blocked) or e is neve£ executed again, the B

grows unboundedly.

For the second VAS reduction we will simply modify the above VAS

program.

Theorem 3: Given c¢>0, whether or not r(e,N) < cN for all N22 is reducible

to a reachability question.

Proof :
A variable D is added to the above VAS program with an initial value

of D=c + 1. Statement 10 is changed to

10: My <===M; + 1,...,M <-== M + 1,D<-==D + C

- 31 -

Hence, after phase 1 completes D has a value of cN + 1.

A fourth phase is added at the end of the program as follows

40: D <--- D - 1,B <=-- B -1

guess (40)

The purpose of the fourth phase is to see if B ever is > D. If so, then
there must be some VAS computation in which B = D and thus r(e,N) > cN.
This happens only when D = B = 0 can be reached. It remains only to
make changes to the VAS program to non-deterministically start phase

four. They are:

(1) Change statement 2 to 2: guess(40).

(2) Change each guess(30) in phase 3 to guess(30,40).

Hence r(e,N) > cN iff. D = B = 0 is reached.

8.0 Conclusions

We have introduced the notion of an N-fair scheduling policy as a
condition which allows the development of theoretical results on the
response time behavior of parallel programs. We have shown that for any
event either the response time is infinite or it is linear in the choice
of N, that one can determine which is the case, and that one can compute
the exact linear relationship in the finite case.

Although the methods used would seems to indicate that computing the
exact response time behavior of a parallel program is an intractable task,
the development of heuristics for computing good upper bounds on response

time is under investigation.

- 32 -

References

[1] J. Cadiou and J. Levy.
"Mechanizable Proofs about Parallel Programs."
Fourteenth Symposium on Switching and Automata, Oct. 1973.

[2] R. H. Campbell and A. N. Habermann.
"The Specification of Process Synchronization by Path Expressions."
Proc. Int. Symp. on Operating Systems Theory and Practice, April 1974.

[3] E. G. Coffman and P. J. Denning.
Operating Systems Theory.
Prentice Hall, Englewood Cliffs, 1973.

[4] E. S. Cohen.
"A Semantic Model for Parallel Systems with Scheduling."
Proc. Second Symp. on Principles of Programming Languages, 87-94.

[5] E. W. Dijkstra.
"Cooperating Sequential Processes."

In Programming Languages, ed. F. Genuys, Academic Press, New York,
1968, 43-112.

[6] E. W. Dijkstra.
"The Structure of the THE Multiprogramming System."
CACM 17,10 (May 1968) 341-347.

[7] E. W. Dijkstra.
"Hierarchical Ordering of Sequential Processes."
ACTA Informatica 1,2 (1971) 115-138.

[8] P. J. Gilbert and W. J. Chandler.
"Interference Between Communicating Parallel Processes."
Comm. of the ACM 15,6 (June 1972) 427-437.

[9] cC. A. R. Hoare.
"Monitors: An Operating System Structuring Concept.”
CACM 17,10 (Oct. 1974) 549-562.

[10] R. Karp and R. Miller.
"Parallel Programming Schemata."
J. Computer and Systems Science, May 1969, 147-195.

[11] R. J. Lipton.
"On Synchronizing Primitive Systems."
Proc. Sixth Annual Symp. on the Theory of Computing, May 1974.

[12] R. J. Lipton.
"The Reachability Problem Requires Exponential Space."
Yale University Dept. of Comp. Sci. Research Report #62, Jan. 1976.

[13] G. S. Sacerdote and R. L. Tenney.
"An algorithm for the reachability problem for vector addition systems."
abstract, 76T-E6l, Notices of the AMS 23,6 (Oct. 1976) A595.

