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Abstract

Identify a string = over {0, 1} with the positive integer whose binary repre-
sentation is 12. We say that a self-reduction is k-local if on input z all queries
belong to {z—1,...,z—k}. We show that all k-locally self-reducible sets belong
to PSPACE. However, the power of k-local self-reductions changes drastically
between k = 2 and £ = 3. Although all 2-locally self-reducible sets belong
to MODgPH, some 3-locally self-reducible sets are PSPACE-complete. Fur-
thermore, there exists a 6-locally self-reducible PSPACE-complete set whose
self-reduction is an m-reduction (in fact, a permutation).

1. Introduction

Identify a string z over {0, 1} with the positive integer whose binary representation
is 1z. Balcazar [1] introduced lexicographical self-reductions, which on input z query
only strings that are less than z. Lexicographical self-reductions are an important
tool in unifying certain connections between uniform and nonuniform complexity [1].
They are also important in the study of which complexity classes may have sparse
complete sets [12].

Goldsmith, Joseph, and Young [9] (independent of Balcazar) introduced near
testability, and subsequently Goldsmith, Joseph, Hemachandra, and Young [8] in-
troduced near near-testability. Both notions are special cases of lexicographical self-
reductions in which the queried string (if any) is always the immediate predecessor
of the input string.

The complexity of lexicographically self-reducible sets is well understood: all of
them belong to EXP and some of them are <? -complete for EXP [1]. The complexity
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of near-testable sets is also well understood: all of them belong to PARITYP and
some of them are <P -complete for PARITYP [8]. So is the complexity of nearly
near-testable sets: all of them belong to PFNY o PARITYP and some of them are
<? -complete for PFNF o PARITYP [10].

In order to better understand lexicographical self-reductions, we ask what happens
when a self-reduction is allowed to look only at the & immediately preceding strings
for some constant k.

Definition 1. A is k-locally self-reducible if there if a polynomial time-bounded de-
terministic oracle Turing machine M such that on input =

e M* accepts if and only if z belongs to A, and
e M* queries only elements of {z —1,...,z — k}.

Remark: The 1-locally self-reducible sets are the same as the nearly near-testable
sets.

We would like to say that certain self-reductions are m-reductions. Since no queries
can be made on input A, we therefore allow m-reductions to be undefined on finitely
many inputs.

Definition 2.

e Ais m-reducible to B if there is a partial function f such that for all but finitely
many = we have z € A < f(z) € B.

e If the partial function f above is 1-1, then A is I-reducible to B.

o If the partial function f above is 1-1 and onto, then A is permutation-reducible
to B.

Our main results:

o All k-locally self-reducible sets belong to PSPACE.

o All 2-locally self-reducible sets belong to MODgPH. (MODgPH is a generaliza-
tion of the polynomial hierarchy where we allow a bounded number of MODsg
quantifiers interspersed with the usual existential and universal quantifiers. It
is an exponential analogue of ACC(6).)

e There exists a 3-locally self-reducible PSPACE-complete set.

e There exists a 6-locally self-reducible PSPACE-complete set whose self-
reduction is in fact a permutation reduction. (The reader may be surprised
that there is a self-reducible PSPACE-complete set whose self-reduction is even
an m-reduction. The key to the reduction is determining which question to ask,
rather than what to do with the answer.)
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Our results are based on those of Barrington, Immerman, Straubing, and
Thérien [4, 6, 5] on circuits and monoids. (But we are not the first to apply those
results to Turing machine complexity classes. See [7, 11].)

2. A Connection to Algebra

Let A be k-locally self-reducible, so there is a polynomial-time algorithm A that takes
z+1 and xa(z — k+1),...,xa(z) as input and determines x4(z + 1). Then there
is a polynomial-time algorithm A’ that takes z + 1 and xa(z — k+1),...,xa(z) as
input and determines xa(z — k + 2),...,xa(z + 1).

We can run A’ with input z + 1 and each element of {0,1}* in succession, thus
determining a finite function that maps xa(z — k + 1),...,x4(z) to xa(z — k +
2),...,xa(z +1). Let A* be the polynomial-time algorithm that maps z + 1 to this
finite function. Then, to determine x4(z + 1) it suffices to compute

(xa(1), -, xa(k)A™(k + 1) A" (k + 2)--- A*(z + 1).

(Here we compose finite functions from left to right.) This expression can be evaluated
left to right using a constant amount of space to store the k-tuple, linear space to
store the input to A*, and polynomial space to run A*. Hence we have proved our
first result:

Theorem 3. If A is k-locally self-reducible then A is in PSPACE.

There is a more useful way to look at the preceding proof. The observant reader
may have already noted that the algorithm above reduces membership in A to chain
multiplication in a finite monoid consisting of certain mappings on {0,1}*. For each
k, the complexity of the chain multiplication problem depends in a simple way on the
structure of the monoid. It is actually well known that the problem of multiplying
n elements of a finite monoid is in NC' [4]; thus, the multiplication of exponentially
many uniformly generated elements can be done by uniform AND-OR circuits having
linear depth.

In order to prove a matching lower bound for sufficiently large k, we will use a
uniform version [4] of Barrington’s theorem [4] relating NC' to chain multiplication
in S5. Recall that S5 is the group of all permutations on the set {1,2,3,4,5}. We
apply permutations on the right. We say that a permutation 7 fizes a number iz if
17 = 2. Let id denote the identity permutation.

Definition 4.

{MULTS;5 = {{z1,---,Zn) : T1,...,Tn € S5 and z1 - - - 2, fixes 1}.




Theorem 5 (Barrington—Immerman-Straubing [5]). MULTS; is complete for
NC! under dlogtime m-reductions.

In other words, NC! is as easy as multiplying n elements of the symmetric group
Ss and determining whether the resulting element of Ss fixes 1. Thus, languages
recognized by uniform polynomial-depth circuits are as easy as multiplying exponen-

tially many uniformly generated elements of S5 and determining whether the product
fixes 1.

Before we continue, it is important to point out the connection between circuits
and space. Every language recognized by uniform AND-OR circuits having depth
s(n) is in DSPACE(s(n)) [3, Theorem 4.2], and every language in DSPACE(s(n)) is
recognized by uniform AND-OR circuits having depth O((s(n))?) [2, Theorem 5.2].
In particular, PSPACE is the class of languages recognized by uniform polynomial-
depth AND-OR circuits.

Corollary 6.

i. There is a polynomial-time computable mapping ¢ from Z* to Ss such that the
following language is PSPACE-complete:

Ky ={z:¢(z)p(z —1)--- ¢(1) fixes 1}.

ii. There is a polynomial-time computable function v from Z* to {id,(1,2),(2,3),(3,4),(4,5)}
such that the following language is PSPACE-complete:

Ky ={z:¥(x)p(z—1)--- (1) fixes 1}.
Proof:

i. We start with any PSPACE-complete language like QBF. QBF is recognized by
a polynomial-time uniform family of polynomial-depth circuits. The acceptance
problem for these circuits is polynomial-time m-reducible to an exponentially
long chain multiplication over Ss. Let f be that m-reduction, so f(z) is an
exponentially long chain of elements of Ss. By padding with the identity element
if necessary, we may assume that the length of each chain depends only on the
length of z. Let the infinite sequence ¢ consist of 120 copies of f(1), preceded
by 120 copies of f(2), etc.; i.e.,

¢ = f(3)17£(2)"*°F (1)
Because 120 is the order of Ss, f(z)!?° is the identity element for each ¢, so
f(2) = f(2)f(z = 1) f(z = 2)" - (1)

Let ¢(i) be the ith rightmost element of the sequence ¢. Because the length of
the sequence f(z) is easy to compute and depends only on the length of z, we
can easily compute ¢(¢) (without needing to compute the whole sequence).
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ii. Because S5 is generated by the 2-cycles {(1,2),(2,3), (3,4),(4,5)}, we can write
each element of S5 as a product of some number of those 2-cycles. By padding
with identity elements, we can write each element of S5 as a product of a fixed
number of elements of {id,(1,2),(2,3),(3,4),(4,5)}. Construct the sequence %
by so modifying ¢, and let (z) be the ith rightmost element of 1. |

Theorem 7. There ezrists a PSPACE-complete language that has a 6-local self-
reduction in which the reduction is in fact a permutation.

Proof: We define a self-reducible set S recursively. Let () be as in Corollary 6.
eleS
o {2,3,4,5} C S
eifg>land1<r<5then,5g+reSiff 5(¢—1)+r(q) €S

Then z € Ky iff 52 + 1 € S, so S is PSPACE-complete. Clearly, S has a 6-local
self-reduction that is 1-1 and onto from Z* — {1,2,3,4,5} to Z*. i

Theorem 8. There exists a PSPACE-complete language that has a 3-local self-
reduction.

Proof sketch:  Let A be 3-locally self-reducible. Testing membership in A is equiv-
alent to evaluating exponentially long products of certain kinds of finite functions.
These functions form a finite monoid. In the appendix, we show that this particular
monoid (M3) contains the group Ss. It follows that the chain multiplication problem
for M3 is NC'-hard under dlogtime m-reductions. As in the preceding proof, we can
therefore construct a 3-locally self-reducible PSPACE-complete set. i

Theorem 9. If A is 2-locally self-reducible then A belongs to MODgPH (and, in
fact, A belongs to a bounded level in MODgPH independent of the particular 2-local
self-reduction).

Proof sketch: Let A be 2-locally self-reducible. Testing membership in A is equiv-
alent to evaluating exponentially long products of certain kinds of finite functions.
These functions form a finite monoid. In the appendix, we show that this particular
monoid (M;) contains only solvable groups. In fact, it contains only groups whose
order is of the form 2'37. It follows that the chain multiplication problem for M; is
in ACC(6). Therefore we can evaluate exponentially long polynomial-uniform chain
products over M, in MODgPH. (A 2-locally self-reducible set’s level in MOD¢PH is
bounded by an absolute constant independent of the particular 2-local self-reduction,
because the chain multiplication problem belongs to a fixed level of ACC(6).) i




3. Appendix: Algebra

A semigroup is a set equipped with an associative multiplication. A monoid is a
semigroup with an identity element, which we denote by 1. Here we are interested in
finite semigroups and monoids.

Let Q be a finite set. The set of maps from @ into itself forms a finite monoid
with composition as the operation. Actually there are two monoids we can define
this way, one in which we compose maps from right to left, the other in which we
compose maps from left to right. These two monoids are not isomorphic, but they
contain precisely the same groups, so for our purposes it does not really matter which
one we choose. In what follows we will assume that maps are composed from left to
right, so that fg means “apply first f, then g.” We thus also write the image of an
element of Q under a map f as ¢f rather than f(q). We use the term transformation
monoid to mean any monoid of maps on a finite set, in which the identity element is
the identity map.

Let f:{0,1}* — {0,1}. We define

Fy:{0,1}* = {0,1}*

by
FI(IE],...,IL'];) = (IEQ,. ‘.,mk_l,f(.‘bl,. . .,:L'k)),

where f : {0,1}* — {0,1} is a map. Let us denote this transformation monoid Mj.
We will study the structure of M} for various values of k.

A monoid typically contains many subsets that are closed under multiplication in
the monoid, and are thus subsemigroups of the monoid. When the subsemigroup is
a group, we call it a group in the monoid. (We avoid the term “subgroup” in this
context, since this is often taken to mean that the identity of the group coincides with
that of the monoid.)

Lemma 10 (Folklore). Let M be a transformation monoid on a finite set Q). Every
group in M is isomorphic to a permutation group on |Q| elements.

Proof: Let G beagroup in M. Let e be the identity of G. If g € G then Qg = (Qg)e
and thus the image of g is contained in the image of e. Conversely, Qe = (Qg~')g, and
thus the image of e is contained in that of g. So all elements of G have the same image
I.Forany g € G, Ig = (Qe)g = Qg = I, so every element of G permutes I. If g,h € G
induce the same permutation on I, then for all ¢ € @, g9 = (ge)g = (ge)h = ¢gh and
thus ¢ = h. Thus G is isomorphic to a group of permutations of I C @, which can
be embedded in the group of permutations on |@Q| elements.

We say that a finite monoid M is solvable if every group in M is solvable. There is
more to this terminology than meets the eye: Every monoid M admits a certain kind
of decomposition (the Krohn-Rhodes decomposition) in which the factors are simple




composition factors of the groups contained in M. When M is a solvable monoid,
all of these composition factors are cyclic groups of prime order. Barrington and
Thérien [6] show that in this case we can compute the product of n elements of M
using an ACC(r) circuit family, where r is the product of the distinct prime divisors
of the cardinalities of the groups in M.

Proposition 11. M, is solvable, and the prime divisors of the orders of the groups
in My are 2 and 3.

Proof: By Lemma 10, every group in M; is isomorphic to a subgroup of Sy, the
symmetric group on four letters. Thus M is solvable, and the only primes that divide
the order of a group in M, are 2 and 3. We need only show that M, contains both a
group of order 2 and a group of order 3.

Let f(0,1) = 0, f(1,0) = 1, f(0,0) = 0, and f(1,1) = 1. Then F} transposes
(1,0) and (0,1) and leaves (0,0) and (1,1) fixed, thus generating a group of order 2
in M2.

Let ¢(0,0) = 1, ¢(0,1) = 0, g(1,0) = 0, and g(1,1) = 1. Then F, cycles (0,0),
(0,1), and (1,0), and fixes (1,1). Thus G, generates a group of order 3 in M.

As a corollary, we find that multiplication of n elements in M, can be performed
by an ACC(6) family of circuits.

Proposition 12. M3 is not solvable.

Proof: We define functions f,g: {0,1}® — {0,1} by

£(0,0,0) = £(0,0,1) = f(0,1,0) = f(1,1,1) = 1,
(0,1 1)=f(1 0,0) = f(1,0,1) = £(1,1,0) = 0,
9(0,0,0) = (0 1,1) —9(1 0,1) —g(l 1,0) =0.

Let us denote a triple (a, b,c) € {0,1}3 by 4a + 2b+ c. With this notation, Fy and Fj
are the permutations (01364)(25) and (1364)(25), respectively. In particular, Fy and
F, generate a subgroup of S5 x S;. The projection of this group onto the left-hand
component is all of S5, because

(01364)(01364)(1364)(01364)(01364) = (36),

and any 2-cycle and 5-cycle generate Ss. Thus M3 contains a nonsolvable group.
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