Yale University
Department of Computer Science

Directions in High Performance Computations

S. Lennart Johnsson

YALEU/DCS/TR-574
June 1987

This work has been supported in part by the Office of Naval Research under
Contracts N00014-84-K-0043 and N00014-86-K-0564. Approved for public re-
lease: distribution is unlimited.

Directions in High Performance Computation

S. Lennart Johnsson
Department of Computer Science
Yale University
New Haven, CT 06520

June 1987

*Presented at American Statistical Association conference Computer Science and Statistics. 19th Sym-
posium on the Interface.

Directions in High Performance Computation

S. Lennart Johnsson
Department of Computer Science
Yale University
New Haven!

Abstract

Evolving technology is driving high performance computer architecture towards highly
concurrent systems. We review some of the elements of the technology influencing this
direction, and discuss some of the architectural, algorithmic, and programming system
consequences of this change. Finally, we briefly describe some of the essential features
of the Connection Machine, a commercially available computer with an architecture and
programming system that includes several of the features we expect to find in many high
performance architectures in the future.

1 Introduction

There are several technological facts that drive the design of high performance computers in
the direction of highly concurrent systems. Traditionally, high performance systems have
been built using the fastest technology available, such as bipolar technology. However,
these architectures are expensive, and they consume a large amount of power. The price
has exceeded that of a standard mainframe by at least an order of magnitude, and the peak
performance has been at least two orders of magnitude higher than that of a mainframe.
Performance measured over complete application codes typically falls in the range of 10%
- 30% of the peak performance.

Several reasons have been noted for the large descrepancy between peak and average
performance. For many years, processors in high performance architectures have been
faster than the storage units. Fast processors have storage that is interleaved. Balancing
the storage bandwidth with the computational rate of a single processor typically requires
8-64 storage banks. Including a cache in the architecture reduces the need for a primary
storage bandwidth, if the algorithms exhibit locality. Register oriented architectures have
a significantly lower bandwidth to storage than to registers. Hence, if the operations have
operands that reside in primary storage, then the performance is often significantly less
than peak performance. With operands in storage the situation may be further aggra-
vated, if successive requests for storage operations are directed to the same storage unit.
In this case, performance is determined by the bank bandwidth, not the full storage band-
width. A stride that equals a multiple of the number of banks is particularly unfortunate.
In cache based architectures, a small stride, preferably one with respect to the machine
data structure (linear ordering) is important to reduce the number of cache misses. Bank

!Currently on leave at Thinking Machines Corp.

conflicts and cache misses may reduce the performance by an order of magnitude. All
current high performance architectures have pipelined functional units, and are known as
vector architectures. Poor utilization of the pipeline contributes to the descrepancy be-
tween peak and average performance. Another reason that average performance typically
is lower than the peak, even if the algorithm does allow full utilization of the architecture,
is failure of the compiler to recognize these characteristics. For instance, many compilers
fail to keep variables in registers between successive iterations of loops. “Loop unrolling”
can increase the performance by more than a factor of two by keeping temporary variables
in registers.

Vector architectures have clearly been very successful; but not without a significant
investment in algorithm development, and software technology in the form of vectorizing
compilers.

For continued growth in performance it is no longer possible to rely on speed improve-
ments of standard technologies, such as bipolar technology. For highly integrated MOS
technologies, a reduction in switching speeds by a factor of 5 to 10 is predicted before
the limits of the technology are reached. One to two orders of magnitude will allow more
parts to fit on the same die before the laws of physics may prevent further reduction in
feature sizes. MOS technology is a replication technology, and parts (chips) are cheap
to produce in quantities. Hence, VLSI architectures should consist of a large number of
identical chips; or a few different chips, preferably easily parametrizable.

Computers are built from two elementary parts: transistors and wires. For storage
one transistor cells are used for dynamic random access memory (RAM), and three tran-
sistor cells are used for static RAM. A high rate of computation requires a high storage
bandwidth as well as a high processor bandwidth. Depending upon the complexity of
the processor and the size of a storage unit, the processor may be slower or faster than
the storage unit. It is possible for a register to be clocked at a higher rate than a chip
packed with storage cells. A straight column organization results in long wires, which
in MOS technologies requires a large driving power and time. Structuring storage it-
self [17] can improve the speed of storage compared to the column approach, however, a
large amount of storage is still slower than a smaller amount. Similarly, for synchronous
designs, processors with wide datapaths and large controllers are slower than processors
with narrow paths, or very simple control logic. In most designs the processor tends to
be faster, but not exceedingly so. Hence, to first order it is reasonable to expect VLSI
systems to have approximately an equal number of storage units and processor units. The
absolute number being determined by the size of the state that can be operated upon con-
currently, in conjunction with the desired performance. High performance systems will
have a large number of units, and the Connection Machine is a good example of such a
design. The storage bandwidth of model CM-I is 32 Gbytes/sec at a clock frequency of 4
MHz compared to approximately 4 Gbytes/sec for the CRAY-2.

With a large number of processing and storage units, the interconnection network
becomes a critical component of the architecture. This is also a major expense. Other

Chip 25mm? | Chip 25mm? 4” Wafer Clock
100 M \? 200M A2 | (50%) 166G \?
Dynamic RAM 1 Mbit 2 Mbit 160 Mbit
Static RAM 256 Kbit 512 Kbit 40 Mbit
16-bit proc. 40 80 6400 54 MHz
32-bit proc. 8 16 1280 36 MHz

Table 1: Chip and wafer level integration, 1u feature size

important components are: programming environment, language, and compiler. We will
highlight some of the issues in choosing an interconnection network, and in defining a
suitable programming language amenable to compilation for highly parallel architectures.

2 VLSI technology

A rule of thumb is that a reliably working system should contain at most 20.000 inte-
grated circuits. Hence, the simpler the units, the more of them are possible in a system.
If the complexity (area) of a unit is plotted against the number of units for existing ar-
chitectures, most of them fall close to a hyperbola [22]. With decreased feature sizes a
given area corresponds to more storage, more processors, processors with additional hard-
ware features or wider data paths, and/or some combination thereof. Tables 1, 2, and
3 illustrate in a simple way the capability of the MOS technology at feature sizes of one
micron and a quarter micron. These predictions are based on existing designs for which
a 1-bit dynamic RAM cell requires an area of 100\2; and a 1-bit static RAM cell requires
an area of 400\2, where 2) is the minimum feature size. Processor estimates are based
on the Caltech Mosaic 16-bit processor, which is about 2.5M A? excluding the pad frame
[16], and the RISC and MIPS 32-bit processors, which are about 12M A? excluding pad
frame [3,4,14]. Table 3 is based on the assumption that half of the die area is devoted to
storage, half to the processor, and that half of the dies are functional on a 4 inch wafer.
Predictions for the Cosmic Cube are based on an estimated processor area of 140M A2 [23],
and measured performance on existing hardware. For bit-serial communication and simple
switching elements for an Q-network or a Boolean cube, the design of Knauer et. al. [15]
extrapolated with respect to the scaling of such networks, and scaling of the technology,
indicates that these area estimates should not be off by more than a small constant factor
(2 - 3) after the interconnection is included.

Communication is the overriding concern in VLSI technologies. In MOS technologies
the actual transistor area is often only 2% — 3% of the total area. The wiring area if
measured in terms of wiring between functional blocks or cells, occupies 50% - 70% of the
area. Wires limit the maximum rate of change of the state, since they reduce the amount

Chip 25mm? | Chip 25mm? 4” Wafer Clock
1600 M \? 3200M A2 | (50%) 256G \?
Dynamic RAM 16 Mbit 32 Mbit 2660 Mbit
Static RAM 4 Mbit 8 Mbit 640 Mbit
16-bit proc. 640 1280 102400 216 MHz
32-bit proc. 128 256 20480 144 MHz

Table 2: Chip and wafer level integration, 0.25u feature size

32-bit RISC II processors

160 Mbyte

10240 processors

370 GIPS

16-bit MOSAIC processors

160 Mbyte

51200 processors
55 GFLOPS 32-bit add
12 GFLOPS 32-bit mult

Cosmic Cube nodes (140 M \?)
(Intel 8086, 8087, 128kbyte)

256 Mbyte
2000 processors
2 GFLOPS (”measured”)

Table 3: Wafer level integration, same area for processors and storage

Capacitive Model | Resistive Model
Wire delay O(L) O(L?)
Opt. wire delay O(logL) O(L)
Scaling: L — &, 0(%) o(L)
opt. delay 0(2) O(%)
L fixed, other dim. scaled O(L) O(L?c?)
opt. delay O(Llog(al) O(L+/a)

Table 4: Wire delays in MOS technologies under scaling of feature sizes with a factor «

of logic that fits in a given area, and because there is a delay associated with the transfer of
information across a wire. Moreover, the switching time of a transistor is linearly reduced
with the feature size under currently accepted scaling models, but the wire delay does not
scale well [17]. MOS technologies can be viewed as charge transfer technologies. The time
to transfer a given charge is proportional to the size of the charge, which is determined
by the capacitance. The rate of change is determined by the driving transistor and the
properties of the wire. In a capacitive model for charge transfer, the wire resistance is

ignored, and the delay is linear in the wire length or logarithmic with an optimized driver
[17].

On the other hand, in a resistive model, wire resistance is included. Here, the delay
is proportional to the square of the wire length. It is reduced to linear in the wire length
when signal restoration exists along the wire.

Table 4 shows the qualitative behavior under scaling of features by a factor a such
that aspect ratios are preserved. It is also assumed that the voltage is scaled to preserve
the electric field in the gate region.

3 Network Characteristics

Several interprocessor connection networks have been proposed and analysed with respect
to area or volume requirements, as well as with respect to maximum wire lengths. Another
important characteristic is partitioning properties, in particular the bandwidth require-
ments at the boundary of a partition. In tables 5 and 6, we summarize some of these
properties.

The diameter gives a lower bound for global communication. In most non-degenerate
computations, at least one global communication is necessary. For instance, the solution
of any irreducible system of equations depends on all the matrix elements and all the
values of the right hand side. With the matrix coefficients distributed throughout the
system, global communication is required. Similarly, sorting implies a total ordering with

Configuration | Nodes Diam Fan-out Edges
Linear Array 2k 2k—1 2 2k —1
2-d mesh 28 [2(2k% - 1) 4 2(2F — 2k/2)
Binary tree |2 -1 2(k-1) 3(1) 2F — 2
Boolean cube 2k k k k- 2k-1
CCC k2F 2k — 1 3 3k - 251
Shuffle-exchange | 2F 2k -1 <3 ~ (1.5)2F

Table 5: Topological properties of some common networks

Configuration | Nodes | Edge len. Area Pin Count
Linear Array 2k o(1) 0(2%) 2
2-d mesh 2k 0(1) 0(2F) WM
Binary tree 25— 1 0(2F%[k) | O(2%) — O(2F - k) 4
Boolean cube 2k 0(27) 0(2%F) M(k — logM)
ccc K2k | O(22) O(k?22F) M — Miog,M)
Shuffle-exchange | 2* O(2%/k) 0(2% [k?)

Table 6: Layout properties of some common networks

keys distributed over all nodes. This creates a situation where global communication is
necessary. Hence, whether the lower bound given by the diameter is also an upper bound
depends on the computation and data allocation. In order to achieve an upper bound
of the same order as the lower bound, the number of global communications has to be
bounded; and there must not be many conflicts. For many algorithms in numerical linear
algebra and sorting, data structures and computational algorithms, deterministic routing
algorithms and scheduling disciplines can be found so that few or no conflicts occur in the
communication on some of the networks. For more difficult communications in higher order
networks such as the Boolean cube and Cube Connected Cycles network, randomization
of communication guarantees with high probability an upper bound of the same order as
the lower bound [26,25,20].

4 Network utility

The utility of a network can be measured in many ways. One way is to attempt to classify
the communication needs of frequently used or otherwise important computations, and
determine how each such class can be implemented on the processing ensemble. Universal
networks can simulate other networks by a slowdown of a factor logN for N node net-
works. Thus, the problem of finding a data allocation for a given algorithm that yields
a communication efficient implementation for a specific network can be formulated as a
problem of embedding one graph (the guest graph) corresponding to the communication
needs of the algorithm in the graph describing the network, the host graph. Typically,
edges in the guest graph are mapped onto paths in the host, and the host may have a
larger set of nodes than the guest. The dilation of an edge is equal to the length of the path
it is mapped to in the host graph. Dilation of edges can cause a corresponding decrease
in throughput (the time between successive computations of a given kind), due to long
range communication, or communication conflicts due to edge sharing between different
paths. An increase in latency (additional time for completion of the first computation in
a set), may also do the same. Expansion is the ratio of the number of nodes in the host
and guest graphs.

Many computations can be performed with total complexity, i.e. arithmetic/logic and
communication complexity of the same order as the former on two or multidimensional
lattices. Examples of such computations consist of many linear algebra operations such as
matrix multiplication, LU-factorization with a variety of algorithms for dense and banded
matrices, relaxation on grids for partial differential equations, and lattice calculations in
physics. The purpose of these computations is to determine the global behavior. So called
fast algorithms on sequential architectures use fewer operations than what is typically
required by some form of relaxation method. Many of these algorithms are based on the
divide-and-conquer paradigm, where parallel versions run in logarithmic time — ignoring
communication. Examples, are inner products such as the Fast Fourier transform (FFT),
matrix transpose, parallel prefix operations, and tridiagonal system solvers. With the ex-
ception of the tridiagonal system solvers, the familiar butterfly network is ideal for these

computations. Such networks are also good sorting networks because they perfectly sup-
port bitonic sort. The communications network that supports tridiagonal system solvers
is the same as that for multigrid methods on a grid graph. It is a reduction form of a data
manipulator network. Parallel cyclic reduction uses a full data manipulator network.

Broadcasting, copy-scan, and reduction operations are common. The most common
reduction operations are sum/subtract and max/min of a set. Sum-scan is useful in the
computation of inner products. Max-scan is useful in sorting and searching, and also LU-
decomposition with partial pivoting. Scan operations can apply to either a complete set,
or a subset. If it applies only to a subset, and the subset is easily defined, then the scan
operation is often called a segmented scan, since it applies to a segment of the address
space. Scans require spanning trees. Other forms of tree operations are split/merge
operations. In the split operation, a set is divided into subsets, and each such subset
communicates with a distinct processor. The merge operation is the inverse of the split.
Single spanning trees can be used, but if the data volume is large, then other forms of
spanning graphs may better utilize the bandwidth of the network. For instance, multiple
edge-disjoint spanning trees can be used for broadcasting data in a time proportional to
the lower bound on a Boolean cube [11]. For a small data volume, propagation time is
more important and minimum height spanning trees are the most desirable ones. Yet,
at several other reduction/broadcasting operations may take place concurrently, as in
computing histograms [7]. The interleaving of these trees will determine the performance
of the network [11].

Scan operations are particularly efficient on bit-serial pipelined architectures. A global
summation requires a time equal to the tree height plus the number of bits in the operands,
which for a reasonable machine and operand sizes is only moderatly slower than a number
of independent local operations. Indeed, the summation of a large collection of numbers
can be made in almost the same time as the addition of two numbers.

There are also many problems where data interaction cannot easily be described in
terms of a few parameters, for which general pointer structures are required. One way of
measuring the capability of a network for such data structures is to consider arbitrary per-
mutations. In summary, a good network should be able to support communication in the
form of multidimensional grids, butterfly networks, datamanipulator networks, (multiple)
trees, and arbitrary permutations without a significant slowdown.

The Boolean cube and the related Cube Connected Cycles network are exceptionally
versatile host graphs. Multi-dimensional arrays can be embedded in the Boolean cube
with dilation 1 and expansion 1, if the number of grid points in each dimension of the
array is a power of 2. A binary-reflected Gray [21] code offers such an embedding [12,8].
Many other grids can be embedded with minimum expansion and a dilation of 2 [6].
It is also well known that the FFT butterfly network can be embedded in the Boolean
cube with logN butterfly nodes per cube node, such that the dilation is 1 and there is
a one-to-one correspondence between edges in the FFT network and the cube. A static
embedding allows a normal [24] algorithm (one that proceeds from input to output without

reversing direction) to execute in the same number of steps on the cube as on the FFT
butterfly network, but the throughput of the cube is lower by a factor of logN, since a
cube node simulates logN FFT network nodes. Similarly, a dynamic embedding of the
FFT-butterfly network in a shuffle-exchange network yields a slowdown by a factor of 2
for normal algorithms. The throughput is degraded by a factor of 2log N. Similar results
hold for bitonic sorting networks, being recursively composed FFT networks. It is also
possible to embed a data manipulator network preserving proximity, but not adjacency.
By using the binary-reflected Gray code, the dilation is guaranteed to be less than 2 [9].
It is also possible to construct spanning graphs that perfectly use the entire bandwidth of
the Boolean cube [11].

Applications rarely consist of a single type of computation. Each component of the
set of "elementary” computations defining an application may have different ideal data
structures. Indeed, it may even be the case that different data structures are ideal for
different phases of an ”elementary” algorithm, since the communication pattern may not be
uniform throughout the execution of the algorithm [9]. The need for data reallocations in
order to minimize the complexity of an algorithm decreases with the ability of the network
to effectively support different access patterns to a data structure. A static embedding
of a data structure can support many types of access schemes without communication
penalty, reducing the need for data reallocations.

5 Programming considerations

It is desirable that a programmer sees as little as possible of the underlying architecture
with respect to portability of the code. True portability requires that no significant loss of
performance occurs due to the use of such a programming concept and associated language.
An ideal notation allows a programmer to conveniently express computations of interest,
while being conceptually focused on the problem domain. This often means that the
programmer defines a few abstract objects, some of which have structure associated with
them, then expresses the operations on these abstract objects with the semantics clearly
defined. It is for instance natural for many lattice like computations to let the lattice be
an abstract data structure defined in a Cartesian coordinate space with a given number
of points in each dimension associating variables with lattice sites. Periodic boundary
conditions are easily defined by defining the lattice as periodic. In the case of the solution
of partial differential equations, it is necessary to compute discrete approximations to the
derivatives, which can either be made completely local, or with communication according
to the stencil being used. With the exception of the boundary, the same stencil is typically
used for the entire domain. Hence, these computations are homogeneous. For iterative
solution processes, some form of coloring scheme is often required. For a given coloring
scheme the color of a lattice point is given by its coordinates. Concurrency is again high.
The purpose of coloring is to sequence operations appropriately, and a sweep over the lat-
tice requires as many sequential steps as there are colors. In each step a. processor holding
a lattice point interrogates the processors storing adjacent points of different color. Nat-

10

urally, all lattice interactions are expressed as relative operations. A good programming
notation should support such a conceptual framework.

There are two types of communication operations: get-put and/or exchange. For higher
dimensional networks such as Boolean cubes, butterfly networks, and Cube Connected Cy-
cles networks, so called normal algorithms typically work by sequencing through dimen-
sions. For instance, the FFT is easily expressed as performing a sequence of exchanges in
dimensions 0 through n — 1 (n = logyN).

In these examples there is a relation between the nodes of the logic data structures.
In the two dimensional lattice a node is to the east, west, south or north of neighboring
nodes, or in the Boolean cube in a 0 or a 1 subcube. This ordering is used in expressing the
computations. Coloring divides the nodes into sets, with no particular ordering between
the elements of a set, however, there is a definite relationship between the members of
different sets. In the type of computations outlined above the regularity of the relationship
can be used to carry out a mapping onto the processing network so that communication
is minimized. Mapping is fairly easily computable in many cases, so that the map can
be built into the compilation process. Hence, releaving the programmer of having to deal
with architectural details with no loss in efficiency. For instance, if the computations
are expressed as computations on a multidimensional lattice, then a possible mapping
onto another lower dimensional lattice can be done through projection. This is done
simply by identifying dimensions of the logic mesh with dimensions of the processor mesh;
and/or by identifying all the nodes that have the same index for the processor coordinates.
If the processor mesh has fewer nodes in a given dimension than the logic mesh, then
identification can be made on high order bits resulting in a cyclic mapping, or low order
bits, resulting in a consecutive mapping [8]. For networks that do not form a subdomain
of the domain defined by the logic structure, it may sometimes be convenient to map the
logic structure onto an intermediate graph, which has a known embedding in the network.
In complex cases, finding an optimum map may be a NP-hard problem. An arbitrary
map, or randomized mapping, are often the only practical choices.

6 Compilation - Automated Mapping

In the kind of programming model outlined above, the data structures are either one or
multidimensional arrays with communication between adjacent points in the lattice, or
some local neighborhood in the form of an FFT butterfly network, data manipulator net-
work, or one or multiple trees. In addition to the conventional arithmetic/logic operators,
we have also introduced scans and split/merge operators. The indicated programming
model has only abstract objects natural with respect to the computational problem at
hand, with no direct relation to the architecture of a buildable machinc. It pushes most of
the difficult implementation related issues into the compiler. Correspondence between the
logic model and the architecture is traditionally established in the programming process
for languages such as Fortran. Individual elements of an object arc often conveniently

11

identified as a point in a one, two, or multi-dimensional space. Sometimes alternate rep-
resentations are equally plausible and efficient. At other times, different representations
result in different ease, or cost of implementation. For instance, the elements of a dense
matrix are naturally identified by their row and column indices. For computations on
lattices such as Ising calculations and quantum electrodynamics, variables are associated
with lattice points. In the solution of partial differential equations by finite difference
methods, the continuous space is approximated by regular lattices. Such lattices can also
be used for some types of elements in finite element computations.

Most computations require a sequence of operations on the same data element, or
derivatives thereof. Hence, time is another dimension required to define an algorithm, and
there are in effect a total of N x T lattice points for a computation that requires time
T on N lattice points. The nodes in this lattice are encoded by (z5—1 ...%o|Ym—1 .. %),
where n = loga N and m = log,T. The embedding of a lattice in the processing network
in the data parallel case, where a processing element can be identified with each data
element, should be made with the objective of minimizing communication required by the
algorithm. For the sake of simplicity, we assume that there is one variable per lattice point.
Communication occurs in space and time. In a relaxation like scheme, the communication
pattern is identical for all iterations. If the intuitive mapping is made of the N x T lattice
to the processing network, i.e., nodes with the same z value for different y are mapped
to the same processor node, then a mapping of the original logic lattice that preserves
adjacency, or at least proximity, also minimizes communication throughout the algorithm.
The identification results in efficient use of the resources. With resources corresponding to
an N x T grid, efficiency is of order O(%) for one instance of the computation. For multiple
instances pipelining can be used to increase the utilization for a processor network with
N X T processors.

In most cases the graph defining the algorithm has one more dimension than the
data structure. In the case of relaxation, time may take on arbitrary values. In other
instances the value may be directly related to the number of elements in one or more
dimensions of the data structure, as in matrix multiplication. The standard algorithm
for multiplication of two dense matrices has three nested loops, two of which sequence
through the elements of the data structure. Different projections result in different data
movements, required initial data structures and generated final data structures [1]. In
the case of matrix multiplication, not all variables are defined in every point of the three-
dimensional lattice, and a first step in the mapping is to define all variables at all lattice
points [18,19]. This requires some form of copy-scan in the case of matrix multiplication.
Different ways of performing this scan operation will yield different algorithms.

For matrices that are not dense, the row-column organization may not be the represen-
tation of choice. For instance, banded matrices are often represented most conveniently
and compactly by one index for the diagonal, and another along the diagonals. The rep-
resentation is still two-dimensional. Sparse matrices are most often represented as a list
structure of some form. The Cartesian representation is convenient for mapping onto a
lower dimensional array, or any network that efficiently simulates two-dimensional arrays.

12

For dense matrices there also exist other representations that are natural for recursive
algorithms, such as the one by Dekel et al. [2]. Recursive algorithms often use the divide-
and-conquer paradigm, and the algorithm steps correspond to operations on different bits
in the binary encoding. Mapping to a Boolean cube becomes straightforward, since bit
positions correspond to different dimensions in the cube.

Another example of a divide-and-conquer algorithm is the familiar radix-2 FFT. The
communication for different values of T is over distances that correspond to different
powers of 2, i.e., over growing distances in the linear ordering. However, in the binary
encoding communication is between nearest neighbors (Hamming distance 1). Identifying
corresponding nodes for all values of T', yields a Boolean cube topology, and good resource
utilization for the computation of a single FFT. The execution time is T = logN. It is
also possible to identify nodes for all values of N for each T to achieve a linear array of
logN units operating in time 7" = N [13,10]. Note that in the Boolean cube case there
is only one loop-level, however, in the linear array case there are two nested loops. For a
uniprocessor case there are three nested loops.

In the above-mentioned examples it has been assumed that the number of processors
is equal to the number of points in the data structure. In many instances each processor
has an appreciable amount of storage, and it is possible to allocate more than one node
of the logic data structure to each processor, should that be required. The notion of
virtual processors is often used in such a case [5]. Typically, virtual processors correspond
to some designated bits of the address space. If virtual processors correspond to the
low order bits, then the mapping is consecutive. Virtual processors on the high order
bits correspond to cyclic partitioning [8]. For some algorithms, either form yields the
same processor utilization. For others one may be better than the other. For instance,
cyclic partitioning is preferable for LU-decomposition, but consecutive for the solution of
tridiagonal systems of equations.

It is not always the case that a mapping can be computed at compile time. Many
efficient sequential algorithms are strongly data dependent, or adaptive, and run-time
mapping or load balancing is necessary.

7 The Connection Machine

The Connection Machine is a data parallel architecture. It has 64k processors organized
with 16 processors to a chip, and the chips are interconnected in the form of a Boolean
cube. The on-chip processors are interconnected with a network effectively offering full
interconnect. The interconnection network can efficiently emulate multidimensional lat-
tices, FF'T butterfly networks, data manipulator networks, and a variety of trees. For
permutations and routing in arbitrary patterns, the Connection Machine is equipped with
a router which routes according to the shortest path between source and destination. The
router has several algorithms for resolving contention for communication channels. The
bandwidth to local storage is 32 Gbytes/sec for model CM-I, and about 50 Gbytes/sec

13

for model CM-II. The bandwidth for communication in a two-dimensional lattice is about
a factor of 5 less, and the bandwidth for random permutations yet another factor of 5
less, approximately. Model CM-II has a total of 512 Mbytes of storage distributed evenly
among the processors. This model can also be equipped with hardware for floating-point
operations.

The architecture is a bit-serial, with the router performing pipelining at the bit-level.
Routing time is proportional to the number of address bits plus the message length. Hence,
for messages of a few bytes the overhead is small. Moreover, every location is reachable
in the same amount of time. Variations in access time is entirely due to contention for
communication channels. Random permutations results in contention, and a factor of 5
lower bandwidth than contention free communication. The router will in most cases use the
available communication bandwidth as effectively as possible. The Connection Machine
can be viewed as a shared memory architecture with little or no loss in arithmetic/logic
efficiency.

Scans are very efficient on the Connection Machine, given that it is a bit-serial,
pipelined architecture. Global scans are almost as efficient as local operations, since there
is no contention. Some contention may occur for multiple independent segmented scans.
For instance, if the machine is configured as a two-dimensional lattice with a square
sub-lattice per chip and a column shall be copied to all other columns. Then, each row
operation can be viewed as a segmented copy-scan and all scans will use the same channels
between chips.

Global and segmented scans are supported in the Connection Machine instruction
set. Relative addressing in multi-dimensional lattices is supported as well. Connection
Machine programming languages currently are: *Lisp and a parallel version of C called C*.
These languages are extensions of the familiar Lisp and C languages. The most essential
extensions are the existence of a parallel data type, and the operations thereupon. Scans
are among the operators included in the extensions. Members of a set of elements forming a
parallel variable are operated upon concurrently by one instruction. No enumeration of the
elements is required, and one or several loop levels disappear from the code, compared to
languages not supporting set operations. Thus, the code becomes more compact, simpler,
and easier to debug. One source of errors has vanished.

Given that the programming languages for the Connection Machine are extensions of
conventional languages, debugging tools and processes are similar to those for conventional
architectures. The Connection Machine is a synchronous machine. The synchronization is
handled by hardware. A user and/or programmer does not need to be concerned with this
issue. Communication is implicit in references and only affects the time for a reference,
or scan operation. The Connection Machine has a host processor that performs scalar
operations and instruction decoding. Parallel variables are allocated in the Connection
Machine and instructions with such variables as operands are sent to the Connection
Machine, where another level of decoding and the control of the execution takes place.

The Connection Machine performance, like most other architectures, benefits from

14

Algorithm Arithmetic op’s/ Arithmetic ops/
element Elem. comm.
Matrix-vector mpy 2 VM
Matrix-matrix mpy gﬁ VM
Relaxation 5-point stencil 1.6/iter. VM
Radix-2 FFT 1.25l0go N 1.25l0g,(M [2)
Sorting O(logaN) - O(logsN)

Table 7: Number of operations per data element for a few operations on N elements in a
machine with local storage M

locality of reference. Degradation is due to bandwidth limitations at the chip boundaries.
Performance is measured as arithmetic or logic operations per unit time, benefits from
increased granularity. For many operations arithmetic/logic operations grow faster than
the communication as a function of the number of local data elements, as shown in Table
7. For matrix multiplication the variation for CM-I is in the range 60% to 90% of peak
performance, whereas for matrix vector multiplication the variation is considerably larger.

8 Applications Experience

Many problems in the computational sciences have moderate to large data sets. The num-
ber of variables in many of the scientifically interesting or important engineering problems
are in the range several hundred thousands to a billion. For instance, finite element
computations in the geophysics, automotive, and aerospace industries are routinely made
with several hundred thousand variables. These are limited by storage as well as speed
of available computers. Three dimensional models have essentially been beyond reach.
In physics, some of the outstanding problems require computation on lattices of ten to
a few hundred million lattice sites with a few variables per site. Many of the problems
that have their origin in the physical sciences are modeled from local behavior. Partial
differential equations are examples thereof. Global behavior is deduced from local rules.
The locality of the rules provides an excellent basis for data parallel computing. Computer
architectures that allow a large part of the state to change concurrently have the potential
for offering maximum performance for a given amount of hardware. Locality of the data
relationships, typical in many engineering and scientific problems, makes it possible to
design such systems without excessive demands on the communication system — the most
expensive resource in highly concurrent systems.

We have implemented a variety of algorithms with good results both with respect to
programmer productivity and performance. Examples of basic linear algebra algorithms

15

are matrix multiplication, matrix-vector operations, LU-decomposition, matrix transpo-
sition, the solution of banded systems of equations, sparse matrix multiplication and the
solution of sparse systems of equations, FFT’s, iterative equation solvers, tridiagonal sys-
tem solvers, and multigrid methods. These algorithms use a variety of data structures and
communication patterns. For most of these codes, the efficiency on the CM-I ranges be-
tween 50% and 90%. We have also implemented partial differential equation solvers based
on the Alternating Direction Method and explicit methods with very good efficiency. Re-
cently, a simple finite element code has also been brought up on the Connection Machine.
The effort in bringing these codes up on the machine is in the order of days to a few weeks
for each routine or application.

9 Summary

Technology drives the architecture of high performance computers toward highly concur-
rent systems. Communication becomes a fundamental issue both in devising algorithms,
architectures, and in compilation. For many applications in which high performance is
demanded, the number of operations per point is limited, however, the demand for high
performance is due to large data sets. Describing computations on large sets of data
requires suitable abstractions in order to conceptually manage the complexity. An archi-
tecture such as the Connection Machine is scalable both with respect to technology and
size (number of processors), and it is an excellent vehicle for studying algorithms for future
high performance systems. It has also proven to be a useful tool in developing languages,
and compilation techniques for such systems. The CM-II indeed demonstrates the power
of the architecture, and users of high performance computers have a new alternative with
greater potential.

References

[1] Ajit Agrawal and S. Lennart Johnsson. A Uniform representation of Matriz Mul-
tiplication Algorithms. Technical Report , Department of Computer Science, Yale
University, 1987. in preparation.

[2] Eliezer Dekel, David Nassimi, and Sartaj Sahni. Parallel matrix and graph algo-
rithms. STAM J. Computing, 10:657-673, 1981.

[3] John L. Hennessey, N. Jouppi, Forrest Baskett, and J. Gill. Mips: a vlsi processor
architecture. In VLSI Systems and Computations, pages 337-346, Computer Sciences
Press, 1981.

[4] John L. Hennessey, N. Jouppi, S. Przybylski, and C. Rowen. Design of a high perfor-
mance vlsi processor. In Proc. of the Third Caltech Conference on VLSI, pages 33-54,
Computer Sciences Press, 1983.

16

[5] W. Daniel Hillis. The Connection Machine. MIT Press, 1985.

[6] Ching-Tien Ho and S. Lennart Johnsson. On the embedding of arbitrary meshes in
boolean cubes with expansion two dilation two. In Int. Conf. on Parallel Processing,
pages 188-191, IEEE Computer Society, 1987. Report YALEU/DCS/RR-576.

[7] S. Lennart Johnsson. Combining parallel and sequential sorting on a boolean n-cube.
In International Conference on Parallel Processing, pages 444-448, IEEE Computer
Society, 1984. Presented at the 1984 Conf. on Vector and Parallel Processors in
Computational Science II.

[8] S. Lennart Johnsson. Communication efficient basic linear algebra computations on
hypercube architectures. Journal of Parallel and Distributed Computing, 4(2):133-
172, April 1987. (Report YALEU/DCS/RR-361, January 1985).

[9] S. Lennart Johnsson. Odd-Even Cyclic Reduction on Ensemble Architectures and the
Solution Tridiagonal Systems of Equations. Technical Report YALE/DCS/RR-339,
Department of Computer Science, Yale University, October 1984.

[10] S. Lennart Johnsson and Danny Cohen. Computational arrays for the discrete fourier
transform. In Proceedings of the Twenty-Second Computer Society International Con-
ference, COMPCON ’81, February 1981.

[11] S. Lennart Johnsson and Ching-Tien Ho. Spanning Graphs for Optimum
Broadcasting and Personalized Communication in Hypercubes. Technical Re-
port YALEU/DCS/RR-500, Yale University, Dept. of Computer Science, November
1986. To appear in IEEE Trans. Computers.

[12] S. Lennart Johnsson and Peggy Li. Solutionset for AMA/CS 146. Technical Re-
port 5085:DF:83, California Institute of Technology, May 1983.

[13] S. Lennart Johnsson, Uri Weiser, Danny Cohen, and Al Davis. Towards a formal
treatment of vlsi arrays. In Proceedings of the Second Caltech Conference on VLSI,
pages 375 — 398, Caltech Computer Science Department, January 1981.

[14] M.G.H. Katevenis. Reduced Instruction Set Computer Architectures for VLSI. The
MIT Press, 1985.

[15] S.C. Knauer, J.H. O’Neill, and A. Huang. Self-routing Switching Network, pages 424—
448. Addison-Wesley, 1985.

[16] Christoffer Lutz, Steve Rabin, Charles L. Seitz, and Donald Speck. Design of the
mosaic element. In Proceedings, Conf. on Advanced research in VLSI, pages 1-10,
Artech House, 1984.

[17] Carver A. Mead and Lynn Conway. Introduction to VLSI Systems. Addison-Wesley,
1980.

17

[18] Willard L. Miranker and Andrew Winkler. Spacetime representations of computa-
tional structures. Computing, 32(2):93-114, 1984.

[19] Donald I. Moldovan. On the design of algorithms for vlsi systolic arrays. Proc. IEEE,
71(1):113-120, 1983.

[20] Abhiram Ranade. Constrained Randomization For Parallel Communication. Techni-
cal Report YALEU/CSD/RR-, Yale University, Dept. of Computer Science, In prepa-
ration 1986.

[21] Edward M. Reingold, Jurg Nievergelt, and Narsingh Deo. Combinatorial Algorithms.
Prentice Hall, 1977.

[22] Charles L. Seitz. Ensemble architectures for vlsi — a survey and taxonomy. In P. Pen-
field Jr., editor, 1982 Conf on Advanced Research in VLSI, pages 130 — 135, Artech
House, January 1982.

[23] Charles L. Seitz. Experiments with vlsi ensemble machines. J. VLSI Comput. Syst.,
1(3), 1984.

[24] Jeffrey D. Ullman. Computational Aspects of VLSI. Computer Sciences Press, 1984.

[25] E. Upfal. Efficient schemes for parallel computation. In ACM Symposium on Prin-
ciples of Distributed Computing, pages 55-59, ACM, 1982.

[26] Leslie Valiant and G.J. Brebner. Universal schemes for parallel communication. In
Proc. of the 13th ACM Symposium on the Theory of Computation, pages 263-277,
ACM, 1981.

18

