Abstract. Different algorithms, based on Gaussian climination, for the solution of dense linear
systems of equations, are discussed for a multiprocessor ring. The number of processors is assumed
not to exceed the problem size. A fairly general model for data transfer is proposed and the
algorithms are analyzed with respect to their requirements of arithmetic as well as communication
times.

Complexity of Dense Linear System
Solution on a Multiprocessor Ring

Ilse C.F. Ipsen, Youcef Saad and Martin H. Schultz

Research Report YALEU/DCS/RR-349
August 1085

Revised version. This work was supported in part by by ONR grant N00014-82-K-0184 and in part
by a joint study with IBM/Kingston

1. Introduction

This paper discusses various algorithms, based on Gaussian Elimination, for the solution of
dense linear systems of equations,
Ar = l),

on a linearly connected ring of general purpose processors.

In multiprocessor systems, the total time to perform a sequence of computational tasks does not
only depend on when a task is completed but also where (i.e., in which processor) it is accomplished.
For a particular task it is now important in which processor its input data are situated (i.e., how
long it takes to move them to the requesting processor) and when they are available. This in turn
implies a great richness in the class of algorithms, in terms of the assignments of tasks to processors
and the underlying topology of the interprocessor communication network. The algorithms to be
presented differ in the way the matrix A and the right-hand side vector b are distributed among
the processors.

1.1. Overview :

The approach taken here for the development and analysis of algorithms acknowledges that
times for data communication are not negligible and may in fact dominate the times for actual
arithmetic. A fairly general communication model is proposed, and all algorithms are characterized
and compared with respect to their requirements for arithmetic as well as communication.

Following the classical approach, metliods for triangular system solution are discussed (Sec-
tion 3) before introducing schemes for Gaussian climination without (Section 4) and with partial
pivoting (Section 5). A short summary of the main results can be found in Section 6. To begin
with, the second part of this section presents a summary of the requisite hardware features, based
on which various ways of transferring data can be devised (Section 2).

To avoid long non-descriptive formulae the derivation of arithmetic and communication times
will contain merely high order terms (in the size N of the matrix and the number k of proces-
sors). Furthermore, only a few representative methods will be described in detail to illustrate their
analysis, while others, obvious variations, will be listed in tables.

Surveys of (general) parallel algorithms for the direct solution of dense linear systems of equa-
tions appear in [3, 8, 10]. Probably the carliest paper to realize that ‘data movement, rather
than arithmetic operations, can be the limiting factor in the performance of parallel computers
on matrix operations’ is [2]. There, lower bounds for matrix multiplication and matrix inversion
are determined for arbitrary processor interconnection schemes where each processor can hold one
matrix element. In [1], the communication requirements of some numerical methods, such as tridi-
agonal system solution by substructuring, ADI, FF'T and fast Poisson solvers, are analyzed with
respect to shared-memory multiprocessors and highly parallel non-shared-memory MIMD systems.
A probabilistic model for predicting iteration time and optimal data allocation when solving linear
systems via iterative methods is presented in [6]. Its application in [7] prompts the conclusion
that ‘a broadcast bus architecture can effectively reduce the expected computation time for solving
sparse linear systems.’

Gaussian elimination for dense systems on a multiprocessor ring is discussed in [9]. Lawrie
and Sameh [4] present a technique for solving symmetric positive definite banded systems, which is
a generalization of a method for tridiagonal system solution on multiprocessors; it takes advantage
of different alignment networks for allocating data to the memories of particular processors. How-
ever, the analysis in both is based on the assumption that the time for transmitting one floating

point number from a processor to its nearest neighbor does not exceed the time for an arithmetic
operation.

----------- Local Link E— Broadcast Bus
Figure 1: Ring of & = 8 Processors.

This paper lays no claims to being either exhaustive or complete. Its objective is to compare
a variety of algorithms, which are fairly reasonable to program and to analyze, for the solution
of a single problem on a certain class of parallel architectures, thereby leading to a more realistic
approach to future algorithm development on multiprocessor machines.

1.2. The Multiprocessor Ring

The multiprocessor architecture under consideration, depicted in Figure 1, was introduced in
[11] and consists of

¢ k linearly connected general purpose (possibly pipelined) processors, each with its own memory;
the processors in the ring will be consecutively numbered P, through Py,

e a fast bus connected to all processors
e local interconnections linking each processor to its two nearest neighbors (the ring).

The following assumptions will be made throughout the paper. Using the local links, each
processor is capable of writing to one neighbor while reading from the other. In order to compare
the merits of nearest neighbor communication on one hand and broadcasting on the other, an
algorithm will make exclusive use of only one of them, but never use a combination of both local
links and the bus. For purposes of estimating the computation time processors are viewed as
working in lock-step, that is, they are able to synchronize parallel tasks which ideally would require
the same amount of time to complete (this assumption is well justified as the parallel tasks of our
algorithms are almost identical). Although the architecture proper is not necessarily SIMD, the
algorithms under consideration are of SIMD type and one can consequently regard the stream of
instructions as being synchronized. Subject to the above assumptions, our model will yield a good
estimate for the total elapsed time on a general loosely coupled distributed system.

[\

The bus has a speed of Rp words per second while the local links can transfer data at a rate
of RL, words per second. The inverses of Rp and R, are denoted by 75 and 7z, respectively. To be
general, each transfer of a data packet is associated with a constant start-up (set-up) time of Bp
and fL, respectively, which is independent of the size (the number of words) per packet. Often,
the start-up times are (much) larger than the elemental transfer times, that is,

B> 13, BL>rTL.

The time to broadcast a packet of size N via the bus is
ir.p=fp+ N7p,
while the time to send it from a processor to its ncighbor by using the local links is
tr.L = BL+ NrL.
On a single processor, a linear combination of two vectors of length IV takes time
th =7+ Nuw,

where « is the pipe-fill time (it is zero for non-pipelined machines), w the time for one scalar
operation and 4 > w (again, the start-up time dominates the elemental operation time).

In the sequel, t7 p denotes the data transfer times for the bus, tr,r refers to the one for the
local links, and t4 stands for the arithmetic time. For any algorithm, the sum of its transfer and
arithmetic time, tr . + t4, is simply called its computation time. Whenever convenient, the size N
of the matrix is a multiple of the number of processors k.

With regard to algorithms for the solution of dense linear systems, it will be shown that the two
modes of data transfer, broadcasting and pipelined data transfer via nearest neighbor connections,
do not result in obviously different computation times, provided the number of processors is not
too large. Even though the expressions for the computation times differ in the number of start-ups,
they contain data transfer times only as coefficients of low order terms in N , the order of the
matrix. Hence data communication has asymptotically no influence on the high order terms which
are relevant for the overall time estimate.

For this reason, we will consider algorithms where communication is not overlapped with
computation. In fact, most outer loops of the proposed methods consist of a parallel communi-
cation task followed (or preceded) by a parallel computation task, and as a result no processor
performs computations while data transfers are taking place. Moreover, most of our methods re-
quire broadcast-type data transfers so that after a short start-up time all communication links
are active during the data transfer phase of the loop. In case the processors are not provided
with I/O co-processors, the arithmetic units are idle while I/O (broadcasting or nearest neighbor
communication) takes place.

2. Data Transfers

In this section we consider different ways of transferring data among processors which are
important in subsequent computational algorithms. We assume that a vector can be divided up
into ‘packets’ of arbitrary size (subject to the vector length, of course).

As mentioned in the previous section, it takes time

tr.p = fPp+ Nrp

3

to broadcast a vector of length N from one processor to all others using the broadcast bus. Con-
sequently, the time to broadcast a vector is independent of the number of destination processors.

An alternative method consists of using only the local links between the processors and pipelin-
ing the data transfers : while sending one packet to its successor a processor receives the next packet
from its predecessor. Thus, if processor Pj is to send its data to all other processors, then in step 1
the first packet is sent from P, to P,. In step j, the first packet is sent from P; to Pj4 while the
second packet follows up from P;_; to P, etc.

If the vector is partitioned into v packets of equal size, then the process will terminate after
k + v — 2 steps, when the last packet has reached P;. With regard to high order terms in k and v,
the total time comes to

N
tro~ (k+v)BL+ (k+ u);rL. (2.1)

The above equation indicates that for large enough » the time required for transferring a vector of

length N is proportional to N7z. However, the larger v, the larger the cost of the set-up times will
be.

Another possibility is to have P, send its data ‘both ways round’ so that processors to the left
and right of P, would receive them at the same time. The according data transfer time comes to

trL ~ (%"»‘ +)AL + (%k + V)‘]V\-ITL,
which is at most twice as fast as the one in (2.1) when data are sent to all k processors. If data
must be sent to fewer than k — 1 processors, this scheme becomes more complicated. To achieve
optimality, vectors might need to be partitioned into packets of two different sizes, one for the left
path and one for the right path, in case the number of processors to be reached to the right and
left of P, are different. Since the difference is only a factor of two, we prefer to restrict ourselves
to the simpler scheme of ‘one way data-flow.’
From equation (2.1) one observes that an optimal value for v exists and is given by

TL
Vopt = [kN —= 2.2
opt AL ()

7, Lopt(N) ~ N7+ kL + 2\/ENTLAL
2
= (VNm + VL)

Observe that 1 < v < N, so that formula (2.2) is valid only when

for which the optimal time becomes

(2.3)

.
1< ﬁé’:5.7\'2.
v TL

Otherwise, the optimal time simply becomes

r . N
tT'L’OPI(N) ~ (k + N)(/BL + TL)y if T%- <1,
and N
tT,L,opt(.N) ~ /;(/3L + J\FTL), if ?%>N2.

4

For example, assume that k processors with transmission time 7, and a problem of size N
are given. If, with increasing set-up time for data transmission, the transfer time is to remain
optimal, the number of packets must decrease (while their size increases), so that a smaller number
of set-up times is required. Yet, if elemental transmission and set-up time are of the same order
of magnitude, then the packets should each be of size VN/k. We will sometimes make use of the
double inequality

Nt +kBL < trpop(N) < 2(N1p + kBL). (2.4)

Note that the upper bound corresponds to choosing the non-optimal value v = k.
Sending a vector to processors that are at a distance not exceeding k < k changes the optimal

value of v to
-~ TL
Vopt = \ Hi?]\rﬁz
and the corresponding time to

—\ 2
tr,L,0pt (V) ~ (V Nt +\/ k,@L) . (2.5)

Obviously, it does not pay to divide a vector into packets when using the broadcast bus.

In case a vector v is ‘uniformly’ distributed over the k processors so that the sub-vector v; of
length N/k resides in processor P;, an important operation is @v;, the direct sum of the blocks
v1...Vk, which makes the full vector v available in each processor. This obviously requires no
computation but only data transfers.

Using the bus, it is possible to broadcast each v;, one after the other, to all the processors
which requires time

.
tr.p = kfBp + k(%)m =LkpBp+ N7p.

When employing the local links, the sub-vectors are ‘rotated’ in a roundabout fashion : in
step 1 we simultaneously send v; from P, to P, vy from P; to P3, etc, and finally v; from P to
P;; generally, in step 7, we transmit v; from Pj to Pj1, vz from Pjy; to Pjia, and v from P,
to P; (the indices should be taken modulo k). After % of the above steps v; has encountered each
processor. Hence the whole process requires time

N

tr,.L = kL + k(r

)7L = kB + Nrp. (2.6)

Consequently, the number of set-up times and clemental transfer times is the same for bus and
local links.

3. Solution of Triangular Systems
In sequential machines, a general dense linear system

Axr =0,

where A is a real N x N matrix, is efficiently solved by first reducing it to triangular form via
Gaussian elimination and then solving the resulting triangular system. The same approach will be
used for a parallel implementation on the multiprocessor ring. As is classically done, we will start
by considering the solution of triangular systems.

Processor Py
\ Processor P,

Processor Py

Figure 2: Block-Row Partitioning of a Triangular System.

15/14/12|10{8 |6 |4 |2 P
13/12(10/8 |6 (4 |2 P,
11110,8 |6 {4 |2 Py
91816142
71614 (2
514 |2
312 .
1 P

Figure 3: Sketch of Algorithm TRB for k = 8.

- 3.1. Partitioning the Matrix into Blocks of Contiguous Rows
Consider the upper triangular system

Ux =0, (3.1)

where U is an upper triangular matrix of size N x N. The simplest idea that comes to mind for
the solution of such a system on a parallel machine is to partition the rows of U into k blocks, each
consisting of N/k rows, and to store each block in a processor, as shown in Figure 2. Recall that
the processors are numbered consecutively P; through Pj.

Let processor P; hold rows (i — 1) +1to i X of U, the corresponding block b; of the right-hand
side vector b, and the block z; of the solution vector x. Accordingly, denote by U;; the N/kx N /k
block-matrix in position (¢,7) of the matrix U. The algorithm TRB (Triangular system solution
with Block Rows) to solve (3.1) is shown below; proceeding from bottom to the top of the matrix,
processor F; solves the N/k x N/k triangular system whose coefficient matrix is the ith diagonal
block Uj;, ¢ = k,k — 1,...1. The solution vector x; is then sent to the processors to the left of P;
which perform the corresponding matrix-vector multiplications with z;.

6

Figure 3 graphically illustrates the algorithm, entries in the matrix U denote the time steps
when the corresponding block matrix U;; is processed.

ALGORITHM TRB (Triangular system solution with Block Rows)
1. Solve in P
Ukkar, = by
2.Fori=k-1,k-2,...1do
(a) Send z;4; from Py to P;,Pi_y,... P,
(b) For j = 1,2,...i do in P;

bj :=bj — Uj iy1%i41 (3.2)

(c) Solve in P;
Uiix; = ;. (3.3)

At each step i of Algorithm TRB a vector of length N/k must be transferred from P41 to
F;, Pi—y,... P, which, according to (2.4) and (2.5), requires time

2
(\ /%TL + \/iﬂL) < 2(%u +ifL) (34)

r

]\.
Ps+ -8 (3.5)

using the broadcast bus. Summing up over steps i = k — 1,k — 2,...,1 yields the total times
required for data communication

using the local links and

: k2 4
tr,~ N1 + -5-,31, + -é-/af\/NTL,BLk

< 2N+ k%8;, (3.6)
and
tr.p ~ Ntp + kf3g, (3.7)
where the approximations
k-1 .2

| T

k=1 9
v D Vin gk (3.8)
i= i=1

have been employed, which are valid only when & is sufficiently large.
Now consider the time spent doing arithmetic. At step ¢ in (3.2) each active processor computes
a component of the new vector b; in N/k pipelined operations which takes time

1A
1

summing this over N/k results in time

N N
T+). (3.9)

The cost of solving the triangular system in (3.3),

Rx=f,
on a pipelined machine requires time
1/N\® N
A o0
because z;, 1 < ¢ < N/k, is obtained by
1 N/Ek
zi=—\/Ji—- > rija;
i1 j=it1

and
TNk = SN/ TN

where the indices are relative to the sub-block. The term in brackets constitutes an inner-product
and can be performed in time (% — 1 — 1)w + 4. The division is incorporated into the pipelining
of the inner-product so that there is no need for an additional start-up time. However, for some
machines (the FPS-164, for instance) this may have to be revised as divisions are significantly more
expensive than additions or multiplications. Summing (3.9) and (3.10) over k — 1 steps gives as
high order terms for the arithmetic time

3 J\r2
ta~ 2]\"‘)’ + ;Tw. (3.11)

3.2. Partitioning the Matrix into Blocks of Contiguous Columns

In a block column-oriented partitioning scheme each of the k processors contains N /k adjacent
columns, that is, processor P; contains columns (i — 1)%’- +1tod % of U, as well as b;, where U;; is
again the N/k x N/k block matrix at position (i, 5) of U. Although this algorithm will turn out to
be the most inefficient one presented in this paper, it is described on account of its simplicity and
in order to better illustrate related improved versions.

During each step, a triangular sub-system of order N/k x N/k is solved, whereafter all matrix-
vector products y;; = Uj;z; for the next higher block row are performed in parallel, and the partial
sums y;; are sent to the processor responsible for the subsequent triangular system solution. Algo-
rithm TCB (Triangular system solution with Block Columns) is graphically sketched in Figure 4
where the entry for U;; contains the time step at which it participates in a computation. The
algorithm is formulated for data transfers involving the local links, the modifications for the bus
are obvious.

ALGORITHM TCB (Triangular system solution with Block Columns)

1. Solve in Py
Ukk.‘l?k = I)k

8

PPP. . . . Py

15|14|14|14/14|14|14|14
13|12{12]12(12]12|12
11]10{10{10{10{10

-
[e20 o]

[d3]

W [|OY |00

Figure 4: Sketch of Algorithm TCB for k = 8.

2.Fori=k-1,k-2,...1do
(@) For j=k,k—1,...,i+1doin P;

vij == Ujja;j (3.12)

(b) For j=k,k—1,...i+1do

{ Comment : Every processor sends to its left neighbor the block y; , it just received
from its right neighbor. }

In Processor P, l=1i+1,...,7 send Yig+k—j t0 Pi_q
(c) Solve in P;

&
Uizi =bi— Y yij. (3.13)
=it

Observe that the solution vector parts x; are never transmitted, only the matrix-vector prod-
ucts y;14+k-; are. The communication time with the local links for 2(b) in step ¢ comes to

. N
(=) (Be + 7-)

since all y;; can be sent at the same time via the local links. For &k — 1 steps this makes

1 1
irL ~ ‘9']‘72/3[, + ;)-/.?.NTL. (3.14)

Because different vectors y;; must be sent to one processor P; at the same time, broadcasting bears
no advantage over the local links and

12835 + ;k.NTB.

WO =

trp~

The arithmetic time can easily be determined by observing that in each step the matrix-vector
multiplications which are all done in parallel are followed by k — ¢ + 1 summations of vectors of
length N/k and a subsequent triangular system solution in (3.13). Hence, from (3.9) and (3.10)
the time per step is

N N . N 1 N? N
?(’y+ —k—w) +(k=i+1)(v+ Tw) + et 70

and the total for k steps is given by

r2
ta~ (2N + -;-1»2)'7 + (g—%— + —;-Nk)w.

However, compared to method TRB, the communication time of TCB is worse by a factor of
k. The reason being that the k — ¢ matrix-vector multiplications in (3.12) of step ¢ are all executed
in parallel, and completed at the same time. Consequently, in step 2(b) k — ¢ — 1 vectors are sent
to one processor, which can only receive them in sequence.

In contrast with TRB, the vector additions in 2(c) cannot be performed in parallel and hence
their computation time is increased by a factor of k. It would seem that this time could be improved
by performing summations in a ‘tree-like’ fashion, since more computations and transfers could be
done simultaneously. In that case, however, the distances to the destination processors would
increase, to as much as k/2 for the last summation. The fastest way might be, for a given 1, to
compute the first f;, f; < log(k — 1), summations in a tree-like fashion and then to send the partial
sums and the remaining log(k — ¢) — f; vectors to one processor for the computation of the final
sum.

3.3. Partitioning the Matrix into Blocks of Contiguous Columns : A Second Approach

In Algorithm TCB all processors are waiting for the solution of the triangular system with
coefficient matrix Uj; so that all matrix-vector products of one block row can be computed in
parallel. However, in this second version of the column oriented method, TCBG (Greedy Triangular
system solution with Block Columns), which might be regarded as a ‘greedy method’, each processor
performs its matrix-vector multiplications as soon as the necessary data (corresponding blocks of
the solution vector) are available. This leads to the scheme illustrated in Figure 5 where the
numbers within each block indicate the sequence of operations. Again, processor P; comprises
columns (i — 1) & to i of U.

Note that sequencing the tasks based on the availability of the operands does not mean that
this algorithm is a data-flow algorithm. It could clearly be implemented in a data-flow fashion, but
our complexity analysis would not be valid without the original assumption of synchronization of
the outer loops. In Figure 5 this means, for example, that none of the tasks whose number is 7,
will be carried out before all the tasks numbered G are completed.

The first step of the method consists of solving the triangular system Uiz = bg. Once Tk
is computed, processor Py performs the multiplication Uk-1,k2r and subtracts the result from
br-1. It passes on this transformed part of the right-hand side to processor Pi_; which uses
it to obtain 24_; by solving the triangular system involving Uk-1,k-1. Meanwhile, processor P,
prepares for the coming steps and computes Uy_y ;24 which it then subtracts from bk—2. In general,
processor F; solves the triangular system with cocfficient matrix Uj; while processors Piy1...,P;
perform a matrix-vector multiplication involving previously computed parts of the solution vector.
The product is subtracted from the corresponding part of the right-hand side, and the result is sent
to the processor on the left.

10

PP, P;. Py
15/14)13{12{11{10(9 |8
13112/11]10[9 |8 {7
11{10/9 |8 {7 |6
9181|7615

7 (6|5 |4

51413

312

1

Figure 5: Sketch of Algorithm TCBG for k = 8.

There are 2k — 1 steps in Algorithm TCBG; when i is odd, step ¢, =1,2,...,2k — 1, consists
of a matrix-vector multiplication overlapped with a triangular system solution, which in turn is
followed by the simultaneous transfer (via the local links) of a vector of length N/k from at most
k/2 processors to their left neighbors (when ¢ is even, no triangular system solution occurs). Since
this communication takes place only between pairs of processors, the vector is not divided into
packets of smaller size and the number of start-up times is reduced by more than a factor of k
compared to TRB and TCB. After 2k — 1 steps the time for data communication is about

tr ~2(Nr, + kBL).

In the case of broadcasting, simultaneous transfer is no longer possible and the upper bound per

step increases to LN
; 1 1
3(F 78+ PB) = ;N1 + SkBB,

bringing the total time for data exchange to
tr.s~ kNtp + 162,33,

which, as expected, exceeds by a factor of k the communication time involving local links.

The communication time in TCBG with local links is superior by a factor of k to the one in
TCB given by (3.14). As for broadcasting, TRB is the preferred scheme. Hence, the row-oriented
scheme would benefit from broadcasting while the column-oriented scheme would be better off with
data exchange on the local links.

For the arithmetic operation time, note that in contrast to TCB, matrix-vector multiplications
and linear system solutions are overlapped. As the processors are assumed to work in lock-step
and a matrix-vector multiplication needs twice the amount of time of a triangular system solution
of the same size, the arithmetic operation count is proportional to

1\’2
ta~ 2Tw + 2N~, (3.15)

which is larger than the one for TRB or TCB. In fact, as is seen in Figure 5, no more than half the
processors are ever active simultaneously.

11

row 1 : Py
\ row 2 | Py
N row 3 | B
\ row 4 | P,
L row 5 | A
\ row 6 | | P
\ row 7 | Ps
\row 8 | P
\ .

Figure 6: Scattering the Rows of a Triangular System for k = 4.

3.4. Partitioning a Diagonal-Diagonal-Block Matrix into Contiguous Blocks of Rows or Columns

The solution of the triangular systems in TRB and TCB can be avoided and the arithmetic
time reduced by about 50% when the diagonal blocks of U are N /k x N/k diagonal matrices. Such
matrices are referred to as ‘diagonal-diagonal-block’ (DDB) matrices. The communication times
remain the same while the arithmetic time for TRB is reduced to

J\YZ
tA~ —w+ Ny (3.16)

and for TCB to
th A (E3 + -l-Nla:)w + (N + lk2)~y.
E 2 2
Note, that the computation time is not diminished when TCBG is applied to a DDB matrix,
because the simultaneous matrix-vector multiplications conceal the improvement in the triangular

system solution.

3.5. Scattering the Rows of the Matrix
The previous algorithm is not efficient with regard to arithmetic since many processors are
idle during an important part of the process. A remedy is to simply scatter the rows of the matrix
U across the processors in a cyclic way so that the work is divided more evenly and processors
become idle only during the last & steps (this is termed ‘torus wrap’ in [5]). Clearly, one can expect

the communication time to increase somewhat, while the arithmetic time should decrease.
12

4

Let the rows of U be scattered in such a way that P; contains rows 4,7 + k,% + 2k,...1 +
(4§ — 1)k. This time the matrix U is divided up into blocks of size k each (separated by bold
lines in Figure 6) instead of N/k as in Section 3.1. Let b1,ba,...,bnyk and z1,22,...,2N/; be
the blocks of the right-hand side b and the solution z, respectively, corresponding to the above
partitioning. After all processors have participated in the triangular system solution, they perform
matrix-vector multiplications with the newly found part of the solution vector which each of them
contains. Algorithm TRB is modified as follows.

ALGORITHM TRS (Triangular system solution with Scattered Rows)
1. Solve

N
UmmZm = b, where m= —

&

2.Fri=% -1, -2,...1do
(a) For j=1,2,...ido
bj :=bj — Uj iy1%i41 (3.17)
(b) Solve
Uiiz; = b;. (3.18)

There are two main tasks in the loop of the above algorithm : solving the k x k triangular
systems (3.18) and performing the matrix-vector multiplications (3.17).

During the triangular system solution each row of the matrix Uj; system is contained in a
different processor. Therefore, one can use the results of Section 8.1 with N = k, i.e., N/k = 1.
Observe, that it is most efficient to send each newly found element of the solution vector directly
to all other processors. However, since only one scalar at a time is transmitted, the data transfer
time comes to k(7z +) for the local links; for each triangular system the transfers time is

kQ(TL +AL).

Since broadcasting does not depend on the number of processors being addressed, the solution of
(8.18) requires a number of data movements proportional to

k(rs + BB).

For N/k linear systems the communication cost is thus

tr.L~ Nk(r + L) (3.19)

and .
tr.g ~ N(rg + f3p). (3.20)

After the solution of system (3.18) each processor contains all known elements of the solution
vector. In contrast to the previous schemes TRB, TCB and TCBG, which partition the matrix
into contiguous parts, the coefficient of the start-up times 2 in the scattering scheme grows with
the problem size (for broadcast bus as well as local links).

The arithmetic time for the solution of a I X k triangular system is 2k(v + w), resulting in a
total of approximately

2N (v + w). (3.21)

13

The factor of two in (3.21) accounts for the fact that we assume no overlapping of a multiplication
and a subsequent division in scalar arithmetic.

Once the vector z;4; is determined in all processors, each processor forms the inner-product
of its row of U with z;41 and subtracts the results from its component of b; in time v + kw,

J =1,2,...1. Hence the arithmetic time in step ¢ of algorithm TRS is i(y + kw) and the total over
all steps in (3.17) comes to

% (—]’Y~> : (v + kw). (3.22)

Adding (3.22) and (3.21) results in an arithmetic time of

1 N? 1N?
A~ (5—];—+2N)W+ ('é'k—_2-+2N)'7' (3.23)

On one hand the coefficient for the elemental operation time w in TRS is the smallest in
comparison with methods TRB, TCB and TCBG. On the other hand, the coefficient for the pipe-

fill time ~ is increased by N2/k?, which makes the contribution of in TRS always larger than in
the other schemes.

3.6. Scattering the Rows of a Diagonal-Diagonal-Block Matrix
Scattering the rows of a DDB matrix decreases both the arithmetic and the communication

times. For each of the N/k steps, the time (3.21) can now be subtracted from the total arithmetic
time, yielding

o~ 7T w+ 3T (3.24)

Since no triangular system has to be solved, each processor contains exactly one element of the
vector z;4; in (3.18). Yet, prior to performing the operations in (3.17), the entire vector z;4; must
be made available in all processors. Thus, a direct sum of k ‘vectors’ of length one, as described
in Section 2 must be performed. From (2.6), the transfer time for operations (3.17) is therefore
k(7L + BL) per step on the local links. For all N/k steps this makes

tro~ Nr, + NfL. (3.25)

For the broadcast bus, the time is obviously similar,
tr.s ~ Ntrp+ Npfp.

This algorithm and Algorithm TRS with the broadcast bus are the only ones not to show an
increase in either communication or arithmetic times as k increases. Among the methods discussed
so far, the contribution of the elemental operation time w in the DDB scattering scheme is the
smallest while that of the pipe-fill time ~ is the largest when k& < /N.

3.7. Partitioning the Matrix into Block-Diagonals
Scattering of block diagonals instead of rows or columns will be considered in this section. The
matrix is partitioned into blocks of size N/k x N/k. As before, U;; represents the block-matrix in

14

8|7[6]5[4]3|2]|1
8|7]|6|5[4|3]2
8[7]|6(5(4]3
8[7]6|5|4
8[7]61]5

8|7]6

8|7

8

Figure 7: Block Diagonal Scattering of a Triangular System
for k = 8.

position (4,5) of U. The matrix is scattered so that processor Py_; contains block-superdiagonal ¢
of U,i=0,...,k — 1; in particular, the main block-diagonal (superdiagonal 0) is contained in Pj.

Formally, Pi—; contains block-matrices U jg+is J = 1,2,...,k — ¢. This scheme is described in
Figure 7, where the matrix entries denote the processor in which the corresponding block-matrix
is contained. Initially, corresponding elements of the right-hand side b and the last column of U
reside in the same processors. The triangular system can then be solved with Algorithm TDB
(Triangular system solution with Diagonal Blocks).

ALGORITHM TDB (Triangular system solution with Diagonal Blocks)

1. Solve in P
Ukkar = by

2.Fori=k-1,k-2,...1do '
(a) Send z;4+; from P to Py 1,Pyy...P_;
(b) Forj=k—-4,k—i+1,...k—1doin P; (yjx = b))

Yi+1,i = Yji+1 — Ujit1Zig1 (3.26)

(c) For j=1,2,...ido in P;
Send yj+1,i to Pjyy
(d) Solve
Uiidi = Yp,i. (3.27)

At each iteration in the above algorithm the following has to be done

e In step 2(a), transferring the vector ;4 from processor P, where it has just been computed,

to ¢ other processors, in time
N -
(/5 + ViBL)?
using the local links. However, this expression can be simplified by using the upper bound
N .
Q(ETL + 2/3L)

derived from (2.4), which corresponds to splitting the data into a non-optimal number of
packets. Using the broadcast bus, the transfer time is just

'

N
BB + =-7B.

¢ In step 2(b), N/k matrix-vector multiplications of length N /k, in time

N N
F(’Y + -ij)
e In step 2(c), sending the result of step 2(b) from one processor to its neighbor via the local

links, in time
J\T
BL+ =7L.

This is done simultaneously for all processors but must be sequenced when using the bus,
. N
Z,BB + t=—7p.
@ Solving the system (3.27), in time

(v + = =w).

_J\I 1N
k 2k

Hence, the communication and arithmetic times for algorithm TDB are
trp~3Nt, + /’»‘2/3[,

1 1
ir,.p~ =kN —k?
.8~ 5hN7p + 2/ BB
N2
ta -2-—'"(41 + 2N’7.
The arithmetic and local link communication times are comparable to those of the block-row
method, TRB, while the broadcast transfer time is the same as for the block-column algorithm,
TCB.
Analogously to the other block schemes, for a DDB matrix only the arithmetic time is reduced,

to
N?

tAR —w+ N7.

16

3.8. Summary

The complexity bounds for the various algorithms considered in this section are summarized
in Table 1. One might be tempted to believe that a simple look at the table would reveal an
optimal algorithm. Although in the purely sequential case it is a perfectly reasonable strategy to
seek the fastest method for a given problem, the situation in the parallel context is more subtle.
Simply contemplate the complexity of our table: beside the problem size IV, the time estimates for
algorithms on a multiprocessor ring involve five additional parameters, k, w, 4, 7, and 3. Changing
any of these parameters can improve or worsen the speed of a method; in particular, the best
method for a specific choice of parameters might be most unsuitable for a different parameter set.
This increase in complexity is due to the ‘higher dimensionality’ of the hardware : apart from the
arithmetic speed w, one has to take into account not only the pipe-fill time 4 and the number of
processors k relative to the problem size N but also the communication speed governed by 8 and
T.

It is therefore suggested to interpret the table by considering the coefficients of the various
parameters separately. When dealing with a small number of processors connected via a broadcast
bus, for instance, Algorithm TRB has a communication start-up on the order of k35 while the one
for Algorithm TRS is proportional to NB3p. If the start-up time 8p dominates all other hardware
parameters by a large margin, Algorithm TRB is certainly the method of choice. We conclude this
section by listing a few observations from the table.

e When the number of processors, k, is much smaller than N communication times are of lower
order than arithmetic times (with the exception of the column scattering scheme, TCS).

¢ In general, the scattered schemes seem to show better arithmetic than communication perfor-
mance. This is because fewer processors are idle than in block methods, which in turn results
in increased data transfers.

e Broadcasting, it appears, is best done with row-oriented schemes and /or ‘greedy’ methods. For
a small number of processors TRBG and TCBG, and otherwise TRS/DDB are to be preferred.

e Communication on local links is fastest with row-oriented schemes, such as TRB/DDB and
TRB, as well as with the diagonal block method TDB. For a large number of processors,
k ~ N, the row scattering schemes also perform well.

e The merit of an algorithm regarding arithmetic depends very much on the relation of pipe-fill
times to elemental operation times and the number of processors. For example, for non-
pipelined machines the row scattering scheme, TRS/DDB seems to be most appealing. For
large pipe-fill times and a small number of processors the block DDB methods look attractive.

e The block schemes might be better suited for pipelined machines than the scattering schemes
since their coefficients for pipe-fill times are lower.

e DDB matrices do not improve the performance of greedy methods, TRBG and TCBG, since
simultaneous matrix-vector multiplications conceal the improvement in triangular system so-
lution.

¢ Disappointingly, the diagonal block scheme, TDB, did not deliver the expected compromise
between block schemes (faster communication) and scattering schemes (faster arithmetic).

To summarize, for fast solution of triangular systems on a multiprocessor ring, row-oriented
methods seem to be superior to column-oriented algorithms. In particular, when communicating on
local links the block-row DDB method, TRB/DDB, and also TDB/DDB, are recommended; if the
number of processors is proportional to N, then the row scattering algorithms, TRS and TRS/DDB

17

should also be considered. A row-oriented scheme, TRS /DDB, or greedy scheme, TRBG or TCBG,
should be chosen when data transfer is done via broadcasting.

4. Gaussian Elimination

In this section we describe parallel implementations of Gaussian elimination on a dense N x N
matrix A for solving the linear system

Az =0b. (4.1)
It is assumed that no pivoting is required. The issue of pivoting will be discussed in the Section 5.

4.1. Partitioning the Matrix into Blocks of Contiguous Rows

The simplest way to implement Gaussian elimination is to divide the matrix A into k blocks
of N/k rows each and assign one block to each processor as in Section 3.1. Let processor P; hold
rows (i — 1)% +1to: -’,ti of A and the corresponding components of the right-hand side vector b,
see Figure 8.

If at the jth step row j is stored in P; then, in order to effect the appropriate eliminations, it
must be sent to Py ... P. Section 2 showed that the use of local links for the transfer of a row of
length V — j to ¢ = k — 7 processors requires time proportional to

-\ 2
(V (N_j)TL+ V IBL1> ’
where 7 depends on j via

i=k- [N—’/Z] Nlc(l—]—{,-).

This yields an approximate communication time for step 5 of

2
(¥ -3) (\/i+\/k761—') .

After summation from j = 1 to N — 1, one has

2
N? kB,
tr,L ~ <> (\/TT+ N) ,

which can be written as)
.

N
irL~ < TL (1+ a)2‘, (4.2)

&

_ Iit ﬂL
Q= H Y\?E. (4.3)

Using the bus to broadcast a row of length (N — j) to an arbitrary number of processors
requires time

with

B+ (N -

and therefore the total communication time on the bus is given by

1
ir.p= Nf@Bp+ 31V2T13.

18

Method ta ir.L ir,B
TRB SN0+ 2N~y 2N + k26 N7g + kBg
TCB (%;3 + Yo + (%— + 2N)~y o+ k—;ﬂL Hrp+ %ﬁﬂB
TDB 8% + 2N~y 3N + k206, KN g+ Epp

TRB/DDB N2+ Ny 2N7L + k2B Nrtg +kBp
TCB/DDB (B2 + 0+ (2 4+ N)y o+ EpL kN g+ Bp
TDB/DDB o+ 'ny N7+ k%8 g+ &g
TRS (X2 +2N)w+ (X2 +2N)y | kN7 + kNG N7+ Nfg
TCS (B +EN)w+ (X +2N)y | kNm+ NAL kNtp + NBg
TRS/DDB Fw+ Moy N7+ N N7p+ NfBp
TCS/DDB B+ kN)w+ (X5 + N)y kNt + NBL kNrg + NBgp

TRBG)+ 2Ny N+ kpy N1p+kfp
TCBG 2 4+ 2N 2N7L +2kB, | kNrp+k%Bp

19

Table 1: Computation Times for Several Triangular System
Solution Algorithms.

Processor P; (Idle)
\ Processor P, (Idle)
Processor Ps (Active)

Processor Py (Active)

Processor Py (Active)

Figure 8: Gaussian Elimination on a Block-Row Partitioned
Matrix.

To determine the arithmetic time, we note that at step j a processor performs at most N /k
eliminations which takes time

T+ (Y =)o),

and summing over N — 1 steps,

N3]\r2
ta~ 573—(«2 + T')’ (4.4)

The coefficient start-up time, «, in the above formula is divided by k because all active processors
simultaneously eliminate (at most) N /k elements per column by computing linear combinations of
rows of length V — j. ' :

4.2. Partitioning the Matrix into Blocks of Contiguous Columns

Similarly, if the matrix is divided up into blocks of contiguous columns, then P; contains
columns (¢ — l)l,cv- to i% of A. For simplicity, the vector b is considered to be another column of
A and hence stored in P. At step 7, column J» which contains the multipliers and is located in
P;, must be transmitted to P;41...P;. This consumes roughly the same amount of communication
time as for the block-row partitioning, given by (4.2) and (4.3). The arithmetic operations during

step J take time
7

(¥ =)3+)

as each processor forms N — j linear combinations of rows of length N/k. The total time for
arithmetic operations comes to

Unlike in (4.4), the start-up time is not reduced by k, since the number of elements per column
each processor has to eliminate is independent of k.

Recall that on a sequential machine the time for Gaussian elimination is proportional to %N 3w.
In the preceding schemes, use of k processors does not speed up the computation by a factor of k,
no matter how fast the communication, because processors are often idle. There are several ways
of improving the efficiency of these algorithms. One could keep processors active by having them

20

row 1 Processor P;

\ row 2 | Processor Py
N\ row 3 | Processor P;
\ row 4 | Processor Py

N row 5 | Processor P,

row 6 | Processor Py

row 7 | Processor Ps

row 8 : Processor Py

Figure 9: Gaussian Elimination with Scattered Rows for k = 4.

continue the elimination on rows above the pivot row instead of remaining inactive; this is the
Gauss-Jordan method, to be discussed later. An alternative is scattering rows or columns across
processors as was done already for the solution of triangular systems.

4.3. Scattering the Rows and Columns of a Matrix

As in Section 3.5, the matrix A is partitioned into blocks of k rows or columns. However, now
the processors do not contain blocks of contiguous rows or columns, but the rows (or columns)
are scattered ‘cyclically’ across processors P ...P;. This scheme will be referred to as ‘scattered
Gaussian elimination.’

An example of row scattering is depicted in Figure 9. At step 7, the pivot row must be available
to all processors for purposes of elimination. Sending a row of length N — j to all processors (see

Section 2) takes time
(N =)o+ kBL + 2/ kBLr/N — .

Summing this expression for j = 1,2,...N — 1 and using the approximations (3.8), the total
communication time comes to approximately

N? ——2(2\ _ N? 8
tT,L 2 —é—TLV"' kN,BL + 2 lifﬂLTLg (N3/2) = TTL (1 + §Q’+ 202) s (4.5)

where « is defined by (4.3).

As for arithmetic, there are V—j elements to be eliminated during step 7, and since the rows are
scattered across the k processors, each processor performs about [(N — 5)/k] linear combinations
at the cost of v+ (N — j)w each. Therefore, step 7 consumes time

|5 o v = .

Using the approximation

N-j]l (V=)
[¥o0] wo
and summing over j, this yields
Lo LR L LN (4.7)
AYIE YT '

Observe that, as before, the start-up time is reduced by a factor of k, and that the above formula
is only valid for k¥ << N, because approximation (4.6) was used.

Scattering the columns of the matrix across the processors does not change the communication
time (4.5). Analogous to (4.7), the arithmetic time is

where the start-up times are independent of k.

The communication time for scattered partitioning is always larger than that of the ‘contiguous’
version in Section 4.1. For large o, it is roughly twice as big, while for small o the two times are
comparable. Furthermore, scattering results in an arithmetic time consistent with the sequential
case, that is, for k = 1 the arithmetic time reduces to that of the sequential evaluation.

4.4. Reduction to a DDB Scattered Matrix

As mentioned in Sections 3.4 and 3.6, there are advantages to having diagonal matrices in
block-positions (¢,%) of the upper triangular matrix U. Such DDB matrices can be obtained in the
same, parallel, time as regular upper triangular systems, by simply utilizing the idle processors.

The result is a triangular system whose solution requires less communication and start-up times,
see Sections 3.4 and 3.6.

4.5. Partitioning the Matrix into Block-Diagonals

Now consider a scheme which leads to the diagonal scattering of Section 3.7 by partitioning
the matrix A into square blocks of size m x m each, where m = N /k. Again, A;; represents the
block-matrix in position (¢,5) of A. The elements are scattered so that block A;;j belongs to the
processor numbered 1+ [(i — 7) mod k], 1 < 4,5 < k. The above scheme is illustrated in Figure 10,
where a matrix entry denotes the processor to which the corresponding block-matrix is assigned.
The right-hand side b constitutes an additional column of A and is distributed accordingly among
the processors. Since any two contiguous blocks of 4 belong to neighboring processors, scattering
schemes permit easy overlapping of data transfers across local links.

At each step j of Gaussian elimination, all processors holding a piece of the pivot row (of
size m = N/k) simultaneously communicate their piece to the processors beneath them. Because
of the way the matrix is distributed, only transfers from processor P; to processor Fi(i_1) mod k]
are necessary. These transfers are repeated until each piece reaches the processor holding the

1{2/3]4[5(6]|7]8
8[1[2[3|4(5|6(7
7|/8]112|3|4|5(|6
6({7|8|1[2|3]|4]|5
5/6|7[8|1]2|3|4
4/5]6(7(8]|1]2(3
3|/4|5(6|7|8|1(2
2|1314(5(/6]7|8]|1

Figure 10: Block-Diagonal Scattering of a Linear System
Across Eight Processors.

corresponding piece of the last block-row, which requires exactly |(N — j)/m| transfers. Hence,
the time for transmitting the jth row is approximately
N-j . N-j
= (N -
(e + 1) = (N =)+ 2

BL-

Once the pivot row is available in all processors, the pivots, i.e., the elements of jth column, need
to be transmitted to the right. Clearly, this involves the same amount of time as above. The total
transfer time thus comes to

lrL~ N2TL + NEGL.

As data is sent in two directions, from west to east and from north to south, the preceding time is
twice as large that of the previous schemes.

In case of broadcasting, each piece of length m can be moved simultaneously to all processors
at the cost of mrg + Bp. The resulting total transfer time is

trp~ N%rg + Nkfg.

We consider now the arithmetic complexity of this method. In step j of the algorithm N — j
eliminations are performed, each of which consists of taking linear combinations of vectors of
length m in different processors. The processor to finish last is P; which holds the diagonal blocks
and performs exactly N — j linear combinations of length.m each. Hence the arithmetic time at
step j is

(N = j)(mw +),
and the total arithmetic time is
N3 N2
lan -‘-27;—(4) + T’Y. (4.8)

It is possible to extend this scheme by scattering diagonals with block size m x m, where
1 < m < N/k, that is, by assigning all the blocks on the same diagonal cyclically to processors
P,Py,...,P, P, Py,...,P,.... The parameter m should then be chosen so as to minimize the
total computation time. However, we will refrain from discussing this case as it leads to complicated
formulas and does not result in a significantly better algorithm.

4.6. Gauss-Jordan Elimination
The Gauss-Jordan algorithm is one of the simplest approaches toward improving the arithmetic
efficiency of Gaussian elimination on multiprocessors. Let the matrix A be partitioned into k blocks

23

of m contiguous rows as shown in Figure 8. As already observed in the discussion of Gaussian
elimination in Section 4.1, the idle processors can be employed to continue the elimination on the
rows above the current pivot row, thus maximizing the number of active processors at any given
step.

To estimate the transfer time, observe that at each step the pivot row must be sent to all
processors. This results in a time identical to that of row scattered Gaussian elimination given
by (4.5). Similarly, the arithmetic time is identical to that of Gaussian elimination with block-
row partitioning given by (4.4). The obvious advantage of this method over the one described in
Section 4.1, is that we no longer have to solve a triangular system. Clearly, scattering of the matrix

across the processors will not result in any gain because all processors are active during the whole
elimination process.

5. Partial Pivoting

So far, the issue of pivoting has been put aside in order to simplify the algorithm description.
In fact, it will now be demonstrated that partial pivoting may be incorporated at little extra cost.

First consider the block-row method described in Section 4.1. At the jth step, the element
of largest absolute value has to be determined among all elements a;; with ¢ = 7,...N. This is
achieved in two stages. At first, the maximum element in each processor, the ‘local maximum?’, is
found. Then all local maxima are compared to obtain the global maximum. The first step costs time
(N/k)o', where ' is the time a processor requires to perform one comparison. Taking advantage
of nearest neighbor connections in the second step by employing a ‘round robin’-type comparison
among the local maxima requires a communication time of at most i(r;, +4.). Here, i = k— [7/m]
is the number of processors involved in the jth step of Gaussian elimination and, at the same time,
the number of comparisons needed to determine the global maximum, resulting in a comparison
time of ¢w’. A similar approach using the bus consists of broadcasting each local maximum in turn
to the ¢ — 1 other processors and performing the comparisons for the global maximum in each of
the ¢ processors, in parallel. This leads to similar times for communication and identical times for
arithmetic. Summing up the above time estimates over the N — 1 steps of the Gaussian elimination
procedure, one finds that the overhead for partial pivoting in the block-row scheme is

N? ’ Nk
lP.BR ~ (—1:‘— + -—2—-1.2) W'+ —2—(T +8), (5.1)

where 7 and § represent either 7, and BL, or 75 and fp, respectively, depending on which data
transfer mode is used.

For the block-column scheme, the entire jth column resides in one processor, obviating any
need for data communication. All comparisons are done in one processor while the others remain
idle. Consequently, the overhead time comes to

2
lp.pc ~ —2-—(0'. (5.2)
The scattered scheme of Section 3.5 is similar to that of the block-row scheme, except that the

first stage involves [j/k] comparisons while the second involves k comparisons. As a result, the
overhead time for pivoting is

2

N
lP,BRS ~ <W‘ + N’/‘J) o + NEk(r + (). (5.3)

24

When dealing with row-oriented schemes (as also on a sequential machine), there is no need
to actually permute the pivot row with the jth row, i.e., to physically exchange the two rows.
One merely needs to maintain a pointer indicating the actual position of a row with respect to
the resulting upper triangular system; the rows of this system are scattered arbitrarily across the
processors, and each processor contains N/k rows. Consequently, the triangular system solution
becomes more complicated and the communication time increases.

For instance, consider what happens in Algorithm TRB of Section 3.1 when the rows of the
upper triangular system are randomly scattered, due to the above pivoting technique. To begin
with, the processor containing the last row of U computes the last component £y of the solution
vector z (cost : 4+ w). This implies, however, that each processor has to check whether it indeed
contains the last row. To keep matters simple, we will disregard the cost of these tests. The
component £y is sent to all processors (cost : k(8L + 7.) or Bp + 75), which then perform the
analogue of step 2(b) in Algorithm TRB, i.e., they essentially modify the right-hand side vector.
Since each processor holds at most N/k elements of any column of U, this takes time at most

%’w +. (5.4)
Next, £y is computed in some processor and the above process repeated. Because of the arbitrary
scattering of the rows, each component must be sent to all processors in each step. Moreover, since
the number of rows per processor in any step is only known not to exceed N /k, the arithmetic time
per step is bounded above by (5.4). Summing over N steps, the arithmetic and communication
times, respectively, for solving such a randomly scattered triangular system come to

tr.L ~ EN(r, + L)

tr.p~ N(r8 + f3p)
N2
g < (T+N)w+2N’7.

Observe the increase of the contribution from latencies in the communication time when the local
links are used.

The complexity of the above algorithm ought not to be underestimated. These drawbacks are
not encountered when choosing a column scheme, as each processor is able to keep track of the
appropriate permutations. The Gauss-Jordan algorithm as well does not lead to such difficulties
because the resulting system is diagonal, yet may remain potentially unstable. In view of the
fact that the costs for solving triangular systems are small in comparison with those of Gaussian

elimination, it appears that on the whole a column scheme is more attractive when pivoting is
necessary.

6. Discussion
The performances of the Gaussian elimination algorithms in Section 4 are summarized in
Table 2. The following observations can be made by examining the results of Sections 3, 4, and 5.
e The communication times are low order terms compared to arithmetic times when k << N.

e Both, arithmetic and communication times, of the triangular system solution algorithms are
low order terms compared to those of Gaussian elimination.

o The scattered schemes show better arithmetic but worse communication performances.

¢ Communication times are lower when using the bus than with local links (which is to be
expected since pivot rows must be broadcast to several processors during each step).

25

2
2

N2

2

(1+)? < N*r, + kNBL

!.V__TL(l + ga + 2a?) < N%rp + 2kNByL.

Method ta tr.L iT,B
GE/BR Pw+ ¥y N2rL(1+ a)? Nirs+ NpBg
GE/BC | Now+ Xy L1+ a)? M5+ NBp
GE/RS Bo+ ey | o1+ 8a+20?) Mrs+ NBp
GE/CS o+ 8y | 20 (1+ 8a+ 20 Xirp+ NBp
GE/DDB | fpw+ ¥y | Brn(i+8a+20?) | gt Ngg
NS N2 2 2
GE/DS W+ T N, + Nkpg, Nérg +kNpp
GJ %;-w + kaz'y %QTL(I + 8o+ 2a?) -IY,;TB + NfBgp
Notes:
1. a= 7’{}%
2. We have the following upper bounds:

Table 2: Computation Times for Several Gaussian Elimina-

tion Algorithms.

e Diagonal scattering of data results in poor overall performance.
e The overhead for pivoting is small compared to the cost of Gaussian elimination. It is,

of the same order as that of triangular system solution.
e Pivoting is less expensive for row-oriented schemes.

26

however,

References
[1] D. Gannon, J. van Rosendale, On the Impact of Communication Complezity in the Design of
Parallel Algorithms, Technical Report 84-41, ICASE, 1084.
[2] W.M. Gentleman, Some Complezity Results for Matriz Computation on Parallel Processors,
JACM., 25 (1978), pp. 112-115.
[3] D.E. Heller, A Survey of Parallel Algorithms in Numerical Linear Algebra, SIAM Review, 20
(1978), pp. 740-777.
[4] D. Lawrie, A.H. Sameh, The Computation and Communication Complezity of a Parallel Banded
Linear System Solver, ACM-TOMS, 10/2 (1984), pp. 185-195.
[5] D.P. O’Leary, G.W. Stewart, Data-Flow Algorithms for Parallel Matriz Computations, Techni-
cal Report 1366, Dept. of Computer Science, University of Maryland, 1984.
[6] D.A. Reed, M.L. Patrick, A Model of Asynchronous Iterative Algorithms for Solving Large,
Sparse Linear Systems, Proceedings of the 1984 International Conference on Parallel
Processing, Bellaire, Michigan, 1984, pp. 402-4009.
[7] ————, Parallel, Iterative Solution of Sparse Lincar Systems : Models and Architectures,
Technical Report 84-35, ICASE, 1084.
(8] A.H. Sameh, Numerical Parallel Algorithms - A Survey, D. Lawrie, A. Sameh ed., High
Speed Computer and Algorithm Organization, Academic Press, New York, 1977, pp.
207-228.
[9] —————, On Some Parallel Algorithms on a Ring of Processors, Technical Report , University
of Illinois at Urbana-Champaign, 1984.
[10] A.H. Sameh, D.J. Kuck, Parallel Direct Linear System Solvers - A Survey, Parallel Computers
- Parallel Mathematics, International Association for Mathematics and Computers in
Simulation, 1977, pp. 25-30.
[11] M.H. Schultz, Multiple Array Processors for Ocean Acoustics Problems, Technical Report 363,
Computer Science Dept., Yale University, 1985.

