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The Unexpurgated Call by Name, Assignment, and the Lambda Calculus

Revised Report*

Martin Odersky and Dan Rabin

Abstract

We define an extension of the call-by-name lambda cal-
culus with additional constructs and reduction rules
that represent mutable variables and assignments. The
extended calculus has neither a concept of an explicit
store nor a concept of evaluation order; nevertheless, we
show that programs in the calculus can be implemented
using a single-threaded store. We also show that the
new calculus has the Church-Rosser property and that
it is a conservative extension of classical lambda calcu-
lus with respect to operational equivalence; that is, all
algebraic laws of the functional subset are preserved.

1 Introduction

Are assignments harmful? Common wisdom in the func-
tional programming community has it that they are:
seemingly, they destroy referential transparency, they
require a determinate evaluation order, and they weaken
otherwise powerful type systems such as ML’s. Con-
sequently, programming languages with a strong func-
tional orientation often forbid or at least discourage the
use of assignments.

On the other hand, assignments are useful. With
them, one can implement mutable, implicit, distributed
state—a powerful abstraction, even if it is easily mis-
used. The traditional alternative offered by functional
programming is to make state explicit. The result-
ing “plumbing” problems can be ameliorated by hiding
the state parameter using monads [22, 29] or by us-
ing continuation-passing style [13]. Wadler, for exam-
ple, uses the monad technique in [31] to present “pure”
functional programming as an alternative to “impure”
programming with assignments. Monads are indeed
successful in eliminating explicit mention of state ar-
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guments, but they still require a centralized definition
of state.

We show here that one need not choose between purity
and convenience. We develop a framework that com-
bines the worlds of functions and state in a way that can
naturally express advanced imperative constructs with-
out destroying the algebraic properties of the functional
subset. The combinations are referentially transparent:
names can be freely exchanged with their definitions.
More generally, we show that every meaningful opera-
tional equivalence of the functional subset carries over
to the augmented language.

Since we would like to abstract away from the issues
of a particular programming language, we will concen-
trate in this paper on a calculus for reasoning about
functions and assignments. The calculus is notable in
that it has neither a concept of an explicit store nor a
concept of evaluation order. Instead, expanding on an
idea of Boehm [2], we represent “state” by the collection
of assignment statements in a term. A Church-Rosser
property guarantees that every reduction sequence to
normal form yields the same result. Following Plotkin
[23] and Felleisen [5], we derive from the reduction rules
both a theory and an evaluator, and we study the rela-
tionship between them.

The main contributions of this paper are:

o We define (in Section 2) syntax and reduction rules
of Ayar, a calculus for functions and state.

e We show (in Section 3) that Ayq, is Church-Rosser
and that it admits a deterministic evaluation func-
tion which acts as a semi-decision procedure for
equations between terms and answers.

¢ Even though the syntax of Ayq is storeless, we show
(in Section 4) that A,q-programs can still be effi-
ciently implemented using a single-threaded store.

e We show (in Section 6) a strong conservative ex-
tension theorem: every operational equivalence be-
tween terms in classical applied A-calculus also
holds in Ayqr (provided the domain of basic con-
stants and constructors is sufficiently rich). This is




immutable variables

mutable variables (tags)
primitive functions
constructors of arity n (n > 0)

r € Vars

v € Tags

f € FConsts

¢® € Constrs

M € Ayar terms

M 2= flc"|z|z.M| MM
| v |pureM | P

P =

varv.M | M? | My =: Mo | My>z.M, | return M

Figure 1: Syntax of Ayer

to our knowledge the first time such a result has
been established for an imperative extension of the
A-calculus.

These properties make \yq- suitable as a basis for the
design of wide-spectrum languages which combine func-
tional and imperative elements. On the functional side,
we generally assume call-by-name, but call-by-value can
also be expressed, since strictness can be defined by a
d-rule. On the imperative side, first class variables and
procedures can be used as building blocks for mutable
objects. We do not impose any particular restrictions
on either functions or side-effecting procedures, except
for requiring that the difference between them be made
explicit.

Building on Ay, is attractive because it gives us an.

equational semantics that makes reasoning about pro-
grams quite straightforward. In contrast, the traditional
store-based denotational or operational semantics of im-
perative languages impose a much heavier burden on
program derivations and proofs: at every step, one has
to consider the global layout of the store, including a
map from names to locations and a map from locations
to values. Other semantic approaches, such as Hoare
logic or weakest predicate transformers might accommo-
date simpler reasoning methods, but they are not easily
extended to structure sharing or higher-order functions.

2 Term Syntax and Reduction Rules of )\,

The term-forming productions of A4, fall into three
groups, as shown in Figure 1. The first group con-
sists of clauses defining A-calculus with primitive func-
tion symbols and data constructors. We refer to this
basic calculus as the applied M-calculus. To this ker-
nel language the second group adds mutable variables

v and a block construct pure M that encapsulates an
imperative computation M. The third group adds the
constructs for modeling imperative computations; these
constructs form a separate syntactic category of proce-
dures P.

Basic applied A-terms. We denote functional ab-
straction (z.M) without the customary leading A; this
modification makes some of our reduction rules more
legible. The presence of primitive function symbols f
and fixed-arity constructors c¢™ shows the applied na-
ture of the calculus. Basic constants are included as
constructors of arity 0. We assume that every calcu-
lus we consider has at least the unit value () as basic
constant.

Store tags and primitive procedures. The scope
of a mutable variable v is delimited by the construct
var v.M. Mutable variables, also called tags, are syn-
tactically distinct from the immutable variables intro-
duced by abstractions z.M. We denote tags by the let-
ters u, v, w, and immutable variables by z, y, 2.

Tag readers M? and assignments M; =: M, are the
primitive procedures. If M computes a tag, M7 is the
procedure that produces the value associated with that
tag without altering the store. Dually, if M, computes
a tag, M; =: My is the procedure that sets that tag to
M, and produces an ignorable value.

Composition of procedures. Procedures are com-
posed into sequences using the expression Mj > z.Ms,
which is a syntactic embodiment of the monadic-
semantics operation that Wadler [31] calls ‘bind’. This




Avar Modula

vz M [v/z)M
Noz.M N(z); M

var v.M VARv:T ;M
M=v vi=M

N; M N; M

return M RETURN M
pure M M

variable lookup (implicit in Modula)
procedure call, z is result parameter
variable definition

assignment

sequential composition

return statement

effect masking, implicit in Modula

Figure 2: Correspondence between A,.- and Modula

construct connects a procedure! M; with a functional
abstraction #.M>. It denotes the procedure that passes
the value produced by M; to .M in the state resulting
from the computation of M;. We take (>) to be right-
associative and often employ the following abbreviation:

N;M ¥ NoaM  (zdfoM).

Coercion of procedures. The \,q--expression
return M allows a pure expression M to be used as a
procedure; the expression pure M permits (under cer-
tain conditions) the coercion of a procedure to a pure
expression.

Correspondence with programming languages.
Figure 2 relates terms of Ay, with constructs of tra-
ditional imperative programming languages. We use
Modula as a representative of such a language.

The Ayqer-calculus deviates from common imperative
programming languages in its notation for assignments,
which goes from left to right, and in its variable-readers,
which are explicit procedures rather than expressions.
These notational conventions make tag-matching in the
reduction rules easier to follow. In particular, because
of the re-orientation of assignments, information and
computation in a procedure flows uniformly from left to
right. In each case, the conventional notation can be
obtained by syntactic sugaring, if desired. We would
expect that such sugaring is introduced for any pro-
gramming languages based on Ayqr.

Notational conventions for reduction. We use
bv M (fv M) to denote the bound (free) identifiers M.
Likewise, bt M and ft M denote the bound and free
tagsin M. A term is closedif fu M = ft M = (). Closed

1 Actually, any term. We expect that any term so used will
reduce to a procedure.

terms are also called programs. We use M = N for
syntactic equality of terms (modulo a-renaming) and
reserve M = N for convertibility. If R is a notion of
reduction, we use M —> N to express that M reduces
in one R reduction step to N. M —» N is used to ex-
press that M reduces in zero or more R-steps to N. The
subscript is dropped if the notion of reduction is clear
from the context. The letter A stands for a redex. A
superscripted arrow M -2y N expresses that M reduces
to N by contracting redex A in M.

A value V is a A-abstraction, a primitive function, or a
(possibly applied) constructor. An observable value (or
answer) A is an element of some nonempty subset of the
basic constants?.

s M| f|c"M ..M, (0<m<n)

Vv
A 0

0

A context C is a term with a hole [] in it. (-) expresses
context composition, i.e.

(01 . Cz) M = Cl[Cz[M]]

A pre-state prefir is a context R that has one of the
forms

R == [] | varv.R | M=:v;R.

The set of variables written in a pre-state prefix R,
wr R, is the smallest set that satisfies

wr [] =0
wr (var v.R) wr R
wr(M=:v;R) = {v}UwrR.

20ther observations such as convergence to an arbitrary value
can be encoded using suitable §-rules.




A state prefiz S is a pre-state prefix that satisfies the
requirement that wr S C bt S.

We let letters L, M, N range over terms, while P, Q
range over procedures, and V', W range over values.

Following Barendregt [1], we take terms that differ only
in the names of bound variables to be equal. Hence all
terms we write are representatives of equivalence classes
of a-convertible terms. We follow the “hygiene” rule
that bound and free variables in a representative are dis-
tinct, and we use the same conventions for tags. Thus,
for example, M =: v ; var v.M is not a legal term since
it contains a bound and a free variable, both with the
same name. To satisfy the hygiene condition, we need
to a-rename the bound variable v in this term.

Reduction rules. Figure 3 gives the reduction rules
of Ayer- A reduction relation between terms is the de-
fined in the usual way: we take — to be the smallest
relation on Ayqr X Ayer that contains the rules in Fig-
ure 3 and that, for any context C, is closed under the
implication

M - N = C[M]- C[N].

Rule (B) is the usual B-rule of applied A-calculus. Rule
(6) expresses rewriting of applied basic functions. To ab-
stract from particular constants and their rewrite rules,
we only require the existence of a partial function ¢
from primitive functions® f and values to terms. We
restrict § not to “look inside” the structure of its ar-
gument term, except when the term is a fully applied
constructor at top-level. That is, we postulate that for
every primitive function f there exist terms N; and
Nien (¢ € Constrs) such that for all values V for
which é(f, V) is defined:

U m
5 V) = {Nchl...M,, fV=e"M ..M,

NV otherwise.

Procedures can be thought of as axiomatizing the laws
of the Kleisli category associated with a monad [18, 31].
Two of the three laws of this monad are embodied in
reduction rules: the rule (>>) states that (>) is associa-
tive, and the rule (v>) states return is a left unit. The
third law, stating that return is also a right unit, is an
operational equivalence (Proposition 5.4 (7)).

Rule (v>) extends the scope of a tag over a (b) to the
right — this axiomatizes the intuition that allocation is
of indefinite time-extent. Variable capture is prevented
by the hygiene condition (bound and free variables are
always different). Rule (=:5) passes (), the result value

3Primitive functions of more than one argument are obtained
by currying.

of an assignment, to the term that follows the assign-
ment.

Rules (f), (b1), and (bz) deal with assignments. The
fusion rule (f) reduces a pair of an assignment and a
dereference with the same tag. The bubble rules (b;)
and (by) allow variable-readers to “bubble” to the left
past assignments and introductions involving other tags.
Note that bubble and fusion reductions are defined only
on tags v whereas the corresponding productions M,?
and M; =: M, in the context-free syntax (Figure 1)
admit arbitrary terms in place of M,. This is a conse-
quence of tags being first class, for even if M, is not a
tag it might still be reducible to one.

The final three rules implement “effect masking”, by
which local state manipulation can be isolated for use
in a purely functional context. These three rules can
be applied only if the argument to pure is of form
S[return V] where V is a value and S is a state pre-
fix. The context-condition (wr S C bt §) for state
prefixes S ensures that evaluation of the argument to
pure neither affects nor observes global storage. Effect
masking “pushes state inwards”, and thus exposes the
outermost structure of the result of the pure expression.
In the special cases where the result is a basic constant
or primitive function the state disappears altogether.*

Example 2.1 (Counters) To illustrate the syntax and
reduction semantics of Ayqr, We construct a function to
generate counter objects. The generated counters en-
capsulate an accumulator cnt. They export a function
that takes an increment (inc) and yields the procedure
that adds inc to the “current” value of cnt while re-
turning cnt’s “old” value. This is expressed in Ayqr as
follows (with layout indicating grouping):

mkcounter =
initial . var cnt .
initial =: ent ;
return inc . cnt?p
c. c+inc=:cnt;
return c

The sample reduction given in Figure 4 illustrates the
use of mkcounter in a program that defines a counter
ctr, increments it, and then inspects the final value.
We use the abbreviation CTR = inc . ent?>c . ¢ +

4Initially, we studied a calculus that had only one effect mask-
ing rule: A context pure (S[return [ ]]) can be dropped if
global storage is unaffected and none of the variables bound in S
appear in the term in the hole. This approach looks simpler at
first glance, but it is not clear how a standard evaluation function
for the resulting calculus can be constructed.




B (z.M) N - [N/z]M

] fv - §(f, V) (6(f, V) defined)
>> (Mboz.N)oy.P - Mpvz(Noy.P)

r>  (return M)o>z.P - (=z.P)M

v>  (var v.M)>z.P — varv.(Movz.P)

=> (M=:N)vz.P =+ M=N;[()/z]P (z e foP)

f M=v;v?>2z.P - M=v;(=z.P)M

bh M=v;w?’vz.P - wlvz. M=:v;P (v# w)

b, varv.w?vz.P - w?ez.varv.P (v# w)

pc  pure (S[return ¢ M; ... My]) — " (pure (S[return M])) ... (pure (S[return My])) (k< n)
p»  pure (S[return z.M]) - z.pure (S[return M])

pr  pure (S[return f]) - f

Figure 3: Reduction rules for Ayq-

tnc =: cnt ; return c. For each step in the reduction,
the redex for the next reduction is underlined. Other
reduction sequences are possible as well, but they all
yield the same normal form, since Ayqr is Church-Rosser
(Theorem 3.10)

3 Fundamental Theorems

In this section, we establish that our calculus has the
fundamental properties that make it suitable as a ba-
sis for reasoning about programs. Our main goals here
are to prove that A,,, is Church-Rosser, which estab-
lishes that it is meaningful to regard terms as denoting
answers, and to show that A,q- possesses a standard
-evaluation order, which makes it reasonable to regard
the calculus as a programming language.

Our technical development here parallels the develop-
ment in [1], Chapters 3 and 11. In Section 3.1 we prove
a result combining the finiteness of developments for
i ~57 With strong normalization for —». This result will

be used to prove the Church-Rosser property in Sec-
tion 3.2 and to establish the standard evaluation order
in Section 3.4. In Section 3.3 we introduce the conver-
sion theory for A4, the first of our formal theories of
program equivalence.

In the sequel, let - be the union of all reductions in
Figure 3 except (8) and (9).

3.1 Finite Developments

In this subsection, we prove that A,q. has the prop-
erty of finite developments: if we mark some of a term’s
B- and d-redexes, and agree to reduce only marked re-
dexes, all such reduction sequences (which may include
l-reductions) terminate. We will use this technical re-
sult both in the proof that A, is Church-Rosser and in
the proof that it possesses a standard evaluation order.

First we define the term languages incorporating
marked terms and the associated notions of reduction.
We define extensions A/, and A%,, of Ayqer as follows:

The terms M in A}, are given by extending the pro-
ductions in Figure 1 with

M = ..
[ ((z-M1) M2)o
| (f M)

The notion of reduction on A/, i

is U Bo U éo, where

Bo ((zM)N)g — [N/z2]M
Jo (f V)o — (5( s V)

We also define a language of weighted terms for use in
the proof of finite developments. The terms of A},, are
those of A, plus weighted variables ™ and weighted
function constants f*, where n > 1. Reduction on AM,
is defined as on A/, with the additional rule that in

var’




mkcounter Qv ctr . ctr 1; ctr 0

(var cnt . 0 =: ent ; return CTR) > cir . ctr 1 ctr 0

var cnt . (0 =: cnt ; return CTR) > ctr . cir 1 ; ctr 0

var cnt . 0 =: ent ;return CTRoctr . ctr 1 ; ctr 0

var cnt .0 =:cnt ; (ctr . ctr 1; ctr 0) CTR

varcnt .0=:cnt ; CTR1; CTRO

var cnt .0 =: ¢nt ; (inc . ent?>c . ¢+ tnc =: ent ;returnc) 1 ; CTR 0

varcnt .0 =:cnt;ent?>c.c+1=:cnt;returnc; CTRO

varcnt .0 =:cnt;(c.c+1=:cnt;returnc)0; CTRO

varcnt .0=:cnt ;0+1 =: cnt ;return0; CTR 0

bl sbwl el 5] g 5] =

varcnt .0=:cnt ;0+1=:¢nt;0+1+0=: cnt ;return1

Figure 4: A sample reduction.

rule By substitution on weighted variables is defined by

[N/z]z™ = N.

We now show that s is strongly normalizing on

A%, that is, that all sequences of !Bydo-reductions ter-
minate. To this purpose, we define a norm on A}, that
is strictly decreasing under reduction: the norm of a
term thus bounds the number of reductions in any se-
quence starting with that terms. The norm is defined
in terms of another measure, the multiplier #M of a
term M. Essentially, a multiplier is the number of terms
connected in a chain by (>) operators. It is defined as
follows:

#Mvz.N) = 1+#zM

#(z.M) = #M

#(var v.M) = #M

#M =1 for all other terms M
The norm || - || is then defined as follows:

[I£1] 1

™l = n

llc* [l =1

ll=ll =1

ll="] = n

l|z. M| = 1+||M|,ifzefo M

l|lz.M]| = 24||M|,fzefo M

IM N = ||M]||+ (IN]]

lloll =1

lvar v.M|| = 1+4+||M|+#M

27| = 1M

IM=:Nl| = [M]|+]|N]

IMoz.N|| = (1+#N)|IM]|+||z.N]|

lireturn M| = M|

lpure M[| = (||M]|+1){1MI+D)
Eezp(||M|| +1)

We use the notation Eezp(n) for n™.

Definition. A term M has a decreasing weighting if

((=.M")N)oC M,z"CM
implies n > ||N||
and
(f™ V)o C M,68(f, V) defined
implies n +|| V|| > [|6(f, V)II

Definition. A term M € A, is completed to a term
in A}, by superscripting some of the bound variables

and function symbols in M.




Lemma 3.1 Every term in A/, can be completed to
a term with a decreasing weighting.

Proof: easy; just work outward. W

Lemma 3.2 If M has a decreasing weighting, and
M T N then ||M]| > ||N]|.

Proof: By a case analysis according to the form of re-
duction:

If £ ¢ fo M we have [N/z] M = M, so

lI((z-2) N)oll
llz.M{| + (IV]|
L+ (M| + (V)
Al

NV /=] M|

v i

If z € fv M, the fact that ((z.M) N)o has a decreasing
weighting gives us

lI((z-M) N)oll
= |lz.M[|+[|N]|
> |IIN/=] M|

The last inequality holds because every instance of N
replaces an instance of # having weight n. In fact, the
definition of decreasing weighting was motivated by the
need to make this case and the following case work out.

In this case the redex is of the form f™ V, and we have:

I Vil
= [+
> l6(F, VI

Case >

Note that ||z.M|| > ||M|] irrespective of whether z is
free in M. Thus we have

(M >z.N)oy.P||
= (1+#(y.P)IMe>z.N|+|y-Pl
= (1+#P)((1+#(z.N)IM[| + (|l=.N]})
+ lly-Pll
= (1+#P+#N+#P#N)|M|
+ (1 + #P)|l=.N|| +[ly.P||
> (1+1+#P)||M|| + (1 +#P)||IN]|
+ly-P||
= (1+#(z.Noy.P))||M|
+ |IN > y.P||
= ||Mvz.(N>y.P)

||(return M) > z.P||

M| + ||=-Pl| + #(=.P)|| M||
|M]] + [|=-P|

(z.P) M]|

vl

[|(var v.M) > z.P||
= (1+#P)|jvar v.M| + |lz.P]
1+ #P)(A+ M|+ #M) + ||=.P|
1+ #P+ (1 +#P)||M||+ (1 +#P)#M
+ 2.
> 14 (1+#P)+ (1 +#P)||M| + ||=.P||
1+ #(Mvz.P)+||Mo>z.P|
[lvar v.(M > z.P)||

Note that, since P has a decreasing weighting,
I[)/z] P|| < ||P||- Thus we have:

|M=Nvz.P||, ze fo P

(14 #(z.P))[M =: N[+ ||=.P]

(14 #P)|M =: N+ [|Pl| +2

1+ #P)||M =: N||+ [|[()/=] P|| +1

(1+ #P)IM =: N||+ ||2.[()/=] PI,
where z ¢ fv P

(M =:N)vz.[()/=] Pl

= ||M =:N;[()/] P||

v i




Note that [|M]| < [|M =: v|, so 2|M =: o|| + [|M]| < = @+#PNIM = vl +1+(1+#P)
3||M =: v||. Thus we have: + 1+ P
> Q+#P)+1+(1+#P)|M =: 4
+1+]|P|

= (2+#P)+]|lz.M=:v>2.P|,
where 2z ¢ fu P
= (1+#(z.M =:v>2.P))||w?|
+ ||z.M =: v>2.P||
= ||Jw?bz.M=:vo2z.P|
|w?>z.M =:v; P||

|M=:v;v?>2.P|
= [|[M=:v>z.07>2.P|,
where 2z ¢ fo P
= (1++#(z.v7>2.P))||M =: v||
+ ||z.v7 > 2. P||

(1+14+#P)|IM =: v|| + 1 +||v?>z.P|| We now complete the argument for the usual case in
= 2+ #P)M =: v+ 1+ (1+#P)o?| which z € fo P:
+ ||z.P||
= (2+#P)|IM =:v||+1+ (1+#P)
+|l2.P| = 24+ #P)||M=:v||+1+(1++#P)
> 3||M = o] + 1+ ||z.P]| ‘;“ 'g" D (Ls 2PV o
> 9|M = of| + 1+ [|z.P|| + | M]] > gr ;ff”;lr +(1+#P)IM =: o]
= (1+#(z.(z.P) M))|M =: v|| + ||2-(z.P) M|,
! where z ¢ fy PUfu M = @+#P)+2+(1+#P)|M =1
= M =:v;(=.P) M| +lI=-Pll
where 2 ¢ fo P
= (2+#P)+2+|M =:v>2.P|
= (14 #(z.M =:v>2.P))||w?||
+ ||le.M =:v>2.P|
lw?>2.M =: v 2.P|
lw?e2z.M =:v; P||
1
|lvar v . w? > z.P||
|M=:v;w?>z.P|| _ N R
IM =:v>zw?>z.P||, wherez2¢fvP = 1+#(?>ap)+|u? (>z.P?||
(1+ #(z.070 2.P))|M =: o] = 14 (1+#P)+ 1+ #P)||w?||+|=.P|
+ ||z.w?> z.P|| = 3+24P+|=P|
= (Q1+1+#P)||M=:v||+1
+ [|[w?ez.P|| We first continue with the case in which z ¢ fv P:
= (Q+#P)|M =:v||+ 14 (1+#(z.P))||w?|
+ llo.P]
= 24+ #P)|IM = v||4+1+ (1 +#P)+||z.P
= @+ #PI =l + 14 (448 o P C ragparegp
> 3+2#P+|P|
= 24 #P+1+4||P||+#P
= (1+#P)+1+|var v.P||
We first continue with the (abnormal) case in which = (1+ #(z.var v.P))||w?|| + ||z.var v.P||
z ¢ fvP: = ||w?pz.var v.P||




We now complete the argument for the case in which
z e fu P:

3+2#P+2+||P|
34+2#P+1+|P|
3+#P+1+#P+|P||
(14+#P)+2+ ||var v.P||

(1 + #(z.var v.P))||w?|| + ||z.var v.P||
= ||w?>z.var v.P|

nmn v

In the analysis of the remaining cases, which involve
reductions of pure terms, we make use of the following
fact:

For every state prefix S, there are integer constants
as > 0, bg > 1 such that, for all terms M,

ISIM]|| = as + bs||M]||.

This can be shown by an easy induction over the struc-
ture of S. The remaining cases are then as follows:

lIpure(S[c* M ... My])|
= Eexp(1+4 as+bs(1+ (|Mi||+ ... + || M)
> 14 Eezp(l + as + bs||Mi]]) +...
+ Eezp(1 + as + bs|| M)
= ||e® (pure (S[return M;])) ...
(pure (S[return M]))||

[[pure(S[z.M])||
= Eezp(l+ as+bs(1+[|M]]))
> 1+ Eezp(1+ as + bs||M|))

= ||pure (S[return M])||
lIpure (Sireturn )
= FEezp(l+ as + bsn)
> n
= [Ifl
By the same argument, taking n = 1, one gets

lpure (S[return f*])|| > [If]]-

This concludes the case analysis and proves Lemma 3.2.
|

Lemma 3.3 If M R N, and M has a decreasing
weighting, then M has a decreasing weighting.

Proof: If M e N, the proposition is shown as in [1],

Lemma 11.2.18(é¢). The other cases are similar, but
simpler. W

Proposition 3.4 On A, the reduction —5== is

strongly normalizing.
Proof: Asin [1], Proposition 11.2.20. =

Corollary 3.5 On A, the reduction - is strongly
normalizing.

Proof: Every (!)-reduction sequence in A,qr is also a
('UBoUég)-sequence in Al and has (by Proposition 3.4)
finite length. W

3.2 Church-Rosser

We establish that — is Church-Rosser by combining
several subsidiary results. We first establish that —
is Church-Rosser: this result is itself proved by us-
ing Newman’s lemma to decompose the problem into
a proof of strong normalization plus a proof of the
weak Church-Rosser property. We then use the Hindley-
Rosen lemma to deduce Church-Rosser for — from the
separate Church-Rosser results for 5 and for 55 this
requires that we show that —» commutes with 5 We

now begin this series of proofs.

Lemma 3.6 Let S be a state prefix and let A be a
redex fully contained in S. If S[M] 25 $/[M] then §’
is a state prefix.

Proof: Since A is fully contained in S, there exists a
term N, a tag v and pre-state prefixes R; and R such
that $ = Ri[N =: v ; Ry] and A C N. Assume N 2
N’. Then S’ = Ri[N' =: v ; Rp] is a pre-state prefix.
Moreover bt §’ = bt S and wr §’ = wr S. Since S is a
state prefix, wr $' = wr S C bt S = bt S’. Hence, S’ is
a state prefix. W

Lemma 3.7 - is weakly Church-Rosser, that is,
My - M; and My - M, imply that there exists Ms
such that M; —» Mz and M, -» Ms. The following
diagram shows the situation:



AN

M, M,

i- g
Py
M3

Proof: Assume Mo 23 My and M 22 M,. We dis-
tinguish cases according to the relative positions of A;
and A;. If Ay = A then M; = M, = Mj, since the
left-hand sides of the rules for (!) in Figure 3 are non-
overlapping. If A; and A, are disjoint, the proposition
follows again from the fact that the left-hand sides of
all rules in Figure 3 are non-overlapping. To show the
proposition in case Ay C Aj, we distinguish according
to the form of A;.

=M=:v;v?>2.P

l Case 1 (f) A

If M 42, M, the following diagram commutes:

M=:v;v?>z.P

Ay
P1

Az
P2
M=v;(z.P)M

Az/pr
p2 (twice)

M =v;v7>z.P
Ai/p2
P1

M = v;(z.P) M

If, on the other hand, P Az, p/ , the following diagram
commutes:

M=v;(=z.P)M
Az/py

P2

M=v;v?>z.P
Ai/p2

P1

M=v;=P)M

cn
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[Case 2 A;jis a by, be, bb, 7>, Ub Or =:b redex

In these cases A; has exactly one residual with respect
to p;. Hence:

M,

Ay A,

P1 P2
M1 M2

Az/p1 A1/p2

P2 P1
M;

| Case 3 (pc) Ay = pure (S[return c¢® My ... Mi]),k < nl

If A, C M; for some i, 0 < i < k, then we rea-
son as in Case 2. If not, A, must be fully con-
tained in S. By Lemma 3.6, S/ps is a state prefix.
Hence the following diagram commutes. (We abbrevi-
ate pure (S[return []]) by II(S)).

TI(S) [¢™ My ... M)
Aq Ag
P1 P2

(T(S) [Ma]) ... (T(S) [Mx])  T(S/pa) [e” My ... My

- \A2/;m A1/p2
p2 (k times) D1

c” (TI(S/p2) [Mi]) ... (TL(S/p1) [M])

| Case 4 (pp) A1 = pure (S[return z‘.M])l

If A; C M then we reason as in Case 2. If not, A; must
be fully contained in S. By Lemma 3.6, S/p; is a state
prefix, and thus A,/p; is a redex. Furthermore, A; has
exactly one residual wrt p2. From then on the proof is
as in Case 2.

] Case 5 (pf) A1 = pure (S[return f]) I




In this case A; is fully contained in S By Lemma 3.6,
S/p1 is a state prefix. Hence, the following diagram
commutes:

pure (S[return f])

p1|A1 A,

pure ((S/p2) [return f])
Ai/p;

P1

f

This concludes the case analysis for Ay C A;. The case
Aj C A, is handled symmetrically. H

Lemma 3.8 —» commutes with WL

M,
M, M,

R
Bé &
M3

Proof: By Lemma 3.3.6 of [1], it suffices to show com-
mutativity for the following diagram:

M,
AN
M; M,

Bin
M;

Assume then that My A,-) M; and M, %) M,. We
distinguish cases according to the relative positions of
A, and Ags. Since the left-hand sides of !-reduction
rules do not overlap with those of 34-reduction rules,
A, # Aps. If Ay and Ag;s are disjoint, the proposition
again follows from the fact that the left-hand sides of
all rules in Figure 3 are non-overlapping. To show the
proposition in the case where Ay C Ags, we distinguish
cases according to the form of Ags.
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Case 1 Ags = (z.M) NI

If M -2 M’ then the following diagram commutes:

If, on the other hand, N 2% N’ then the following
diagram commutes:

(z.M) N’ [N/z) M

Aps/! A/B
B ! (for each z in M)

(N'/<] M

|Case2 Ags = f(c™ My Mn)|

In this case we must have M; 2% M/, for some

i, 0 < ¢ < n. Because of the restrictions on 4,
flc® My ... My) 225 Ny, My ... My. Then the
following diagram commutes:




f(c"Ml . M; ... M,
Ags/!
¢
Npen My ... M! ... M,
Case 3 Apgs = f(x.M)|

Then M 24 M'. Because %f the restrictions on ¢ in
Figure 3, we have f (z.M) =25 N; (z.M). Then the
following diagram commutes:

f (z.M)

Ny (z.M')

This concludes the case analysis for A1 C Ags. The case
Ags C A;is handled as in the proof of Lemma 3.7. W

Proposition 3.9 - is Church-Rosser: if My - M,
and My -» M then there exists M3 such that M) > M;
and M, —,)) Ms.

Proof: The relation — is weakly Church-Rosser
(Lemma 3.7) and strongly normalizing (Corollary 3.5).
By Newman’s lemma ([1], Proposition 3.1.25), - is
Church-Rosser. M '

This allows us to conclude:

Theorem 3.10 — is Church-Rosser.
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(]

| EM

| fE

| varv.E
| E?

| M=E
| EvzM
| Mvoz.E
| pureE
l

pure S[return E]

Figure 5: Evaluation Contexts in Ayqr

Proof: The purely functional reduction relation i is
easily shown to be Church-Rosser (using Mitschke’s the-
orem ([1], Theorem 15.3.3), for instance). By Proposi-
tion 3.9, —» is Church-Rosser. By Lemma 3.8, -» com-

mutes with T Then, by the lemma of Hindley and

Rosen ([1], Proposition 3.3.5), the combined notion of
reduction — is Church-Rosser. =

3.3 Equational Theory

Reduction gives rise in the standard way to an equa-
tional theory. As usual, we define equality (=) to be
the smallest compatible equivalence relation that con-
tains reduction.

Definition. The theory Ay, has as formulas equations
M = N between terms M, N € Ayqr. It is axiomatized
as follows:

M—-N = M=N

M = M
M=N = N=M
M=N,N=L = M=1L

Proposition 3.11 (Consistency of Myer) There are
closed terms M, N such that Ayer f M = N.

Proof: Pick two different closed terms in normal form.
Because — is Church-Rosser, M and N are not convert-
ible. m

3.4 Evaluation

An evaluation function is just a partial function from
programs to answers. We define evaluation functions




via context machines. At every step, a context machine
separates its argument term into a redex and an eval-
uation context and then performs a reduction on the
redex. Evaluation stops once the argument is an an-
swer. Given a notion of reduction — and a notion of
“head redex”, we define eval by:

evalyer C[M] eval,qr C[N],
if M is head redex in C[M]
and M - N

A.

eval A

Definition. An evaluation context E is a context that
is of one of the forms given in Figure 5.

Definition. A redex A is an evaluation redez of a term
M if M = E[A], for some evaluation context E. The
leftmost outermost evaluation redex in M is called head
redez. Every other redex in M is called an internal
redez.

Proposition 3.12 evaly,, is a recursive function.

Proof: Let M € Ayar. If M is an answer then
evalygy M = M. If M has a head-redex, say A,
then there is a unique evaluation context E such that
M = E[A]. Since no two left-hand sides of rules in Fig-
ure 3 are unifiable, there is a unique term N such that
E[A] 4 E[N]. In that case, evaly,r M = evalye, E[N].
If M has no head-redex, evalyq- M is undefined. Hence,
eval,e, is a recursive function. M

Lemma 3.13 For any evaluation context E and redex
A, E[A] has a unique head redex.

Proof: Direct from the definition of head redex. W

What is the relation between \,qr and eval,.,? We
can show (by adapting a proof of the Curry-Feys stan-
dardization theorem in [1], Section 11.4) that evalyq, is
a semi-decision procedure for equations in A,q- of the
form M = A where M is a program and A is an an-
swer. First, we need some rather technical lemmas that
show that head-redexes are in some sense preserved by
internal reductions:

Lemma 3.14 For any term M, procedure P, if M -2
P,and M # A, then M is a procedure.

Proof: An easy case analysis according to the form of
reductionin M - P. W
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Lemma 3.15 If M — N and N has a head redex, then
so has M.

Proof: Assume that N has a head redex Ay, that M -2
N, and that L is the result of reducing A. We distin-
guish cases according to the relative positions of L and
Ay

l Case 1 L and Ay are disjoint.

In this case one can find evaluation contexts E, E’, con-
text C, bound variable z, and tag v such that M is one
of the following:

1)
)
®)
4)

E[(E'[AR]) (C[A])]

E[C[A] =: E'[AR])

E[E'[Ar]> z.C[A]]

E[C[A]> z.E'[AR]]

where C is not an evaluation context
E[pure (S[returnE’'[A4]])]

where AC S

(5)

In each of these cases, Ap is an evaluation redex of M.
By Lemma 3.13, M must thus have a head redex.

ICase2 Athl

In this case there are contexts Cj, Cs such that M =
Ci[A] 5 CL[Co[AR]].

Since Aj, is head redex, C; - C; is an evaluation context.
Since evaluation contexts are inductively defined, C; is
also an evaluation context. Lemma 3.13 then implies
that M has a head redex.

Case 3 L C Ap|

In this case M = F [MJ 4, ElA4)], for some evaluation
context E and term M with A C M. Distinguishing
cases according to the form of Aj, we now show that M
always has an evaluation redex. For each case, we list
the possible forms of M and the corresponding evalua-
tion redex. In the following, Cp stands for some context
different from []. The cases that refer to Cp make use
of the fact that if P is a procedure and Cp[A] 2 P
then Cp[A] is a procedure (Lemma 3.14).

LCase 3.1 Ay = (2.M) Nz|

M. eval. redex:
AN, A
(a-CIA] Ny it
(z.Ny) (ClA]) M




Case 3.2 Ay = f V|

_M_; eval. redex:
AV A
fa A
f(c" M ... C[A] ... My) M
f (z.ClA)]) M

IC’ase 33 A, = N=:v;v?t>z‘.P|

[
2
=3
-t
8.
o
te]

A;v?vz.P

N=v;A%v2z.P
N=v;v7pz.A
N =:v;v?>2.Cp[A]

A

ClA]l=:v;v?>2z.P M
N=:A;v?>z.P A
=v;A A
=:v;Avz.P A
A

A

M

Case 34 A, = N=:v;w?pz.P, v¢w|

M: eval. redex:
A;w?>z.P A
ClAl=:v;w?>z.P M
N=A;w?>z.P A
N=v;A A
=:v;A>z.P A
N=v;A%>z.P A
=v;uwl’pz.A A
N =:1v;w?p>z.Cp[A] M

Case 3.5 Ay = var v.w?>z.P, v# wl

M: eval. redex:
var v.A

var v.Ap>z.P
var v.A?>z. P
var v.w? > z.A

var v.w? > z.Cp[A]

=2 > D> >

Case 3.6 Ap = (N1 pz.No)b> y.P|
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M: eval. redex:
Aby.P A
(C[A]>z.No) > y.P M
(M>A)oy.P A
(M > 2.C[A]) > y.P M
(Nl > z‘.Nz) 4 y.A A
(N1 > 2.N,) > y.Cp[A] M

lC’ase 3.7 Ay = returan>:c.P|

M. eval. redex:
Avz. P A
return C[A]> z.P M
(return N) o z.A A
(return N) > Cp[A] M

ICase 3.8 Ap = (var v.N)bx.Pl

~

M "~ eval. redex:
Avz.P A
(var v.C[A])>z.P M
(var v.N)>z.A A
(var v.N) > z.Cp[A] M

[Case 3.9 Ay = Ny =:Nyoz.P, z€foP)|

_Jl:{_: eval. redex:
Avz.P A
Cl[A] =: Ny>z.P M
N =: C[A]>z.P M
N =: N2 >z.A A
N1 =: NzDZ‘.Cp[A] M

LCase 3.10 Ay = pure (S[return V])!

An easy induction on the structure of state prefixes
shows that, for any state prefix S, pure S[ ] and
pure S[return []] are evaluation contexts.

We distinguish further according to the relative posi-
tions of A and V.

[ Case 3.10.1 Aand V disjointl

In this case M = pure ($'[C[A]> C'[return V]]), for
some state prefix S’ and contexts C, C’. Furthermore,
one of the following cases applies:




Case 3.10.1.1 M= pure ($'[C[A]=:v; C’[return 141);

Then, since S is a state prefix, and since
S'[C[A] =: v; C'[return V]] 4 §'[return V],

S'[C[A] =: v ; C'[]] must also be a state prefix. There-
fore, M is a redex (and hence an evaluation redex of
itself).

Case 3.10.1.2 M = pure (S'[N =: A ; C'[return V1))

In this case, since pure §’ is an evaluation context, so
is pure (§'[N =: []; C’'[return V]]). Hence, A is an
evaluation redex of M.

Case 3.10.1.3 M = pure (S’[A > z.C'[return V]))

In this case pure (S'[[] > z.C'[return V]]) is an evalu-
ation context, and A is an evaluation redex of M.

| Case 3.10.2 AC V|

In this case, since pure (S[return []]) is an evaluation
context, one of the following applies:

~

M: eval. redex:
pure (S[return A)) A
pure (S[returnc” ... C[A] ..]) M
pure (S[return z.C[A]]) M

| Case 3.10.3 V C A

In this case, since pure S’ is an evaluation context, M
must have the form pure (S’[A]), so A is an evaluation
redex in M.

This concludes our case analysis. In every case, M has
an evaluation redex. Therefore,

M = E[M] = E[E'[A"]

for some evaluation context E’ and redex A’. Since F
and E’ are evaluation contexts, so is E - E’. Hence, by
Lemma 3.13, M contains a head redex. W

Lemma 3.16 Let Aj be head redex and A; be an in-
ternal redex in M. If M -—A;,i) N then Ap/p consists of
one redex that is head redex in N.

Proof: We distinguish cases according to the relative
positions of Ay and A;.

| Case 1 A; and A, are disjoint.

15

In this case the claim follows by a case analysis identical
to the one in Lemma 3.15,Case 1.

ICase2 Ah§A¢|

This case is not possible.

| Case 3 A; C A4

In this case Ap/p is a redex, as is verified by inspecting
the relevant clauses of the proof of Lemma 3.7. Further-
more, since M = E[Ap] —> E[An/p] for some evalua-

tion context E, Ap/p is an evaluation redex of N. It
remains to shown that it is a head redex. Assume that
it is not; Then Ay /p is either properly contained in an-
other evaluation redex A, or there is another evaluation
redex A disjoint from, and to the left of, Aj.

In the first case there are evaluation contexts Ej, E,,
with E; # [] such that

N = E1[A] =E [Ez[Ah/p]].
Since A; C Ap, there is a context C % [] such that
M = E|[E;[AR]] = E1[E:[C[A]]]

But then Lemma 3.17 implies that E2[A,] is a redex,
contradicting the assumption that Aj is head redex in
M.

In the second case, one can find evaluation contexts E,
E', E", bound variable z, tag v such that N is one of
the following;:

(1) E[(E'[A]) (E"[An/P))]
(2) E[E[A]=: B"[An/o]
(3) E[E[A] =: vo2.E"[An/p]]

Hence, M is one of the following:

(1) E[(ZTA] (E"[AD]
@) E[E[A] =: E"[A4]]
(3) E[E[A] = vo 2. E"[A4)]]

In each case, A an evaluation redex to the left of Aj.
This contradicts the assumption that Ay is head redex.
| |

Lemma 3.17 For any context C # [], evaluation con-
text E # [ ], term M, and redex A, if E[C[M]] is a
redex and C[A] is a redex then E[C[A]]is also a redex.

Proof: If, in the left-hand-side of the reduction rule ac-
cording to which E[C[M] is a redex, M is contained
in a meta-variable of [E[C[M]], then clearly E[C[N]]




is a redex for any term N. A careful inspection of the
reduction rules along with the definition of evaluation
contexts E reveals that this is indeed the only way in
which the hypotheses of the lemma can be satisfied.

Lemma 3.18 For any term M, internal redexes A;, A}

inM: M -% N then all elements of A;/p are internal
redexes in N.

Proof: Assume the contrary. Then there is a redex A ¢
A;/p that is head redex in N. By Lemma 3.15, M has a
head redex, say A,. By Lemma 3.16 and Lemma 3.13,
A is the residual of A. This contradicts the assumption
that Ae A;/p. N

Lemma 3.19 If M —» N, then there exist terms M,
A A
M such that M =2y 0y =Ry |

A .
M 3 Bisz .. —=% N, where each Ay is head redex
and each A," k is an internal redex.

A
homy M

Ai,1\
L4

Proof: Exactly as in [1], Lemma 11.4.4 — 11.4.6. One
needs FD!, Lemma 3.15, Lemma 3.16, and Lemma 3.18.
|

We are now ready to prove the standardisation theorem:

Theorem 3.20 (Correspondence) For every closed
term M and answer A,

Avar F M =A & evaly,r M = A.

Proof: By Lemma 3.19 M —» M’ using only head re-
ductions, and M’ —» A using only internal reductions.
Since there is no internal reduction M — A, for any
term M, we have M — M’ using only head reductions.
This implies evalyer M = A. B

4 Simulation by a Single-Threaded Store

We now show that assignments in Ayqr can be imple-
mented using a single sequentially-accessed store. In
order to do this, we define a translation from A4, into
another calculus, A,, that represents stores explicitly.
This calculus has reduction rules that closely resem-
ble the usual meanings of store-operations in imperative
models of computation; furthermore, we can define an
evaluation function on the language A, that evaluates
sequences of such operations in the expected temporal
order. We establish that the evaluation functions for
As and Ayqr agree on those terms that are present in
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both languages. This simulation result shows both that
Avar pOssesses a reasonable implementation as a pro-
gramming language and also that A,., indeed reasons
about assignment as claimed.

To form the new term language A,, we make stores ex-
plicit by extending the defining grammar of Ay, (Fig-
ure 1) with the additional production M := o - M.
Here, ¢ = {v1 : My,...,v, : M.} is a state, repre-
sented by a set of pairs v: M of tags v and terms M.
dom o = {vy,..., v} is called the domain of o. Tags in
dom o are considered to be bound by ¢.

Reduction rules for states are derived from the reduction
rules of Ayqr, with the following modifications: We keep
(B) and (9) reduction as well as the flattening rules (>5),
(1”[>) (v>), (=:p). We replace the remaining bubble, fu-
sion, and effect masking rules by rules that construct,
access, update, and destroy states, as shown in Figure 6.
The new basic constant undef is used to flag an unitial-
ized variable. The rules in Figure 6 define a reduction
relation A\, between terms in A,. This relation can be
shown to be confluent.

Note that, even though a state o can be duplicated in
rule op., the resulting states are all read-only. Therefore
it suffices to copy a pointer to the state instead of the
state itself: state in A, is single-threaded [26].

4.1 Church-Rosser

We now embark on the proof that A, is confluent. The
proof follows the same outline as the corresponding
proof for Ayqr in Section 3, but differs in detail since
we are dealing with a different calculus.

———> is strongly nor-

We first prove that the reduction o5
malizing for A\,. We define terms with marked gB4-
redexes A/, and weighted terms A} just as we did for

Ayar. The definition of the norm || - || is just as for Ayar
with the addition of the rules

llo- M|l = Eexp(#Milo|| + ||M]])
I =0
lou{v: N} = [loll + IV

and the revised rule

lpure M|| = 1+|M]||.

We note that every term in A:, can be completed to
a term in A}, with a decreasing weighting by working
outward as before.

Lemma 4.1 For M,N € A}, if M has a decreasing
weighting, and M ——— N then ||M]|| > ||N||




Ovar o - var v.P -
o= cU{v:M'} - M=:v;P -
o7 cU{v:M} - v?>z.P -
Opure pure M —
Ope o-return ¢ M; ... M; -
Tpa o -returnz.M -
Tps o - return [f] -

o U {v:undef} -

cU{v:M} - P

cU{v:M} - (z.P) M

{y M

P

(M # undef).

c® (0 -return M, ... (o -return M) (k < n)
z . (o -return M)

f

Figure 6: Modified reduction rules for A,.

Proof: We proceed by case analysis on the form of single
reduction steps.

| Case Bq,do, b0, ri>, >, =:>

In each of these cases, the corresponding case in the

proof of Lemma 3.2 is independent of the presence of =,

additional syntactic constructs in A,; hence each is a
valid proof for the case in the present lemma.

Case 0yqr

n v

||o - var v.M||

Eezp((#var v.M)||o|| + [Jvar v.M|))
Beap(#M|ol] + 1+ #M + | M])
Bep(1+ #M(|lol| + 1) + 1M])
Beap(#M (|lol| + 1) +1|])
Eezp(#M||o U {v : undef}|| + [ M]))
llo U {v : undef}||

Case o—.

lou{v:N'} -N=:v; M|
Eexp((#N =: v ; M)|lcu{v: N'}|
+ IV =:v; M)
Eexp((1 + #M)(|lof| + |N|])
+ (1 + #M)||IN =: o + || M]])
Eezp(||of| + [|N'|| + #M|lo|| + #M||N'||
+ (1 + #M)(IN]| + 1) + [|M]])
Eezp(#M||o|| + #M||N|| + ||M]])
leu{v:N}-M||

Case o+

loUu{v: N} v?;2.M|
Eezp((#v?; z.M)||lcU{v: N}

+ [|v? ;5 2. M||)
Eezp((1+ #M)(llol| + (|V]])

+ (L +#M)||v?| + ||l=.M]))
Eezp((1+ #M)(llo|l + IV]])

+ 1+ #M+ ||z.M])
Eeap(|lo U {v: N}|| + #M||c]||

+ #M||N||+ 1+ #M + ||z.M]})
Eezp(llou {v: N}|+1+||M[ +(IN|])
Eexzp((#(z.M) N)|loU{v: N}

+ [|(z.M) NY|)
lou{v: N} (z.M) N||

Case 0pure

[lpure M||
L+ ||M]|

(| 21)

10 M|

v

Case op,

|lo - return (¢™ M ... M)||
Eezp(f#treturn (c™ M ... My)||o||
+ |lreturn (¢® M ... Mg)||)
EBeap(||of| + [|e™ M ... Myl])
Eeap(||ol| + 1+ {|Ma]] . .. | M)
1+ Eeap(||of] + [|Mall) + - -
+ Eeazp(||of| + || M ()
lle™]] + ||o - return Mi|| + ...
+ ||o - return M||
|lc®(o - return M) . .. (o - return M;)||
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||o - return z.M||

Eezp((#return z.M)||o|| + ||[return z.M||)
Eezp(||o|l + 1+ ||M]])

1+ Eezp(||lo|| + || M]})

||lz.0 - return M||

Vol

Case op;
|lo - return f?||
= Eezp(||loll + IF"1)
= Eezp(|o|l + n)
> n
= [IF"ll
|

Lemma 4.2 The
Church-Rosser.

reduction relation -, is weakly

Proof: Assume M 2% M; and M —ﬁ:#) M,. We dis-
tinguish cases according to the relative positions of A;
and A,. If A; = Ay then My = M, = M3, since the
left-hand sides of the rules in Figure 6 do not overlap.
If A; and A, are disjoint, then the desired property fol-
lows again from the lack of overlaps in the rules. We
consider now the cases in which A; C A; by enumer-
ating the possible forms of A;. Wherever the redex A,
occurs in a store o, we write the reduction as o -2 ¢’
in the remainder of the proof.

| Case 1 (0yar) A1 = 0 - var v.M | In this case, the pos-

sibilities for A are o 25 ¢/ or M 2 M’. The fol-
lowing two diagrams show how the weak Church-Rosser
property can be established in this case:

o-var v.M

A
P1

o' -var v.M

Ar/p2

P1

oU{v :undef} - M
Az/p1

P2

o' U{v:undef} - M

AV
P2
oU{v:undef} - M o-var v.M’
Az/p1 Ai/pa
P1

o U{v:undef} - M’

lCase2(a=;)A1§aU{v:N'}~N=:v;M In this
case A, can occur in o, N', N, or M:

cU{v:N'} . N=tv; M

a

/

cU{v:N}-M dU{v:N'} N=1v; M
% y
cU{v:N}.-N=v; M
cU{v:N}-M ocU{v:N"} . N=:v; M

A1/p2

y

cU{v:N}-M

\




cU{v:N'}  N=v; M
Ay Az
P1 P2
cU{v:N}-M cU{v:N'}.N'=2v; M
Az/p A1/p2
P2 P1
ocU{v:N"}.- M

cU{v: N} N==v; M

Ar Ao
P1 P2
cU{v:N}-M cU{v:N'} . N=:v; M
Az/p Ai1/p2
P2 P1
cU{v:N} - M

ICase 3(o2) Ai=ocU{v: N} -v?>z.M|In this case,
Ajcan bein o, N,or M:

cU{v:N}-v?>z.M

AN
P1

Ao

P2

cU{v: N} M N
Az/p

P2

cdU{v:N}-v?b2.M
A1/p2

P1

cdU{v:N}-M N

cU{v:N}-M N

cU{v:N}-M N

cU{v:N}-v?p2z.M

Ay
P1

Ao

p2
cU{v:N'} - v?bz.M
Ar/p2

P1

Az/p1

p2 (twice)

t

cU{v:N'}-M N’

cU{v:N} -v?v2z.M

Ay
P1

Az

P2
cU{v:N}-v?>z. M
A1/ p2

P1

Az/py

P2

cU{v:N}-M'N

| Case 4 (0pure) A1 = pure Ml

pure M

{3-M

] Case 5 (0p.) A1 = o -return (¢ M ... Mk)[
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o -return (¢" M; ... My)

Ay Ag
P1 P2
¢” (o -return M) ... o' -return (¢" M; ...
Az/py A1/p2

p2 p1 (k times)

W

c® (o' -return M) ...

o -return (¢" My ... My)

Ay Ay
P p2
¢" (o-return M) ... o-return(c” ... M ...
Az/p Ai1/pa
P2 P1

c" ...(o' -return M;') ...

I Case 6 (0p,) A1 = 0 -return z.Ml

o -return z.M

A A,
P1 P2
z.(o - return M) o -return z.M’
Az/p1 A1/pe
p2 P1

z.(o - return M’)

Case 7 (apf) Aj =0 -return f

M)
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o -return f

A1 Az
P1 P2

o -return f

A1/p2

P1

Lemma 4.3 The reduction relations —» and —z»
commute.

Proof: The proof is a case analysis directly analogous
to that in the proof of Lemma 3.8. H

Theorem 4.4 —, is Church-Rosser.

This follows from Lemma 4.2 and Lemma 4.3 by the
reasoning used in the proof of Theorem 3.10.

4.2 Evaluation

We now proceed to prove that A\, possesses a standard
order of evaluation. Qur development here parallels the
proof of Theorem 3.20.

The evaluation contexts for A, are given by the following
grammar:

E (11 EM | fE

| E? | M=E
| EvzM | Mvz.E
| o-E|c-returnE

Based on this definition of evaluation context, we define
the notion of head redex and the standard evaluation
function eval, for programs in A, as was done for Ayqr
in Section 3.4. eval, closely corresponds to the usual no-
tion of store-based computations with store access and
update as single reduction steps. eval, is a semi-decision

procedure for equations between terms and answers in
A,

Lemma 4.5 If M —, N and N has a head redex, then
so has M.




Proof: We proceed in the same manner as for
Lemma 3.15.

I Case 1 L andApare disjoint]

In this case, M must have one of the following forms:

(1) E[(E'[An]) C[A]]
(2) E[C[A]=: E'[Ax]]
() E[E'[Ak]>z.C[A]]
(4) E[CIA]> . B[A]
where C is not an evaluation context
(6) ElcU{v: C[A]}- E'[A4]]
(6) E[ocU{v:C[A]} return E'[A]]

In every case, A}, is an evaluation redex of M, and there-
fore (by the observation in Lemma 3.13), M has a head
redex.

| Case 2 Ay C L|

The reasoning for Lemma 3.15, Case 2, applies here
without change.

| Case 3 L C Ay |In this case, M = C[M] 4 C[A4)],
for some term M with A C M. Distinguishing cases
according to the form of Aj, we now show that M al-
ways has an evaluation redex. For each case, we list the
possible forms of M and the corresponding left redex:

| Case 3.1 A = (s.M) N |

The reasoning for Lemma 3.15, Case 3.1, applies here
without change.

|Case 3.2 Ay = f V|

The reasoning for Lemma 3.15, Case 3.2, applies here
without change.

Case 3.3 Ap = o -var v.Pl

M_: eval. redex:
o U{v':C[A]} -varv.P M
oc-A A
o -var v.C[A] M

Case 34 Ay, = coU{v:N'}  N=:v>2z.P
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:C[A]} N =:v>3z.P
:N'}-A
:N'}-Avz.P
:N'}-ClA]l=:v>2z.P
:N'}.N=:Avz.P
:N'}.N =:v>z.C[A]

eval. redex:

SIS <]

LCase 3.5 Ay = a'U{v:N}~v?l>a:.Pl

M :

ocU{v

cU{v:
cU{v:

cU{v
ocU{v

ocU{v:

:N,v: C[A]}-v?>2.P
C[A]}-v?b>2.P
N}-A

:N}-Avz.P
:N}-A?>z.P

N} -v?>2.C[A]

I Case 3.6 Ap = pureMl

M .

pure C[A] M

eval. redex:

eval. redex:

ISE "l " R N )

ICase 3.7 Ay = o-return(c¢"M; ...

M) |

M
oU

-A

qQ

{v: C[A]}

-return (¢"M; ... M)

o -return A

Q

-return (AM; ... My)

0<s<k)

o -return (c" ... C[A] ..))

[Case 3.8 A, = a'~returnz.M|

M.

cU{v: C[A]} - returnz.M

oc-A

o -return A

o -return z.C[A]

eval. redex:

M
A
A

Sy

eval. redex:

2D >



’gxse 3.9 Ay

o -return f |

M: eval. redex:
cU{v:C[A]} -returnf M
o-A A
o-return A A

| Case 3.10 Ay = (P> 35.Q)vy.R|

1}

LCase 3.11 Ay return P> z.Q I

LCase 3.12 Ay

(var v.P) > z‘.al

The reasoning for Lemma 3.15, Cases 3.6 to 3.8, applies
here without change.

Lemma 4.6 Let Aj be the head redex and A; be some
interior redex in M. If M —AT}) N then Ay /p consists of
one redex that is head redex in N.

Proof: The proof is entirely analogous to the proof of
Lemma 3.16. W

Lemma 4.7 For any term M, internal redexes A;, A}
inM: M —%}} N then all elements of A;/p are internal
redexes in N.

Proof: As for Lemma 3.18. W

Theorem 4.8 (Correspondence) For every closed term
M and answer A,

A FM=A & eval, M = A.

Proof: As for Theorem 3.20. H

4.3 Simulation of A, -evaluation by A,-

evaluation

Since every term in A,qr is also a member of the lan-
guage A, it makes sense to apply A,-standard reduc-
tion to Ayqr terms. We now show that both reduction
relations are equivalent if we consider only observable
results. This equivalence can be interpreted as estab-
lishing that eval, is a correct implementation of evalyq,.
Combined with our informal understanding that eval,
can be implemented by an abstract machine having a
store, we will thus be reasonably convinced that \,q,-
evaluation can also be implemented by such a machine.
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We will first prove some auxiliary lemmas that establish
that A.-reduction preserves certain features of state
prefixes. We will then introduce a precise notion of cor-
respondence between state prefixes in Ayq, and explicit
stores in A,. After proving some properties of the cor-
respondence relation we will prove this section’s main
theorem that the two calculi simulate one another.

Define a bubble contezt to be one generated by the gram-
mar B =[] | v?>z.B.

Lemma 4.9 Assume Ayqr W M — M'.

(¢) If M = var v.N then there is a term N’ € Ayqr and
a bubble context B[] such that M’ = B[var v.N'].

(i) If M = N =: v ; P then there are terms N’,
P’ € Ayar and a bubble context B[] such that M’
B[N' =:v; P].

(#47) If M = return N then there is a term N’ € Ayar
such that M’ = return N'.

(7v) If M = v?> 2. P then there is a term P’ € Ay, such
that M/ = v?p> 2. P’

Proof: By inspection of the reduction rules for Ayqr, it is
clear that only the pure-rules (p.), (p»), and (ps) can
remove a var or =: from a term. Furthermore, there
is no rule that can reduce a term with one of these
constructs as a prefix to one that has them only within
the context of a pure. The only remaining reduction
rules involving terms of the forms dealt with in (z) and
(#) are the bubble rules (4;) and (b2), which clearly
act to embed the former top-level construct within a
bubble context. Similar reasoning establishes (i¢) and
(fv). =

Lemma 4.10 Let M € A,qsr and assume that M =
E[AR] = A, where Ay is a (f), (b1), or (b2) redex
that is head redex in M. Then there is an evaluation
context E' and a pre-state prefix R’ such that M =
E'[pure (R'[A4]))-

Proof: Assume the contrary, that is, that M is not of the
desired form. We then consider the remaining possible
structures of M and show that none of them can reduce
to an answer.

If E = R' for some pre-state prefix R’, then Lemma 4.9
applies to show that M +#» A, and we have a contra-
diction. Hence E = E; - Es - R', where E; is an eval-
uation context, Fy is a non-empty evaluation context
that is not a pre-state prefix, and R’ is a pre-state pre-
fix. Without loss of generality assume that E; =[] and
that E, is minimal, that is, E5 can be obtained by ex-
actly one of the productions in Figure 5. We distinguish
cases according to the form of E,:




|CaseE2-E[]Nl

Assume R'[A3] N —» A. By Theorem 4.8, we
can choose the reduction to reduce A, first. By
Lemma 4.9, the reduction can only yield a term of the
form B[R"[N]]. Such a residual term can only interact
with its context R’ by means of the bubble-rules (5)
and (b7); thus, there is no way to reduce R'[A;] to an
abstraction or primitive-function name, and hence no
way to reduce.the application to an answer. This is a
contradiction.

Case E; = f []

We argue similarly to the previous case, noting instead
that R'[Ap] can reduce neither to an abstraction nor to
a constructed value.

Case E, =[]?
Case B = N =: [Tl

| Case E; = pure (S[return [])]'

These cases are all similar to the first two cases.

|Case EzE[]DZ‘.N'

In this case E[R'[A4]] is a redex, contradicting the as-
sumption that A is head redex.

|Case E= Nbx.[]l

For this case to apply, N cannot have the form E'[A],
else A, could not be the head redex. Also, N b z.Ap
itself cannot be a redex. Thus N cannot have any of
the forms N; » y.N,, return N;, var v.N;, or V;
N,. Now by Lemma 4.9, A, —» B[R"[MN]], so a head-
reduction sequence will bubble the tag-lookups in B to
the left, where they cannot interact with any of the
remaining possible forms for N, hence the entire term
cannot reduce to an answer.

Case E; = var v.[]
Case B = N =: va.[]|

Case E; = return [] I

These cases all contradict the assumption that E5 is not
a pre-state prefix.

The only remaining case is F; = pure [ ], hence we
must have

M = E([E>[R'[A]]] = Ei[pure (R'[AR))].
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Lemma 4.11 Let M € Aygr with M — A and M =
E[pure (R[A}])], for some evaluation context E, pre-
state prefix R, and head redex Aj. Let A, have one of
the forms

Apr=N=:v;P
A, =v?b2z.P.

Then v € bt R.

Proof: We only spell out the proof for the case A, =
N =: v ; P, the other case is shown by an analogous
argument.

Assume the contrary, i.e. v ¢ bt R. Take any term M’
such that M — M’. We show that M’ is not an answer.

Assume that M’ is an answer. By Theorem 3.20, M —»
A, using only head reductions —>. Assume that M -
M; is the first step of this reduction sequence. We have
M = E[pure (R[N =: v ; P])]. By Lemma 4.9, M;
E[pure (R[B[N' =: v ; P']])], for some terms N’, P’
and bubble context B. If B is nonempty, beginning with
v’? for some tag v, then v’ € bt R by the second part of
the lemma. Otherwise, since by assumption v ¢ bt R,
we have that R[N’ =: v ; [ ]] is not part of a state
prefix, which implies that pure (R[N’ =: v ; P’]) is not
a redex. Therefore, the head redex of M, if it exists, is
contained in N’/ =: v ; P’. By induction on the length
of the head-reduction sequence we can thus show that
M’ = E[pure (R[N" =: v ; P"])], for some terms N"
and P”, which contradicts the assumption that M’ is
an answer. W

Lemma 4.12 Let M € Aygr with M — A and M =
E[pure (R[N])], for some evaluation context E, some
term N and some pre-state prefix R. If M has a head
redex then R is a state prefix.

Proof: Essentially the same as the proof of Lemma 4.11.
| |

Definition. We define a correspondence relation ( =)
between terms and state-prefixes in Ay, and terms and
states in A, as follows:

(?) For any state prefix S, state o, S = o iff

domo =105t S,

S=S8[N=:v;R[],jvdwrR =
N’ . (v:N)ec AN =N/,

vebtS,vdwrS = (v:undef) e ¢




(#¢) On terms, = is axiomatized as follows:

M=M = M=M

S, M=M = pure(S[M])Zo-M
M=M' NN = MN=MN'
M=M => zM=zM

M=M = var v.M = var v.M’
M=M = M?7=M"7
M=M'N=N = M=N=M =N’
MEM'N2N = MvzN=Mvz.N
M=M = return M = return M’
M=M = pure M = pure M’

Lemma 4.13 For any term M e A, there exists
var(M) € Ayar such that var(M) = M. For any state
o € A, there exists a state prefix S = var(o) in Ayar
such that § =o.

Proof: An easy construction by structural induction.
The base cases for terms are obvious. Define var({v; :
My, ... vy :M,})=varuv. ... var v,.var(M;) =:
v ; . var(My) =:v,;[]. W

Lemma 4.14 For any term M € Ay, and state prefix
S, there is a state o such that S = o and

pure (S[M]) ->o-N.

Proof: Applying a Opure reduction one
gets pure (S[M]) = {} - M. Then, repeatedly apply-
ing oyqr and o-. reductions, one gets {} - M —» o - M
for some state o with the required properties. B

Lemma 4.15 Assume M € Ayer, My,N, € A, such
that M = M, and M, —> N,. Then there is a term
N € Ayar such that the following diagram commutes:

M, -

N,

I
I

Proof: We distinguish cases according to the reduction
rule by which M, — N,. Since ( = ) distributes
through all A, productions, we can assume without loss
of generality that the redex in M, —> N, is the whole
term M,. If M, is a (b1), (b2), (®»), (r>), (v>), or
(=:p) redex, the result follows immediately, since these
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are also reductions in A,q-. The remaining cases are as
follows (we use Lemma 4.13 freely without mention):

Case M, = o -var v.P,
K |

In this case M = pure (S[var v.P]) for some state-
prefix S and term P such that S = ¢ and P = P,. The
lemma then follows from the diagram:

M, — o U {v :undef} - P,

~

M

ICaseMUEaU{v:Nc’,}-N.,=:v;Pal

In this case M = pure (S[N =: v ; P]) for some state-
prefix S and terms P, N such that § = o U {v : N/},
P = P, and N = N,. The lemma then follows from the
diagram:

My, —cU{v:Ny;}-P,

~

M

Case M, EaU{v:No}.v?bx.Pol

In this case M = pure (S[v? > z.P]) for some state-
prefix S and term P such that $ = o U {v : N,} and
P = P,. We have some choice in the ordering of the
elements of S, so we choose to make the assignment to
v be the innermost part of the state prefix. Since M,
is a redex, N, # undef. Since S £ o U {v : N,}, there
is an assignment N =: v in S such that N = N,. The
lemma then follows from the diagram:

My —ocU{v:N,}-(z.P;) N,

i
i

M “TonyPure (S[(z.P) N))

[ Case M, = pure N, I

In this case M = pure N, for some term N such that
N = N,. The lemma then follows from the diagram:




M,

{}'Nd

I
I

M

[Case My, = o -return c¢” Ny ... No i |

In this case M = pure (S[return c¢* N; ... Ni]) for
some state-prefix S and term N; such that § = o and
N; = N, ; for 1 < i < k. The lemma then follows from
the diagram:

M, ——return ¢” (¢ - Ny i))i=1..%

1B

Mg— c” (pure (S[return Nj]))i=1.. &

The cases where M, is a py or ps redex are shown anal-
ogously to the last case. W

Theorem 4.16 (Simulation) For every closed term
M € Ayqr and answer A,

dvar F M=A & A\, F M =A.

Proof: We first prove “=>”. Assume Ayor + M = A.
By Theorem 3.20 M —» A using only head reductions.
We use an induction on the length of the head reduction
sequence from M to A.

Base case. If M = A, there is nothing to show.
Induction step. If M # A, then we have (in Ayar):

M=E[Alp E[L]=M' 5» A

for some evaluation context E, head redex A, terms
L,M’'. We show that A\, F M = M’ by a case anal-
ysis on the form of A. If Ais a 8, é, b>, > or v>
redex the result follows immediately since these are also
reductions in A,. The remaining cases are:

CaseAEN::v;v?bz.Pl

By Lemma 4.10 and Lemma 4.12 there is an evaluation
context E and a state prefix S such that

M = E[pure (S[N =: v ; v?>z.P])].
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By Lemma 4.14 M —» M,, where
M, =Ef[os-N =:v;v?>2z.P]

and o is as in Lemma 4.14. By Lemma4.11, v e bt S,
hence v € dom os. Assume, without loss of generality,
that o5 = ¢’ U {v: N'}. Then,

M, = E[cU{v:N'}-N=:v;v?>z.P]
= E['U{v:N} -v?v>z.P]
<7 E[0’U{v:N}-(2.P) N]
- E[pure (S[N =:v; (z.P) N])]

M/

Case A=N=:v;uw?>z.P, v;éwl
As before,

M = E[pure (S[N =:v; w?v>z.P])] —=» M,
where
M, =E[os-N=:v;w?>z.P]

By Lemma 4.11, both v and w are in bt S and hence in
dom og. Assume without loss of generality that os =
o/ U{v: N'}. Then,

M, = E[¢’Uv:N - -N=:v;w?>z.P]
o, El[oUv:N-w?pz.P]
—0, E[lcUv:N-(z.P) (0 w)]
—s E[cUv:N-[(0c w)/z] P]
.. E[cUv:N'-N=:v;[(cw)/z] P],

(z ¢ fo N)

3 E[oUv:N'-(z. N=:v;P) (0 w)]
5, E[cUv:N'-w?>p N =:v;z.P]
¢, E[pure(S[w?>z.N =:v; P])]

M/

lCaseA—Evarv.w?bx.P, v;éwl

This case is proved similarly to the last case.

I Case A = pure (S[return z.M]) |

Again using Lemma 4.14:

M =  Elpure(S[returnz.M])]
—» Efos -returnz.M]
Ty E[z.(¢ - return M)]

-  E[z.pure (S[return M])]




Case A = pure (S[return c” M;...M,]) ]
Case A = pure (S[return f]) |.

These cases are similar to the previous case.
This concludes the proof in the direction “=".

We now show “<”. Assume M € Ayqr such that A\, F
M = A. By the definition of ( = ), M = M. Also by the
definitions of =, A = A’ = A = A’. The proposition
then follows by pasting together the diagrams provided
by Lemma 4.15:

M var M: “—var A

5 Operational equivalence

Operational equivalence is intended to reflect the notion
of interchangeability of program fragments. It equates
strictly more terms than does convertibility.

Definition. Let )\, be some extension of the A-calculus.
Two terms N and M are operationally equivalent in A,
written A, | N = M, if for all contexts C in A, such
that C[M] and C[N] are closed, and for all answers A,

A FCMI=A & A+ C[N]=A.
Lemma 5.1 A, - M = N implies \s E M = N.

Proof: Assume A, + M = N, and suppose A\,
C[M] = A. Since convertibility is closed under term-
formation, A\, = M = N implies A, + C[M]= C[N],
for any context C. The symmetry and transitivity of
convertibility then imply that A, + C[N] = A. The
symmetric argument proves the converse implication,
thus establishing A, + C[M]=A& A\ + C[N]= A,
which is the definition of A, EM = N. R

Lemma 5.2 For any context C, A\, | M = N implies
A E C[M] = C[N].

Proof: Assume that A\, | M = N, and suppose that
Ae F C'[C[M]] = A, for some context C'[] such that
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C'[C[M]] and C’'[C[N]] are closed. Then the assumed
operational equivalence implies that A, + C/[C[N]]=
A, and similar reasoning establishes the reverse impli-
cation. Thus A\ E C[M]= C[N]. m

Lemma 5.3 For any variablez, \\ EM XN & A\ E
Az.M = Az.N.

Proof: The left-to-right direction is a special case of
Lemma 5.2.

To prove the converse, suppose that A\. | Az.M =
Az.N, and suppose that A, + C[M]= A, where C[M]
isclosed. If z € fv M, then \x F (Az.M)z = M,
and z € bu(C[]). Let C'[] = C[[]z]. Then A F
C'[Az.M] = C[M] = A. Since A« E Az.M = Xz.N it
follows that A, + C’[Az.N] = A, and therefore also
A+ F C[N]= A. Since C was arbitrary, \, E M = N.
If z ¢ fv M, choose C'[] = C[[]c] for any constant c.
|

Proposition 5.4 The following are operational equiv-
alences in Ayqr:

(1) vibz.wivy M = wloy.vicr. M
(2) N=tv;N'==w;M = N =w;N=v; M
(v # u)
3) varv.N==w;M = N=w;varv.M
(v #w,0 ¢ ft N)
4) varv.varw . M = varw.varv.M
() N=tv;N' ==v;M = N =uv;M
(6) S[p] = P
(6t SN ft (S[P]) =0)
) Pozreturnz = P

We will prove these operational equivalances soon, but
first we describe what they mean in terms of informal
programming concepts.

Equation (1) says that variable lookups commute.
Equations (2), (3) and (4) say that assignments and
variable introductions commute with themselves and
with each other. Equation (5) says that if a variable
is written twice in a row, the second assigned value is
the one that counts.

Equation (6) implements “garbage collection”: it says
that a state prefix S of an expression S[P] can be
dropped if no variable written in S is used in P. Note
that, using the “bubble” conversion laws and the com-
mutative laws (2), (3) and (4), garbage can always be
moved to a state prefix.



Proof: The definition of operational equivalence de-
mands that we prove statements that are quantified over
all Ayqr-contexts; the statements themselves are quan-
tified over all answer-producing reductions. We use a
proof technique developed by Odersky [20] to reduce
the burden of this proof.

The technique in question requires us only to prove cer-
tain properties of the interaction between the proposed
operation equivalence and the reduction rules of the cal-
culus.

For each proof, we construct a collection of symmetric
rewrite rules that define a relation, similarity, intended
to characterize the operational equivalence to be proved.
In our present proposition, this collection will always
consist of a single rule: the operational equivalence as
stated. We then show that, in all cases in which the
similarity rules have a critical overlap with the reduction
rules of the calculus, there exists a parallel application
of (already-established) operational equivalences to the
similar term that yields a term similar to the result of
the reduction. This aspect of the technique resembles
the definition of the bisimulations used in concurrency
theory [17]. The notion of critical overlap arises in the
theory of term-rewriting systems [6].

The main proof requirements for each operational equiv-
alence are explained in the following diagram, in which
the given relations appear as solid lines and the relations
to be established appear as dotted lines:

R . R ... RS ~R)
~1 ~1
R,, --------------------------- .’.‘R.i,

where ~ is the parallel similarity derived from ~; in our
proofs it will suffice to think of this relation as being the
union ~ U =.

For each proof below, we will give concrete meta-terms
and reductions to instantiate this diagram.

Applying the proof technique requires in addition that
we establish some minor technical conditions. First,
we must verify that the evaluation contexts of Ay, are
downward closed, that is, that E = C) - Cs implies that
Cs, is itself an evaluation context. This is obvious from
inspection of the definition of A,q,’s evaluation contexts
in Figure 5. Second, we must establish, for each simi-
larity relation we introduce, that the relation preserves
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evaluation contexts and is answer-preserving. Preser-
vation of evaluation contexts means that the similarity
rules do not overlap with the defining productions of
evaluation contexts. An answer-preserving relation sat-
isfies M ~ A = M —» A; this is easily seen to be true
for all our proposed similarity relations, so we will omit
further mention of this issue.

We now proceed to prove each of the proposed opera-
tional equivalences. For most of the individual proofs,
the operational equivalence required to construct the
bottom edge of the above diagram is easily established
by exhibiting a conversion; we only remark on the ex-
ceptions to this observation.

(1) We adopt the similarity relation implied by § =
{v?>z.w?>y M ~w?>yv?oz. M}

The rules in § do not overlap with any of the produc-
tions defining evaluation contexts in Figure 5. Hence,
~ preserves evaluation contexts.

We now enumerate the various ways in which ~ can
intefere with —; for each case, we show how to instan-
tiate the diagram so as to prove that the compatible
equivalence closure of ~ is an operational equivalence.

Case 1.1:

R = N=:u;v?(>x.'w?y.M
(usév,u';"w,v,.i_W)
R" N=u;w?vy.v?vz. M
R = vivz.N=u;uwlvy.M
Rl = vivzwloyN=u; M
! = wlbyviszN=u; M
R T) R
1
R’ Tx) Ri
R" 5 wiryN=tu;v?>z.M
w B
Case 1.2:
R = N=w;vivz.uw?>yM
(uZEv,vEw)
R" N=w;w?oyvivzM
R = vz N=w;uwlsyM
Ry = R{ v?oz.N=:w;[N/y]M
R T) R
1
R - v?ozN=w;(y.M)N
7 B




RII

7 N=w; (y.v?>2.M)N

- N=w;v?Tez[N/ylM
w B
Case 1.3:
R = N=v;v7vz.0?>yM
(v#w)
R" = N=v;u?>yv?vz.M
R = N=v;(zu?>y.M)N
Ri=R{ = wlsyN=v;[N/z]M
R 5 F
R" > wleyN=tv;v?>z.M
1/
75
R 2 N=iv;wloy[N/zM
w R
Case 1.4:
R = N=v;v?pz.0?70y.M
(v 2 v,u#w)
R = vz N=u;v?oyM
R' = N=u;v?oz0?lvyM
Ri=R/ = FR
R Tl) R
RII T;') Ril
Case 1.5:
R = N=v;vloz.070y.M
R = N=v;(z0?>y.M)N
R" = R
Rl = N=v;v?>oy[N/z]M
R = R
/
R i R
R’ - B
1 "
B 55 R

For the remaining operational equivalences, we give only

the basic data needed to complete the diagram.

@S={N==v;N=w;M~N =w; N =

U;M},(U';:/'w).

Case 2.1:

RI
Ry
RII
RY

RII

Case 2.2:

RI

RII
R;
Ry

R/
Rl/
/
1

1"
1

.S"l <l

of o

ol o o~ og]

Y
w

b

N=v;N =w;w?>z.M
(v# w)

N=v;N = w;(z.M)N'
RI

N =w;N=v;w?’>z.M
N =w;N=:v;(z.M)N'

RI

N =w;uwlbzn=v; M
note that z ¢ fu N

N =w;(@N=:v;M)N
N =w;N=:v;[N/z)M'
R

N=v;N =w;vvzM
(v £ w)

N=v;v?7pz.N =w; M
(z ¢ fo N')

N =w;N=v;v?vz.M
N=v;N = w;[N/z]M
N'=:w;N=:v;[N/z]M'

RI
N=v;(=zN =w;M)N
Ry
N =w;N=:v;(z.M')N

"
1

N=v;N =w;ulvz.M
(uZw,u#v)

N=v;u?lvz. N =w; M
N =w;N=v;u?vz.M
bz N=v;N =w; M
u?bz. N =w;N=:1v; M

RI

R
RY



B)S={varvN==w;M~N=w;varv.N|v#

w,v ¢ ft N}
Case 3.1:
R

RI
RII

/
1

/"
By

RI
RII

Case 3.2:

RI
RII

/
1

"
Rl

Case 3.3:

RII

gl = = s i

i

ul s»l ml \J’ gl

el sl 5| |

N =:w;varvu?>z.M
(v Z w,u#v)

N =:w;u?bz.var v.M
var v.N =: w;u?>z.M
u?cz.N =: w;var v.M
u?vzvarv.N=:w; M

Rl
R
var v.u?bz. N = w; M
RY

N =:w;varv.w?vz.M
(u# )

N =w;w?cz.var v.M
var v.N =: w w?bz. M
N =: w; var v.[N/z]M
var v.N =: w ; [N/z]M

RI
N =:w; (z.var v.M)N
Ry
var v.N =: w; (. M)N

1/
1

var v.N =: w; u?>z.P
(u 2 w,uzv)

var v.u?pz.N=:w; P
N =:w;var v.u?>z.P
u?vz.var v.N =:w; P
u?>z.N =: w; var v.P

RI
/
Ry
N =:w;u?>z.var v.P

/"
Ry

Case 3.4:

RII

Case 3.5:

var v.N =: w; w?p>z.P
var v.N =: w; (z.P)N
N =: w;var v.w?p>z.P
var v.N =: w ; [N/z]P
N =: w ; var v.[N/z]P

!
i R
- B
- N =:w;w?>z.var v.P
- N= w; (z.var v.P)N
»

(var v N=:w; P)vz.Q
= wvaruv.N=:w;P>z.Q
= (N=:w;varv.P)pz.Q
= R
= N=:w;varv.Pvoz.Q
= R
— R

(4) S = {var v.var w.M ~ var w.var v.M}

Some of the critical pairs we encounter in the course
of proving this operational equivalence require more re-

fined reasoning than we have yet encountered.

Case 4.1:

R
R/

Case 4.2:
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(var v.var w.M)>z. N
var v.(var w.M)>z. N
(var w.var v.M)>z.N
var v.var w.(M > z.N)
var w.var v.(M > z.N)

RI
By
var w.(var v.M)>z.N
RII
1

var v.var w.u?>z.M

(v v, uw)




RI

var v.u? > z.var w.M
var w.var v.u?>z.M
u? > z.var v.var w.N

R! = u?vz.var w.var v.N
R ? Rl
B 5 B
R" = var w.u?pz.var v.M
w B
Case 4.3:
R = wvarv.wvarw.ov?oz. M
(v# w)
R = varv.aw?vz.var wM
R" = varwvarv.w?oz.M
1 = R
R = K
R T) R
2
! !
B 5 &
R" = R

Informally, both R” and R’ are stuck terms: the only
way a program containing either one as a subterm can
reduce to an answer is to throw the term away, since no
rule (including the d-rule), can examine the substruc-
ture of terms constructed with var (or any other term
except a value or a fully-applied constructor). Thus one
would expect that putting both terms in the same con-
text would yield a computation that either gets stuck or
yields the same result regardless of the terms in ques-

tion.

Formally, we apply the critical-pair method once
again. We define an auxiliary similarity relation S’
{var v.v?>z.P ~ var w.var v.v?>z.P' | v # w}. This
relation interferes with no reduction rules whatsoever.

by the following argument:

B)S={N=:v;N==v;M~N'=:v; M}

Case 5.1:

R
RI
RII

/
1

/7"
Ry

ne e e

N =v;v?v2.M

N' =:v;(z.M)N'
N=v;N =v;v?pz.M
Rl

N=v;N =:v;(z.M)N'
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R —» R
RII ? Ri/
Case 5.2:
R = N=uv;uwlvzs.M
R = wlvz N =uv;M
R' = N=v;N=v;uwlvz.M
Rl = R
R{ = wlvzN=tv;N=v;M
R -3—') R
1
R" oy N=v;wlvz. N =v; M
= B
Case 5.3:
R = N=v;N =v;vIpz.M
R = N=:v;N =v;(zM)N'
R' = N =v;vvz.M
i1 = R
R{ = N=:v;N =v;(z.M)N'
R » F
RI/ 7) i/
Case 5.4:
R = N=v;N=v;u?lbz.M
(u#v)
R = N=v;ulbpzs.N =v; M
R' = N =tv;ulbz.M
Rl = ulvzsN=v;N =w;M
R! = ulvbzN =v;M
R —5—) R’
1 X
L
R” _bl_) Ril

(6) S = {S[P] ~ P | S a state context, bt SNft S’ = @}
This similarity relation can interfere both with the pu-
rification rules and with the assignment rules. All the
critical pairs having to do with the purification laws
yield essentially the same diagram verification task, so
we give only a single example:




R = pure(S[return z.M])
R' = z.pure(S[return M)])
R" = pure(returnz.M)
1 = R
R{ = z.pure(return M)
R F) R’
/i 1
" B

The uses of ~ in the converse direction are equally sim-
ple to verify.

The verification of the proof conditions in the cases of
interference with assignment rules requires that we in-
voke our knowledge concerning the structure of S’. By
the definition of a state prefix (Section 2), all assigments
in S’ must be to tags defined in S’. Also, we have as-
sumed that S’ is nonempty, so the immediate context
of the metavariable M in the definition of § is either of
the form var v.[] or the form N =: v ; [].

We work out one of the three simple cases of interfer-
ence with an assignment rule:

R = S[N=v;uw?>z.M]
R = Sw?’vz.N=:v;M)
R' = N=v;uw?’vzM

! = R
R! = wlvzN=v;M

R Y R’

1
R/I Tl) Ril

(7) For this equivalence, we adopt the similarity relation
defined by & = {P b z.return z ~ P}, where the meta-
variable P ranges over procedures only. This similarity
relation only interferes with the rule (>p).

R = (Pbzreturnz)vy.Q
R' = Poz(returnzpy.Q)
R'" = Pvy.Q
Ri = Poz(y.Q)
R! = R

R — R

>b>
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RI
RII

-

>

R
RY

Y

IR

To establish the auxiliary operational equivalence R" =

1, we define a similarity relation by &' = {y.M ~
z.(y.M)z |z ¢ fM}. This similarity only interferes
with the B-rule:

R = (z(y-M)z)N
R = (yM)N
R" = (y.M)N
Rl = R
Ril = RII
R & F

6 Relationship between ), and classical -
calculus

Clearly, convertibility in A implies convertibility in Ayqy,
since (B) and (8) are reduction rules in Ayqr. However,
this goes only part of the way. For instance, the equa-
tion tail o cons z = id between list processing functions
is not an equality in the sense of 3d-convertibility, but it
is an operational equivalence. Other operational equiv-
alences are those that identify some diverging terms
or terms that involve fixed points. Since equivalences
like these are routinely used when reasoning about pro-
grams, we would like them to be preserved in Aysr. We
establish now the result that \,.- indeed preserves the
operational equivalences of A, and, furthermore, that
Aver does not introduce any new operational equiva-
lences between A-terms®. The only provision on this
result is that the underlying set of constructors and ba-
sic function symbols needs to be “sufficiently rich”.

Definition. An (extension of) applied A calculus A,
has a sufficiently rich set of constants if

(a) The constructor alphabet includes for every arity
n an infinite number of constructors that do not form
part of any of the terms Ny .n, Ny used to define the &
function. (That is, we can always find “fresh” construc-
tors that are not used in the reduction of some given
program).

5The latter property can be regarded as the preservation of
distinctions or inequivalences between terms.




(b) For every constructor c” one can define in A, a pro-
Jjection function proj_c® such that
proj_c™ (¢" My .. M) P Q
projc™ V P Q
for any other value V.

PM ..M,
QV

(That is, one can test for a constructor, and can take
apart constructed terms).

(¢) One can define in A, a function projector proj_f such
that

proj_f(c™ My ... M,) P Q Q(c® My ... My,)
for any data value ¢® M; ... M,
projf VP Q PV
for any non-data value V (i.e. for any function).

(That is, one can test for a function).

Clearly, these projection functions can be defined by
suitable d-rules. The functions proj.c™ represent a
stripped down version of pattern matching on data
types, as it is found in many functional programming
languages. Function proj_f can be thought to be a dy-
namic type test, similar to procedure? in Scheme [4].

In the following, we will assume that A, has a suffi-
ciently rich set of constants that is shared by all other
calculi in consideration (i.e. As, Av, and ))

The rest of this section is devoted to the proof that Ay,
is an operational extension of A. This proof is based on
finding an implementation of Ayer in \. We will show
below (in Theorem 6.15) that existence of an imple-
mentation implies operational extension, provided the
implementation is sound and complete and maps closed
A terms to themselves. We call such an implementation
a syntactic embedding.

Definition 6.1 (Extended Term) Given an inductively
defined term language A., an eztended term is formed
from the inductive definition of A, and []. (Hence, both
terms and contexts are extended terms).

Definition 6.2 A term M is A-closed iff FV (M) = 0.

Definition 6.3 (Syntactic Embedding) Let A, and X
be extensions of A with the same set of answers and
suppose that A, D Ag. Let £ be a syntactic mapping
from extended A.-terms to extended Ao-terms. Then &
is a syntactic embedding of A\, in A if it satisfies the
following two requirements.

1. & preserves A-closed Ag-subterms up to convertibil-
ity. For all A.-contexts C, A-closed Ag-terms M,

Xo F E[C[MN] = E[C] [M].
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2. & preserves semantics. For all closed A.-terms M,
answers A,

Syntactic embeddings generalize the syntactic (macro)
expansions of [7]. They are useful for two reasons. First,
a syntactic embedding & of A, in A allows us to extend
models of Ag to all of A, simply by composing the de-
notation function of Ag with £. Second, and somewhat
related to the first point, the existence of a syntactic
embedding between two theories guarantees that all op-
erational equivalences of the base theory are preserved
in the extension. Indeed, we have:

Theorem 6.4 Let A\, and Ao be two extensions of A
with the same set of answers and suppose that A, D Ay.
If there is a syntactic embedding of A, in Ao then for
any two terms M, N € Ao,

Ao .:MEN = A\ "—‘MEN

Proof: Assume that Ao | M = N Then, for all answers
A and Ao-contexts Cp such that Cy[M] and Co[N] are
closed,

Xo F Co[M]:A o A F Co[N]:A

Assume first that both M and N are A-closed. Let £ be
a syntactic embedding of A, in Ag. Let C be an arbitrary
A.-context such that C[M] and C[N] are closed, and let
A be an answer such that C[M] = A. Then,

Ak CIM]= A4

(€ preserves semantics)

X F E[C[M]]=A

(€ preserves A-closed Ao terms)
A FE[C][M]=A

(premise: Ao E M = N)

X F E[CIIN]=4

(reverse the argument)

)\* '_ C[N]:A.

Since A and C were arbitrary, A« | M = N. Now let
M and N be arbitrary A\¢ terms, with fo M U fo N =
{z1,..., 2a}. Then,
M FMEN
(Lemma 5.2)
A F Az, .. Az, M = Az, ... Az, N
= (first part of proof)
M B Az L A, M= Az, ... Az, N
= (Lemma 5.3)
MEFM=N.

=
A4
=

<

=




Before we state and prove the operational extension the-
orem, let us quickly examine why finding a syntactic
embedding of Ayer in A is non-trivial. A natural imple-
mentation of A4, In A maps readers and assignments to
read and write operations on a store. This suggests that
we should work with a calculus with explicit stores. Be-
cause all operational equivalences of A4 are preserved
in Ay (Theorem 4.16), we can use just as well A, instead
of Ayar as the source language of the embedding. A store
in A, can be represented as a mapping from locations
to terms. Variables in A, are then mapped to locations.
But what is a location? Conventionally, it is an element
of some index type such as an integer. This is sufficient
if there is only one global store, but the scheme breaks
down for Ayer. The problem is that a Ay, term can
contain multiple pure blocks. This makes it necessary
to distinguish in the implementation between locations
that are defined in a given pure block and locations
defined in other blocks. The distinction is needed since
only local variables may be read or written, and only
global locations may be returned from a pure block.

Of course, local and global variables can be distin-
guished if they are represented by different locations
(or, equivalently, if locations are tagged with a unique
identifier associated with the block in which they are
allocated). The problem then is how to ensure that all
variable instances in a program (as opposed to those a
single pure block) are mapped to unique locations. The
obvious idea of passing a name supply to a pure block
is not open to us, since then functions would need ad-
ditional implicit arguments for the name-supply. This
would violate the property that a syntactic embedding
maps A-closed terms in the base language to themselves.

Perhaps surprisingly, there is a way to ensure uniqueness
of locations without passing a name supply to pure-
blocks. This is shown in [21], where a calculus Av is
studied. Av is an extension of the A-calculus with a
binding construct for names. The term language of Av
extends A by three new constructs:

M

e | n | vaM | My == M,

Names form a new countable alphabet. A name n is
bound in a construct ¥n.M. Like identifiers in A (and
variables in Ayqr), names can be a-renamed. The only
operation applicable to names is the equality test n; ==
ng. (==) is syntactic equality, its behavior is given by
the reduction rules

n==mn — {irue

n==m — false ifn#m
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The other reductions that are particular to Av involve
v-terms:

vniz.M - AzwvnM
vnc® My .. M, — c" (vn.M) ... (vn.M,)
vn.m - m

Standard reduction in Av is defined as in A, with the
added production

in the grammar for evaluation contexts.

For a more comprehensive discussion of Av, see [21]°.
Also in [21] it is shown that Av is an operational exten-
sion of A. The proof of this theorem relies on a a syn-
tactic embedding that maps names to level numbers.
Similarly to a DeBruijn number, a level number indi-
cates the number of intervening v abstractions between
the occurrence of a name and its definition.

Proposition 6.5 There exists a syntactic embedding
&y of Av in A.

Proof: See [21]. W

Since A, preserves all operational equivalences of A, it
suffices for the proof of operational extension to give a
syntactic embedding of A, in A. For technical reasons,
we use a variant of A,, in which states are represented as
sequences of bindings v: M, rather than as sets of such
bindings. The reduction rules in Figure 6 carry over,
except that the first three rules are now defined on lists
(with # as the append operator) rather than sets:

oc-varv.M —
o4 [v:undef] - M
ot[v:N]to’ - N=1v; M -
ot[v:N]to - M
ot[v:NlHo' - v?p2M —

ot[v:N]t#o' - (z.M) N (N # undef).

Clearly, Theorem 4.16 holds for the new just as for the
original A, calculus.

The embedding of this variant of A, in A, &, is given by
&[M] = & FIM]L]

where the mapping F is defined in Figure 7. F[M] takes
as argument an environment p that maps identifiers and

8The calculus defined in [21] is a slight variation of the calculus
described here, with unary constructors and pairs instead of the n-
ary constructors described here. The difference does not influence
the operational extension results.

ifn#m



Flfle = f

Flc1p = c"

Flzlp = pz

Flvle = pv

Fl=.M]p = Ay.F[M]p[z =~ y] (y ¢ range p)
F[MN]p = (F[M]p) (FIN]p)

Flvar v.M]p = wvt.newref t (F[M]p[v — t]) (t ¢ range p)
FlM]p = deref (F[M]p)

FIM = Nlp = assign (F[MIp) (FINTp)

Flreturn M]p = return (F[M]p)

F[Mv>z.N]p = bind (F[M]p) (F[z.N]p)

Flpure M]p = pure [M]p

Flo-M]p = vt ...vtg.block (F[M]p') (Flo]p')

where {vi,...,v,} = dom &
P =plnnmt] .. [un o ty)]
ti,...,t, ¢ Tange p

I

Fllv: : My, ..., vn : My]lp upd (Def F[M,]p) (F[vn]p) (...(upd (Def F[Mi]p) (F[uilp) L)...)

block p s = unwrap (p (Az.)s.(z,s)) s)
unwrap (a, s) = case aof
Res (¢™ My ... Mp) = c" (unwrap (Res My, s)) ... (unwrap (Res Mp, s))
Res f — Az.unwrap (f z, s) (f a function)
pure p = blockp L
return a ks = k(Resa)s

bindp q ks = p(Az.q(stripz)k)s

where strip (Res z)
strip Unat

p k (upd Undef t s)

case s t of Def a — k (Res a) s

case s t of Undef, Def y — k Unit (upd (Def a) t s)

updats = Muift==uthenaelses u

z

0

E
»
|

newref t p
deref t ks
assignat ks

Figure 7: Environment mapping F

34




variables in A, to identifiers and names in Av. L de-
notes the totally undefined environment, and p[z — y]
denotes the environment p extended by the binding that
sends z to y. To save parentheses, we adopt the con-
vention that environment extension binds more strongly
than function application, i.e. F[M]p[z > y] parses as
FIM](plz = o))

Some other remarks on Figure 7:

¢ F maps an applicative term in A, to itself (modulo
« renaming). Procedures are mapped to functions
that access and modify an explicit state.

e A state is a mapping from Av names to either
Def M where M is a term, or Undef. Undef
is returned if a variable is uninitialized. A store
{vi : My,..,vp : My} in ), is translated to the
state that maps each (image of) v; to Undef, if
M; = undef, and to Def (F[M;]p) otherwise. The
translated state is undefined on all other names.
Such a function can be constructed from L (the
totally undefined state) and upd. Note that the
definition of upd relies on the equality test (==)
on names. Note also that an uninitialized variable
is different from a variable containing L (where L
is any A-term without weak head normal form). A
procedure that reads from an uninitialized variable
always gets stuck and hence never reduces to an
answer. If it reads a variable whose value is L the
procedure might still reduce to an answer, namely
if the value of the variable is not demanded in the
subsequent computation.

o A variable v in A, is mapped to a Av name n.

e A procedure in A, is mapped to a state-
transformer. A state-transformer is a function from
continuations and states to results. A continuation
is a function from intermediate results and states
to final results. Both intermediate and final results
are wrapped in a constructor Res (or the result is
Unit if it comes from an assignment; see below). It
is assumed that Res and Unit are reserved, i.e. that
they are not available for the reduction of pure Av
terms. This can always be achieved since Ayq, has
by assumption a sufficiently rich set of constants
that is shared by the other calculi in consideration.

Wrapping results in reserved constructors serves to
keep state transformers apart from other Av func-
tions. Without it, a term such as pure f, where f is
a Av function that behaves like a state-transformer,
would be translated to pure f, which might well re-
duce to a result. On the other hand, the original
term pure f will always get stuck, since f is not
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a procedure. Hence, & would fail to preserve se-
mantics. Note that in a typed setting equivalent
abstraction barriers could be provided by abstract
data types.

The definition of F makes use of the auxiliary func-
tions given in the second half of Figure 7. To help
readability, we give these functions in a sugared no-
tation similar to Haskell [14] instead of in pure Av.

Function block invokes its state-transformer argu-
ment p with its state argument s and the continua-
tion Az.As.(z,s). This continuation simply returns
the intermediate result and the state passed to it.
The result portion of this pair is then unwrapped
using function unwrap. This is similar to the ac-
tions of productions 0., 0p, and o, =

The term vny. ... .wny.unwrap p k s corresponds
to a A, configuration with state s and procedure
po> k. The domain of s is {ny, ..., nm}.

The state-transformer return z invokes its contin-
uation in the current state with Res z as interme-
diate result.

The state-transformer bind p ¢ invokes the state-
transformer p with q as a prefix of the continuation.

A variable abstraction var v.M is mapped to the
Av-term vn.newref n (F[M]p[v — n]). Function
newref n p invokes its state-transformer argument

p in a state in which its name argument n is bound
to Undef.

The state-transformer deref n forces a read of n
in the current state. This corresponds to the strict
behavior of readers in Ay, Where the read is per-
formed even if its result is not demanded by the
subsequent computation.

The state-transformer assign z n also forces a read
of n, but then performs the same action regardless
of the value associated with n. This ensures that
the name n has in fact been entered (via newref) in
the current state and thus guards against non-local
assignments. assign updates the state by the bind-
ing that sends n to Def z and invokes its continua-
tion argument with Unit as intermediate result. If
the assignment appears as first argument of a bind
combinator, its Unit result will be translated (by
function strip) to (). Otherwise, if the assignment
occurs as last action in a state-transformer, reduc-
tion gets stuck, as it would in the A, program.

We now proceed to prove that &, is a syntactic embed-
ding.




Definition 6.6 Env(M), the set of admissible envi-
ronments for a A, term M, is the set of all injective
mappings from identifiers to identifiers and variables to
names that bind all free identifiers and variables in M.

Lemma 6.7 For all terms M, N, environments p €
Env((z.M) N),

FIN/z) M]p = [F[N]p/y] (F[M]plz = y)).
Proof: A routine induction on the structure of M. N

Lemma 6.8 F is stable under reduction: For all terms
M,N € A, environments p € Env(M),

Ao b M N = \vE F[M]p= F[N]p.

Proof: We use a case analysis on the form of reduction
in M — N. We only show three example cases; the
other cases are similar. To simplify notation, we will
place a tilde ” on identifiers in the target language and
write M for

}.EM]lp[.’L‘ > E]xefu M\dom p-

For instance, A\z./ is short for A%.F[M]p[z — Z]. Also,
we will use infix notation liberally, with ‘f¢ in back-
quotes denoting the infix version of f.

In this case, the A, reduction is

(M>z.N)py.P - Mvoz.(Mv>y.P)
and we have in Av:

FI(Mv>z.N)>y.Plp
(by definition of F)
(M “bind‘ \z.N) ‘bind‘ Ay.P
= (by definition of bind, 3)
Me.(M “bind‘ A\z.N) (\g.P (strip §) k)
= (by definition of bind, B)
Xe.(AK' .M (A2.N (strip ) k') (A§.P (strip §) k)
= (by B-reduction)
M. M (\2.N (strip &) (A\§.P (strip §) k))
= (by definition of bind, B)
M “bind* (AZ.N ‘bind‘ A§.P)
(by definition of F)
FMv>z.(Nvy.P)lp

In this case, the A, reduction is

ct[v:N]+o' - N=tv;M - ot[v:N]Ho' - M

Let L = [ny,...,np] = [pv | v « dom o], We abbreviate
vny. ...vnm.M by vL.M. Let k = Az.)s.(z,s). Let N*
be Undef if N = undef, and Def N otherwise. Then
we have in Av:

Flot[v:N']+o' -
(by definition of F)
vL.block ((assign N © bind‘ A(). M)

(Flo+[0: N+ Ip))
(by definition of block, upd)
vL.unwrap ((assign N & ‘bind‘ X\().M) k

(upd N* 5 (Flo+0']1)))
= (by definition of bind)

vL.unwrap (assign N & (Az.(A().M) (strip z) k)
(upd N* % (Flo+0']p)))

= (by definition of assign)
vL.unwrap ((Az.(A().M) (strip z) k) Unit

(upd (Def N) & (upd N* ¥ (F[o+0']p))))
(by B reduction (twice), definition of strip)
vL.unwrap (M k

(upd (Def ) & (upd N* & (Flo#0']1))))
(by B reduction, definition of upd)
vL.unwrap (M k

(upd (Def N) & Flo+o"]p))
(by definition of block, upd)
vL.block (M k

(Flo+[v: N]+0Dp))
(by definition of F)
Flo#[v:N]to' - M]p

N=:1v;M]p

N

R

n

IR

In this case the A\, reduction is

o-returnz.M — z.(o-return M)




Define k, L and vL.M as above. Then we have in \v:

Flo -return z.M]p

(by definition of F, block)
vL.unwrap (return (\z.M) k &)
(by definition of return)
vL.unwrap (k (Res (\z.M)) &)
(by definition of k, B-reduction)
vL.unwrap (Res (\%.M), &)

(by definition of unwrap and J)
vL.\i.unwrap (Res M, &)

(by reduction in Av)
A\i.vL.unwrap (Res M, )

(by definition of unwrap, k, return, and B)
A&.vL.unwrap (return M k &)
(by definition of F, block)
Flz.(o - return M)]p

Lemma 6.8 shows that equal A, terms get mapped to
equal (wrt =) Av terms. We also have to show the
converse, that different )\, terms get mapped to different
Av terms. To this purpose, we define in Figure 8 a left
inverse F~1 of F and show that F~! is stable under
standard reduction in Av.

To define F~1, we will assume that all auxiliary func-
tions in Figure 7 are primitive functions (in all their
arguments). This is admissible since all these functions
are strict. Hence, we invalidate no operational equiva-
lences, nor do we create new ones. We assume that these
primitive functions define the following é reductions:

e block p s, unwrap (a,s), bind p ¢ k s, and
newref n p k s all reduce in one step to their right
hand sides given in Figure 7.

e return a (Az.q)
[Res a/z]q s.

s reduces in one step to

e deref n (Az.q) sreduces in one step to [Res a/z]q s
if s n is of the form Def a, and gets stuck otherwise.

e assign @ n (Az.qg) s reduces in one step to
[Res a/z]q (upd (Def a) n s) if if s n is defined,
and gets stuck otherwise.

o return a k s, deref n k s, and assign a n k s get
stuck if k is not a A-abstraction.

Definition 6.9 Let p~! be the inverse of environment
p- p~ ! is a well-defined (partial) function since p is
injective. Define Env=1(M) = {p~! | p € Env(M)}.
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The proofs of the following three lemmas are all easy
inductions on the structure of M:

Lemma 6.10 F~[]p~! is a left inverse of F[ Jp: For
all M € A,, p € Env(M),

FFMIplp™ = M.

Lemma 6.11 For all terms M € Av, environments p €
Env=1(M), identifiers z ¢ fv M, y,

F M]plz = y] = F~ [ M]p

provided either side is defined.

Lemma 6.12 For all terms M, N € Av, environments
p € Env~1((Az.M) N),

FUIN/2) Mlp = [F~[N]p/y] (F~ [M]plz = ).

provided either side is defined.

Lemma 6.13 F~! is stable under standard reduction:
For all terms M, N € Av, answers A, environments p €
Env(M), if

Ak M-—-N-»A

and F~1[M]p is defined, then so is F~1[N]p and

Xo | FHM]p= FH[N]p.

Proof: The proof is by a case analysis on the form of
the redex A in M — N. We only show one case; the
other cases are all similar, but tend to be simpler.

|CaseA=assign a nksl

Since the reduction appears in a standard reduction se-
quence to an answer, A must occur in a superterm of
the form unwrap A, k must be a continuation of the
form Az.q (strip z) k' and s must be state, otherwise
reduction would get stuck.

In Av the reduct R of A is
[0/zlq ¥ (upd (Def z) n s),
and we have to show that, for any p € Env™1(A),

Ao | F~unwrap A]p = F~[unwrap R]p.

The left hand side of this operational equivalence ex-
pands to

S~[slp - P~ assign a n k]p. n




Ffle

F - e"p
Fz]p

F e
F-{Az.M]p
F-[MN]p
F-vt.M]p

F[newref t M]p
F-deref M]p
F~Yassign M N]p
F~return M]p
F-1[bind M N]p
F-[pure M]p

F~unwrap (Res a, s)]p

F~Hunwrap (p )]

STH[L]p
S~ [upd Undef t s]p

S~ [upd (Def a) t s]p

P-1[p (Az.Xs.(z, s)]p
P-p (Az.q (strip z) k)]

[

cn

pz
pt

y-F M]plz = y]
(F~'[M]p) (F~[N]p)
F-[M]p[t = v]

var pt. F[M]p
(F-[M]p)?

F[M]p = F[N]p
return (F~1[M]p)
F[M]p > F-Y[N]p

pure (F~'[M]p)

S~ [s]p - return (F~[a]p)
S sle - P~ [plp

0
UPD undef (pt) (S~ [s]p)
UPD (F~*[a]p) (pt) (S~ [s]p)
where UPD a v []
UPD a v ([v: d]+0)
UPD a v ([w: b]to)

[v:d]
[v:a]te
[w:b]#+UPDavo

Fplp
F=plp > AyP[q k]p[z — y]

Figure 8: Reverse mapping F~!

38

(y ¢ range p)

(v ¢ range p)

(v # w)

(y ¢ range p)




We first turn to the state portion of this term. By
the definition of F, there are terms ay,...,a,, and names
ny,...,Ny, such that

s =

upd G Ny (... (upd a1 ng L) ...).
Then by the definition of -1,

S'l[s]lp = [pm :}-_ll[al]lp: oy Pm :f"lllam]lp].

Since assign a n k is by assumption a redex, n is in the
domain of s, hence is equal to at least one of ny, ..., nyy,.
Therefore, there is a term M and states ¢, ¢’ such that

S slp = o#[pn: M]#o'. (2)

We now turn to the procedure part of (1). Assume first
that z occurs free in the prefix g of the continuation
k = Az.q (strip z) k' (an easy induction on the form of
state-transformers shows that z cannot appear free in
k'). Then we have in \,:

S slp - P~ [assign a n (Az.q (strip z) k')]p
(by (2) and the definition of P1)
ot [pn : M]to' -

Falo=: pn > Ay P~ [g K]p[z = 4]
(by =:> and B reduction)
ot-[pn : M]+o' -

F-alp=: pn; [()/v] (P~*[q K']plz — )
(by Lemma 6.12)
ot [pn : M]to' -

Falp=: pn; (P~[10/=)(q ¥)lplz — ])
(by Lemma 6.11)
ot[pn: M]to' -

Falp=: pn ; (P7[[()/=] (g ¥")]p)
(by o= reduction)
ot [pn : F~a]p]H o’ -

PHI0/) (g K)]p
(since z is not free in k')
ot [pn : F~a]p] ¥ o' -

PHI0/=lg ke

Here, k' is a continuation, i.e. it is of one of the forms
Ay.q’ (strip y) k", Az.As.(z,s). If k' is of the form

39

Ay.q' (strip y) k", this can be continued as follows:

;.-H-[pn : F~a]p) t o’ -

P10 /zlg (Ay-¢' (strip y) k")]p
(by definition of P~1)
oct[pn : F~[a]p] 4o’ -

FHI0/z]ale > A2 P~ g K"]ply = 2]
(by definition of UPD)
UPD (F-[alp) n (S~5p) -

FUI0/]alp > Az.P~ g K"]ply = 2]
(by definition of F~1, §~1, P-1)
F~ unwrap ([()/=] q)

(Ay.q¢’ (strip y) k") (upd (Def a) n s))]p
F-lsqRp

i

R

If, on the other hand, the continuation %’ is of the form
Az.Ay.(z,s), (...) can be continued as follows:

;T"-H- [on : F~[a]p] # o' -

P10/l (Az-As.(z, 5))]p
(by definition of P~1)
ot[pn : F~1[a]p] o’ -

FHI0/=)ale
(by definition of F~1, §~1)
F~unwrap ([()/z]q)

(Az.As.(z, s)) (upd (Def a) n s))]p
F-[R]p '

This proves the case where z occurs free in ¢. The case
where z does not occur free in ¢ is identical, except that
the =:p reduction step is left out.

Proposition 6.14 &, is a syntactic embedding of A,
in A.

Proof: We first show that &, preserves A-programs. Let
M be a closed A-term. Then by an easy induction on the
structure of M, F[M]L = M. Since &, is a syntactic
embedding, £, [M] = M. Hence, &, [M] = M.

We now show that £, preserves semantics. Since &, is
a syntactic embedding this follows from
A F M=A & Wk F[M]L=A 3)

for all terms M € A,, answers A.




We show each direction of “©” in (3) separately. “=":
Assume M = A. Then by an induction on the length of
reduction from M to A, using Lemma 6.8 at each step,
FIM]p = F[A]p. But the latter term equals A.

“&”: Assume F[M]L = A. Then by an induction on
the length of standard reduction from F[M]L to A,
F-[F[M]L]L = F-[A]. The right-hand side of this
equivalence equals A, whereas by Lemma 6.10 the left
hand side equals M. ®

Theorem 6.15 ), is a conservative operational exten-
sion of A: For any two terms M, N € A,

AEM=N & \EM=N.

Proof: By Proposition 6.14, there is a syntactic embed-
ding of Ay in A. By Theorem 6.4, this implies that A, is
an operational extension of A. It remains to show that
the extension is conservative.

Assume )\, = M = N. Then we have
A F C[M]=A& )X + C[N]=A

for all contexts C in A, such that C[M] and C[N] are
closed and therefore also for all such contexts C in A.
Since terms M € A have only 3 and § redexes, and since
A is closed under §4 reduction, this implies A b M = N.
]

Corollary 6.16 )\, is a conservative operational ex-
tension of \: For any two terms M, N € A,

AEM=N & Aar EM =N,

Proof: Immediate from Theorem 6.15 and Theo-
rem 4.16. W

7 Related Work

Hoare et. al. [12] present a normalizing set of equations
for an imperative language with assignment, conditional
and nondeterministic choice. Functional abstraction is
not considered. Field [10] extends the deterministic part
of their theory with shared variables. Boehm [2] gives
an equational semantics for a first-order Algol-like lan-
guage. In his setting, expressions have both values and
effects, which are defined by different fragments of his
calculus.

Felleisen, Friedman, and Hieb [8, 9] have developed a
succession of calculi for reasoning about Scheme pro-
grams. Since their target programming language is call-
by-value, they have based their work on the Ay -calculus
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of Plotkin[23] instead of the pure A-calculus. It is inher-
ent in their goal of reasoning about Scheme that their
theories are not a conservative extension with respect to
operational equivalence of either the classical A-calculus
or of Ay. Mason and Talcott [15, 16] have also de-
veloped equational calculi with motivations similar to
those of Felleisen et. al. and with comparable results.

Our work was influenced in part by the Imperative
Lambda Calculus (ILC) of Swarup, Reddy and Ireland
[27]. Like Ayqr, ILC assumes call-by-name and mod-
els assignment by rewriting variable uses to approach
and merge with their definitions. Unlike Ayqr, ILC is
defined in terms of a three-level type system of values,
references and observers. This somewhat restricts ex-
pressiveness on the imperative side: references to ob-
jects that encapsulate state cannot be expressed, and
all procedures have to be formulated in continuation-
passing style. Also, unlike A,qr, ILC is strongly nor-
malizing, and, as a consequence, not Turing-equivalent
(e.g. recursion is prohibited).

Recent work by Jon Riecke [25] also addresses the prob-
lem of conservative extension of the A-calculus by a lan-
guage with effects. His techniques are unlike ours based
on the denotational semantics of a typed extension of
PCF with parallel or. His method depends on a full
abstraction result for the denotational semantics.

A programming language with motivation similar to
that of Ayer is Forsythe [24]. The language distin-
guishes between mutable and immutable variables, and
also between value expressions and commands; however,
it does so by means of a refined type system that is
based on intersection types. (a simpler type system is
found in [32]). Forsythe essentially uses a two-phase
semantics, in which a term is first expanded to some
potentially infinite program which is then executed in a
second phase. Some common programming idioms such
as procedure variables do not fit in this framework and
therefore cannot be expressed.

8 Conclusions and Future Work

We have extended the applied A-calculus with assign-
ment. We have shown that the resulting calculus is
confluent, preserves all operational equivalences of the
original calculus, and permits implementation by a con-
ventional, sequentially updated, store. We hope that
Avar Will prove useful as a framework for extending lazy
functional programming languages with imperative con-
structs.

An important step to that goal is the study of type sys-
tems for Ayqr. One possible appraoch make A4, to add
types to Ayqr is outlined in a companion report [3]. The



treatment in the present report was untyped in order
that many of our results may be applied immediately
to versions of Ayqr With arbitrary descriptive type sys-
tems. Had we started out with a typed calculus instead,
all our results would hold only for the particular type

system used. This would result in a loss in general-

ity, since there are many possible candidates for such
a type system. In particular, there are several widely
differing approaches to implementing the effect check-
ing required by the pure rule (examples besides [3] are
[11, 19, 27, 28, 30]).

Left to future research is the investigation of variants
of Ayer. A call-by-value variant promises to be a useful
tool for reasoning about programs in existing impera-
tive or impurely functional languages. A variant with
control-operators could provide an equational theory for
a language with call/cc or exceptions.
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