Yale University
Department of Computer Science

The FFT and Fast Poisson Solvers on Parallel
Architectures

S. Lennart Johnsson

YALEU/DCS/TR-582
March 1987

This work has been supported in part by the Office of Naval Research under
Contracts N00014-84-K-0043 and N00014-86-K-0564. Approved for public re-
lease: distribution is unlimited.

The FFT and Fast Poisson So]vers on Parallel
Architectures

S. Lennart Johnsson
Departments of Computer Science
and Electrical Engineering
Yale University
New Haven, CT 065202

Abstract

In this paper we highlight some of the issues that need to be addressed in finding efficient
implementations of the conventional radix-2 and radix-4 Fast Fourier Transform algorithm [2] on
parallel architectures. We consider the mapping problem for Ensemble Architectures [22], and
the solution of Poisson’s equation using FFT’s. We also point out some properties of matrix
transposition, which are particularly relevant for Boolean cube configured architectures and
related networks. Finally, we comment on FFT in the context of submicron technology and
wafer-scale integration.

Mapping of radix-2 and radix-4 FFT to Ensemble Architectures

The most important feature of the FFT with respect to parallel, distributed memory, archi-
tectures is the data interaction between the elements of the input sequence. The Cooley-Tukey
radix-2 or radix-4 FFT factors this dependence into a sequence of loga N or logys N butterfly
computations. The mapping of FFT computations to ensemble architectures, i.e., architectures
with a large number of processing elements each with its own local memory, can be formu-
lated as the embedding of the butterfly network in a graph representing the connectivity of
the ensemble architecture. Since communication is the most expensive resource in an ensemble
architecture, a typical objective in the mapping is to minimize the communication needs by
preserving proximity. Encoding one structure into another is an embedding problem. A total of
loga N +loglog, N bits are required to encode the nodes of the butterfly network. Let the address
be of the form (2n_1Zn_3...20|ym—1...%0), Where n = logaN and m = logloga N. Hence, =
encodes the number of items and y the ranks of the butterfly network.

We have derived optimal implementations of the conventional radix-2 and radix-4 FFT al-
gorithms on a variety of distributed memory architectures. In [12,1,11,17] we formally derive
various implementations of the FFT on linear arrays by using the laws of associativity and
distributivity. The implementations are optimal with respect to the storage required, and the
number of arithmetic units. The steps can be mechanized, and there exists a direct correspon-
dence between expressions in the formalism and objects in the space-time domain. This work
forms the basis for compiling FFT computations on to linear arrays. In the linear array case z
is mapped into time and y into space, which results in an array of logN stages operating in time
N for a transform of size N. Two FFT’s can be pipelined and the total storage requirement is
N -1.

For the Caltech Tree-Machine project we also investigated the computation of the FFT on
complete binary trees with data entering and leaving through the root. Hence, input and
output are linear in time, and in the limit N — 1 nodes are used to compute the FFT in time

1 Abstract of a presentation at the workshop Fast Fourier Transforms for Vector and Parallel Computers,
The Mathematical Sciences Institute, Cornell University, March 1987.
2Currently on leave at Thinking Machines Corp. 245 First Street, Cambridge, MA 02142

N, which is clearly suboptimal.

In the Caltech Cosmic Cube project we studied the mapping of FFT computations on to
Boolean cubes [15]. The obvious mapping is the complement of the linear array mapping;
¢ is mapped into space and y into time. This mapping can use N processors and operate in
time logN. A similar mapping was used in [23] for the perfect-shuffie network. Note, that
a Boolean cube of N processors can compute one FFT every logo N time steps, whereas, the
butterfly network has a latency of logaN, but it can deliver one FFT every cycle thereafter
through pipelining. Pipelining is trivial, since the FFT is a so called normal algorithm [24].

The Cube Connected Cycles network has been proposed by Preparata and Vuilleman [19].
It can compute an FFT on NlogaN points in 2logy — 1 + loglogy N steps. The CCC network
is effectively a butterfly network in which the nodes with the same z address are connected
as a loop, i.e., node (z|y) is connected to nodes (z|(y — 1)modm)) and (z|(y + 1)modm)) and
nodes 0 and logy are identified. Connections in different ranks of the CCC network are in
different dimensions. The CCC FFT first (last) computes loga N FFT’s on N points through
pipelining and intercycle communication, followed (preceeded) by loglogaN steps of intracycle
computations for a total of N FFT:s on logaN points. Note, that if the nodes in a cycle are
identified (the cycles collapsed into a point), then the CCC becomes identical to a Boolean cube
of N nodes.

Implementation Experience

We have implemented FFT’s on the Alliant FX/8, the Intel iPSC, and the Connection
Machine. The Alliant FX/8 is a shared memory machine with 8 processors, each having its own
instruction stream. Processors also have vector features with a maximum vector length of 32.
The Intel iPSC is a Boolean cube configured ensemble architecture in which each processor has
its own storage and instruction stream. It is designed for up to 128 nodes, which can be provided
with vector features. Synchronization and data interchange take place through message passing.
The Connection Machine is a massively parallel architecture with up to 64k nodes sharing a
common instruction stream. The 64k processor configuration consists of 4k chips interconnected
as a Boolean cube with 16 processors per chip. Each processor has its own storage. There is an
interconnection network on chip for the 16 processors making the Connection Machine resemble
a CCC network, but the Connection Machine has a higher connectivity per chip than a cycle.

With more data points than processors several items have to be identified with the same
processor. We refer to the identification, or aggregation, on the high order bits as cyclic mapping
since data items (i) and z(j) are identified if i = jmodP for P processors. Identification on the
low order bits is refered to as consecutive mapping. Consecutive elements in the linear ordering
are mapped into the same processor [6]. Either scheme for identification can be used for the
FFT, however, in the context of fast Poisson solvers the consecutive scheme results in lower
communication complexity [8].

For the Alliant FX/8, the loop interchange order suggested by Petersen [18] offered a
siginifcant speed-up over the constant loop ordering. (The Petersen algorithm guarantees a
vector length of size N/2 or greater). Loop unrolling helps increase the performance, as well as
paying attention to some idiosyncrasy in the compiler in computing array indices. A performance
improvement of approximately 50% is the result of using these techniques.

For the Intel iPSC, and early versions of its operating system with significant overhead in
communication, a maximum size hypercube is not always optimal. We will discuss this issue in
the context of fast Poisson solvers.

For the Connection Machine, the scheme outlined for the CCC can be used. An alternative
is to make use of the router, which provides bit-serial, pipelined communication. We note that

in the CCC, a FFT is computed by performing (cyclic) shifts in the cycles such that after logs N
shifts an FFT on N points is computed. If the inter-cycle dimensions are labeled 0,1,...,n as
encountered for one of the FFT’s of size N, then the dimensions for the other loga N — 1 FFT’s
of size N are encountered in cyclicly rotated orders. Hence, with the proper data allocation
(cube skewing) all logoN FFT’s can be performed concurrently, instead of pipelined. However,
a data reallocation is needed for the intracycle FFT’s. This data permutation can be performed
by the router, and is an inexpensive operation on the Connection Machine [7].

Fast Poisson Solvers

Fast solvers for Poisson’s equation in two dimensions use the FFT in two dimensions; or the
FFT may be used in one dimension and a tridiagonal system solver in the other dimension.

We first note that in a massively parallel architecture with N2 grid points and N2 pro-
cessors a full complex FFT can be performed with 5logy N arithmetic operations [15,7], giving
a total of 10loga N operations for an FFT and an inverse FFT. A tridiagonal solver on N points
can be carried out with at most 11logs N arithmetic operations [9,10]. Indeed, the number of
arithmetic operations can be reduced to 9logs N at the expense of additional communication.
This further reduction does not pay off on the Connection Machine. The sequential arithmetic
complexity of the FFT is approximately 5Nloga N, and that of a tridiagonal system solver 8N.
Hence, in a massively parallel system the time for arithmetic is approximately the same for
the FFT and the tridiagonal system solver. Communication complexity is the distinguishing
feature. For odd-even cyclic reduction the communication requirement is less than for the FFT,
which in turn is less than for Paralell Cyclic Reduction [5,10].

With medium scale parallelism, such as is the case for the Intel iPSC several tridiagonal
systems are allocated to a subcube. The systems can be solved by a matrix transpose followed by
local Gaussian elimination and another transpose operation of the result. Gaussian elimination
requires about half the number of arithmetic operations of odd-even cyclic reduction. Another
alternative is to use substructuring followed by a transpose operation, local solve, a transpose,
and local backsubstitution. Substructuring reduces the data volume being transposed at the
expense of increased arithmetic complexity. The transpose can be avoided by using cyclic
reduction, which for load balancing purposes is carried out as Balanced Cyclic reduction [9]-
Finally, the substructuring and balanced cyclic reduction scheme can be combined with the
transpose and local elimination scheme to yield a hybrid scheme. These alternatives have been
implemented and are analyzed in [21,13].

Finally, we note that in the context of Poisson’s equation some of the equations are strongly
diagonally dominant. Hence, some of the systems are diagonalized already during the substruc-
turing phase. Others are diagonalized after a few steps of cyclic reduction [16].

Matrix Transpose

An integral part of many computations is the matrix transpose operation which has been
disclosed above. The transposition of a matrix can be performed on butterfly networks as
described in [3,23]. In [6] we show that the paths of elements from different nodes are edge
disjoint, and in [4] we give an optimum transpose algorithm for matrices partitioned in both
dimensions. Optimality of the exchange algorithm is proved in [14].

VLSI Arrays

In conclusion we notice that for course grained systems, i.e., for systems with a relatively
large amount of storage per node, meshes are more effective than Boolean cubes or butterfly

networks themselves, to accomodate the data movement required by butterfly type algorithms
like the FFT [20].

References

[1] Danny Cohen and S. Lennart Johnsson. Mathematical approach to computational net-
works. In Proc. IEEE International Conference on Computer Design: VLSI in Computers,
pages 642 646, IEEE Computer Society, 1983.

[2] Jim C. Cooley, P.A.W. Tukey, and P.D. Welch. The fast fourier transform algorithm:
progamming considerations in the calcualtion of the sine, cosine and laplace transforms. J.
Sound Vibrations, 12(3):315-337, 1970.

[3] J.0. Eklundh. A fast computer method for matrix transposing. IEEE Trans. Computers,
C-21(7):801-803, 1972.

[4] Ching-Tien Ho and S. Lennart Johnsson. Matriz Transposition on Boolean n-cube Con-
figured Ensemble Architectures. Technical Report YALEU/DCS/RR-494, Yale University,
Dept. of Computer Science, September 1986.

[5] Roger W. Hockney and C.R. Jesshope. Parallel Computers. Adam Hilger, 1981.

[6] S. Lennart Johnsson. Communication efficient basic linear algebra computations on hy-
percube architectures. Journal of Parallel and Distributed Computing, 4(2):133-172, April
1987. (Report YALEU/DCS/RR-361, January 1985).

[7] S. Lennart Johnsson. The Fast Fourier Transform, Sine and Cosine Transforms on the
Connection Machine. Technical Report , Thinking Machines Corp., In preparation 1987.

(8] S. Lennart Johnsson. Odd-Even Cyclic Reduction on Ensemble Architectures and the Solu-
tion Tridiagonal Systems of Equations. Technical Report YALE/DCS/RR-339, Department
of Computer Science, Yale University, October 1984.

[9] S. Lennart Johnsson. Solving tridiagonal systems on ensemble architectures. SIAM J. Sci.
Stat. Comp., 8(3):354-392, May 1987. (Report YALEU/DCS/RR-436, November 1985).

[10] S. Lennart Johnsson. Solving tridiagonal systems on the Connection Machine. Technical
Report , Thinking Machines Corp., In preparation 1987.

[11] S. Lennart Johnsson and Danny Cohen. An algebraic description of array implementations
of fit algorithms. In 20th Allerton Conference on Communication, Control, and Computing,
Electrical Engineering, University of Illinois, Urbana/ Champaign, 1982.

[12] S. Lennart Johnsson and Danny Cohen. Mathematical Approach to Computational Net-
works for the Discrete Fourier Transform. Technical Report, Department of Computer
Science, Yale University, 1984.

[13] S. Lennart Johnsson and Ching-Tien Ho. Multiple tridiagonal systems, the Alter-
nating Direction Method, and Boolean cube configured multiprocessors. Technical Re-
port YALEU/DCS/RR-532, Yale University, June 1987.

[14] S. Lennart Johnsson and Ching-Tien Ho. Spanning Graphs for Optimum Broadcasting
and Personalized Communication in Hypercubes. Technical Report YALEU/DCS/RR-500,
Yale University, Dept. of Computer Science, November 1986. To appear in IEEE Trans.
Computers.

[15] S. Lennart Johnsson and Peggy Li. Solutionset for AMA/CS 146. Technical Re-
port 5085:DF:83, California Institute of Technology, May 1983.

[16] S. Lennart Johnsson and Faisal Saied. Convergence of substructuring in Poisson’s equation.
Technical Report , Yale University, In preparation 1987.

[17] S. Lennart Johnsson, Uri Weiser, Danny Cohen, and Al Davis. Towards a formal treatment
of vlsi arrays. In Proceedings of the Second Caltech Conference on VLSI, pages 375 — 398,
Caltech Computer Science Department, January 1981.

[18] W.P. Petersen. Vector fortran for numerical problems on cray-1. Communications of the
ACM, 26(11):1008-1021, November 1983.

[19] Franco P. Preparata and J.E. Vuillemin. The cube connected cycles: a versatile network
for parallel computation. In Proc. Twentieth Annual IEEE Symposium on Foundations of
Computer Science, pages 140-147, 1979.

[20] Abhiram Ranade and S. Lennart Johnsson. The communication efficiency of meshes,
boolean cubes, and cube connected cycles for wafer scale integration. In Int. Conf. on
Parallel Processing, pages 479-482, IEEE Computer Society, 1987.

[21] Faisal Saied, Ching-Tien Ho, S. Lennart Johnsson, and Martin H. Schultz. Solving
schroedinger’s equation on the intel ipsc by the alternating direction method. In Hy-
percube Multiprocessors 1987, pages 680-691, SIAM, September 1986. Tech. report
YALEU/DCS/RR-502, January 1987.

[22] Charles L. Seitz. Ensemble architectures for vlsi — a survey and taxonomy. In P. Penfield
Jr., editor, 1982 Conf on Advanced Research in VLSI, pages 130 — 135, Artech House,
January 1982.

[23] Harold S. Stone. Parallel processing with the perfect shuffle. IEEE Trans. Computers,
C-20:153-161, 1971.

[24] Jeffrey D. Ullman. Computational Aspects of VLSI. Computer Sciences Press, 1984.

