Sensor Planning for Reactive Robotic Systems

Gregory D. Hager and Gerhard Grunwald

Research Report YALEU/DCS/ RR-925
October 1992

Sensor Planning for Reactive Robotic Systems

Gregory D. Hager Gerhard Grunwald
Department of Computer Science German Aerospace Research Establishment
P.O. Box 2158 Yale Station Institute of Robotics and Systems Dynamics
Yale University Miinchenerstr. 20
New Haven, CT 06520 D-8031 Oberpfaffenhofen
Abstract

~ Recently, there has been increased emphasis on employing reactive actions in
robot task planning. The principle reasons for this change are to increase the ro-
bustness of robot actions by making them sensor controlled, and to accommodate
dynamic, unpredictable environments. However, in many cases, supporting reactive
mechanisms requires choosing task level sensor inputs for the reactive procedure.
This paper addresses the issue of planning the task level sensing required to carry
out a reactive robot program. A preliminary framework for planning is presented,
and sensor planning is.illustrated for the problem of replacing a mechanically at-
tached plug in a space environment.

1 Introduction

Reactive robotics is an umbrella term for the philosophy that robotic tasks should be
carried out using direct, task level sensor feedback. The efficacy of using task level sensor
feedback is indisputable: task level feedback increases both the range and reliability of
robot task performance. Unfortunately, the vagaries and complexities of processing data
from sensors capable of task level sensing (most notably vision, dense and sparse range
sensors, tactile sensors, and force sensors) has limited progress in this area. Thus far,
most interesting systems employ rudimentary, “hard-wired” sensor inputs to accomplish
simple, unstructured tasks such as wandering through corridors or collecting rocks on
the surface of Mars [2, 6].

More recently, there have been attempts to employ reactive procedures in more struc-
tured tasks by posing task level planning as the configuration of generic reactive modules
to accomplish specific objectives [5, 13, 14]. In principle, planning for reactive behavior
can be decomposed into the following two subproblems: '

o Analysis of the task and its decomposition into sensor-relative actions. This is, in
many ways, similar to “classical” planning, however, it is important to deal with
problems of realtime operation and concurrency [14].

e An analysis of the structures in the world that can be recognized and used to guide
actions. The goal to reduce the required sensor information to the minimal, most
reliable sensor inputs needed to perform the action.

We refer to the former as task level planning and the latter as sensor level planning.
Intuitively, task level planning is concerned with the operational decomposition of the

1

task into more basic actions, and sensor level planning is concerned with satisfying the
information needs of these actions. Although we have separated these two activities,
there are clearly a number of interactions between these two modules that need to be
understood.

In this paper, we further define the problem of sensor level planning, we propose a
general procedure for accomplishing it, and we illustrate the planning algorithm on a
benchmark problem. We assume an environment structured to the point that the sensor
planning system can use simulation as a reliable means of testing and debugging sensor
plans. We note that the amount of structure needed by sensor planning is still somewhat
unclear. It appears to depend heavily on the type of actions that must be planned, as well
as the sensor information required to support them. In our case, we are mostly interested
in sensor planning to support space teleoperation. Thus, we attempt to infer or elicit
sensor-based actions from user input, and build the sensing configuration required to
support it. In general, space environments are well-structured, and as described below,
it is often possible to build simulations of high-fidelity.

The remainder of this article is structured as follows. In the next section, we explore
the basic structure of the planning problem and introduce our test environment and
example problem. In Section 3, we describe the structure of the planning system and
discuss how it would plan a sensor-guided motion. Finally, we conclude with a discussion
of our current work.

'2 Task Level Planning and Sensor Level Planning

For the purposes of this paper, we will refer to actions that are executed without any task
level sensing as open-loop, and actions using sensing as closed-loop. The role of task level
planning is to construct a robot program composed of primitive, open-loop and closed-
loop actions that successfully achieves some objective. Henceforth, we will assume that
the task level planner is able to recognize that some actions cannot be executed open-
loop with enough precision to succeed, and that it can infer task-specific geometric goal
conditions that must be satisfied in object relative coordinates. Any objects referenced by
a task description are known to the system a prior: and geometric models are available.
Furthermore, depending on the structuring of the environment, the approximate position
or pose of object may be known. Finally we assume that the task level planner has enough
geometric information to decompose closed-loop actions into approximately straight line
motions. That is, if moving from position A to position B involves moving around an
intermediate object, then the planner should define intermediate positions (or sets of
positions) so that the total motion is a series of approximately straight segments. This
type of decomposition can be done using relatively coarse, nonparametric geometry such
as the maps described by Elfes [4].

As stated above, the goal is to rely on as little calibration as possible, and to emphasize
object-relative positions rather than robot-relative positions. So, for example, a robot
motion to some point A in the workspace involves describing the position A relative to
some features of the environment rather than in a global robot coordinate system. Hence,
closed-loop actions lead planning away from a classical “robot-centered” definition of
motions and toward one that is object-centered. This is similar in conception to the
indexical-functional representation proposed by Agre and Chapman [1].

In order to carry out sensor-based actions, a robotics system must recognize and/or
verify the existence and pose of the “landmarks” used to define relative positions, locate

specific features that can be tracked to control the manipulator, perform the action,
and at the same time monitor for sensor inputs that indicate the desired goal position
has been reached. We initially classify the type of sensor operations needed in each of
these steps as a static sensor task or a dynamic sensor task. Static sensor tasks perform
one-time measurements and calculations. These actions are purely informatory, and
are usually added to a program to instantiate variables needed by later actions. For
example, recognizing an object addresses the problem of matching sensor information
with a model. This information can be used to relativize an action to a particular object,
to verify expected initial conditions, or to aid in the search for specific object features
needed to control an action. The sensor planning problem is to match the available sensor
information with a matching or recognition procedure. Dynamic sensor tasks support
control of performatory actions: actions that lead to actual motion of the robot. For
example, approaching an object requires tracking lines or patterns that can control the
attitude and relative position of the robot with respect to the goal position. The sensor
planning problem is to choose the type of sensing and the sensor patterns to be used in
the feedback loop. It must ensure that the entire action, from initial state to final state
can be carried out using some combination of sensing, inference, and servoing.

The connection between actions proposed by the task level planner and the operations
planned at the sensor level takes two forms. For informatory actions, the action generated
by the task planner corresponds directly to a task to be planned by the sensor planner.
In some cases, the task level planner is allowed to specify accuracy requirements or other
conditions that must be met. For example, a pose estimate may need to meet accuracy
requirements in order to support a particular fine motion strategy. Performatory actions
that require sensing support are “decomposed” into sensing tasks by the sensor planner.
This decomposition is governed by the contextual constraints surrounding the action.
For example, approaching an object requires recognition, pose estimation, and tracking
to support control. The sensor planner also has information on the type of control that
is taking place so that it can choose the features to be tracked based on control stability
criteria. We discuss these issues in greater depth in the next section.

2.1 Experimental Planning Environment and Example

Our experimental environment consists of the ROTEX (RObot Technology EXperi-
ment) robot, sensors and workcell. ROTEX is a German space telerobotic experiment
‘that will fly with the next German space lab mission (D2) in 1993. It consists of a
six-axis robot equipped with a sensorized gripper and an external fixed pair of video
cameras providing a stereo image of the robot workspace. The gripper is provided with
a number of sensors: two six axis force-torque wrist sensors, two tactile arrays, grasping
force control, an array of 9 laser-range finders and a tiny pair of stereo cameras. ROTEX
is designed to operate autonomously, to be teleoperated by astronauts, or to be teleop-
erated from a ground station. A more detailed description of the ROTEX environment
can be found in [9] or [10]. Although the ROTEX environment was primarily designed
for telemanipulation, there are additional interfaces in the laboratory version of ROTEX
that support other modes of operation. We note that, for the moment, the configuration
used for sensor planning experiments only uses a single hand-camera, the hand-mounted
range sensors, and a single global-camera: no stereo information is available.

Our sensor planning framework will be illustrated using one of the D2 mission experi-
ments: the task of finding, grasping and removing the ORU (Orbit Replaceable Unit), an

Figure 1: The ROTEX workcell.

electro mechanical plug (See figure 2). The ORU is removed by expanding a grip on the
top, executing the proper twisting motion, and then pulling away from the attachment
surface. We will consider planning for the recognition and sensor-guided approach to the
ORU.

We note that experiments with the system in teleoperated mode have shown that this
task is extremely difficult to carry out with no sensor feedback. The tolerances on the
hand position and orientation are very small, and the sensor information available to the
human operator is often difficult to interpret. The system permits the operator to use
the four laser distance sensors pointing out of the fingertips to control gripper orientation
near the ORU. This simplifies the task greatly. We have recently developed a vision-
based controller that can control gripper position parallel to the surface of the ORU.
Combining both range and vision leaves the operator the simple task of getting the robot
near the ORU, turning on sensor-based control, and then controlhng the z axis motion
until the gripping position is reached.

3 The Sensor Models and Planning Architecture

As noted in the previous section, requests to the sensor planner are either basic sensor
requests or higher level actions that are decomposed by the sensor planner into a sequence
of more basic sensing actions. For example, the high level action approach(ORU,final_pos)
is decomposed into the following operations: approach(ORU,final_pos) :=[recognize(-);
pose(-) tracking(*)]. The first two operations are static, informatory actions, while the
latter is used to support performance of a dynamic closed—loop motion. The sensor
planner constructs a plan for these actions using information available on the ORU, the
available sensors, and final position criteria supplied in the request.

Information on objects and sensors comes from object models, sensor models, and
sensor simulations. The object models are from the CATIA CAD modeler which provides
us with a boundary representation from which physical edges and planar surfaces can be

4

Figure 2: The Orbit Replaceable Unit.

easily extracted. In addition, we separately represent artificial markings such as the guide
lines on the ORU. Using this information, we have implemented and tested simulations
for the distance sensors, a laser range sensor, and a 6 dof force/torque sensor. Further we
have also implemented a primitive camera simulation which is currently being extended
to deal with more sophisticated features and imaging models.

3.1 Logical Sensors

The basic representation in the system is a structure similar to the notion of Logical
Sensors [8]. The basic form of the structure is:

Logical Sensor <name>

Input_List {<Logical Sensors>}
Data_Proc {<return> = <data_proc(...)>}
Type static | dynamic

Controller {<ctrl>}

Valid {<cond>}

Characteristic <pose>; <fixed|movable>; <field of view>; <...>

At planning time, these logical sensors are instantiated and organized into a network
structure based on various choices of input sources from the Input_List and data process-
ing procedures from the Data_Proc list. Each input process has a return value which is
used as input to a data processing algorithm. The Type slot indicates whether this sen-
sor provides information just once, or over an interval of time. The Valid slot represents
constraints that must be satisfied by the input to the chosen data procedures in order for
them to function correctly and reliably." The Controller must check the sensor data with
respect to Valid and, in case of a dynamic operation, coordinate and synchronize the
instantiated data processes. If the Logical Sensor represents a physical sensor it may also

control the device. Physical sensors use the Characteristic slot to represent information
like the position, the field of view, work-criterions and very important if its a fixed sensor
or its mounted on a movable device.

3.2 Sensor Planning Architecture

Planning is viewed as instantiating and refining the logical sensor associated with an
action based on information about the sensing task. Each action of this type has three
parameters: the information the task planner expects from the sensor system; the sub-
ject; and, the goal conditions for the entire request. Goal conditions on sequence requests
like approach are extended to apply to each atomic sensor request and form a common
condition the sequence must satisfy. For example, the approach action supplies a final
position and positioning accuracy that must be attained during the course of executing
the three basic actions. The first step in sensor planning is to perform a geometrical
analysis of the ORU model to find task relevant geometric information that is observable
by the available sensors from the set of initial sensor positions. For example, the rec-
ognize() request requires discriminating geometric features which uniquely identify the
ORU. To this point, the features used in our environment are defined by hand and include
lines, faces, special surface markings and combinations thereof. The geometrical analysis
results in a set of geometric classes which are detectable by the sensors. In case of ORU
the geometric <lasses are line, face and the relation of the three markings on the top.

The next step is to build a tree of logical sensor which can observe the object fea-
tures, and to ensure that the execution of the associated data processing routines will
be successful. The root of the tree is the logical sensor corresponding to the sensing
task. Tree growth is constrained by knowledge of the feature classes computed in the
previous geometrical analysis step. Starting from the root for each geometric entity all
suitable pairs of Logical Sensors of the Input_List and data processes of Data_Proc define
successor nodes. This process is continued recursively until the level of physical sensors
is reached.

The class tree is then pruned and instantiated by using task information and output
from the sensor simulation system based on the configuration expected when the plan
will be executed. For each physical sensor a simulated measurement is performed and
. the observable geometries are evaluated with respect to the different data processes. At
each node the validity conditions are tested, and if a test fails the node is pruned. So the
result of the instantiation is a tree containing only reliable information. In our example,
the camera simulation will find all lines and faces seen in the Figure 2. The filtered
geometry is based on the sensor observation model and hence represents only the visible
parts of it.

The instantiated tree is then analyzed with respect to the goal criteria for completeness
and redundancy. Completeness addresses the problem if the expected sensor information
is sufficient to attain required accuracy, stability, or uniqueness conditions. In case of
recognize the simulated information is checked if it uniquely identifies the ORU. Redun-
dancy is an important consideration as it increases the robustness of sensor-based action,
but it also increases the complexity of data processing. In some case, the sensor plan-
ner may need to choose a compromise between safety and performance of the system.
The failure of any of the above steps causes the sensor planner to reject the request as
unsatisfiable.

3.3 Constructing Plans for Reactive Actions

Just as recognize(-) has a corresponding logical sensor, so do dynamic actions such as
tracking. We view the problem of planning sensing to move between two points as the
problem of constructing the observer for a series of adaptive regulators that attain the
final desired position. These regulators are “constructed” by configuring pre-defined
generic regulators using the appropriate choice of sensor inputs and goal patterns. More
precisely, we are considering the following problem.

Given:

e a geometric object description;
e a model of sensor feature detection;-
e a range of initial positions defined relative to the object; and
. a goal position defined relative to the object.
Determine:
e a collection of “regulators” and sensor inputs;
e the range of stable regulation for each; and

e a switching behavior.
So That:

o All plausible paths from the initial state to the goal position are covered by a stable
regulator.

o The system deviates as little as possible from the straight line path from the initial
state to the goal state.

We note that, although there is a great deal of discussion of the local and global stability
of regulation systems [15], we do not know of any computational methods for synthesizing
a regulator and analyzing its region of stability. Moreover, while this synthesis problem
could, in principle, be formulated analytically, we postulate that any completely analytic
solution would be computationally infeasible to carry out within the time constraints
imposed by practical planning.

Consequently, we have begun to explore approximate solutions that involve decompo-
sition of general motions into combinations of specific motions for which the regulation
problem is well understood. Specifically, we note that if a goal pattern is in view of
the camera, then servoing forward while holding a point on the pattern in the center of
the image will lead the system to translate to the point regardless of orientation. Con-
sequently, one way of positioning the gripper is to approach a pattern until a distance
is reached where other visual patterns or visual and range information can be used to
control orientation as well as position. Furthermore, the gripper can rotate about an
object by “linking” together visual patterns that contain enough information to control
distance (via scale) as well gripper/object relative orientation. Thus, an effective motion
plan consists of: 1) finding a pattern on the same surface as the goal that is visible; 2)
proceeding toward that pattern; 3) rotating or navigating about the surface until the
goal is visible; 4) orienting and translating to the goal position.

7

For the gripper-mounted camera, the available information sources are various types of
gradient-based pattern tracking as well as feature-based tracking. As the camera moves,
these patterns distort and scale. It is relatively straightforward to determine the range
of visual angles and scales over which particular features or patterns are detectable [16].
In general, stability degrades as the camera moves away from objects.! This leads us to
consider a representation of the stable region of control in terms of sections of a sphere.
Recalling that stability at a point can be determined by examining the Hessian of the
objective function describing the controller [12, 15], we can find the boundaries of the
region of stable control by testing points on the surfaces of a spheres.

This basic idea leads us to consider a sensor planning algorithm using methods similar
to the backprojection technique employed by Donald’s motion planner [3, 11]. Essentially,
the gripper is simulated at the goal position and a stable set of sensor inputs is chosen.
The stable point is expanded to a stable region. Regulators are chosen on the boundary
of this region and extended further until the set of goal configurations is encompassed.

More formally, if s is a logical sensor, let D, denote the spherical section (essentially
two intervals of angles and one interval of distance) from the goal over which the sensor
detects the chosen features. If a regulator r relies on sensors A, let D, = Nye4D;. Hence,
D, is the range over which r will receive the measurements that it expects. Let S, denote
the region of stability of r. Then O, := S, N D, represents the operating range of the
regulator 7. If I is a set of initial positions expressed relative to the goal point g, then
let Z denote the minimal spherical section such that Z D I. Let A(:) denote the range of
angles of a spherical section. Our proposed algorithm then proceeds as follows:

1. Given a goal position g, synthesize a regulator r, such that r, is stable at g. Compute
O, 10,27 then stop.

2. Let L be the upper bound on diameter in O,,. Synthesize regulators on orientation
and distance ry,73,...7, such that A(UX,0,,) D A(Z) and L € N, 0,.,.

3. Create a queue @ of these regulators ordered by increasing maximum stable dis-
tance.

4. Tteratively:

e Remove the first regulator r with operating range O, from the queue.

e Compute a set of regulators 71,7, ... 7, on horizontal and vertical translation
such that A(U%L,0;,,) 2 A(O,). Add them to the queue and sort it. If no such
set exists, exit with failure.

o Exit when the first element in the queue has an operating range with a maximal
distance component larger the largest distance in Z.

Once a collection of regulators is found and the algorithm exits, the corresponding logical
sensing network of feature trackers is instantiated and information for their initialization
is planned. The final result is a tracking “program” that provides information for stable
regulation during the approach operation.

1We note that perspective projection causes scale ambiguity in camera images so that camera control
must be implemented using adaptive methods.

4 Discussion

The basic elements of the system we have described is currently being implemented within
the ROTEX environment of Section 2. As noted above, many of the sensor simulations
exists, as well as an adaptive vision-based regulator and a range-based regulator. We have
a primitive camera simulation which we are planning to augment with a detection model
similar to that described in [16]. The point stability analysis has been implemented for
the monocular camera and range sensor combination. We are currently extending that
analysis to spherical regions as described in Section 3.

Our analysis has been based on a reasonably known, structured environment. In par-
ticular, we are able to use the available environment models to constrain the initial
conditions for most sensor planning operations. This facilitates efficient offline sensor
planning. It appears that working in an unstructured environment requires much more
online evaluation of execution conditions as well as a more general framework for task
planning. In future work, we hope to con31der the issues involved in working in unstruc-
tured environments.

Acknowledgements: This research was supported by DARPA grant N00014-91-J-
1577, by National Science Foundation grants IRI-9109116 and DDM-9112458, by NATO
Collaborative Research Grant CRG-910994, and by funds provided by Yale University.

References

[1] P. Agre and D. Chapman. Pengi: An implementation of a theory of activity. In
Proc. of AAAI-87, pages 268-272. Seattle, WA, 1987.

[2] R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139-159,
1991.

[3] B. R. Donald. A search algorithm for motion planning with six degrees of freedom.
Artificial Intelligence, 31(3):295-353, 19817.

[4] A. Elfes. Sonar-based real-world mapping and nav1gat10n IEEE' Journal of Robotzcs
and Automation, 3(3):249-265, June 1987. N

[5] J. Firby. An investigation into reactive planning in complex domains. In Proc. of

AAAI-87, pages 202-206. Seattle, WA, 1987.

[6] E. Gat and D. Miller. Modular, low-computation robot control for object acquisition
and retrieval. Jet Propulsion Lab Technical Report, 1990.

[7] C. Hansen and T. Henderson. CAGD-based computer vision. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 11(11), 1989.

[8] T. Henderson and E. Shilcrat. Logical sensor systems. Journal of Robotzcs Systems,
1(2):169-193, 1984.

[9] G. Hirzinger. The telerobotic concepts of ROTEX—Germany’s first step into space
robotics. 39th I.A.F., Bangalore, India, 1988.

[10] G. Hirzinger, G. Grunwald, B. Brunner, and H. Heindl. A sensor-based telerobotic
system for the space robot experiment ROTEX. 2. International Symposium on
Ezperimental Robotics, 1991. Toulouse, France.

[11] T. Lozano-Pérez, M. T. Maéon, and R. H. Taylor. Automatic synthesis of fine-motion
strategies for robots. The International Journal of Robotics Research, 3(1):3-24,
1984.

[12] D. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, New York,
N.Y., second edition, 1984.

[13] D. M. Lyons and M. A. Arbib. A formal model of computation for sensory-based
robotics. IEEE Journal on Robotics and Automation, 5(3):280-293, June 1989.

[14] D. McDermott. Planning reactive behavior: A progress report. In K. Sycara, ed-
itor, Innovative Approaches to Planning, Scheduling and Control, pages 450-458.
Kaufmann, San Mateo, CA, 1990.

[15] K. Narendra and A. M. Annaswamy. Stable Adaptive Systems. Prentice Hall, En-
glewood Cliffs, N.J., 1989.

[16] K. Tarabanis, R. Tsai, and P. Allen. Automated sensor planning for robotic vi-
sion tasks. In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 76-82. 1991. ;

10

