A stable algorithm is presented to solve a nonsingular bordered system of the form

A B z_(f

¢t D)\y) \yg
where B and C are n by m matrices and the n by n matrix 4 could be nearly singular with at most
p small singular values. The algorithm needs only a solver for A and the solution to an m + p by

m + p dense linear system. It is, thus, well suited for problems for which A has easily exploitable

structures and m + p < n, such as in continuation methods, bifurcation problems and constrained
optimization.

Generalized Deflated Block-Elimination

Tony F. Chan and Diana C. Resasco t

Research Report YALEU/DCS/RR-337
February 1985

The authors were supported in part by the Department of Energy under contract DE-ACO02-
81ER 10996, by the Army Research Office under contract DAAG-83-0177, and by a BID- CONICET
fellowship from Argentina.

Keywords: bordered systems, block-elimination, nearly singular matrices, deflated solution.
tDept. of Computer Science, Yale Univ., Box 2158, Yale Station, New Haven, Conn. 06520.

1. Introduction

We are interested in solving a system of the form:

«(3)-(& D))

where the n by n matrix A may be singular or nearly singular with at most y small singular values,
but the n by m matrices B and C and the m by m matrix D are such that M is nonsingular and
well conditioned. We shall show later that this implies that m must not be less than pu. Systems
such as (1.1) arise, for example, in continuation methods, bifurcation problems [3] and constrained
optimization [2, 7], where usually m+p < n. The case m = 1,4 = 1 is rather common, especially in
continuation methods. However, in applications like computation of singular points by augmented
systems (3, 8, 9], m is often larger than 1 and in constrained optimization, the nullity of A can also
be larger than 1.

In many applications, A possesses certain properties, such as sparseness or the existence of a
special solver, which can be exploited. In these situations, we want an algorithm to solve (1.1) that
involves primarily using solvers for A. The following block-elimination algorithm has this property:

ALGORITHM BE.
Step 1: Find the n by m matrix V' and the n-vector w that solve the n by n systems:

AV =B and Aw=f (1.2)
Step 2: Compute the Schur complement of A in M:
S=D-CTv
and solve the m by m system
Sy=g-CTw (1.3)

Step 8: Compute
: z=w-Vy (1.4)
This algorithm is well defined if both A and M are nonsingular, since in that case, it is easy
to show that S is nonsingular (see section 2). It, however, can be numerically unstable when A is
nearly singular and it can produce completely inaccurate solutions (z,y) in those situations 3, 6].
For the case m = 1 and pu < 1, Algorithm BE can be rendered stable by employing implicit
deflation techniques [6] to give the Deflated Block-Elimination (DBE) Algorithm which exploits
structures in A while giving accurate solutions. In this paper, we consider generalizations of
Algorithm DBE to the case m > 1 and p > 1. In section 3 we review the basic deflation techniques
developed in [4, 11] and extend them to the case of higher dimensional null space. These techniques
are used to compute accurate representations for the solutions V' and w in (1.2). In section 4 we
review Algorithm DBE for the case m = 1, y = 1, which is then used in section 5 to motivate the
generalization to m and p greater than one.
We mention a class of related methods that are also based on Algorithm BE [10, 8, 9]. Instead
of employing implicit deflation techniques, they rely on computing an LU factorization of A with a
small n-th pivot, which can be computed, for example, by the algorithm described in [5]. However,
even when A is nearly singular, the usual pivoting strategies (e.g. partial and complete pivoting)

1

are not guaranteed to produce any small pivot and the row and column permutations needed
to produce such a factorization may not preserve the sparsity of the LU-factors. Moreover, the
deflation techniques used here can be extended to iterative methods, such as multigrid [1]. For a
survey of other methods for solving (1.1) see [3].

We shall use only the 2-norm in this paper and P, with ||u]| = 1 will denote the orthogonal

projector I — uuT.

2. Nonsingularity of M

In this section we will give necessary and sufficient conditions on A, B, CT and D for M to be
nonsingular. These conditions are derived from a block factorization of M based on the singular
value decomposition of A, and will later turn out to be useful in establishing the stability of our
algorithm. We shall first introduce some notation and definitions.

Definition 2.1. The singular value decomposition (SVD) of A is denoted by
A=UzvT.

Since A has at most u small singular values, we shall partition T as follows:
%, O
3= < 0" A) (2.1)

g1
2” = ‘ (22)
an—u

where

and
&1

A= (2.3)
6!‘

with 07 > ...0p—py > 61 > ...6, > 0. We shall use ® and ¥ to denote the last u columns of V and
U,ie. ® and ¥ contain the right and left singular vectors corresponding to the u smallest singular

values of A. The matrices U, and V), will denote the first n — p columns of U and V, respectively.
Thus, the SVD of A can be written as:

a=we (%) (%) (24)

The following theorem gives conditions for the nonsingularity of M.

Theorem 2.1. Let the SVD of A be given by (2.4), where 0,—,, > 0. Then, M is nonsingular if and

only if the matrix
= (A v''B >
- T T -17rT
c'® D-C V,‘EHIUHB
is nonsingular.

Proof. Based on (2.4), define the 4 + m by n — p matrix Q as:

0
Q - <CTV”2;1> ’

2

where O denotes u zero rows, and the n — pu by u 4+ m matrix H as:

H=(0 UlB).
It can be easily verified that the matrix M can be factored as follows
M=<g Ii)LR(‘/OT I‘;), (2.5)
where I o
L= ('E“ Ip+m> (2.6)
and
R=<2(:)” g) 2.7)

The matrix L is clearly nonsingular, therefore it is easy to see that M is nonsingular if and only if
R is nonsingular. Since X, is diagonal with non-zero diagonal entries, R is nonsingular if and only
if E is nonsingular.

Corollary 2.1. (a) Assume that A is nonsingular and let the m by m matrix S be the Schur
complement:

S=D-CTA™'B (2.8)
then M is nonsingular if and only if S is nonsingular.

(b) If A is singular with dimN (A) = p, i.e. A=0 and op,—y # 0, then M is nonsingular if and
only if m > pu and the matrix

(0 vTRB)
T T - T
cte p-c'v,z;'ul'B

is nonsingular.

3. Deflated Decomposition

Consider the system
Az=0p (3.1)

where the SVD of A is given by (2.4). If A is nonsingular, by applying the inverse of the expression
(2.4), the solution z can always be represented as:

2= A"lp=1z;4+ A7 10T (3.2)

where
| 2a =V, 2 UL p (3.3)

We call (3.2) the deflated decomposition of z. When p is such that o,—, > 0, (3.2) can
be interpreted as a decomposition of the solution into a deflated part, z4, and a part spanned by
approximate null vectors of A, since ® contains the singular vectors corresponding to the u smallest
singular values of A. When A is singular, zg4 is still well defined and ||z4|| remains bounded. We
call z4 the deflated solution of (3.1). We will prove that z4 is the solution to a nearby singular but
consistent system derived from (3.1). This new definition of z4 gives the basis for an algorithm to
compute z4 that does not require explicitly computing the SVD of A.

3

Theorem 3.1. The deflated solution z4 of (3.1) is the unique solution to the following system:

PyAzg; = P,
vAZg wp (3.4)
Pyzqg = 24.
Proof. Since U and V' are orthogonal, it can be easily proved that
Py =W VT (3.5)
and
Py = U UT. (3.6)

By substituting (3.3) into (3.4), we can prove that z4 is a solution to (3.4). On the other hand, if
u is a solution to (3.4), we have

U, UF Aw = U, UTp

and by multiplying by V121_1U1T we get Ppu = 2. Since u = Ppu, we have u = 24, thus proving
uniqueness.

|
The following algorithm [6, 11] for computing 24 is based on Theorem 3.1.

ALGORITHM DEFLATE

Step 1. Compute p = Pyp
Step 2. Solve Ad=p
Step 8. Compute z4 = Papd.

Because of the deflation performed in Step 1, the size of the vector d computed in Step 2 is
kept small and therefore Algorithm Deflate is stable even when A is nearly singular [4]. Step 3
is not essential. Its function is to purge z4 of any component in the ® direction. Note that this
algorithm only requires a solver for A and does not require computing the SVD of A. Moreover,
either direct or iterative methods such as multigrid [1] can be used.

The following lemma will be needed later.

Lemma 3.1. 2, is also a solution to
Azg = Pyp

Proof. Follows from the definition (3.3) and (3.6).

4. Deflated Block-Elimination

The Algorithm DBE was presented in [6] as a method for solving the system (1.1) when p =1
and m = 1, i.e. B and C are vectors in R", D is a scalar, and the matrix A can be singular with
nullity < 1. The proposed method applies Algorithm BE combined with deflation techniques to
find the deflated decomposition for the solution to the systems with the matrix A in (1.2) and it is
made stable by avoiding the division by A. By replacing V' and w by their deflated decompositions

W f
= Rl
w = wy +

4

vTRB

V=Vi+ ®

in (1.3) and (1.4) we can derive that the solution to (1.1) is given by:

(6)- () (195 (3)-

where
B=D7" [(CTR)UT f — Ag — CTwy)] (4.2)
and
a=Di" [(g — CTwyg)¥TB — (D — cTvy) el], (4.3)
with
D, = (CT®)¥TB - A(D - CTVy), (4.4)

Note that D; is exactly the determinant of the matrix E in Theorem 2.1 and therefore is
nonzero if M is nonsingular. The algorithm is proven stable in [6], where a backward error bound
is derived.

5. Generalizing Deflated Block Elimination

In this section we consider the generalization of Algorithm DBE to m > 1 and p > 1. Let
us first restrict our attention to the case 4 = 1. It might first appear that equations (4.1) — (4.4)
generalize directly, with scalar divisions by D; replaced by matrix inversion. However, the m by
m matrix D; (4.4) tends to a rank-one matrix when A tends to being singular, i.e. as A tends to

zero, and this would produce very inaccurate results if the inverse of that matrix were to be applied
directly in (4.2) and (4.3).
Since (4.4) is a rank-one modification of the matrix

S;=D - CTvy, (5.1)
if Sq is nonsingular, the Sherman-Morrison formula could be applied to express the inverse of D;

in terms of S Lin (4.2) and (4.3), in the process cancelling out the singularity. Unfortunately, this
method may fail because S; could be singular. For example, let n = m = 2 and

10
which is clearly singular.
Another alternative could be considered, which consists of applying Algorithm DBE in a
recursive way as follows. Consider a new splitting of the matrix M:

A B

5

1
0

, 5.2
: 5:2)
1

O | = O
OO~ O

SO O =

then K(M) ~ 5 and

where A is the matrix A augmented with the first column of B, the first row of CT, and the (1,1)-th
element of D, i.e. :
~ A b
A= .
(ClT d11>

If Ais non-singular, then Algorithm BE can be applied to solve (5.3). When a system with A
needs to be solved in Algorithm BE, Algorithm DBE is applied. In this way we have reduced the
problem to the case m = 1, solved in section 3. However, this method fails if A is singular as the
following example shows.

Let n=m =2 and

, (5.4)

= O O =
== O O
bt et [O

OO O -

then K (M) ~ 5 and A is singular. Since

<G

is also singular, the recursive algorithm just described cannot be applied.

We next derive a generalization to Algorithm DBE that works and is stable as long as M is
nonsingular and well-conditioned.

Analogous to (4.1), we look for solutions to (1.1) of the form:

T\ _ wWq —Vd 6]
()= (%)= (7)+(3)- 53
with o € R* and B € R™, and V4 and wq are the deflated solutions (3.3) to the systems AV = B
and Aw = f. By substituting (5.5) in (1.1), and using the relationships

O O =
O O -
o

AD = VA,

AVy= PyB, Awg=Pyf

(the last two from Lemma 3.1), it can be easily shown that (5.5) is a solution to (1.1) if the vectors
a and g solve the following system:

b <g) - (g —‘Igf};wd) ’ (5.6)

where the m + p by m + p matrix E is given by

A vTRB
E = (CTQ D _ CTVd> . (57)

From Theorem 2.1, E is nonsingular, and therefore (5.6) has a unique solution. Note that for the
case m = p = 1, the solution (4.1) is of the form (5.5), where the 2 by 2 system (5.6) has been
solved directly giving (4.2) and (4.3). Note that in the case m 4+ u > 2 some form of pivoting
should be used when solving (5.6). The expressions (5.5) and (5.6) can also be derived from the

6

factorization (2.5) of M, with the solution obtained by simple backsubstitution. In this process,
the expressions for the deflated solutions wy and V; corresponding to (3.3) naturally arise and can
thus be computed by Algorithm Deflate, instead of using the SVD of A. This approach of deriving
an algorithm for (1.1) through a factorization of M is similar in spirit to an algorithm derived in
[8, 9], where an LU-factorization of M is derived from an LU-factorization of A with a small pivot
[5]. Our approach can be viewed as a generalization of the algorithm in [8, 9], where instead of
computing the LU-factorization of A, implicit deflation techniques are employed to fully exploit
structures in A. For large and sparse problems, such as those arising from discretizations of partial
differential equations, our approach should be more efficient. Moreover, it is more general because
the deflated solutions can be computed by methods other than Gaussian Elimination.

We next show that E is well conditioned as long as M is well conditioned. Based on the
factorization of M given in the proof of Theorem 2.1, an upper bound on the condition number of
E can be derived in terms of the condition number of M.

Theorem 5.1. The condition number of E is bounded by

K(B) < K(M) (1+||_Cﬂ>2

Proof. Consider the expression (2.5). For any lower triangular matrix of the form (2.6), it is easy
to prove that

Izl < 1+ |l
and similarly,
1LY < 1+ QI

Therefore

el)2

K@ <+l < (1+ 190 5.9

On—p

Since
Il < |IRIF < [|M]]-[|1Z7H]
and
B < IR7H < 1M~ - IIE]

we have

K(E) < K(M)K(L)
By applying (5.8) the proof is complete.
|
The bound in Theorem 5.1 is independent of the size of ||A|| and thus E is well conditioned if
M is, regardless of whether A is nearly singular or not. Observe also that there is a freedom in the
choice of p, in the sense that, as long as g,—, > 0, the algorithm is stable. The larger we choose

¢, the smaller the bound on K(E) will be, but on the other hand, it would require more work in
computing the singular vectors ® and V.

6. Error Analysis and practical considerations
Here we present a backward error bound for the residual

e (5)-()

If the matrix M is well conditioned and rps is small, then the error in the solution is small. On the
other hand, if M is ill conditioned, a small residual is all one can hope for.
We shall use tildes to denote computed quantities.

7

Theorem 6.1. For any f/d, wq, é,‘if, A, E’, & and ﬁ that satisfy

A® — VA = Ra, (6.1)
AVy - P3B = Ry, (6.2)
and
~ \’I}Tf Tk
~ 4

El~)- . | =rg= R 6.4
(5) - (o Scha) === |, 69

E

the solution Z,§ computed by (5.5) and (5.6) satisfies

TM=M<55>_<J">___(rw—RV3+RAC~V>+ vre (6.5)
O\ g 0 . :

o)

This theorem shows that the stability and accuracy of this algorithm depend on keeping the
residuals Ra, Ry, 7y and rg small and the solution &, 3 to (5.6) bounded. In the rest of this section
we will look at each residual individually.

In order to analyze Ra, we have to look at algorithms for finding the singular vectors & and
V. The following is a generalization of the inverse iteration algorithm presented in [4, 11] for higher
dimension. At every iteration, the algorithm gives <I> ¥ and A such that Rp is small.

ALGORITHM SII (Subspace inverse iteration)
Given ® € R™* such that ®T® = I, repeat until convergence:

1- Solve AT¥ =&

2- Compute the QR-factors ¥ = QR

3- Set ¥ =@

4- Solve AD =V

5- Compute the QR-factors ® = QR

6- Set®=Q, A=RL

In general, when A is nearly singular, one or two iterations should be sufficient to get con-
vergence. However, when A is not nearly singular or g > dim N(A), Algorithm SII may converge
slowly. Since only a few iterations will be performed, ®, ¥ and A may not be computed accurately.

Although the computed A may not necessarily be dlagonal and the relationship AT¥ ~ A may
not hold, the computed ® and ¥ are still orthogonal and

AdD ~ TA, (6.6)

i.e., Ra is small.

In Section 3 we presented Algorithm DEFLATE for computing the deflated solutions V; and
wq. In order to keep the residuals Ry and small, Step 3 is not necessary. In fact, with that step,
small residuals cannot be guaranteed if the singular vectors ®, ¥ and the matrix A of singular values
are not accurate. As noted before, such situations can occur when SII terminates prematurely. On
the other hand, it is clear that if Step 3 in Algorithm Deflate is skipped, the residuals Ry and r,,
will be small, even when ®, ¥ and A are not accurate, as long as V3 and w4 remain bounded. The

8

computed deflated solutions will have some components in the directions of ®, but they will be
bounded. For this reason, we recommend that Step 3 be skipped in Algorithm DEFLATE, which
also saves a few inner products.

Finally, let us look at rg. In exact arithmetic, Theorem 5.1 shows that E is well conditioned,
therefore the solution to the system (5.6) should remain bounded and the residual 7g should be
small. However, it was mentioned above that Algorithms SII and DEFLATE without the correction
Step 3 might yield answers that keep the corresponding residuals small but at the cost of changing
the entries of E in a nontrivial way. If the computed matrix E turns out to be well conditioned,
then & and ,8 are bounded and rg is small. When ¥ and @ are computed exactly and Algorlthm
DEFLATE without Step 3 is applied, the computed V, will have a component in each direction of
® that will be proportional to the ratio between the machine precision €5s and the corresponding
singular value, i.e. Vj satisfies

Vi =Vy+ &u, (6.7)
where ||Au|| = O(enr). The computed E can thus be written as

~ I —
E=E <0 I“) + O (enr),
therefore, _
K(E) » K(E) (14 [|ul)?.

If |A7Y| < €3}, then u is bounded and, by Theorem 5.1, E is well conditioned when M is well
conditioned.

We summarize our results, giving the outline for the algorithm and a rough estimate of work
and storage.

ALGORITHM GDBE (Generalized Deflated Block-Elimination)

Step 1 -Compute the n by p matrices of singular vectors ® and ¥ and the u by p matrix A of
singular values, e.g. by two iterations of Algorithm SII.
Step 2 -Compute the deflated solutions V; and wy as follows:
— Compute ¥TB and ¥Tf.
— Compute PyB =B —¥(¥TB) and Pyf = f — U (¥Tf).
— Solve
AVy = PyB

and
Awg = Pyf.

Step 8- Form the m + p by m + p matrix

g-(A ¥v'B
—\cT® p-CTv;)"

Step 4- Solve the dense system
al) _ vTy
o <ﬁ> B (9 - CTW)

9

Step 5- Compute the solution:

T = wqg— Vgh + P«
y=p

The algorithm requires the factorization of the matrix A, m + 1 back-solves for V4 and wq and
2u back-solves per inverse iteration for computing ¥ and @, plus lower order terms that include
the solution to a dense m + u by m + u system and a few inner products. It is very efficient for
multiple right hand sides, since only backsolves with the factored matrices A and E are necessary.

In addition to A, B, CT, D and the right hand side, the algorithm requires 2nu storage for ¥
and ®, plus O (mpu) extra storage for solving the E system.

7. Numerical Results

We performed some numerical tests with matrices of the form
A= (I-2uuT)Diag(n—1,...,1,8)(I — 2vv7) (7.1)

where u and v are random vectors of norm 1 and § = 10~ with 7 varying from 1 to 8. The matrices
B, C and D are chosen randomly but such that M is well conditioned. The computations were
performed on a VAX-780, with a 27-bit mantissa. LINPACK routines were used to solve linear
systems and compute the QR factorizations for the inverse iteration. Algorithm GDBE was tested
and compared with Gaussian Elimination on the matrix M. Two iterations of Algorithm SII were
used to estimate ®,¥ and A. It was also verified that, when step 3 of Algorithm DEFLATE is
included, inaccurate results can be obtained if the singular vectors are not computed accurately.

In fig .1, the relative error in the solution is plotted versus ¢ for the case m = 2 and p = 1.
While the Block-Elimination Algorithm gives an error that increases as the matrix A becomes more
singular, Algorithm GDBE stays stable, giving an error that is comparable to applying regular
Gaussian Elimination on the matrix M.

In fig .2, the same example is considered. Here the dimension of the null space of A was
overestimated to p = 2, so that

10
A= (0 ;)

In this case, Algorithm SII does not converge to the exact singular vectors corresponding to the
singular value 1. Nevertheless, Algorithm GDBE is still stable because the residual (6.1) remains
small. This confirms that the estimation of the exact value of dim IN(A) is not critical for the
success of Algorithm GDBE, as long as g > dim N(A). Finally, if Step 3 in Algorithm Deflate is
not skipped, this makes (6.1) large, giving completely inaccurate results.

Acknowledgments. The authors would like to thank Prof. Allan Jepson, of the University of
Toronto, for pointing out the relationship of his work [8] to the approach taken in [6] which greatly
improves this paper.

10

References

[1] R.E. Bank and T.F. Chan, PLTMGC: A Multigrid-Continuation Program for Parameterized
Nonlinear Elliptic Systems, Technical Report 261, Dept. of Computer Science, Yale
Univeristy, 1983. Submitted to Siam J. Sci. Stat. Comp..

[2] T.F. Chan, An Efficient Modular Algorithm for Coupled Nonlinear Systems, Technical Report
YALEU/DCS/RR-328, Yale Computer Science Department, 1984.

[] ————, Techniques for Large Sparse Systems Arising from Continuation Methods, T.
Kupper, H. Mittelmann and H. Weber eds., Numerical Methods for Bifurcation
Problems, International Series of Numerical Math., Vol. 70, Birkhauser Verlag, Basel,
1084, pp. 116-128.

[4] ———, Deflated Decomposition of Solutions of Nearly Singular Systems, Siam J. Numer.
Anal., 1984, 21/4 August (1984), pp. 738-754.

[5] ———, On the Ezistence and Computation of LU-factorizations with Small Pivots, Math.
Comp., 42/166 April (1984).

[6] ————, Deflation Techniques and Block-Elimination Algorithms for Solving Bordered Singu-

lar Systems, Siam J. Sci. Stat. Comp., 5/1 March (1984).
[7] P.E. Gill, W. Murray and M. Wright, Practical Optimization, Academic Press, New York,
1981.
[8] A. Jepson and A. Spence, Singular Points and Their Computations, T. Kupper, H. Mittelmann
and H. Weber eds., Numerical Methods for Bifurcation Problems, International Series
of Numerical Math., Vol. 70, Birkhauser Verlag, Basel, 1984, pp. 195-209.
[9) ————, Folds in Solutions of two-parameter Systems, Part I, SIAM J. of Numer. Anal.,
(1985). to appear.
(10] H.B. Keller, The Bordering Algorithm and Path Following Near Singular Points of Higher
Nullity, SIAM J. Sci. and Stat. Comp., 4/4 (1983).
[11] G.W. Stewart, On the Implicit Deflation of Nearly Singular Systems of Linear Equations, SIAM
J. Sci. Stat. Comp., 2/2 (1981), pp. 136-140.

11

error

10°

10

N
1 Illlllll 1 llll].u! L1l

1072

1073

||||||IT| lIlIIﬂTI LLRLLLL IIIIIIIT] TTT
\

107

107

10°®

1077

107

107°

I l l
2 4 6 8 10

Fig.l : Relative Error in BE and GDBE. o = 107

10—10

(o B 11 L L R AL BRI AL
- \
\
\
\
\
\
\
\
N
@
N
< m
L \
\
\

error

10°

107

1072

1073

107

107

10°8

1077

10°®

107°

10-10

|||||ITr| 17T

T IIIIIIT] T IHIIITI T ||||n1|

LRI |||um] IIIIIIITI ||||||'|T| IIHIIITI |||n|n]

e /
~ ra \
~ / GOBE with

step 3 of DEFLAT

P
Il'
BE .~
o“'
l/

Illlllu,l |l|l||_u,| IIIIlIuI IIIIIu_[' IIIIIIuJ |Ill||u| lllllmj-nllllllld lIlIlIIIl Illllluj [N

o

-i

1
F1g.2 :+ Relative Error 1n BE and GDBE. o = 10

—
o

