Binding Time Analysis for Higher Order
Untyped Functional Languages

Charles Consel
Research Report YALEU/DCS/RR-780
April 1990

This work is supported by the Darpa grant N00014-88-K-0573.

Binding Time Analysis
for Higher Order Untyped Functional Languages

Charles Consel*

Yale University
Department of Computer Science
e-mail: consel-charles@cs.yale.edu

Abstract

When some inputs of a program are known at
compile-time, certain expressions can be processed
statically; this is the basis of the notion of partial
evaluation. Identifying these early computations can
be determined independently of the actual values of
the input by a static analysis called binding time anal-
ysis. Then, to process a program, one simply follows
the binding time information: evaluate compile-time
expressions and defer the others to run-time.

Using abstract interpretation, we present a bind-
ing time analysis for an untyped functional language
which provides an effective treatment of both higher
order functions and data structures. To our knowl-
edge it is the first such analysis. It has been im-
plemented and is used in a partial evaluator for a
side-effect free dialect of Scheme. The analysis is gen-
eral enough, however, to be valid for non-strict typed
functional languages such as Haskell. Our approach
and the system we have developed solve and go be-
yond the open problem of partially evaluating higher
order functions described in [3] since we also provide
a method to handle data structures.

Our analysis improves on previous work [5, 15, 4]
in that: (1) it treats both higher order functions and
data structures, (2) it does not impose syntactic re-
strictions on the program being processed, and (3) it
does not require a preliminary phase to collect the set
of possible functions that may occur at each site of
application.

1 Introduction

Analyzing the binding times of a program aims to de-
termine when the value of a variable is available: if
the value is known at compile-time it is said to be
static; if it is not known until run-time it is dynamic.

*This research was supported by Darpa under Grant
NO00014-88-k-0573

This information is important because it character-
izes the computations that may be performed at
compile-time, thus forming a basis for partial evalua-
tion and a generalization of constant folding for use in
optimizing compilers. Knowing which expressions are
static and which are dynamic allows one to process
the static semantics of a program by simply follow-
ing the binding time information, thus the simplifying
program transformation phase. Because binding time
analysis safely determines the static computations in-
dependently of the actual values, binding time infor-
mation is valid as long as the known and unknown
input pattern remains the same. Another motivation
of binding time information is that it avoids process-
ing program parts where there are no static compu-
tations to perform.

A partial evaluator [3] is the most natural user of
binding time information, since in essence it is a static
semantics processor [20] that executes those expres-
sions that manipulate static data and freezes the oth-
ers. Indeed, our analysis has been implemented and
is currently used in a self-applicable partial evaluator
called Schism [6, 7]. This effort has been very success-
ful, as reported in [8], where we describe the compi-
lation and the generation of a compiler from an in-
terpretive specification of an Algol-like language [17]
using Schism. Because the binding time analysis han-
dles higher order functions, continuation semantics
can be tackled. Because it handles data structures,
it determines whether the injection tag, in the repre-
sentation of an element of a sum, is static. Therefore,
syntax analysis, scope resolution, storage calculation
and type checking are actually performed at compile-
time.

Our approach is described in three steps: section 2
presents a binding time analysis for a first order lan-
guage; section 3 extends it to handle data structures;

finally section 4 addresses how to handle higher or-
der functions. Section 5 compares this approach with
related work and section 6 concludes.

2 First Order Binding Time
Analysis

We first present the binding time analysis for a first
order functional language.

2.1 A First Order Functional Lan-
guage

k € Constant

x € Variable

p € Primitive

f € Function-Var
e € Expression
pr € Program

pro={fi(x1,...,xs) =e1, ..., fe(x1,..., %) = e}
ex=k | x| e —es [es | pler,...,en)
|f(e1,...,e,,)

The program is a set of mutually recursive func-
tions, the first of which (f;) is the main function of
the program. For simplicity, we assume that all func-
tions have the same arity. An expression is either a
constant, a variable, a primitive call, or a function
call. A call consists of an operator and a list of one
or more arguments.

The semantics are straightforward. The calling
mechanism is applicative (call-by-value). The con-
ditional has the usual semantics.

2.2 Abstract Values

Binding time analysis is based on an abstract inter-
pretation [1]; for a first order language the following
domain is used

6 € Av = {1, Stat, Dyn}

The value 1, denotes an expression that has an un-
defined binding time value. The value Stat denotes
an expression which can be evaluated statically. Fi-
nally, the value Dyn denotes a frozen expression (a
partial evaluator would generate a residual expression
in this case).

This domain forms a chain, with ordering

14 C Stat C Dyn

Note that the value Stat could have been used as
the initial value rather than introducing the value 1;
in the abstract domain. However, in practice, this
value is useful; it gives extra information about the
program. For instance, it allows one to determine the
functions which are never invoked during the analysis:
their binding time signature only consists of the value

1s.

2.3 Abstract Environment

Binding time analysis of a program aims to approx-
imate a binding time value for each expression of a
program by propagating the specification of its input
(i.e., which input are known and which are unknown).
In fact, because the present language is first order and
referentially transparent, we do not need to annotate
each expression with a binding time value; the es-
sential information is the binding time value of each
parameter of a function and the binding time value of
its result. We call this information the binding time
signature of a function and is defined as

m € Signature = Av™ x Av
As an example, consider the function pairlis.

pairlis(l1, 12) =
null(ll) —nil
[cons(cons(car(11), car(12)),
pairlis(edr(11), cdr(12)))

Assume that pairlis has static (known) first pa-
rameter and dynamic (unknown) second parame-
ter, its binding time signature would be pairlis :
Stat x Dyn — Dyn. Indeed, function pairlis builds
a data which is partially static (11 is static and 12
is dynamic); because we do not deal with data struc-
tures yet, the result of such a call is dynamic.

It is easy to assign a binding time value for each
expression of a function from its binding time signa-
ture; this is achieved by propagating the binding time
value of each parameter into the body of the function.

The next version of the binding time analysis (de-
scribed in section 3) will yield finite descriptions of
the data structures built and manipulated by a pro-
gram. In the above example, such a description will
capture the fact that pairlis called with a static list
and a dynamic list returns a list of pairs, where each
pair is static in its car and dynamic in its cdr.

Given a program and a specification of its input, the
binding time analysis safely approximates a binding
time signature for each function. We call the set
of binding time signatures an abstract environment

(Abs-Env): it maps each function of a program to its
binding time signature. Let Av and Function-Var be
respectively the set of binding time values and the set
of functions of a program, the abstract environment
is defined as

o € AbsEnv = Function-Var — Signature

Because we want the binding time signature of a
function to be an approximation of all the calls to
this function, each call will be “folded” with the cor-
responding binding time signature in the Abs-Env.
This folding operation is defined as follows

foldyy, : Function-Var — Av® — AbsEnv — AbsEnv
foldgn = A f. A (61,...,6,). Ao
let ((6'1,...,8'n), 6) =(of)
in
olf— ((61 U &y, ..., 6, U&,), 6)]
Note that all changes in Abs-Env are monotonic in
the domain Av.

2.4 Abstract Interpretation

Given a program and a specification of its input, the
binding time analysis computes an abstract environ-
ment that approximates a binding time signature for
each function of the program. The abstract inter-
preter manipulates a binding time environment de-
fined as follows

p € Env = Variable — Av

It is a finite mapping from variables into binding time
properties.

The binding time analysis of an expression can be
summarized as follow: a constant has a static bind-
ing time value; the binding time value of a variable
is defined by the binding time environment; a condi-
tional is static if every subcomponent is static, oth-
erwise it is dynamic; a primitive call is static if every
argument is static, otherwise it is dynamic; finally,
a function call is static if its corresponding binding
time signature is static in its result part, otherwise
it is dynamic. Note that because we want the bind-
ing time signature to be a safe approximations of all
the calls to a function, the abstract environment is
updated each time a function call is analyzed. Also,
because we do not consider data structures in this
first version, all primitive calls are treated the same:
no attempt is made to collect other information than
static or dynamic.

Bt: Expression — Env — AbsEnv — Av x AbsEnv
Bt[k]po = (Stat, o)
Bi[x]po = (p[x], o)
Btfe1 — ez | es]po =
let (61, 1) = Bt[ei]po
(62, 02) = Bt[e2]pos
) (63, 03) = Bt[es]po-
in
((61 =1y — 1y |61 =Stat — 65 U 63 0 Dyn) , 0'3)
Bt[p(e1,...,ex)]po =
let (61, 01) = Bt[ei1]po
(62, 02) = Bt[ex]po

(6m a'n) = Bt![en]l""n—l
in

(_I_Ila,-), 7n)

J
Bt[f(e1,...,ea)]p0 =
let (6,, 01) = Bt[e]po
(62, 02) = Bt[ex]poy

(67:) 0n> =BtEen]'P”n—l
(-, 6) =of

in
(6, foldsn[f](81,-..,6n)0n)

(The notation “_” means that the corresponding value
in the right hand side is unused.)

2.4.1 Fixpoint Iteration

Binding time analysis is done by a fixpoint iteration.
The abstract interpretation of a program starts by
updating the initial Abs-Env: the binding signature
of the main function is updated with the specification
of the input (static/dynamic). Then, each iteration
recomputes the definition of each function with re-
spect to its current binding time signature (the bind-
ing time value of the parameters).

Since all changes of AbsEnv, performed by fold;,,
are monotonic in the domain Av, a fixpoint will be
reached in a finite number of iterations.

2.5 An Example

Consider a program defining the function pairlis.
The initial Abs-Env is

graph(oo) = {pairlis# — ((Ls, Ls), Ls)}

where pairlis# is the abstract version of function
pairlis. Assume that the function pairlis has
static first parameter and dynamic second parame-
ter, the Abs-Env is:

graph(a1) = {pairlis# — ((Stat, Dyn), L;)}

After the first iteration of the binding time analysis
the Abs-Env is

graph(os) = {pairlis# — ((Stat, Dyn), Dyn)}

This Abs-Env is unchanged at the next iteration:
it is the final AbsEnv. Because our analysis so far
does not handle data structures it is unable to de-
tect that, in this context, function pairlis returns a
list of pairs, where each pair is static in its car and
dynamic in its cdr. Instead, it has inferred that func-
tion pairlis returns a dynamic value. Therefore the
static data cannot be used and the expressions that
manipulate them cannot be executed statically.

3 First Order Binding Time
Analysis with Data Struc-
tures

In this section, we propose a second binding time
analysis that extends the previous approach to han-
dle structured values that contain both static and dy-
namic parts. These values are called partially static
structures [15]. This extension is achieved by con-
structing finite descriptions of data structures ma-
nipulated by a program.

3.1 Finite Description of Data Struc-
tures

The analysis of function pairlis, given previously,
may generate an infinite number of abstract pairs
(i.e., pairs of abstract values) even if the set of ab-
stract values is finite. In order to have a finite de-
scription of the data returned by this function, the
analysis needs to manipulate a unique reference to
each abstract pair instead of the abstract pair itself.

To uniquely reference a data structure we assign
a label, similar to a program point, to each occur-
rence of a data structure constructor. The function
pairlis now becomes

pairlis(11, 12) =
null(li) —nil
[€1:cons(ey:cons(car(11), car(12)),
pairlis(cdr(11), cdr(12)))

Assume that the function pairlis has its first pa-
rameter static and its second parameter dynamic, the
data structures it builds would be described by

The result of the function pairlis would be e;.
This abstract pair refers to 3 in its car and to it-
self in its cdr. This self-reference expresses the fact
that pairlis builds alist of arbitrary length. The ab-
stract pair €3 contains a static and a dynamic data. In
other words, for such abstract values, pairlis builds
a list of pairs whose car is static and whose cdr is
dynamic.

For the rest of this paper we will only consider the
pair data structure. However, it is straightforward to
extend this approach to other data structures.

The label attached to each occurrence of the con-
structor cons is called a cons point and C P represents
the set of cons points in a program.

3.2 Abstract Values and Cons Points

We now define a new set of abstract values that in-
cludes the cons points

Av = {1,, Stat, C, Dyn}

Where C € P(CP)\0. Indeed, like a collecting in-
terpretation [11], the binding time analysis will collect
the set of possible cons points that an expression may
use. The domain Av is a lattice with the ordering

1y E Stat

Stat C C Jor allC € P(CP)\0

C1 CCy iff C1 C Cy (subset inclusion)
C C Dyn for allC € P(CP)\0

This ordering captures the fact that a partially
static structure lies between a static and a dynamic
value.

We have seen that each cons point is bound to an
abstract pair; the set of abstract pairs is defined as

AP =Av x Av

Notice that the domain Av, and thus AP, are finite
because the set of cons points is finite.

3.3 Extension of the Abstract Envi-
ronment to Handle Data Struc-
tures

The AbsEnv, which represents the state of the anal-
ysis, has to be extended to capture the use of cons
points.

Abs-Env = (Function-Var — Signature) + (CP — AP)

The initial value of an abstract pair will be
(Ls, Ls). As for the binding time signatures, we
define an operation to fold an invocation of cons
with the corresponding abstract pair contained in the
Abs-Env.

fold., : CP — AP — AbsEnv — AbsEnv
foldep = Ae. X (81, 62). Ao
let (6, , 62) = (o¢)
in
O'[E:H (61 uéq, s 5'2)]

3.4 Abstract Primitives

We now define the abstract primitives that operate
on the list data type.

cons# : AP x CP — AbsEnv — (Av x AbsEnv)
cons#(6y,62,¢€) = Ao.
let o’ = fold,, € (61, 62) o
(61, 6'2) =(o'e)
in
(6's =82) A&y € {Ls, Stat, Dyn} — (61, o)
I ({e}, o)

Notice that the abstract primitive cons# does not
return a cons point when the corresponding abstract
pair is completely Stat, Dyn or 1. This is to be con-
sistent with the domain Av which defines a partially
static structure as lying between a completely static
value and a completely dynamic value, exclusively.

car# : Av — AbsEnv — (Av x AbsEnv)

car# Ly = do. (Ly , o)

carg Stat= Ao. (Stat, o)

car# Dyn= Ao. (Dyn, o)

cargt = M. do. (U{6i1 / 6 ={e1,...,en} A
(611, 8i2) = (05:)}, 2))

The abstract primitive cdr# is defined the same
way, except for the last clause where §;5 is considered.

The sub-type of a list (pair or null) can be deter-
mined statically when it is either a static value or a
partially static structure. The abstract version of the
predicate null is defined below; pair# can be defined
similarly.

null# : Av — AbsEnv — (Av x AbsEnv)
null# 1y = Ao. (Ls , o)

nullg Dyn= Mo. (Dyn, o)

null# = Aé.Ao. (Stat, o)

3.5 Abstract Interpretation

The definition of the abstract interpreter is the same
as in section 2.4 except for the treatment of the prim-
itives.

Bt[p(e1,...,en)]p0 =
let (6,, 01) = Bt[ei]po

(62, 02) = Bt[ex]po1

(67:; o'n) = Btl[enllpdn—l
in
Prim [p] (61,...,6,) 0n
The primitives are now treated as follows

Prim: Primitive — Av™ — Abs-Env — (Av x Abs-Env)
Prim [e:cons] = A(61,82). Ao cons#(61, 62, ¢) o
Prim [car] = A6. Ao. car# 6 o

Prim [p] = A(61,...,8a). Ao (|] 6), o)

Jj=1

3.6 An Example

As an example consider the function pairlis which
would be called with a static list and a dynamic list.

pairlis(11, 12) =
null(l1) —nil
J e1:cons(ey:cons(car(ll), car(12)),
pairlis(cdr(11), cdr(12)))

For this function, the set of cons points is CP
= {e1, €2}. The analysis has to solve the following
equation, where Abs-Env has been omitted for clar-
ity.

pairlis#(Stat, Dyn) =
null#(Stat) — Stat
[cons#(cons#(Stat, Dyn, €3),
pairlis#(Stat, Dyn), ¢,)

The Abs-Env containing the initial call to pairlis is

graph(co) = { [pairlis# — ((Stat, Dyn), 1,)]
[e1 = (Ls, Ls)]
[e2 = (Ls, Ls)] }

pairlis#(Stat, Dyn) =
null#(Stat) — Stat
| cons#(cons#(Stat, Dyn, €3), Ls, €1)
= Stat — Stat || cons#(cons#(Stat, Dyn, e3), Ly, €1)
= Stat U consg(cons#(Stat, Dyn, €3), Ly, €1)
= cons#({e2} , Ls, €1)

graph(o1) = { [pairlis# — ((Stat, Dyn), L1;)]
[e1 = (Ls, Ls)]
[e2 — (Stat, Dyn)] }

pairlis#(Stat, Dyn) = {e;}

graph(cz) = { [pairlis# — ((Stat, Dyn), {1})]
[e1 = ({e2} , Ls)]
[e2 — (Stat, Dyn)] }

At the next iteration the result of pairlis# is {e;}.
The Abs-Env yielded after the second iteration is

graph(an) = { [pairlis# — ((Stat, Dyn), {e1})]
[e1 = ({e2} , {e1})]
[e2 — (Stat, Dyn)] }

This final AbsEnv is the solution of this analysis.
The AbsEnv indicates that the function pairlis re-
turns a list of pairs. This list is of any length. Each
element of this list is an abstract pair (¢2) whose car
is static and cdr dynamic.

For interpretive specifications of programming lan-
guages pairlis might be a function that constructs
an environment, binding each variable (static) to its
value (dynamic). From the above description we may
deduce that the location of the value of a variable
in the environment can be determined statically. In-
deed, consider the following function

assoc(k, 1) =
null(l) —nil
| car(car(1)) = k — car(1)
| assoc(k, cdr(1))

Assume that function assoc looks up a variable
(k) in an environment (1) constructed by function
pairlis, and that the first parameter of function
assoc is static and its second parameter is cons point
€1 described above. Then, the analysis will determine
the following: by definition of the abstract primi-
tive null#, the expression null(1l) is static because
variable 1 is bound to a cons point. Since the ex-
pression car(car(1)) refers to the static part of the
environment and variable k is static, the expression
car(car(1)) = k is also static. After fixpoint itera-
tion, the analysis will yield the following information.

assoc#(Stat, 1) = e,

As a result we know that, in this context, all the
tests performed by function assoc can be reduced
statically. The resulting expression will then be a
sequence of cdr to go to a given pair of binding vari-
able/value, and a car to access it.

4 Higher Order Binding Time
Analysis with Data Struc-
tures

In this section we extend the last analysis further to
handle higher order functions. We will see that func-
tions and primitives are relatively easy to handle. It
is the abstractions that necessitate most of the exten-
sions.

4.1 Syntax of a Higher Order Func-
' tional Language

k € Constant

x € Variable

p € Primitive

f € Function-Var
e € Expression
pr € Program

pri={fi=(A(x1,...,%xn) €1), ...,
fie=(A(x1,..., %) ex)}
ex=k| x| e —efes|p|f
’ (’\(xl""axﬂ) e) | 61(62, ceey en)

4.2 Finite Description of Closures

We extend the treatment of the functions to include
abstractions. First, we define a unique reference for
each abstraction. As we did for the data structures,
we will attach a label to each abstraction. We call
such a label a closure point and the set of closure
points in a program is denoted by CLP. This unique
reference allows us to bind each abstraction to a bind-
ing time signature, just as a function.

However, since an abstraction may contain free
variables, in addition to the binding time signature,
we must also consider the binding time environment.
These two elements will represent an abstract closure;
it is defined as follows

AC = Env x Signature

This environment will initially be X x.0. It will be
used during the iteration to restore the context of the
abstraction in order to analyze its body.

4.3 Separating the Operators from the
Other Abstract Values

Since we are dealing with an untyped functional lan-
guage, a value may be of any type, including a func-
tion. In the context of a binding time analysis, this

‘means that the same variable may be bound to an ab-
stract value (static or dynamic) and a function. We
would like to be able to use the function wherever this
variable is used as an operator and its binding time
value if it is an operand of some primitives.

To do this, we propose to separate functions from
other values. An abstract value will now be a pair
defined as

Av = Bav x SPO

The first domain (Bav) is the set of abstract values
{Ls, Stat, C, Dyn} defined in the previous section.
The second is the set of possible operators: SPO
={0, Tp} where O € P(Primitive U Function-Var U
CLP). Indeed, the binding time analysis will have to
approximate the set of possible operators an expres-
sion may either return or use. The value T, denotes
the unknown operator. This value is used when the
operator cannot be determined statically. The set
SPO is ordered as follows

O1 E Oz iff Oy C O3 (subset inclusion)
OLE T, for allO € P(Primitive U Function-Var
U CLP)

Notations: for § € Av
6" will refer to the first element of 6: Bav
87 will refer to the second element: SPO

The least upper bound on Av is defined as
Ugy = A61.A62. (6”1 uévs, 5f1 u 6f2)
Finally, we extend the Abs-Env to handle the closures:

Abs-Env = (Function-Var — Signature) +
(CLP — AC) +(CP — AP)

4.4 Abstract Interpretation

Elements from SPO and CLP are respectively de-
noted by o and 7.

Bt : Expression — Env — AbsEnv — Av x Abs-Env
Bt[k]po = ((Stat, 0), o)
Bt[x]po = (p[x], o)
Bt[e; — e | es]po =
let (61, 01) = Bt[e1]po
((52, 0'2) = Bt[[eg]]pal
) (63, o3) = Bt[es]po
<(5” =1, — (_Lb, 6-6 u 5{3)
|] 64 = Stat — (52 U 53)
[(Dyn,), 72)
Bi[p]po = {(Ls, {p}), o)

Bt[f]po = ((Ls, {f}), o)
Bt[(m:A(x1,...,xn)e)]po =
!et (o, ®) = on
((Ls, {n}), o[n— (p, m)])
Bt[ei(es, ..., en)]lpo =
let (61, 01) = Bt[ei]po
(62, o2) = Bt[ex]po1

(6n, on) = Bt[enlpon—1

in
(apply 01 (62, ..., 64)) 0 ...0
(apply o (62, -- ., 6n)) ((Ls, 9), o)

where o; € {0 € 64 / arity(o) =n}

Notice that when the test of a conditional expres-
sion is dynamic, the binding time value of the whole
expression is (Dyn, T,). The value T, expresses the
fact that the conditional will not be determined stati-
cally, and thus, if the truth or the false branch return
some operators, they cannot be considered. This im-
plies that these operators (in the case of a function
or a closure) should be considered as having dynamic
parameters.

The analysis of an abstraction amounts to updat-
ing the Abs-Env with the current environment for the
corresponding closure point. When it is applied, its
binding time signature is updated. The function ap-
ply is defined below.

apply: SPO — Av™— Avx AbsEnv — Avx Abs-Env
apply[f] = A(61,...,6,). A(6, o).
let ((6'1,...,8'), 8') =(of)
in '
(U é, off= ((61 U &1, ..., 6, U8,)
apply[n] = A(81,...,6,). A(S, o).
}et (@, ((6'1,...,89), &) =(on)
in
(6L &, alm— (o), (61U, ..., 6, UL, &N)

We omit the definition of apply for the primitives
that operate on lists or other data structures: their
definitions are essentially the same as in the previous
abstract interpreter.

The iteration process will almost remain the same.
Note that the treatment of a closure point is per-
formed by first looking up the binding time environ-
ment together with the corresponding binding time
signature. The binding time environment is then ex-
tended with the binding time signature (the abstract
value of the parameters). Finally, the body of the
abstraction is analyzed in this environment and the
AbsEnv is updated with the result.

4.5 An Example

The following program combines higher order func-
tions and data structures.

{ £(n, 1) = map ((n:A(e) n + &), 1)
map(fun, 1) =
null(l) —nil
[e:cons(fun(car(l)), map(fun, cdr(l))) }

The final Abs-Env for the function call f#((Dyn,0),
(Stat, 0)) is

graph(o,) =
{ [f# — (((Dyn, 0), (Stat, 0)), ({€}, 0))]
[map# — (((Ls, {n}), (Stat, 0)), ({e}, B))]
(7= ({[n — (Dyn, 0)]} , ((Stat, 0), (Dyn, 0)))]
[e— ((Dyn, 0), ({e}, 0))] }

Using this information and given the list [1, 2,
3], a partial evaluator yields the following residual
program.

{£’(n) = cons(1+n,cons(2+n,cons(3+n,nil)))}

4.6 Some Remarks

Note that our approach to treat higher order func-
tions does not require any prior phase to approximate
the set of closures that a given expression may eval-
uate to. This phase, called closure analysis [21], has
been avoided by introducing the set of possible oper-
ators in the domain of abstract values.

Note also that when applied, an abstraction is never
analyzed recursively; instead its binding time signa-
ture is updated and the iteration process will treat it
Just as a function. This strategy is crucial to guaran-
tee termination of the analysis. Indeed, in an untyped
functional language a set of abstractions may repre-
sent a cycle in the call graph.

A typical example is a fixpoint operator (written
for eager evaluation)

fix £ =let v =2x . £ (e .
in

((x x) e))
(v v)

For such functions a recursive analysis of abstrac-
tions would cause non-termination of the analysis, as
mentioned in [10].

5 Related Work

Partial evaluation has been the primary motivation
for this work. The MIX project at the University of
Copenhagen has first pointed out the utility of bind-
ing time analysis to improve the partial evaluation
process and to achieve self-application [14, 5]. A com-
plete system was implemented including a binding
time analysis for first order recursive equations.

In [15], a binding time analysis which handles par-
tially static structures is described. Asin [12, 13], reg-
ular tree grammars are used to obtain finite descrip-
tions of data structures manipulated by a program.
This approach is limited to a first order untyped func-
tional language and requires prior transformations of
the program being analyzed (alpha-conversion and re-
stricted terms for the arguments of cons).

A binding time analysis for a higher order untyped
functional language is presented in [4]. It is limited
to flat domains and requires a closure analysis.

Binding time analyses for a higher order typed
functional language are described in [18] and [16].
The type information of a program are used to de-
duce binding time descriptions.

In [9], it is shown how binding time information
can be further exploited to improve the partial evalu-
ation process. Indeed, binding time information can
be compiled into directives, driving the partial eval-
uator as to what to do for each expression, instead of
how to use the result of partially evaluating an ex-
pression.

6 Conclusion

We have presented a method for performing binding
analysis of untyped functional languages. Given a
program and a specification of its input, our analy-
sis yields the binding time signature of each function
as well as the binding time descriptions of the data
manipulated by the program. This analysis can be
useful for applications such as compile-time optimiza-
tions [2, 19], denotational definitions [18] and partial
evaluation [14, 5].

We have implemented our binding time analysis
and it is used in our partial evaluator for a side-effect
free dialect of Scheme.

Acknowledgements
Thanks go to Olivier Danvy, Paul Hudak, Siau Cheng

Khoo, and Raman Srinivas Sundaresh for comment-
ing earlier versions of this paper.

References

(1]

(2]

(3]

(4]

[5]

[7]

(9]

(11]

S. Abramsky and C. Hankin, editors. Abstract
Interpretation of Declarative Languages. Ellis
Horwood, 1987.

A. D. Aho, R. Sethi, and J. D. Ullman. Compil-
ers: Principles, Techniques and Tools. Addison-
Wesley, 1986.

D. Bjgrner, A. P. Ershov, and N. D. Jones, ed-
itors. Partial Evaluation and Mired Computa-
tion. North-Holland, 1988.

A. Bondorf. Automatic autoprojection of higher
order recursive equations. In N. D. Jones, edi-
tor, ESOP’90, 3¢ European Symposium on Pro-
gramming, volume 432 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1990.

A. Bondorf, N. D. Jones, T. Mogensen, and
P. Sestoft. Binding time analysis and the tam-
ing of self-application. Diku report, University
of Copenhagen, Copenhagen, Denmark, 1988.

C. Consel. New insights into partial evaluation:
the Schism experiment. In H. Ganzinger, edi-
tor, ESOP’88, 2*¢ European Symposium on Pro-
gramming, volume 300 of Lecture Notes in Com-
puter Science, pages 236-246. Springer-Verlag,
1988. -

C. Consel. Analyse de Programmes, Evaluation
Partielle et Generation de Compilateurs. PhD
thesis, Université de Paris VI, Paris, France,
1989.

C. Consel and O. Danvy. Static and dynamic
semantics processing. Research Report 761, Yale
University, New Haven, Connecticut, USA, 1989.

C. Consel and O. Danvy. From interpreting to
compiling binding times. In N. D. Jones, edi-
tor, ESOP’90, 3% European Symposium on Pro-
grammang, volume 432 of Lecture Notes in Com-
puter Science. Springer-Verlag, 1990.

P. Hudak and J. Young. Higher-order strictness
analysis in untyped lambda calculus. In ACM
Symposium on Principles of Programming Lan-
guages, pages 97-109, 1986.

P. Hudak and J. Young. A collecting interpre-
tation of expressions without powerdomains). In
ACM Symposium on Principles of Programming
Languages, pages 107-118, 1988.

(12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

N. D. Jones and S. S. Muchnick. Flow analy-
sis and optimization of lisp-like structures. In
S. S. Muchnick and N. D. Jones, editors, Pro-
gram Flow Analysis: Theory and Applications.
Prentice-Hall, 1981.

N. D. Jones and S. S. Muchnick. A flexible
approach to interprocedural data flow analysis
and programs with recursive data structures. In
ACM Conference on Principles of Programming
Languages, pages 66-74, 1982.

N. D. Jones, P. Sestoft, and H. Sgndergaard.
Mix: a self-applicable partial evaluator for ex-
periments in compiler generation. Lisp and Sym-
bolic Computation, 2:9-50, 1989.

T. Mogensen. Partially static structures in a self-
applicable partial evaluator. In D. Bjgrner, A. P.
Ershov, and N. D. Jones, editors, Partial Eval-
uation and Mized Computation, pages 325-348.
North-Holland, 1988.

T. Mogensen. Binding time analysis for polymor-
phically typed higher order languages. In J. Diaz
and F. Orejas, editors, International Joint Con-
ference on Theory and Practice of Software De-
velopment, volume 352 of Lecture Notes in Com-
puter Science, pages 298-312. Springer-Verlag,
1989.

M. Montenyohl and M. Wand. Correct flow anal-
ysis in continuation semantics. In ACM Sympo-
sium on Principles of Programming Languages,
pages 204-218, 1988.

H. R. Nielson and F. Nielson. Automatic bind-
ing time analysis for a typed A-calculus. In ACM
Symposium on Principles of Programming Lan-
guages, pages 98-106, 1988.

H. R. Nielson and F. Nielson. Tranformations on
higher-order functions. In FPCA’89, 4** Inter-
national Conference on Functional Programming
Languages and Computer Architecture, pages
129-143, 1989.

D. A. Schmidt. Denotational Semantics: a
Methodology for Language Development. Allyn
and Bacon, Inc., 1986.

P. Sestoft. Replacing function parameters by
global variables. In FPCA’89, t* International
Conference on Functional Programming Lan-
guages and Computer Architecture, pages 39-53,
1989.

